
A

Performance Modelling and Analysis of Software Defined Networking
under Bursty Multimedia Traffic

WANG MIAO1,2, GEYONG MIN2, YULEI WU2, HAOZHE WANG2, and JIA HU2,
1 University of Electronic Science and Technology of China, 2 University of Exeter

Software Defined Networking (SDN) is an emerging architecture for the next-generation Internet, providing
unprecedented network programmability to handle the explosive growth of Big Data driven by the popular-
isation of smart mobile devices and the pervasiveness of content-rich multimedia applications. In order to
quantitatively investigate the performance characteristics of SDN networks, several research efforts from
both simulation experiments and analytical modelling have been reported in the current literature. Among
those studies, analytical modelling has demonstrated its superiority in terms of cost-effectiveness in the
evaluation of large-scale networks. However, for analytical tractability and simplification, existing analyt-
ical models are derived based on the unrealistic assumptions that the network traffic follows the Poisson
process which is suitable to model non-bursty text data and the data plane of SDN is modelled by one simpli-
fied Single Server Single Queue (SSSQ) system. Recent measurement studies have shown that, due to the
features of heavy volume and high velocity, the multimedia big data generated by real-world multimedia
applications reveals the bursty and correlated nature in the network transmission. With the aim of the cap-
turing such features of realistic traffic patterns and obtaining a comprehensive and deeper understanding of
the performance behaviour of SDN networks, this paper presents a new analytical model to investigate the
performance of SDN in the presence of the bursty and correlated arrivals modelled by Markov Modulated
Poisson Process (MMPP). The Quality-of-Service performance metrics in terms of the average latency and
average network throughput of the SDN networks are derived based on the developed analytical model. To
consider realistic multi-queue system of forwarding elements, a Priority-Queue (PQ) system is adopted to
model SDN data plane. To address the challenging problem of obtaining the key performance metrics, e.g.,
queue length distribution of PQ system with a given service capacity, a versatile methodology extending the
Empty Buffer Approximation (EBA) method is proposed to facilitate the decomposition of such a PQ system
to two SSSQ systems. The validity of the proposed model is demonstrated through extensive simulation
experiments. To illustrate its application, the developed model is then utilised to study the strategy of the
network configuration and resource allocation in SDN networks.

CCS Concepts: rNetworks→ Network performance modeling; Network performance analysis;

Additional Key Words and Phrases: Software defined networking, multimedia big data, performance mod-
elling and analysis, queueing decomposition, resource allocation

ACM Reference Format:
Wang Miao, Geyong Min, Yulei Wu, Haozhe Wang and Jia Hu, 2015. Performance Modelling and Analysis of
Software Defined Networking under Bursty Multimedia Traffic. ACM Trans. Multimedia Comput. Commun.
Appl. V, N, Article A (January YYYY), 20 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

This work is supported by the EU FP7 “QUICK” Project (Grant NO. PIRSES-GA-2013-612652) and the
National Natural Science Foundation of China (Grant NO. 61303241).
Author’s addresses: Wang Miao, School of Computer Science & Engineering, University of Electronic Science
and Technology of China, Chengdu, Sichuan Province, China; email: wm255@hotmail.com. Geyong Min,
Yulei Wu, Haozhe Wang and Jia Hu, College of Engineering, Mathematics and Physical Science, University
of Exeter, North Park Road, Exeter, Devon, United Kingdom, EX4 4QF; emails: {gmin, ylwu, hw398 and
jhu}@exeter.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1551-6857/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 W. Miao et al.

1. INTRODUCTION
The past years have witnessed an explosive growth in the volume of network traffic
and big data. According to the latest Cisco Visual Networking Index (VNI) forecast,
the global Internet Protocol (IP) traffic will grow three-fold from 2014 to 2019 and will
reach 2 Zettabytes per year by 2019 [Cisco 2015]. As a consequence, how to handle the
ever-increasing network multimedia traffic and provide satisfactory Quality-of-Service
(QoS) guarantee has become an important challenge. Software Defined Networking
(SDN) has attracted significant attention in order to address this challenge. It was
proposed to accelerate network innovation and flexible deployment by decoupling the
logic of the network control from its forwarding plane, enabling network operators to
gain unprecedented programmability, automation, and network control [Fang et al.
2013] [Congdon et al. 2014][Dong et al. 2015]. SDN architecture has three coopera-
tive layers: infrastructure layer, control layer and application layer. The infrastruc-
ture layer provides network forwarding services under the instructions of the control
layer. The control layer maintains the network-wide information to manage and op-
timise the overall network performance. SDN controller uses southbound interfaces
such as OpenFlow, OVSDB and OpFlex to communicate with the infrastructure layer,
and leverages northbound interfaces, for instance Restful APIs to interact with the
application layer. The application layer creates various services, e.g., network topology
discovery, virtual private network provisioning, and path reservations, based on the
received network information from the control layer.

With the logically centralised control of the network infrastructure, SDN enables
the software intelligence to program networks via the well-defined programmatic in-
terfaces, which are highly customisable, scalable, and agile to meet the requirements
of big data on-demand. For instance, the process of mining the intelligence from the
huge amount of big data fundamentally involves three steps: splitting the data into
multiple server nodes, analysing each data block in parallel, and merging the com-
puted results. Owing to the Splitting-Merging nature of these parallel computations,
the processing speed of big data analytics is highly affected by the efficiency of the
data transmission over the underlying networks. According to the study in [Chowd-
hury et al. 2011], the network transmission latency accounts for more than 50% of the
overall data processing time. With the logically centralised view of the entire network,
SDN has regarded as an ideal architecture to enhance the performance of big data
analytics through high-efficient traffic delivery. Specifically, through dynamic configu-
ration of the network devices, SDN is capable of creating secure and reliable end-to-
end pathways to satisfy the specific transmission demands for each data processing
node, thereby significantly reducing the network transmission latency and hence over-
all data processing time [Wang et al. 2012] [Sadasivarao et al. 2013] [Das et al. 2013]
[Hu et al. 2015] [Qin et al. 2015].

Although SDN enables much precision and efficiency for big data analytics, its de-
sign and implementation encounter new challenges posed by big data. Compared with
traditional distributed network control, the centralised control of SDN has been criti-
cised for its lack of scalability to support ever-increasing demand for network perfor-
mance improvement [Yeganeh et al. 2013]. With SDN, the controller is responsible for
the transactions of the underlying infrastructure layer, where switches and routers
send the request messages to SDN controller for the routing information when the lo-
cal flow tables did not cache the forwarding entry for the visiting packets. Flow table
management at the forwarding devices and network status collection at the controllers
are also bringing frequent communications between SDN controllers and underlying
forwarding devices. As a result, the logically centralised controller becomes a key bot-
tleneck for the SDN network to improve the performance and extend the services.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:3

With the emerging big data, this issue is becoming even worse than ever, since the
massive big data pouring into the data plane places an unprecedented burden on the
SDN architecture design in terms of the transmission rate of the southbound inter-
face, the processing capability of the SDN controller, the computation efficiency of the
algorithms as well as the storage space of the forwarding devices. Therefore, it is ur-
gent and important to have a comprehensive and deep understanding of SDN network
performance including both data plane and control plane under the traffic patterns
exhibited by realistic multimedia applications.

Existing performance studies of the SDN networks have been achieved by both sim-
ulation experiments and analytical modelling. For the simulation experiments, most of
the studies [Naous et al. 2008] [Bianco et al. 2010] [Antichi et al. 2011] [Khan and Dave
2013] focused on the implementations of the OpenFlow switches on various platforms
(e.g., NetFPGA and Linux) to provide high-performance forwarding capabilities, and
the design of software-based SDN controllers to facilitate the network management
and optimisation. However, with the era of network big data, simulation-based study
always become time-consuming and even lose the effectiveness when the large-scale
network and huge amount of network traffic are considered. In contrast to the simula-
tion, analytical modelling has the potential to offer the reduction in the computation
resource and is capable of quantitively capturing the essential characteristics of the
network with different system configurations and under various traffic loads [Wu et al.
2013]. Several analytical models have been proposed in the literatures with the aim
of investigating the performance of SDN architecture, [Jarschel et al. 2011] [Azodol-
molky et al. 2013] [Mahmood et al. 2015] [Miao et al. 2015]. Nevertheless, for the
tractability of the mathematical derivation and performance analysis, existing studies
mainly assume that the traffic entering the SDN networks statistically follows non-
bursty Poisson process, which is widely adopted to model text data, and the data plane
of SDN is modelled using one Single Server Single Queue (SSSQ) system. Many recent
measurement studies [Kapoor et al. 2013] [Beck et al. 2013] [Raj et al. 2015] [Liu et al.
2015] have revealed that the multimedia big data results in the higher use of the net-
work in a short time, which exhibits high degree of bursty feature and has significant
negative impacts on the improvements of network performance. To bridge this gap,
this paper proposes an original comprehensive analytical model for SDN networks 1)
to take the realistic nature of multimedia traffic and multi-queue system in the data
plane into account, and 2) to develop a systematic and efficient method to derive such
an analytical model for the accurate evaluation of SDN performance, in particular its
performance bottlenecks. The major contributions of this paper are summarised as
follows:

— A novel analytical model is designed for SDN networks subject to the input of
bursty multimedia traffic, which is modelled by Markov Modulated Poisson Process
(MMPP). The bursty and correlated nature of the traffic characteristics on each link
and component of SDN network is captured by the splitting and superposition of
multiple bursty sources. The QoS performance metrics in terms of the average la-
tency and average network throughput are derived based on the developed analytical
model;

— To consider realistic multi-queue system of the forwarding elements, a Priority-
Queue (PQ) system is adopted to model SDN data plane. To address the challenging
problem of obtaining the key performance metrics, e.g., queue length distribution of
a PQ system with the given service capacity, a versatile methodology extending the
Empty Buffer Approximation (EBA) method is proposed to facilitate the decomposi-
tion of such a PQ system to two SSSQ systems;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 W. Miao et al.

— To validate the accuracy of the developed analytical model, extensive OMNet++ sim-
ulations are conducted under various network configurations and MMPP parame-
ters, with the aim of capturing different network conditions and degrees of traffic
burstiness and correlations;

— To illustrate its applications, the analytical model is then used as an efficient per-
formance evaluation tool to investigate the effects of flow table hit probability and
service rates on the performance of SDN networks, acquiring the required resource
allocation strategy between the forwarding devices and SDN controller.

The rest of this paper is organised as follows: Section 2 illustrates the working prin-
ciple of the PQ-based SDN architecture and presents the state-of-the-art related re-
search work on SDN performance studies. Section 3 derives the comprehensive ana-
lytical model to investigate the average latency and network throughput of SDN net-
works subject to bursty and correlated traffic. The accuracy of the developed model
is validated in Section 4 through extensive simulation experiments. Section 5 adopts
the developed model to conduct the performance analysis of SDN architecture. Finally,
Section 6 concludes this study.

2. PRELIMINARIES
2.1. Priority-Queue based SDN System Architecture
This study focuses on the SDN architecture with the PQ system in the data plane, as
illustrated in Fig. 1. The PQ system consists of two types of queues: the low priority
queue and the high priority queue. The packets transmitted from the SDN controller
enter the high priority queue and those arriving from the neighbouring forwarding
devices enter the low priority queue. During the packet scheduling, the packets in the
high priority queue have the priority for receiving the service and the packets belong-
ing to the low priority queue can only receive service when there is no packet in the
high priority queue. According to the system design in [Kong et al. 2013], the buffer
sizes of the high priority queue, Uplink Channel (UC) queue and Downlink Channel
(DC) queue, are considered to be infinite, and the buffer sizes of the SDN controller
and the low priority queue are set to be finite, denoted by Kc and Kl, respectively.
According to [ONF 2012], the working mechanism of the PQ-based SDN system ar-
chitecture is as follows: when arriving at the SDN switch, the packet waits in the low
priority queue for service if the buffer is not fully occupied and the Switch Server (SS)
is busy. Once the SS becomes idle and there is no packet in the high priority queue,
the first packet in the low priority queue is popped out and transferred to the SS. If
the flow table in the switch holds the corresponding entry, this packet will be served
immediately according to the action field of the matching flow entry. Otherwise, if the
packet does not match any entry in the flow table, the switch needs to send the whole
or partial package (i.e., the packet header) to the SDN controller through the UC to
consult how to process the unmatched packet. When the partial transmission strat-
egy is adopted, the unmatched packet is stored in the local cache and waits for the
response message from the SDN controller. Once receiving the request message from
SDN switches, the controller generates a response message based on a series of routing
and forwarding calculations and sends the result out through the DC. When arriving
at the SDN switch, the packets of the response message enter the high priority queue
if the SS is busy. Once the SS becomes idle, the first packet in the high priority queue
is forwarded to the SS. When receiving the response message, the SDN switch stores
the routing information as the entries of the flow table and leverages the action field
of the entry to process the packet. Herein, during the whole process, the packet that
fails to match the entries of the flow table has to traverse the SS twice.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:5

UC

SDN Switch

High Priority Queue
Output
Process

DC

SDN Controller

Input
Process

Low Priority Queue

SS

Kl

Kc

Fig. 1. The PQ-based SDN System Architecture

2.2. Related Work
SDN allows the underlying network to be programmed by the control plane. Recently,
several research efforts have been made to leverage this ability to dynamically orches-
trate and create large computing platform for big data analytics. In order to jointly op-
timise application performance and network utilisation, Wang et al. [2012] proposed an
application-aware network configuration through SDN controller and optical switch-
ing. In order to overcome the limited rule space of SDN devices, Dong et al. [2015] de-
signed a two-level rule space strategy and a novel cache prefetching mechanism to in-
crease the utilisation of network resources. The novelty of this work is the integration
of the modification of the flow entries with the prediction of the user mobility to signifi-
cantly increase the hit probability of the flow table. Authors in [Li et al. 2015] leveraged
the capability of SDN architecture to realise the virtualisation of radio access network
for the social Internet of Things. In order to provide re-configurable networks for so-
cial big data analytics, a big data processing system powered by SDN was designed in
[Sadasivarao et al. 2013] through integrating the transmission of SDN networks and
the processing of Hadoop architecture. This work exploited the potential of SDN to
build a high-performance network infrastructure among different processing units to
accelerate the overall data processing; Li et al. [2015] proposed an OFScheduler based
on OpenFlow and used as a network optimiser for optimising MapReduce operations
in a heterogeneous cluster. Qin et al. [2015] designed a framework that employs SDN
elements in Hadoop to reduce the time taken by data to reach the distributed process-
ing nodes. Within each processing nodes, an online deduplication energy approach is
developed in [Li et al. 2014] to minimise the energy cost in data centre.

However, due to the explosive growth in the volume of Internet traffic and the
ever-increasing QoS requirements of emerging network applications, there have been
timely and pressing demands to improve the performance of SDN networks to ad-
dress the issues brought by big data. Currently, the performance of SDN networks are
mainly investigated by simulation experiments and analytical modelling. For the sim-
ulation experiments, Naous et al. [2008] firstly implemented the OpenFlow Ethernet
switch on the NetFPGA platform to provide high throughput and low complexity of
forwarding switches. Antichi et al. [2011] extended Naous’s work by designing a flexi-
ble OpenFlow based forwarding architecture through regular expression with the aim
of supporting more network applications in data plane. The switches in the proposed
architecture are capable of storing up to 200K flow information while satisfying the re-
quirement of line rate processing. Bianco et al. [2010] extended the OpenFlow switch

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 W. Miao et al.

implementation to the Linux platform based on OpenFlow specification, also meeting
realiztic line rates. These implementations of OpenFlow switches, however, were only
realised on single platform, lacking the support for cross-platform implementation. To
fill this gap, in [Khan and Dave 2013], a modular and parameterised implementation
of a hardware-based OpenFlow switch was proposed to implement SDN on three dif-
ferent platforms, i.e., NetFPGA, ML605 and DE4. Through performance comparison,
this study showed that the switch design can be implemented on different platforms
with minor performance variations.

As compared to simulation, analytical modelling has the potential to offer a sig-
nificant reduction of the computation resource and time required for achieving the
system performance, especially when large-scale Internet with high-volume big data
is considered [Abawajy 2009]. Azodolmolky et al. [2013] analysed the performance of
the SDN architecture through exploiting the network calculus theory and achieved
the boundary condition of the transmission latency and queue length. Based on the
measurements of the switching time in hardware OpenFlow switch, Jarschel et al.
in [2011] proposed an analytical model for SDN networks to estimate the packet so-
journ time and packet loss probability. Mahmood et al. in [2015] extended the work
in [Jarschel et al. 2011] to investigate the performance of the SDN architecture with
multi-node condition. In this study, both the data plane and control plane were simply
modelled as M/M/1 queues. These studies have focused on the performance analysis
of SDN networks under the assumption that SSSQ model is adopted to provide ser-
vice for the arriving packets in SDN data plane. This simplified assumption excludes
any necessity for considering multiple queues in the performance analysis. However,
according to the OpenFlow specification 1.3.3 [ONF 2013], the queue structure should
be designed to have multiple queues in the forwarding devices. Recently, the authors
in [Miao et al. 2015] proposed a new analytical model to investigate the performance
of SDN networks in the presence of PQ system in data plane. This work showed that
the priority packet scheduling outperforms the First In First Out (FIFO) scheduling
in terms of the packet loss probability and quantitatively derived the average packet
latency taking the limited buffer size into account. However, for analytical tractability
and simplicity, all these existing models for SDN networks were primarily developed
under the nonbursty Poisson arrivals. For big data transmission, the traffic patterns
typically exhibit bursty and correlated nature. For instance, Tate et al. [2013] revealed
that the procedures of the big data analytics lead to the high burstness during the data
transmission and more dynamic resource allocation are required to meet the QoS/QoE
requirements. The authors in [Kapoor et al. 2013] discovered that the traffic behaviour
of the big data exhibits the larger bursty at the range of 10-1000 microsecond. Liu et
al. in [2015] analysed the four popular big data applications (Hadoop, Spark, Shark
and Impala) running on the experimental clusters. The real traffic was collected from
the communications among these applications. The experimental results showed that
the big data traffic results in the higher use of the network in a short time and exhibits
the high degree of fluctuations and burstiness. Although the transmission of the big
data presents the bursty pattern and significantly affects the provisioning of the net-
work services, none of the existing analytical models for the SDN networks is capable
of capturing such realistic characteristics. To fill this gap, the aim of this paper is to
design a novel analytical model to comprehensively investigate the performance of the
SDN networks with the input of bursty and correlated traffic.

2.3. Markov-Modulated Poisson Process Traffic
In this study, the traffic entering SDN switch is modelled by MMPP, which is a doubly
stochastic Poisson process with the arrival rate varying according to an irreducible
continuous-time Markov chain. Due to the capability of capturing the time-varying

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:7

arrival rate, MMPP is an effective tool for modelling bursty and correlated traffic. In
addition, the superposition and splitting operations of MMMPs generate a new MMPP
[Fischer and Meier-Hellstern 1993] [Lee and Cho 2010], facilitating the derivation of
the analytical model in the complex network environment. A two-state MMPP has
been widely used to investigate the performance of the network [Mark and Ephraim
2014] [Liu et al. 2008] and is parameterised by an infinitesimal generator matrix Qi of
the Markov chain and an arrival rate matrix Λi as follows

Qi =

[
−ϕ1i ϕ1i

ϕ2i −ϕ2i

]
Λi =

[
λ1i 0
0 λ2i

]
(1)

where ϕ1i is the transition rate from state 1 to 2, and ϕ2i is the rate out of state 2 to 1.
λ1i and λ2i are the traffic rates when the Markov chain is in states 1 and 2, respectively.
The subscript i denotes the type of the queue where the traffic arrives within the SDN
architecture, e.g., low priority queue, high priority queue, UC and DC queues and the
controller queue. Then, the mean arrival rate, λmi , of MMPPi can be given by

λmi =
λ1iϕ2i + λ2iϕ1i

ϕ1i + ϕ2i
(2)

3. DERIVATION OF THE ANALYTICAL MODEL
The average latency in the SDN architecture can be obtained by the weighted sum of
the packet latencies, Lathit if the packet hits the entry of the flow table, and Latmiss
if the packet misses the flow entry. The packet arriving at the SDN switch can suc-
cessfully find the flow entry in the flow table with the probability, ε. Then, the average
latency, Latency, can be writen as follows:

Latency = εLathit + (1− ε)Latmiss (3)

Based on the system description in Section 2.1, Lathit and Latmiss are given by

Lathit = Dl (4)

Latmiss = Dl +Du +Dc +Dd +Dh (5)

where Dl, Du, Dc, Dd, and Dh are the average delay in the low priority queue, the UC
queue, the controller queue, the DC queue and the high priority queue, respectively.

Directly deriving these values is intractable under the input of MMPPs because it is
difficult to calculate the additional delay for the packets in the low priority queue due
to the ones in the high priority queue. In order to address this issue, inspired by the
well-known Kleinrock’s independence approximation [Raj et al. 2015], a novel queue-
ing decomposition approach is developed in this study to transform a PQ system into
two SSSQ systems. Therefore, instead of directly modelling the complex PQ system
subject to bursty traffic, the task of the performance evaluation of SDN architecture
is achieved by analysing the two but relatively simple systems, SSSQl and SSSQh as
shown in Fig. 2. There have been a few publications that appeared in the literature
to investigate the queueing decomposition. For instance, Jin. et al. in [2009] proposed
a method that can achieve the service rates of the two queues for the decomposed
SSSQ system with the input of fractional Brownian motion (FBM) traffic. Liu et al. in
[2009] further extended the decomposition method from the traffic of FBM to MMPP.
These studies adopted EBA method [Mannersalo and Norros 2002] and, for analyti-
cal tractability, assumed that the high priority queue has the negligible impact on the
overall queue length of the PQ system and concluded that the overall queue length

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 W. Miao et al.

High Priority Queue

SDN Switch

Output
Process

UCDC

Input
Process

Low Priority Queue

SDN Controller

SSSQh

SSSQl

μh

μl

Fig. 2. Decomposition of a PQ System to Two SSSQ Systems in SDN Forwarding Devices

of the PQ system is almost exclusively formed by the queue length of the low priority
queue. As a result, the queue length distribution of the PQ system can be approxi-
mated as that of the low priority queue. Although high accuracy is achieved by these
studies when the low priority queue is poured by heavy traffic and high priority queue
by light traffic, they can hardly capture the comprehensive performance evaluation of
the PQ system under various traffic load conditions, especially for the case of the over-
loaded traffic in the high priority queue. In order to bridge this gap, an enhanced EBA
approach is proposed and described in the following section.

3.1. Decomposition of Priority Queue System
In order to successfully decompose a PQ system into two SSSQ systems, let us firstly
analyse the relationship among the interdeparture time, the interarrival time and the
sojourn time. Let Ta,i (the subscript a represents the arrival process) denote the inter-
arrival time between the ith and (i + 1)th packets arriving at the PQ system. Let Td,i
(the subscript d represents the departure process) denote the interdeparture time be-
tween ith and (i+1)th packets leaving the PQ system. Let Ts,i and Ts,(i+1) (the subscript
s denotes the sojourn process) be the time of the ith and (i+1)th packets spending at the
PQ system, which includes queueing time and serving time. After simple derivation,
the relationship among Ta,i, Td,i and Ts,i can be denoted as Td,i = Ts,(i+1) − Ts,i + Ta,i.
From this equation, it can be seen that Td,i is determined by two parts: Ts,(i+1)−Ts,i and
Ta,i. Herein, Ta,i is only determined by the input process characterised by MMPP inl
(the subscript l represents the low priority queue and the superscript in denotes the
input traffic). As the input traffic does not change, then if the relationship among Ta,i,
Td,i and Ts,i is still valid after the decomposition of the PQ system, the sojourn time
should be kept unchanged during the the queueing decomposition.

According to the Little’s law [Gao et al. 2010], this condition can be equivalently
transferred to keep the average number of packets in the PQ system unchanged. The
key issue to satisfy this condition during the PQ decomposition is to achieve the service
capabilities of the SSSQl and SSSQh, namely, µl and µh respectively. Recall that EBA
can only achieve high accuracy when the low priority queue is poured with heavy traf-
fic and high priority queue with light traffic, it can hardly capture the comprehensive
performance evaluation of the PQ system under various traffic load conditions. In this
study, we extend the EBA method to derive µl and µh. Since the SS provides the abso-
lute priority for the packets in the high priority queue, the newly arriving packets in
the low priority queue can hardly have impact on the serving process of the high prior-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:9

ity queue. Therefore, the equivalent service rate of the SSSQh, µh, can be achieved as
µh = µs. Then, the main difficulty in the decomposition of the PQ system transfers to
the calculation of the equivalent service rate of the SSSQl. Inspired by EBA method,
the average number of packets in the SSSQl, Ll, can be calculated by subtracting the
average number of packets in the SSSQh, Lh, from the average number of packets in
the PQ system, Lt. This relationship can be expressed as follows:

Ll = Lt − Lh (6)

The average number of packets in an SSSQi (the subscript i represents different
type of the queue systems) system with MMPPi traffic input can be calculated as
follows [Fischer and Meier-Hellstern 1993]:

Li = li
(1) + [

1

λmi
πiΛi − li](eπi +Qi)

−1
Λie (7)

where e = (1, 1)
−1 , πi = (π1i, π2i) = (ϕ1i, ϕ2i)/(ϕ1i+ϕ2i);Qi and Λi are the infinitesimal

generator matrix and the arrival rate matrix of the MMPPi input traffic. li is the
average queue length of the SSSQi system; l(1)

i is the first moment of li; li and l
(1)
i

can be calculated based the method in [Fischer and Meier-Hellstern 1993]. For the low
priority queue, after achieving the average number of packets in the SSSQl in Eq.
(6), the service rate of SSSQl, µl can be calculated based on Eq. (7) through iterative
algorithm, which applies a search over feasible region [0, µs]. The search algorithm
recursively calculates the average number of packets Ll′ until satisfies

∣∣Ll′ − Ll∣∣ < ε,
where ε is a small value, e.g., 10−8 specifying the stop condition for the recursion loop.

In what follows, we will derive the arrival traffic processes for the SSSQl, the
SSSQh, and the PQ system, respectively.

3.2. Input Traffic Process of the Low Priority Queue
Since the buffer size of the MMPP inl /M/1/Kl queueing system is limited as Kl for
modelling the low priority queue, the packets arriving at the SDN network will be
dropped when the SSSQl is full. Let Pbl indicate the probability that an arriving
packet finds MMPP inl /M/1/Kl full. The traffic effectively entering the queueing sys-
tem is a fraction (1 − Pbl) of the total traffic arrived. As the splitting of an MMPP
generates a new MMPP , let MMPP in→el represent the effective traffic entering the
queueing system. MMPP in→el can be calculated by splitting MMPP inl with the prob-
ability (1−Pbl). Based on the principle of MMPP splitting process [Lee and Cho 2010],
the infinitesimal generation Qin→el and rate matrix Λin→el of MMPP in→el can be given
by

Qin→el = Qinl =

[
−ϕ1l ϕ1l

ϕ2l −ϕ2l

]
(8)

Λin→el = (1− Pbl)Λinl =

[
(1− Pbl)× λ1l 0

0 (1− Pbl)× λ2l

]
(9)

To compute the blocking probability, Pbl, let us first analyse the bivariate Markov
chain of the SSSQl system. The state (s, n) in this Markov chain denotes that the
Markov chain of MMPP inl is in state s, (s = {0, 1}), and there are n packets in
the SSSQl, (0 ≤ n ≤ Kl). The transmission rate from the state (0, n) to (1, n) is
ϕ1l, and the rate from state (1, n) to (0, n) is ϕ2l. ϕ1l and ϕ2l are given by Qinl . The

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 W. Miao et al.

transmission rate from state (0, n) to (0, n + 1) is the packet arrival rate, λ1l, and
from state (1, n) to (1, n + 1) is λ2l. λ1l and λ2l can be achieved from Λinl . The rate
out of the state (s, n + 1) to state (s, n) is the service rate of SSSQl, µl. In order to
calculate the blocking probability, the transmission matrix, G, should be built based
on the state-transition-rate diagram. Given the number of the state of the bivariate
Markov chain, 2Kl, the dimension of the transmission matrix should be 2Kl ∗ 2Kl.
Based on the balance equations of the bivariate Markov chain, the transmission ma-
trix can be expressed by the transmission rates linking different states. After achieving
the transmission matrix, let us calculate the steady-state probability vector P, where
P = (P (0, 0), P (0, 1), ..., P (0,Kl), P (1, 0), P (1, 1), ..., P (1,Kl)). Let e represent a 2Kl unit
vector. The steady-state probability vector, P, satisfies the following equations:

PZ = 0 Pe = 1 (10)

Solving the above equations yields the probability P as

P = u(I−<+ e)
−1 (11)

where < = I + Z/min{Z(ρ, ρ)} and min{Z(ρ, ρ)} represents the minimum number in
the diagonal line of the matrix Z. u denotes any row vector of the <. After achieving P,
the probability that there are n packets in the SSSQl system, Pn, can be calculated as
Pn =

∑1
s=0 Ps,n. With Pn, let us calculate, Ṗn, which is the probability that an arriving

packet observes there are n packets in the SSSQl system. Ṗn is given as follows [Wu
et al. 2013]:

Ṗn =

(
Kl∑
n=0

Pn × Λinl × e

)−1

Pn × Λinl × e (12)

The blocking probability is equal to the probability that a packet arrives at the system
and observes that the queue is full, therefore, Pbl = ṖKl

.

3.3. Output Traffic Process of the Low Priority Queue
The output process of the PQ system subject to an MMPP arrival process will be par-
tially fed to SDN controller, playing critical role in deriving the input process of the
high priority queue. Based on the study in [Ferng and Chang 2000], the output process
of the priority queue no longer possesses the property of MMPP. In order to address
this issue to achieve a tractable analytical model, a matching method is leveraged in
this section to use an MMPP process characterised by four parameters (λ1, λ2, ϕ1, and
ϕ2), to approximately model the output process of the low priority queue. We employ
the selection method in [Ferng and Chang 2000] to choose the four statistics of the
interdeparture process to match the four MMPP parameters: the first moment and
the third moment of the interdeparture time, E [Td,i] and E

[
T 3
d,i

]
, the squared coeffi-

cient variation of the interdeparture time c2(Td,i), and the covariance of two successive
interdeparture times Cov(Td,i, Td,(i+1)).

The moments of the inter-departure time, Td,i, can be written as

E
[
Tn
d,i

]
= (−1)n

[
n−1∑
i=0

n!

i!
Li(0)x0U

−(n−1)(0)e

]
+ (−1)nL(n)(0), (13)

where U(0) = Q − Λ and L(s) is the Laplace-Stieltjes transform of the service time
distribution, given by L(s) = µ/(s+ µ). Let xk denote the stationary probability that
the number of the packets in the system is k once a departure occurs, and x0 and x1

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:11

can be achieved based on the method in [Fischer and Meier-Hellstern 1993].Then, the
first three moments of the inter-departure time can be easily achieved from Eqs. (13)
as follows:

E [Td,i] = l − x0U−1(0)e (14)

E
[
T 2
d,i

]
= L(2)(0)− 2lx0U

−1(0)e+ 2x0U
−2(0)e (15)

E
[
T 3
d,i

]
= −L3(0)− 3L(2)(0)x0U

−1(0)e+ 6lx0U
−2(0)e− 6x0U

−3(0)e (16)

The squared coefficient of variation of the interdeparture time c2(Td,i), can be ob-
tained from Eqs. (14) and (15), given by c2(Td,i) =

(
E
[
T 2
d,i

]
− (E [Td,i])

2
)
/(E [Td,i])

2.
The covariance of two successive interdeparture times is given by

Cov(Td,i, Td,(i+1)) = lx0U
(−1)(0)e−

(
x0U

(−1)(0)e
)2

+ x1A
′
0(0)U (−1)(0)e

+x0U
(−1)(0)K(0)A0(0)U (−1)(0)e+ x0K(0)A

′
0(0)U (−1)(0)e

(17)

where l = 1/µ and K(0) = (A− Λ)
−1

Λ. Let Ãk(x) denote the probability that when a
departure happens there is at least one packet in the system and the next departure
occurs no later than x with k arrivals during the service time. Then, the transform
matrix of Ãk(x) can be calculated as follows:

Ak(s) =

∫ ∞
0

e−sxdÃk(x) =

∫ ∞
0

e−sxP (z, x)dL̃(x) =

∫ ∞
0

e−sxe[(Q−Λ)+zΛ]xdL̃(x) (18)

where P (z, x) is the z transformation of P (k, x) and is calculated by P (z, x) =
e[(Q−Λ)+zΛ]x. P (k, x) is the probability that there are k packets arriving at the sys-
tem during the length of x time. Given U(0) = Q − Λ, the cumulative distribu-
tion function of exponential distribution, L̃(x), is achieved by L̃(x) = 1 − eµx. A0(0)

and A
′

0(0) can be readily derived from Eq. (18), i.e., A0(0) = µ[µI − U(0)]
−1 and

A
′

0(0) = −A0(0)[µI − U(0)]
−1. Then the four parameters of the output process of the

low priority queue can be derived from Eqs. (13)-(18) based on the method in [Ferng
and Chang 2000].

3.4. Input Traffic Process of the High Priority Queue
Recall that the packet arriving at SDN switch has the probability, (1− ε), missing the
flow entry in the flow table and a proportional amount of the output traffic will be
sent to the SDN controller through the UC. The traffic arriving at the UC, denoted by
MMPP inu , is a fraction of output traffic from the SSSQl. This fraction, fm, is equal
to the miss probability as fm = 1 − ε. Based on Eqs. (8) and (9), the infinitesimal
generator, Qinu , and the rate matrix, Λinu of MMPP inu can be achieved. Let MMPP outu
be the output process of the UC queue, which is characterised by the infinitesimal
generator, Qoutu , and rate matrix Λoutu . Given the transmission rate of the UC, µu, the
output process of the UC can be achieved based on the matching approach described
in Section 3.3. Since there is no packet dropped in the transmission of the UC [Kong
et al. 2013], the traffic arriving at the SDN controller, MMPP inc is equal to the output
process, MMPP outu of the UC. Since the buffer size of the SDN controller, Kc, is finite,
when the packet arrives at the SDN controller, there is a probability, Pbc, that the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 W. Miao et al.

arriving packet is dropped when the queue becomes full. Pbc can be obtained using
Eqs. (10)-(12). The effective traffic entering the queueing system of SDN controller is
a fraction (1−Pbc) of traffic arriving at the controller. As the splitting of an MMPP is
again a new MMPP , let MMPP in→ec denote the effective traffic entering the queueing
system. MMPP in→ec can be obtained by splitting MMPP inc with the probability (1 −
Pbc). Following the matching approach described in Section 3.3, the output process
from the MMPP in→ec /M/1/Kc queue, parameterised by Qoutc and Λoutc can be readily
obtained. Similar to the analysis of the UC, the input and output processes of the DC,
MMPP ind and MMPP outd can be obtained. Again, due to infinite DC queue, the traffic
arriving at the high priority queue in SDN architecture, denoted by MMPP inh , is the
output process from the DC, MMPP outd .

3.5. Total Traffic Process of the Priority Queue System
Since the superposition of multiple MMPPs is again an MMPP [Fischer and Meier-
Hellstern 1993], let MMPPt denote the superposition of the MMPPl and MMPPh.
The number of states in the MMPPt is the production of those of the MMPPl and
MMPPh, which brings the complex computations in the iterative process to calcu-
late µl. In order to achieve an efficient analytical model, inspired by [Ferng and
Chang 2001], a two-state MMPP ′t is constructed in this study to approximate the
MMPPt. For the clarification, let mj , vj , pj and rj(t) be the mean arrival rate, E [Ta,j],
the second moment, E

[
T 2
a,j

]
, the third moment, E

[
T 3
a,j

]
and the covariance function,

Cov(Ta,j , Ta,(j+1)) of the MMPPj (where j = {l, h}). Let τj denote the time constant
of the MMPPj process, caculated by τj = 1

vj

∫∞
0
rj(t)dt. Then, the four parameters of

MMPP ′t, m′t, v′t, p′t and τ ′t, are given by:

m′t =
∑

j∈{l,h}

mj v′t =
∑

j∈{l,h}

vj p′t =
∑

j∈{l,h}

pj τ ′t =
∑

j∈{l,h}

vj
v′t

τj (19)

After obtaining these four parameters, the infinitesimal generator, Q′t, and rate ma-
trix Λ′t can be easily obtained based on the matching procedure in [Heffes 1980],
which will be used to approximate the infinitesimal generator, Qt, and rate matrix
Λt of MMPP t. The accuracy of this approximation will be evaluated in Section 4. With
the MMPPl, MMPPh and MMPP t, the service rate of SSSQl can be calculated from
the iteration process in Section 3.1.

According to [Fischer and Meier-Hellstern 1993], the average sojourn time in a
MMPPi/M/1 queueing system is given by

Di =
1

ρi

{
1

2(1− ρi)

[
2ρi + λmi hi

(2) − 2hi((1− ρi)gi + hiπiΛi)(Qi + eπi)
−1
λi

]
− 1

2
λmi hi

(2)

}
(20)

where ρi is the utilisation rate of the server, given by ρi = λmi /µi. hi and h
(2)
i are the

mean and the second moment of the service time, given by hi = 1/µi and hi(2) = 2/µi
2,

respectively. gi is the steady state vector of the matrix Gi and can be achieved based on
the methods in [Fischer and Meier-Hellstern 1993]. The average sojourn time in the
low priority queue, the UC queue, the queue in the SDN controller, the DC queue and
the high priority queue, can be computed by Eq. (20). Finally, the average latency can
be obtained from Eq. (5).

During the whole lifecycle of the packet in the PQ system, packets will be dropped in
the queues of SDN switch and controller once the buffers become full. Therefore, the
average throughput, Throughput, can be obtained as

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:13

Throughput = λml (1− Pbl)(ε+ (1− ε)(1− Pbc)) (21)

3.6. Implementation of the Model
In order to implement the developed analytical model, an algorithm is described in this
section for calculating the average latency and the average throughput of PQ-based
SDN networks.

Algorithm 1: The procedure for calculating the average latency of PQ-based SDN networks
Input: The service rates of SDN controller, switch, UC, and DC, µc, µs, µu and µd; the buffer

sizes of low priority queue and controller queue, Kl and Kc; the flow table hit
probability, ε; the infinitesimal generator and rate matrix of MMPP in

l , Qin
l and Λin

l ;
the recursive gap, µgap = µs; the service rate of SSSQl, µl = 0; the recursive stop
condition, ε = 10−8; and the initial recursive difference, diff = 10;

Output: The average latency and the average throughput of the PQ-based SDN networks,
Latency and Throughput.

while |dif | > ε do
if dif > 0 then

µl = µl + µgap;
else

µl = µl − µgap ;
end
1. Calculate the blocking probability for the low priority queue, Pbl, using Eq. (12);
2. Compute the infinitesimal generator and rate matrix for effective input process of the
low priority queue, Qin→e

l and Λin→e
l , using Eqs. (8)-(9);

3. Calculate the four matching parameters, the infinitesimal generator, and the rate matrix
for the output process of the low priority queue, E [Td,i], E

[
T 2
d,i

]
, E
[
T 3
d,i

]
, Cov(Td,i, Td,(i+1)),

Qout
l and Λout

l , using Eqs. (13)-(18);
4. Calculate the infinitesimal generator and the rate matrix for the input process of the UC,
Qin

u and Λin
u , using Eqs. (8)-(9);

5. Calculate the infinitesimal generator and the rate matrix for the output process of the
UC, Qout

u and Λout
u , using Eqs. (13)-(18);

6. Calculate the blocking probability of the controller queue, Pbc, using Eq. (12);
7. Compute the infinitesimal generator and rate matrix for the effective input process of the
controller queue, Qin→e

c and Λin→e
c , using Eqs. (8) and (9);

8. Calculate the infinitesimal generator and the rate matrix for the output process of the
controller queue, Qout

c and Λout
c , using Eqs. (13)-(18);

9. Calculate the infinitesimal generator and the rate matrix for the input process of the DC,
Qin

d and Λin
d , using Eqs. (8) and (9);

10. Calculate the infinitesimal generator and the rate matrix for the output process of the
DC, Qout

d and Λout
d , using Eqs. (13)-(18);

11. Calculate the infinitesimal generator and the rate matrix for the total traffic process of
the PQ system, Qt and Λt, using Eq. (19);
12. Calculate the average queue lengths of the low priority queue, the high priority queue,
and the PQ system, Ll, Lh and Lt, respectively, using Eq. (7);
13. Calculate the value of the queue length difference, dif , using Eq. (6);
14. Update the recursive gap, µgap = µgap/2;

end
15. Calculate the average sojourn times in the low priority queue, the UC, the SDN controller,
the DC, and the high priority queue, Dl, Du, Dc, Dd, and Dh, respectively, using Eq. (20);
16. Calculate the average latency in the PQ-based SDN architecture, Latency, using Eqs.
(3)-(5);
17. Calculate the average throughput in the PQ-based SDN architecture, Throughput, using
Eq. (21).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 W. Miao et al.

4. VALIDATION OF THE MODEL
To validate the accuracy of the developed analytical model, we have developed a
discrete-event simulator in the Objective Modular Network Testbed in C++ (OM-
NeT++) simulation environment [OMNet++ 2011]. 95% confidence intervals is adopted
in this study to collect the simulation results when the simulation experiment reaches
the steady state. The traffic arriving at the SDN switch follows the MMPP inl process,
characterised by the infinitesimal generator Qinl and the rate matrix Λinl . Extensive
simulation experiments have been conducted by varying the network parameters, in-
cluding buffer sizes, switch service rate, controller service rate, UC and DC capacities,
different flow table hit probability, various MMPP traffic inputs. However, for the sake
of specific illustration and without loss of generality, the result comparisons between
the analytical model and simulation experiments are presented in terms of the aver-
age latency and average throughput with different combinations of system parameters,
which are set as follows:

* Service rate of SDN switch: µs = 80, 40, 20 packets/second;
* Service rate of SDN controller: µc = 60, 30 packets/second;
* Transmission rates of UC and DC: µu = µd = 5, 10 packets/second;
* Flow table hit probability: ε = 0.5;
* Buffer sizes of the low priority queue and the controller queue, Kl = 128 packets and
Kc = 256 packets;

* The infinitesimal generator, Qinl , of MMPP inl , representing different degrees of traf-
fic burstiness and correlation.

Qinl =

[
−0.3 0.3
0.015 −0.015

]
Qinl =

[
−0.09 0.09
0.06 −0.06

]

Qinl =

[
−0.06 0.06
0.03 −0.03

]
Qinl =

[
−0.008 0.008
0.004 −0.004

]
Figs. 3-6 present the average latency and throughput predicted by the analytical

model and simulation experiments for different network configurations. The horizontal
axis represents the traffic rate, λin1l , when the Markov chain of MMPP process stays in
state 1. For clarity of the description, the traffic rate, λin2l is set to be zero. These figures
show that the developed model provides a good degree of matching with the simulation
experimental results under different network configurations. In addition, the subfig-
ures reveal that the average latency and average throughput significantly increase
when the arrival traffic rate goes up (subfigures (a) and (b)). In this case, the uplink
and downlink channels become the bottleneck for the system performance improve-
ment even though SDN switch and controller have adequate service capacity. When
sufficient transmission capabilities are allocated to the uplink and downlink channels,
with the practical configuration of the finite buffer in the forwarding devices, the av-
erage latency and average throughput would reach a stable point once the incoming
traffic exceeds the service capacity that the SDN switch can provide (subfigures (c) and
(d)). In this case, packets will be dropped as the buffer is full and the service capacity
of the switch becomes the performance bottleneck for SDN network. Therefore, in or-
der to avoid the service degradation and Service Level Agreement (SLA) violation, the
developed model can be used as a practical and cost-effective tool to gain insights into
the performance of SDN networks in the presence of bursty and correlated multimedia
traffic.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:15

Traffic Rate (packets/second)
0 10 20 30 40 50 60

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

10

20

30

40

50
Model, 7U = 10

Sim, 7U = 10
Model, 7U = 5

Sim, 7U = 5

(a)
Traffic Rate (packets/second)

0 10 20 30 40 50 60

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

5

10

15

20
Model, 7U = 10
Sim, 7U = 10

Model, 7U = 5
Sim, 7U = 5

(b)
Traffic Rate (packets/second)

0 20 40 60 80

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

2

4

6

8

10

12
Model, 7S = 40

Sim, 7S = 40
Model, 7S = 20

Sim, 7S = 20

(c)
Traffic Rate (packets/second)

0 20 40 60 80

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

5

10

15

20
Model, 7S = 40
Sim, 7S = 40

Model, 7S = 20
Sim, 7S = 20

(d)

Fig. 3. Average latency and throughput predicted by the model and simulation with ϕ1l = 0.3, ϕ2l = 0.15:
(a) and (b) µu = µd = {5, 10}, µs = 80, µc = 60, ε =0.5, Kl = 128, Kc = 256; (c) and (d) µu =10, µd = 10, µs =
{40, 20}, µc = 30, ε =0.5, Kl = 128, Kc = 256.

Traffic Rate (packets/second)
0 10 20 30 40 50 60

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

50

100

150

200

250

300
Model, 7U = 5

Sim, 7 = 5
Model, 7U = 10
Sim, 7U = 10

(a)
Traffic Rate (packets/second)

0 10 20 30 40 50 60

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

5

10

15

20
Model, 7U = 10
Sim, 7U = 10

Model, 7U = 5
Sim, 7U = 5

(b)

Traffic Rate (packets/second)
0 10 20 30 40 50 60

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)
0

2

4

6

8

10

12

14
Model, 7S = 40

Sim, 7S = 40
Model, 7S = 20

Sim, 7S = 20

(c)
Traffic Rate (packets/second)

0 10 20 30 40 50 60

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

2

4

6

8

10

12

14
Model, 7S = 40
Sim, 7S = 40

Model, 7S = 20
Sim, 7S = 20

(d)

Fig. 4. Average latency and throughput predicted by the model and simulation with ϕ1l = 0.06, ϕ2l = 0.03:
(a) and (b) µu = µd = {5, 10}, µs = 80, µc = 60, ε =0.5, Kl = 128, Kc = 256; (c) and (d) µu =10, µd = 10, µs =
{40, 20}, µc = 30, ε =0.5, Kl = 128, Kc = 256.

Traffic Rate (packets/second)
0 10 20 30 40 50 60

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

200

400

600

800

1000
Model, 7U = 5

Sim, 7U = 5
Model, 7U = 10

Sim, 7U = 10

(a)
Traffic Rate (packets/second)

0 10 20 30 40 50 60

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

2

4

6

8

10

12

14

16

18
Model, 7U = 10

Sim, 7U = 10
Model, 7U = 5

Sim, 7U = 5

(b)

Traffic Rate (packets/second)
0 10 20 30 40

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

10

20

30

40

50
Model, 7S = 40

Sim, 7S = 40
Sim, 7S = 40

Sim, 7S = 20

(c)

Traffic Rate (packets/second)
0 10 20 30 40

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

2

4

6

8

10

12
Model, 7S = 40

Sim, 7S = 40
Model, 7S = 20

Sim, 7S = 20

(d)

Fig. 5. Average latency and throughput predicted by the model and simulation with ϕ1l = 0.008, ϕ2l =
0.004: (a) and (b) µu = µd = {5, 10}, µs = 80, µc = 60, ε =0.5, Kl = 128, Kc = 256; (c) and (d) µu =10, µd = 10,
µs = {40, 20}, µc = 30, ε =0.5, Kl = 128, Kc = 256.

Traffic Rate (packets/second)
0 10 20 30 40 50 60

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

50

100

150

Model, 7U = 5

Sim, 7U = 5
Model, 7U = 10

Sim, 7U = 10

(a)

Traffic Rate (packets/second)
0 10 20 30 40 50

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

5

10

15

20
Model, 7U = 10

Sim, 7U = 10
Model, 7U = 5

Sim, 7U = 5

(b)
Traffic Rate (packets/second)

0 10 20 30 40 50 60

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

2

4

6

8

10

12

14
Model, 7S = 40

Sim, 7S = 40
Model, 7S = 20

Sim, 7S = 20

(c)
Traffic Rate (packets/second)

0 10 20 30 40 50 60

Av
er

ag
e

Th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

ec
on

d)

0

2

4

6

8

10

12

14

16
Model, 7S = 40

Sim, 7S = 40
Model, 7S = 20

Sim, 7S = 20

(d)

Fig. 6. Average latency and throughput predicted by the model and simulation with ϕ1l = 0.09, ϕ2l = 0.06:
(a) and (b) µu = µd = {5, 10}, µs = 80, µc = 60, ε =0.5, Kl = 128, Kc = 256; (c) and (d) µu =10, µd = 10, µs =
{40, 20}, µc = 30, ε =0.5, Kl = 128, Kc = 256.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 W. Miao et al.

Traffic Rate (packets/second)
10 20 30 40 50

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

5

10

15

20
0 = 0
0 = 0.5
0 = 1

(a)

Hit Probability
0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

2

4

6

8

10

12

14

(b)

Fig. 7. Impact of the flow table hit probability on the average latency: (a) ϕ1l = 0.09, ϕ2l = 0.06, µs = 20,
µc = 30, µu = µd = 10, ε ={0, 0.5, 1}, Kl = 128, Kc = 256; and (b) ϕ1l = 0.09, ϕ2l = 0.06, µs = 20, µc = 30, µu
= µd = 10, λin1l = 25, λin2l = 0, Kl = 128, Kc = 256.

5. PERFORMANCE ANALYSIS
The accuracy of the proposed analytical model has been investigated in the above sec-
tion. In this section, the developed model is adopted to conduct the performance eval-
uation of the SDN architecture.

5.1. The Effects of Flow Table Hit Probability
In order to investigate the impact of flow table hit probability on the performance
of SDN networks, Fig. 7 (a) presents the average latency predicted by the developed
analytical model against varying traffic arrival rate with different flow table hit prob-
abilities (ε = 0, 0.5 and 1); the service rates of the SS, DC, SDN controller and UC, µs,
µd, µc and µu are set to be 20 packets/second, 10 packets/second, 30 packets/second and
10 packets/second, respectively; and the buffer sizes of the low priority queue and SDN
controller queue, Ks and Kc, are set to be 128 and 256 packets. When ε = 1, each new
arriving packet can find the forwarding rule in the flow table, without the loop commu-
nication with the SDN controller. This case can be used to approximate the forwarding
mechanism of the traditional network architecture, where network control resides in
the forwarding devices. When ε = 0, no flow entry is stored in the flow table and the
SDN network is in its initiation stage. For each arriving packet failing to match the
entry in the flow table, the header of the new arrival packet will be forwarded to the
controller for requesting the necessary forwarding rule. ε = 0.5 represents the case
that 50% of the arriving packets can match the rules in the flow table. In addition,
Fig. 7 (b) presents the average latency obtained from the model against varying flow
hit probability from 0 to 1 with the fix step of 0.1. From these two figures, we can see
that the average latency of SDN networks becomes better with the increase in the flow
table hit probability and reaches the highest level when the hit probability is equal
to 1. This relationship shows that the analytical model is very useful for the practical
network deployment and management. For instance, in order to avoid the disruptive
QoS degradation of network service in the early stage of network deployment, network
routing information would be cached in the flow table in advance. During this installa-
tion process, the analytical model can be used as a cost-effective tool to quantitatively
calculate the threshold of the flow table to satisfy a required network latency.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:17

Traffic Rate (packets/second)
0 20 40 60 80

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

1

2

3

4

5

6
Case (I): 7s = 30, 7c = 60
Case (II): 7s = 60, 7c = 30

(a)

Switch Service Rate (packets/second)
0 20 40 60 80 100

Av
er

ag
e

La
te

nc
y

(s
ec

on
ds

)

0

5

10

15

20

25

30

(b)

Fig. 8. Impact of the service capacity of SDN switch on the average latency: (a) ϕ1l = 0.09, ϕ2l = 0.06, µs
= {30, 60}µc = {60, 30}, µu = µd = 20, ε = 0.5, Kl = 128, Kc = 256; and (b) ϕ1l = 0.09, ϕ2l = 0.06, µc = 30,
µu = µd = 20, λin1l = 25, λin2l = 0, Kl = 128, Kc = 256.

5.2. The Effects of the Resource Allocation
The efficient resource allocation plays an important role in the SDN network to provide
services with the required QoS guarantee. In what follows, the impact of the resource
allocation on the performance of SDN networks in terms of the average latency will be
investigated. For the sake of illustration, a PQ-based SDN system with two scenarios
of resource allocations is firstly considered: Case (I) µc > µs (e.g., µc = 60, µs = 30)
and Case (II) µc < µs (e.g., µc = 30, µs = 60). The infinitesimal generator of the MMPP
arrivals is set as ϕ1l = 0.09 and ϕ2l = 0.06; the transmission rates of both the UC and
DC, µu, µd, are set to be 20 packets/second; and the buffer sizes of the SDN switch
queue and controller queue, Kl, Kc, are set to be 128 packets and 256 packets, respec-
tively. The flow table hit probability, ε, is set to be 0.5. Fig. 8 (a) depicts the results of
the average latency under the two cases and shows that Case (II) provides the lower
average latency compared to that by Case (I). From the analytical model, the effective
traffic entering the queue of the SDN controller, MMPP in→ec , is derived through two
splitting procedures of the MMPP inl (one splitting is in the queue of SDN switch and
the other is in that of SDN controller) using Eqs. (8)-(12). The input of the SS is the
superposition of the traffic from the SSSQh and SSSQl, where the input of SSSQh is
statistically the output traffic from the SDN controller as there is no packet lose during
the transmission from the controller to the SSSQh. It is therefore readily to see that
the traffic load of the SDN switch is heavier than that of the SDN controller in the
PQ-based SDN system architecture, leading to the phenomenon shown in the figure
that the higher capacity allocated to the SDN switch could bring the lower average
latency of the whole system. Furthermore, in order to achieve a deeper understanding
of the impact of the data plane on the overall system performance, the quantitative
relationship between the service rate of the SDN switch and the average latency is
achieved through the developed model, as presented in Fig. 8 (b). It can be seen that
the average latency significantly reduces with the increase in the service rate of the
SDN switch from 5 packets/s to 40 packets/s.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 W. Miao et al.

6. CONCLUSIONS
This paper has proposed an analytical model for the Software Defined Network (SDN)
architecture in the presence of Markov-Modulated Poisson Process (MMPP) arrivals
capturing the traffic characteristics of multimedia applications. A Priority-Queue (PQ)
system has been adopted to model SDN data plane to capture the multi-queue nature
of forwarding devices. A versatile method extending the Empty Buffer Approximation
(EBA) has been proposed to facilitate the decomposition of such a PQ system to two
Single Server Single Queue (SSSQ) systems in order to facilitate the derivation and
improve the tractability of the analytical model. The key performance metrics includ-
ing average latency and average network throughput have been derived by the model.
The accuracy of the proposed model has been validated through extensive OMNeT++
simulation experiments. The validation results have revealed that the average latency
and the average throughput predicted by the developed analytical model reasonably
match those obtained from the simulation experiments. The analytical model has been
adopted as a cost-effective tool to study the impact of flow table hit probability and
the service resource allocation in the SDN controller and the switch on the system
performance.

REFERENCES
Jemal H Abawajy. 2009. An Efficient Adaptive Scheduling Policy for High-performance Computing. Future

Generation Computer Systems 25, 3 (March 2009), 364–370.
Gianni Antichi, Andrea Di Pietro, Stefano Giordano, Gregorio Procissi, and Domenico Ficara. 2011. Design

and Development of an OpenFlow Compliant Smart Gigabit Switch. In Proceedings of the 2011 IEEE
Global Telecommunications Conference (GLOBECOM). 1–5.

Siamak Azodolmolky, Reza Nejabati, Maryam Pazouki, Philipp Wieder, Ramin Yahyapour, and Dimitra
Simeonidou. 2013. An Analytical Model for Software Defined Networking: A Network Calculus-based
Approach. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM). 1397–
1402.

Pall Beck, Peter Clemens, Santiago Freitas, Jeff Gatz, Michele Girola, Jason Gmitter, Holger Mueller, Ray
O’Hanlon, Veerendra Para, Joe Robinson, Andy Sholomon, Jason Walker, and Jon Tate. 2013. IBM and
Cisco: Together for a World Class Data Center. IBM Redbooks publication.

Andrea Bianco, Robert Birke, Luca Giraudo, and Manuel Palacin. 2010. OpenFlow Switching: Data Plane
Performance. In Proceedings of the 2010 IEEE International Conference on Communications (ICC). 1–5.

Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica. 2011. Managing Data
Transfers in Computer Clusters with Orchestra. ACM SIGCOMM Computer Communication Review
41, 4 (2011), 98–109.

Cisco. 2015. Visual Networking Index: Forecast and Methodology, 2014–2019. (2015). http://www.cisco.com/
Paul T. Congdon, Prasant Mohapatra, Matthew Farrens, and Venkatesh Akella. 2014. Simultaneously Re-

ducing Latency and Power Consumption in OpenFlow Switches. IEEE/ACM Transactions on Network-
ing 22, 3 (June 2014), 1007–1020.

Anupam Das, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Curtis Yu. 2013. Trans-
parent and Flexible Network Management for Big Data Processing in the Cloud. In Proceedings of the
5th USENIX Workshop on Hot Topics in Cloud Computing. 1–6.

Mianxiong Dong, He Li, Kaoru Ota, and Jiang Xiao. 2015. Rule Caching in SDN-enabled Mobile Access
Networks. IEEE Network 29, 4 (July 2015), 40–45.

Shuo Fang, Yang Yu, Chuan Heng Foh, and Khin Mi Mi Aung. 2013. A Loss-Free Multipathing Solution for
Data Center Network Using Software-Defined Networking Approach. IEEE Transactions on Magnetics
49, 6 (June 2013), 2723–2730.

Huei-Wen Ferng and Jin-Fu Chang. 2000. Connection-Wise End-to-End Delay Analysis in ATM Networks.
IEICE Transactions on Communications 83, 3 (March 2000), 659–671.

Huei-Wen Ferng and Jin-Fu Chang. 2001. Departure Processes of BMAP/G/1 Queues. Queueing Systems
Theory and Applications 39, 2/3 (Octomber 2001), 109–135.

Wolfgang Fischer and Kathleen Meier-Hellstern. 1993. The Markov-modulated Poisson process (MMPP)
Cookbook. Performance Evaluation 18, 2 (1993), 149 – 171.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

Performance Modelling and Analysis of Software Defined Networking under Bursty Multimedia TrafficA:19

Peixia Gao, Sabine Wittevrongel, Koenraad Laevens, Danny Vleeschauwer, and Herwig Bruneel. 2010. Dis-
tributional Little’s Law for Queues with Heterogeneous Server Interruptions. Electronics Letters 46, 11
(May 2010), 763–764.

H. Heffes. 1980. A Class of Data Traffic Processes-covariance Function Characterization and Related Queu-
ing Results. Bell System Technical Journal 59, 6 (July 1980), 897–929.

Han Hu, Yonggang Wen, Yue Gao, Tat-Seng Chua, and Xuelong Li. 2015. Toward an SDN-enabled big data
platform for social TV analytics. IEEE Network 29, 5 (September 2015), 43–49.

Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian Goll, and Phuoc Tran-Gia.
2011. Modeling and Performance Evaluation of an OpenFlow Architecture. In Proceedings of the 23rd
International Teletraffic Congress (ITC). 1–7.

Rishi Kapoor, Alex C. Snoeren, Geoffrey M. Voelker, and George Porter. 2013. Bullet Trains: A Study of
NIC Burst Behavior at Microsecond Timescales. In Proceedings of the 9th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT ’13). 133–138.

Asif Khan and Nirav Dave. 2013. Enabling Hardware Exploration in Software-Defined Networking: A Flex-
ible, Portable OpenFlow Switch. In Proceedings of the 2013 IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 145–148.

Xiangxin Kong, Zhiliang Wang, Xingang Shi, and Xia Yin. 2013. Performance Evaluation of Software-defined
Networking with Real-life ISP Traffic. In Proceedings of the 2013 IEEE Symposium on Computers and
Communications (ISCC). 541–547.

Howon Lee and DongHo Cho. 2010. Capacity Improvement and Analysis of VoIP Service in a Cognitive
Radio System. IEEE Transactions on Vehicular Technology 59, 4 (May 2010), 1646–1651.

He Li, Mianxiong Dong, Xiaofei Liao, and Hai Jin. 2014. Deduplication-Based Energy Efficient
Deduplication-Based Energy Efficient Storage System in Cloud Environment. Computer Journal (De-
cember 2014), 1–11.

He Li, Mianxiong Dong, and Kaoru Ota. 2015. Radio Access Network Virtualization for the Social Internet
of Things. IEEE Cloud Computing 2, 6 (November 2015), 42–50.

Kuanghao Liu, Xinhua Ling, Xuemin Shen, and Jon W.Mark. 2008. Performance Analysis of Prioritized
MAC in UWB WPAN With Bursty Multimedia Traffic. IEEE Transactions on Vehicular Technology 57,
4 (July 2008), 2462–2473.

Zhi Liu, Xiang Wang, Weishen Pan, Baohua Yang, Xiaohe Hu, and Jun Li. 2015. Towards Efficient Load
Distribution in Big Data Cloud. In Proceedings of the 2015 International Conference on Computing,
Networking and Communications (ICNC). 117–122.

Kashif Mahmood, Ameen Chilwan, Olav Østerbø, and Michael Jarschel. 2015. Modelling of OpenFlow-based
software-defined networks: the multiple node case. IET Networks 4, 5 (2015), 278–284.

Petteri Mannersalo and Ilkka Norros. 2002. A Most Probable Path Approach to Queueing Systems with
General Gaussian Input. Computer Networks 40, 3 (2002), 399 – 412.

Brian L. Mark and Yariv Ephraim. 2014. Explicit Causal Recursive Estimators for Continuous-Time Bivari-
ate Markov Chains. IEEE Transactions on Signal Processing 62, 10 (May 2014), 2709–2718.

Wang Miao, Geyong Min, Yulei Wu, and Haozhe Wang. 2015. Performance Modelling of Preemption-based
Packet Scheduling for Data Plane in Software Defined Networks. In Proceedings of the 2015 IEEE
International Conference on Smart City. 60–65.

Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick McKeown. 2008. Implement-
ing an OpenFlow Switch on the NetFPGA Platform. In Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. 1–9.

OMNet++. 2011. OMNeT++ Network Simulator. http://www.omnetpp.org/
ONF. 2012. Software-Defined Networking: The New Norm for Networks. Technical Report. Open Network

Foundation. https://www.opennetworking.org/
ONF. 2013. OpenFlow Switch Specification Version 1.3.3. Technical Report. Open Network Foundation.

www.opennetworking.org/
Peng Qin, Bin Dai, Benxiong Huang, and Guan Xu. 2015. Bandwidth-Aware Scheduling With SDN in

Hadoop: A New Trend for Big Data. IEEE Systems Journal (2015), 1–8.
Pethuru Raj, Anupama Raman, Dhivya Nagaraj, and Siddhartha Duggirala. 2015. High-Performance Big-

Data Analytics. Springer International Publishing.
Abhinava Sadasivarao, Sharfuddin Syed, Ping Pan, Chris Liou, Inder Monga, Chin Guok, and Andrew Lake.

2013. Bursting Data between Data Centers: Case for Transport SDN. In Proceedings of the 2013 IEEE
Annual Symposium on High-Performance Interconnects (HOTI). 87–90.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 W. Miao et al.

Guohui Wang, T.S. Eugene Ng, and Anees Shaikh. 2012. Programming Your Network at Run-time for Big
Data Applications. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks.
103–108.

Yulei Wu, Geyong Min, and Laurence T. Yang. 2013. Performance Analysis of Hybrid Wireless Networks
Under Bursty and Correlated Traffic. IEEE Transactions on Vehicular Technology 62, 1 (January 2013),
449–454.

Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. 2013. On Scalability of Software-defined
Networking. IEEE Communications Magazine 51, 2 (February 2013), 136–141.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.

