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ABSTRACT

We construct a three-dimensional, fully self-consistent, multi-layered, non-spheroidal model of Jupiter consisting
of an inner core, a metallic electrically conducting dynamo region, and an outer molecular electrically insulating
envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect
of magnetic braking, are confined within the outer molecular envelope. We also assume that the location of the
molecular-metallic interface is characterized by its equatorial radius HRe, where Re is the equatorial radius of
Jupiter at the 1 bar pressure level and H is treated as a parameter of the model. We solve the relevant mathematical
problem via a perturbation approach. The leading-order problem determines the density, size, and shape of the
inner core, the irregular shape of the 1 bar pressure level, and the internal structure of Jupiter that accounts for the
full effect of rotational distortion, but without the influence of the zonal winds; the next-order problem determines
the variation of the gravitational field solely caused by the effect of the zonal winds on the rotationally distorted
non-spheroidal Jupiter. The leading-order solution produces the known mass, the known equatorial and polar radii,
and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4
and J6 within about 5% accuracy, the core equatorial radius R0.09 e and the core density r = ´ -2.0 10 kg mc

4 3

corresponding to 3.73 Earth masses; the next-order solution yields the wind-induced variation of the zonal
gravitational coefficients of Jupiter.

Key words: gravitation – planets and satellites: individual (Jupiter) – planets and satellites: interiors

1. INTRODUCTION

The Juno spacecraft, now on its way to Jupiter, will make
high-precision measurements of the gravitational field of the
giant planet (Kaspi et al. 2010). While the first three zonal
gravitational coefficients J J J, ,2 4 6 are at present accurately
measured (Jacobson 2003), the Juno spacecraft will carry out
high-precision measurements of the gravitational coefficients
up to J12 (Bolton 2005). Interpretation of these measurements
requires an accurate description of the shape and internal
structure of Jupiter in its equilibrium state under the balance of
self-gravity, internal pressure, and strong rotational effects as
well as under the influence of the fast zonal winds. The primary
purpose of this study is to construct an accurate model of
Jupiter for such interpretation.

The interpretation involves the highly accurate solution of
two different but inseparable problems. The first problem is
concerned with an accurate description of the shape and
internal density profile of Jupiter for which the effect of
rotational distortion cannot be treated as a small perturbation on
a spherically symmetric state. Kong et al. (2013b) proposed a
hybrid inverse numerical method, via a finite-element formula-
tion, for calculating the shape and internal structure of a rapidly
rotating gaseous body valid for arbitrary angular velocity Ω.
For numerical convenience, this inverse method makes an
assumption that the outer bounding surface of the body is in the
shape of an oblate spheroid. While the spheroidal-shape
approximation has only small effects on the lower-order
gravitational coefficients such as J2, the small-scale density
variation resulting from the non-spheroidal shape can make a
substantial contribution to the high-order gravitational coeffi-
cients Jn with n 10 (Kong et al. 2015). Hubbard (2013)
developed a radially discontinuous numerical method, which,

because of the convergence radius of the expansion (Hubbard
et al. 2014), is valid only for moderate angular velocity Ω but
applicable to all giant planets in the solar system. By dividing a
rotating body into a number of concentric incompressible
layers within which the density is assumed constant, Hubbard
(2013) iterated over the shapes of the concentric layers until all
the interfaces became equipotential surfaces.
The second problem is concerned with an accurate

description of the variation of the zonal gravitational
coefficients ΔJ2, ΔJ4,..., ΔJ12 caused by the effect of the
Jovian zonal winds. On the basis of the assumptions that the
rotational effect upon the Jovian shape is negligibly small and
that the observed cloud-level zonal winds extend on the
cylinders, but decay exponentially in the radial direction, Kaspi
et al. (2010) solved the thermal-wind equation to estimate the
wind-induced density anomaly and the corresponding gravita-
tional correctionDJn with n even and n 2. By assuming that
Jupiter is in the shape of an oblate spheroid and that the
observed cloud-level zonal winds extend all the way on the
cylinders from the northern to the southern hemisphere without
being blocked by the Jovian magnetic field, Kong et al. (2013a)
computed the variation of the Jovian gravitational coefficients
ΔJ2, ΔJ4,..., ΔJ12 caused by the effect of the zonal winds,
while Kong et al. (2014) revealed the dominance of the
equatorial zonal jets in determining the high-order gravitational
coefficients. Furthermore, the Jovian magnetic field is gener-
ated by convection-driven motion in its deep metallic region
that must be non-axisymmetric, but whose amplitude and
structure are unknown; Kong et al. (2016) discussed a
promising way of probing the Jovian convective dynamo via
its effect on the external non-axisymmetric gravitational field.
In comparison to our previous studies (Kong et al. 2013a,

2013b), there exist five major methodical advantages/
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differences of the present work, representing a significant step
toward building a physically realistic and computationally
accurate model of Jupiter. First, the spheroidal-shape approx-
imation (Kong et al. 2013b)—which assumes the outer
bounding surface of Jupiter is in the shape of an oblate
spheroid—is completely removed. In the present study, the
shape of the bounding surface is geometrically irregular and
determined fully self-consistently by the required equilibrium
condition. Second, an inner core is introduced to the previous
single-layered model (Kong et al. 2013b) and the shape and
mass of the inner core are also determined self-consistently as a
solution of the coupled, multi-layered system. Third, the
computationally convenient zero-pressure boundary condition
at the outer bounding surface (Kong et al. 2013b) is, in the
present study, replaced by the physically more realistic 1 bar
pressure condition. Fourth, the assumption (Kong et al. 2013a,
2014) that the cloud-level zonal winds extend all the way on
the cylinders from the northern to the southern hemisphere is
also removed. In the present study, the zonal winds are
confined between the 1 bar pressure surface and the molecular-
metallic interface, and the shape of the 1 bar surface and the
interface is geometrically irregular. Fifth, a new parameter H is
introduced in the present study to describe the location of the
molecular-metallic interface: the equatorial radius of the
interface is given by HRe, where Re is the equatorial radius
of Jupiter at the 1 bar pressure level. Compared to the single-
layer model (Kong et al. 2013a, 2013b), the present fully self-
consistent, multi-layered model is physically more realistic
because an inner core is likely to exist according to the interior
models of Jupiter (Stevenson 1982; Guillot 2005) and because
the cloud-level zonal winds extend undiminished on cylinders
only to the molecular-metallic interface where the effect of
magnetic braking (Liu et al. 2008) would stop their penetration,
a scenario consistent with existing Jovian dynamic models
(Heimpel et al. 2005; Gastine & Wicht 2012; Jones &
Kuzanyan 2012).

In what follows, we begin by presenting the multi-layered
model of Jupiter and the related governing equations in
Section 2 followed by a discussion of the perturbation method
in Section 3. The results of the multi-layered model are
discussed in Section 4 with a summary and some remarks given
in Section 5.

2. MODEL

Following existing Jovian interior models (Stevenson 1982;
Guillot 2005; Helled et al. 2011; Nettelmann et al. 2012;
Hubbard & Militzer 2016), our multi-layered model of Jupiter
consists of three major parts: a rocky inner core, a metallic
region where the Jovian magnetic field is generated by its
convective dynamo, and an outer molecular insulating
envelope where the observed cloud-level zonal winds originate.
A sketch of the multi-layered Jovian model is illustrated in
Figure 1. We assume that the zonal winds, because of the effect
of magnetic braking, cannot penetrate into the dynamo region.
Exterior to the inner core, the density ρ of the fully
compressible barotropic fluid is assumed to be a function only
of the pressure p obeying the polytropic law with an index of
unity

( )r= +p K , 1n1 1

where n = 1 and K are constants. The polytropic gas of index
unity is believed to provide a reasonably good approximation

for Jupiterʼs interior (Hubbard 1999). Geometrically, there are
three surfaces that characterize the multi-layered model: the
core-metallic interface c, the molecular-metallic interface m

and the outer 1 bar pressure surface o, which are depicted in
Figure 1. The three surfaces are to be determined self-
consistently without making any prior assumptions about their
shape. For the convenience of discussion, the region
surrounded by c is denoted by c, the domain enclosed
between m and o is denoted by m and the domain enclosed
between c and o is denoted by o.
Our model also assumes that (1) the convective flow in the

metallic dynamo region is dominated by the non-axisymmetric
small scale and, hence, its contribution to the zonal gravita-
tional coefficient Jn is negligible; (2) the Rossby number
associated with the Jovian zonal winds is small and viscous
forces are much smaller than Coriolis forces; (3) the zonal
winds are in a statistically steady state and confined between
the molecular-metallic interface m and the 1 bar pressure
surface  ;o (4) contribution from the mass beyond the 1 bar
pressure surface o is negligibly small; and (5) Jupiter is
isolated, rotating rapidly with the uniform angular velocity ˆWz J.
The above assumptions lead to the following governing
equations for the fluid region o in the rotating frame of
reference:

ˆ ∣ ˆ ∣ ( )
r
  W ´ = - - +

W
´z u z rp V2

1

2
, 2J 0

J
2

2

( )p r =V G4 , 32

( )r=p K , 42

· ( ) ( )r =u 0, 50

where u0 denotes the zonal winds on cylinders parallel to the
rotation axis confined within the outer molecular layer m, r
denotes the position vector with its origin at the center of
figure, ( )rp is the pressure and ( )r r is the density in the region

Figure 1. Sketch of the three-layer Jovian model in a meridional plane: a small
rocky core, a metallic hydrogen–helium dynamo region and an outer molecular
insulating envelope. Three surfaces characterize the model: the core-metallic
interface c, the molecular-metallic interface m and the outer 1 bar pressure
surface o. The Jovian zonal winds are assumed to be on cylinders parallel to
the rotation axis and confined between m and o.

2

The Astrophysical Journal, 826:127 (8pp), 2016 August 1 Kong, Zhang, & Schubert



o, and ( )rV is the gravitational potential with
= ´ - - -G 6.67384 10 m kg s11 3 1 2, the universal gravitational

constant. Equations (2)–(5) are solved subject to the two
boundary conditions

[ ] ( )∣ ∣  ==p 1 bar, 6r o
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where [ ] =r o
denotes the evaluation of a function  at the

1 bar pressure surface o that is not only irregular but also
a priori unknown, Equation (7) requires the surface o to be
equipotential and

ò ò ò ¢rd3 represents the volume integration

over the domain .
For a given zonal wind u0 in m and an initial guess for the

inner core properties, Equations (2)–(5) are solved, via an
iterative scheme, for determining the core-metallic interface c,
the core density rc and the density profile ( )r r in o, and the
1 bar pressure surface o that satisfy the boundary conditions
(6)–(7). The external gravitational potential ( )rV can be then
obtained by carrying out the three-dimensional integration in
the irregular domain bounded by the surface o,
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which can then be projected onto an expansion in terms of
Legendre functions Pn,

( ) ( ) ( )å q= - -
=

¥
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⎡
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⎛
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e
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where MJ is Jupiterʼs mass enclosed by the 1 bar pressure
surface o, n takes even integers, ( )q fr, , are spherical polar
coordinates with q = 0 at the axis of rotation, and J2, J4, J6,...,
are the zonal gravitational coefficients.

3. METHODS

Since the speed of the Jovian zonal winds is much smaller
than its rigid-body rotation, Equations (2)–(5) subject to the
boundary conditions (6)–(7) can be solved by a perturbation
method making use of the expansions

( ) ( ) ( ) ( )= + ¢r r rp p p , 100

( ) ( ) ( ) ( )r r r= + ¢r r r , 110

( ) ( )= + DJ J J , 12n n n0

( ) ( ) ( ) ( )= + ¢r r rV V V , 130

where the leading-order solution, [ ( ) ( ) ( ) ( ) ]rr r rp V J, , , n0 0 0 0 ,
represents a hydrostatic state that accounts for the effect of
rotational distortion, but is unaffected by the zonal winds, and
the next-order solution, [ ( ) ( ) ( ) ]r¢ ¢ ¢ Dr r rp V J, , , n denotes
perturbations arising from the effect of the zonal winds
confined within the molecular envelope m. It should be
stressed that the perturbation method yields two problems that

are mathematically and physically coupled. The leading-order
problem determines the inner core properties, the 1 bar pressure
surface o, and the internal density distribution ( )r r0 in o

while the next-order problem determines the density perturba-
tion ( )r¢ r in the region enclosed by m and o.
Substitution of the expansions into Equations (2)–(5) yields

the leading-order problem governed by

∣ ˆ ∣ ( )
r

  = - +
W

´z rp V
1

2
, 14

0
0 0

J
2

2

( )p r =V G4 , 152
0 0

( )r=p K , 160 0
2

subject to the two boundary conditions
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at the 1 bar pressure surface o of Jupiter.
A three-dimensional finite-element method is employed to

solve Equations (14)–(16) fully self-consistently subject to the
two boundary conditions (17)–(18) without making any prior
assumptions. For the purpose of describing the 1 bar pressure
surface o of Jupiter, it is mathematically convenient to adopt
oblate spheroidal coordinates ( )x h f, , , which are defined by
the coordinate transformation with cartesian coordinates

( )( ) ( )x h f= + -x R0.35421 1 1 cos , 19e
2 2

( )( ) ( )x h f= + -y R0.35421 1 1 sin , 20e
2 2

( )xh=z R0.35421 , 21e

where =R 71492 kme is the equatorial radius of Jupiter at the
1 bar pressure level, x= constant represents a confocal oblate
spheroid, and η = constant describes confocal hyperboloids.
When defining oblate spheroidal coordinates ( )x h f, , , the
scaling factor R0.35421 e in the coordinate transformation (19)–
(21) is largely arbitrary and does not affect the final solution.
With oblate spheroidal coordinates, the 1 bar pressure surface
o of Jupiter can always be described by the expansion

[ ( )
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where  h-1 1,  f p<0 2 , x0 and hn
m and gn

m are

coefficients to be determined and ( ) hPl
m

are the associated
Legendre polynomials normalized by
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1

for instance, we have

˜ ( ) ( )h h= -P
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8
3 1 ,2

0 2
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˜ ( ) ( )h h h= - +P
9

128
35 30 3 .4

0 4 2

Because of the completeness of the spheroidal Legendre
polynomials ˜ ( )hPl

m
, expression (22) can, in principle, be used

to describe the arbitrary shape of any rapidly rotating gaseous
planets. Our three-dimensional method is valid for any ∣ ∣hn

m and
∣ ∣gn

m in (22) without requiring a small departure from the shape
of an oblate spheroid. Moreover, our model does not assume
that the shape of a rapidly rotating gaseous body—which
would be generally non-axisymmetric ( f¶ ¶ ¹ 0)—is axi-
symmetric ( f¶ ¶ = 0). In the case with Jupiterʼs parameters,
however, it turns out that the three-dimensional solution is
always axisymmetric, i.e., =h 0n

m with m 1 and =g 0n
m

with m 0 in (22), and that the shape of the 1 bar pressure
surface o differs only slightly from the shape of an oblate
spheroid, i.e., x0 is dominant in (22) with all other coefficients

=h n, 2, 4 ,...n
0 being small. Our discussion will, hence,

concentrate on the values of x0 and non-zero axisymmetric
coefficients hn

0 with even n in (22). After solving
Equations (14)–(16) subject to the conditions (17)–(18) and
the constraint

( ) ( )
 

ò ò ò ò ò òr r= ¢ + ¢ ¢r r rM d d , 23cJ
3

0
3

c o

we can determine the core-metallic interface c, the 1 bar
pressure surface o, the core density rc, and the density profile

( )r r0 in o.
The next-order problem, which gives rise to the density

anomaly ( )r¢ r induced by the zonal winds u0 in the molecular
region m and the concomitant gravitational potential ( )¢ rV , is
governed by the equations

ˆ ( )r W ´ = - ¢ - ¢z u K V2 2 , 24J 0

( )p r ¢ = ¢V G4 , 252

· ( ) ( )r =u 0, 260 0

subject to the boundary conditions

[ ( )] [ ( )] ( )∣ ∣ ∣ ∣ r r¢ = ¢ == =r r0 and 0, 27r ro m

where m denotes a constant density surface between c and o

whose equatorial radius is given by HRe. Note that
Equation (26) is automatically satisfied because of the property
of the leading-order solution ( )r r0 . In our analysis, the small-
shape variation in m and o caused by the effect of the zonal
winds is neglected at this order and the location of the
molecular-metallic interface m, characterized by the size of H,
is treated as a parameter. The first condition at o in (27) is a
consequence of both the condition (6) that the outer bounding
surface o represents the 1 bar pressure surface and the
perturbation expansions (10)–(11); the second condition at
m in (27) stems from an assumption that the molecular-
metallic interface m represents a constant density surface. The
boundary condition (27) is consistent with most thermal
convection models in which the isothermal boundary condi-
tion—which corresponds to the density perturbation r¢ = 0—
is usually adopted. The profile of the zonal winds u0, which are
on cylinders parallel to the rotation axis but are confined
between m and o as sketched in Figure 1, is uniquely

determined by the cloud-level zonal winds shown in
Figure 2. It mimics the dynamically possible structure of the
zonal winds confined in the domain m under the strong
rotational influence (Heimpel et al. 2005; Gastine & Wicht
2012; Jones & Kuzanyan 2012).
With the profile of the zonal winds u0 given in Figure 2 and

the domain m determined by the leading-order solution, we
use a finite-element method to solve Equations (24)–(25) in the
domain m subject to the boundary condition (27) on the
surfaces m and o. The perturbation solution ( )r¢ r is then used
to calculate the external gravitational potential anomaly ( )¢ rV .
An accurate solution ( )¢ rV as a function of H, compared with
the unprecedentedly high-precision gravitational measurements
to be carried out by the Juno spacecraft, may help us constrain
the internal structure of the zonal winds.

4. RESULTS

In discussing the results of the model, it is desirable to
distinguish between two different sets of numbers/parameters.
The first set, presented in Table 1, contains some parameters of
Jupiter which, including the equatorial and polar radii of Jupiter
Re and Rp at the 1 bar pressure surface, are well determined by
observations and, hence, can be regarded as known. The
second set, including the core density rc, the core equatorial
radius Rc, and the density r1 bar at the 1 bar pressure surface, is
unknown, and is derived from the solution of our multi-layered
model. We use the subscript model to denote the numbers/
parameters that are obtained from the solution of the model.
We first discuss the leading-order solution of (14)–(16)

subject to the conditions (17)–(18), which are characterized by
the core density rc, the shape c of the core, the value of K, the
shape of the 1 bar pressure surface o, and the density profile

( )r r0 in the domaino. Key characteristic values obtained from
the leading-order solution are given in Table 2. The density rc
and the mass Mc of Jupiterʼs inner core are currently unknown
(Helled et al. 2011; Nettelmann et al. 2012; Hubbard & Militzer
2016). Our self-consistent solution yields a core equatorial
radius =R R0.09c e and core density r = ´ -2.0 10 kg mc

4 3

corresponding to =M 3.73c Earth masses, consistent with
existing interior models of Jupiter (Stevenson 1982;

Figure 2. Latitudinal profile of the equatorially symmetric zonal winds (Porco
et al. 2003) used in our calculation at the Jovian 1 bar pressure surface.

4
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Guillot 2005; Helled et al. 2011; Hubbard & Militzer 2016).
Our calculation also shows that the shape of the core-metallic
interface c, because of its central location and small size, is
accurately described by the oblate spheroid

( )
+

+
-

=
x y

R

z

R 1
1,

c c c

2 2

2

2

2 2

where c denotes the eccentricity of the spheroid and Rc is the
core equatorial radius, whose values are presented in Table 2.

Our self-consistent leading-order solution reveals that the
1 bar pressure surface o of Jupiter can be described by the
equation

[ ˜ ( )
˜ ( )

˜ ( ) ˜ ( )] ( )

‐x h

h

h h

= - ´

+ ´ -

´ + ´

-

-

- -

P

P

P P

2.63938 1 1.2387 10

2.0934 10 1.0284

10 4.3664 10 , 28

1 bar surface
4

2
0

4
4
0

5
6
0 7

8
0

where small higher-order terms for ˜ ( )hPn
0

with n 10 are
neglected with the oblate spheroidal coordinate η being defined
by (19)–(21). Equation (28) describes the irregular shape of
Jupiter at the 1 bar pressure surface o which, because all the

coefficients for ˜ ( )hPn
0

with n 2 in (28) are much smaller than
unity, deviates only slightly from an oblate spheroid. Using
(28) together with (19)–(21), we find that the equatorial radius
at 1 bar pressure, evaluated by letting h = 1, is
( ) =R 71,491e model km while the polar radius, evaluated by
letting h = 0, is ( ) =R 66,852p model km; these agree with the
observed values within their error bars, as shown in Table 2.
Moreover, the leading-order solution also leads to the total
mass of Jupiter,

( ) ( )
 

ò ò ò ò ò òr r= ¢ + ¢ ¢r r rM d d ,cJ model
3

0
3

c o

which is ( ) = ´M 1.8986 10J model
27 kg and, as shown in

Table 2, is in agreement with the known mass MJ within its
error bar.

After determining the core density rc in c, the core-metallic
interface c, the 1 bar pressure surface o, and the density
profile ( )r r0 in o, we can compute the external gravitational
potential ( )rV0 according to
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which is further expanded in terms of the zonal gravitational
coefficients ( )Jn 0:
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where ( )qP cosn is normalized such that
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The zonal gravitational coefficients ( )Jn 0 in (29) are then
obtained by performing the following integration

( ) ( )
∣ ∣

( )
∣ ∣

( )
∣ ∣





ò ò ò ò

ò ò ò

r

r
q q

=-
+ ¢

- ¢

+
¢ ¢
- ¢

p

=

⎡
⎣⎢

⎤
⎦⎥

r

r r

r r

r r

J
n R

M

d

d
P d

2 1

2

sin . 30
r

n
e c

R

n

0
J 0

3

0
3

c

o
e

Several values of the zonal gravitational coefficients ( )Jn 0, up to
n = 12, computed from the fully self-consistent solution
through (30), are listed in Table 3. It can be seen that our multi-
layered model is able to produce the known value of J2 of
Jupiter within its error bar along with the known gravitational

Table 1
The Four Parameters of Jupiter

Observation Model Relative Error

MJ ( ) ´1.8986 0.0002 1027 kg ( ) = ´M 1.8986 10J model
27 kg 0.01%

Re 71492 ± 4 km ( ) =R 71491e model km 0.0014%
Rp 66854 ± 10 km ( ) =R 66852p model km 0.0029%

WJ ´ - -1.75852 10 s4 1 L L

Notes. The four parameters of Jupiter [Mass MJ (Williams 2010), equatorial radius Re, polar radius Rp, and angular velocity ΩJ (Seidelmann et al. 2010)], regarded as
accurately determined by existing observations, along with the corresponding values from the solution of the leading-order problem, where the uncertainty in Jupiter’s
mass is computed according to the uncertainty in the gravitational constant G = (6.67384 ± 0.00080)× 10−11m3 kg−1 s−2.

Table 2
Several Key Numbers/Parameters Obtained from the Leading-order Solution

Core equatorial radius (Rc) R0.09 e

Core mass (Mc) 3.73 Earth masses
Core eccentricity (c) 0.11747
Density at the core-metallic interface c (ri) ´ -3.11423 10 kg m3 3

Density at the 1 bar pressure surface o (r1 bar)
-0.72737 kg m 3

The value of K -189013.65 Pa m kg6 2

Table 3
Gravitational Zonal Coefficients ( )Jn 0 in the Expansion (29) Derived from the
Self-consistent Leading-order Solution, Which Should be Compared with the

Observed Values ( )Jn obser

n
Model

( ) ´J 10n 0
6 Observation ( ) ´J 10n obser

6 Relative Error

2 +14696.449 +14696.43 ± 0.21
(Jacobson 2003)

0.00013%

4 −569.216 −587.14 ± 1.68
(Jacobson 2003)

3.05%

6 +32.535 +34.25 ± 5.22 (Jacobson 2003) 5.02%
8 −2.234 L L
10 +0.150 L L
12 −0.017 L L
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coefficients J4 and J6 with about 5% accuracy. A more accurate
determination of J4 and J6 would likely be possible with
adoption of a more realistic equation of state for the molecular-
metallic region. The polytrope equation of state used here is a
good approximation to the real Jupiter, but an approximation
nevertheless. Actually, the accuracy with which we can
determine so many of Jupiterʼs properties with such a simple
equation of state is impressive. The analysis of this paper can
be readily extended to more complex and perhaps more
realistic equations of state.

We now discuss the next-order solution of Equations (24)–
(25) subject to the boundary condition (27). In our model, the
equatorially symmetric zonal winds (Porco et al. 2003), shown
in Figure 2, are assumed to take place at the 1 bar pressure
surface and extend on cylinders only through the domain m

bounded by the 1 bar pressure surface o and the molecular-
metallic interface  ;m the interface m represents a constant
density surface located between c and o (see Figure 1) whose
equatorial radius is HRe and whose shape is generally non-
spheroidal. Since ( )Jn 0 in (29) has already taken account of the
full effect of rotational distortion, its variation, denoted by DJn

and related to the solution ( )r¢ r to (24)–(25), is solely caused
by the effect of the zonal winds confined within the domainm.
In computingDJn, we regard the location of the interface m as
a parameter and consider the following four cases: (1) a very
deep wind profile with =H 0.5, (2) an intermediate deep
profile with =H 0.78, (3) a shallow profile with =H 0.90,
and (4) a very shallow profile with =H 0.95.

The density anomaly ( )r¢ r for the case =H 0.5 is depicted
in Figure 3, showing that the maximum amplitude of the
anomaly is about 0.2 kg m−3 in the domain m. Modified by
the boundary condition required on the surfaces m and o, the
distribution of the density anomaly ( )r¢ r largely reflects the
cylindrical structure of the zonal winds displayed in Figure 2. It
should be noted that the shapes of m and o in Figure 3 are
non-spheroidal, but their deviations from oblate spheroids are
too small to be noticeable in the figure. After obtaining the
density anomaly ( )r¢ r in the domain m, we can then compute
the variation DJn caused by the deep zonal winds via the

following integration
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The results, along with other cases, are presented in Table 4,
revealing that, while the effect of the zonal winds on the lower-
order coefficients is weak with ∣ ( ) ∣ DJ J 1%n n 0 for
=n 2, 4, 6, it becomes substantial for the high-order coeffi-

cients when n 10. In particular, the coefficient at n = 12 with
∣ ( ) ∣D »J J 300%12 12 0 is dominated by the redistribution of
mass produced by the deep zonal winds. The density anomaly

( )r¢ r in the case with =H 0.78 is shown in Figure 4.
Compared to the density anomaly in the case with =H 0.5, the
amplitude of the density anomaly ( )r¢ r is reduced to the
maximum value of about 0.1 kg m−3 together with the expected
cylindrical structure in the smaller domain m. The variation of
( )Jn 0 caused by the zonal winds with =H 0.78 is presented in
Table 4, showing again that the effect of the zonal winds on the
lower-order coefficients is weak compared to the effect of
rotation, i.e., ∣ ( ) ∣ DJ J 1%n n 0 for =n 2, 4, 6, but it becomes
substantial for the high-order coefficients with n 10.
The cases with =H 0.9 and =H 0.95 represent shallow

wind models similar to that studied by direct numerical
simulations (Heimpel et al. 2005). Figure 5 shows the profile of
the density anomalies ( )r¢ r in the shallow, non-spheroidal-shell
domain m. There are two interesting features emerging from
this shallow model. First, although the profile is still marked by
cylindrical structure, the density anomaly ( )r¢ r , compared to
the case =H 0.78, has quite a different structure. Though the
same zonal winds u0 in Figure 2 are adopted for all the
calculations, the negative density anomaly is predominant in
the case with =H 0.78, as displayed in Figure 4, while the
positive anomaly becomes more pronounced in the case with

=H 0.90 shown in Figure 5. It suggests that the solution ( )r¢ r
to (24)–(25) is significantly influenced by the location of the
interface m where the boundary condition (27) must be
satisfied. Second, the density anomaly ( )r¢ r occurs mainly in
the equatorial region and makes a dominant contribution to the
volume integration in (31). This would be expected since the
zonal winds u0 have the largest amplitude in the equatorial
region. After obtaining the density anomaly ( )r¢ r in the domain
m, we then compute DJn caused by the shallow zonal winds,
the results of which are presented in Table 4. Again the effect
of the zonal winds on the lower-order coefficients is found to
be weak with ∣ ( ) ∣ DJ J 1%n n 0 for =n 2, 4, 6; the coeffi-
cient at n = 12 still changes substantially with
∣ ( ) ∣D »J J 235%12 12 0 at =H 0.90 and ∣ ( ) ∣D »J J 550%12 12 0
at =H 0.95. An important feature is that the size of DJ10 and
DJ12 varies with the location of the molecular-metallic interface
m marked by the size of the parameter H.

5. SUMMARY AND REMARKS

This paper presents a fully self-consistent, multi-layered
Jovian model composed of three parts: an inner core, a metallic
dynamo region, and an outer molecular envelope. We have
solved the governing equations for the model via a perturbation
approach. The leading-order solution produces the core density
rc, the core-metallic interface c, the 1 bar pressure surface o,
and the density profile ( )r r0 in o. Our self-consistent solution

Figure 3. Density anomaly ( )r¢ r in a meridional plane caused by the zonal
winds and confined between the molecular-metallic interface m and the 1 bar
pressure surface o with =H 0.5.
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gives rise to the core equatorial radius =R R0.09c e with its
mass corresponding to 3.73 Earth masses. The next-order
problem determines the variation of the Jovian gravitational
field caused solely by the effect of the zonal winds on the
rotationally distorted non-spheroidal Jupiter. In our multi-
layered model, the zonal winds are assumed to be on cylinders
parallel to the rotation axis, but confined between the 1 bar

pressure surface o and the molecular-metallic interface m,
and the location of the interface m is treated as a model
parameter. Compared to the single-layer, spheroidal model
(Kong et al. 2013a, 2013b), the fully self-consistent, multi-
layered model, even though mathematically and numerically
much more complicated, is more realistic and accurate,
particularly for the high-degree gravitational coefficients of
Jupiter.
It is anticipated that the ongoing Juno spacecraft will achieve

high precision in its determination of the gravitational field
with the relative uncertainty -10 9 (Kaspi et al. 2010). An
accurate fully self-consistent, multi-layered Jovian model
would enable an important constraint on the depth and
structure of the zonal winds of Jupiter. In this connection, the
dependence of the high-degree coefficients such as J10 and J12
on the location of the molecular-metallic interface, which is
presented in Table 4, may provide a way of probing or
constraining the structure of the zonal winds.
Our multi-layered model, because of the adoption of a single

equation of state for both the molecular and metallic envelopes
in Jupiter, cannot make a more accurate determination of
higher-order gravitational coefficients such as J4. The model
can be extended by introducing two different polytrope
equations of state, r=p Kmolecular

2 and r=p Kmetallic
2, for

the metallic and the molecular envelopes respectively. With the
two polytrope equations of state, the coupled multi-layered
system would become mathematically more complicated and
computationally more difficult to solve but can be, in principle,
used to reproduce the value of J4. Generally speaking, although
using the same polytrope equation of state for both the
molecular and metallic envelopes (which is mathematically and
computationally convenient) offers a reasonably good approx-
imation to the real Jupiter, a more realistic equation of state is
required in order to reproduce the observed values of the
higher-order coefficients J4 and J6.
Density at the 1 bar pressure surface, r1 bar, of Jupiter can be

estimated by using an ideal H/He gas at 1 bar with temperature
T = 165 K and a He mass fraction of about 0.238, as suggested
by the Galileo entry probe. This estimation gives rise to
r » -0.2 kg m1 bar

3, which is smaller than r » -0.7 kg m1 bar
3

derived from our present model. This disagreement would be
expected and is a consequence of the simplistic equation of
state adopted in our model, just as our inability to match
higher-order gravitational coefficients J4 and J6. If we had a
more realistic equation of state with more parameters, we could
specify the 1 bar density r1 bar as a constraint to be satisfied just
as we satisfy other quantities. In other words, the present
simplistic equation-of-state model can be improved in the
future by employing a more realistic equation of state—which
in turn constrains the form of equation of state for the Jovian
interior through the structure of its gravitational field.

Table 4
Variations DJn in Zonal Gravitational Coefficients ( )Jn 0, Up to n = 12, Caused by the Zonal Winds with =H 0.5, 0.78, 0.90, 0.95 on the

Rotationally Distorted Non-spheroidal Jupiter

n ( )Jn 0 ( )D =J H 0.5n ( )D =J H 0.78n ( )D =J H 0.90n ( )D =J H 0.95n

2 14696.45 × 10−6 5.35 × 10−6 1.99 × 10−6 −0.05 × 10−6 0.27 × 10−6

4 −569.22 × 10−6 −1.72 × 10−6 −0.75 × 10−6 0.12 × 10−6 −0.19 × 10−6

6 32.54 × 10−6 0.25 × 10−6 0.14 × 10−6 −0.13 × 10−6 0.15 × 10−6

8 −2.23 × 10−6 0.07 × 10−6 −0.03 × 10−6 0.08 × 10−6 −0.14 × 10−6

10 0.15 × 10−6 0.09 × 10−6 0.10 × 10−6 −0.00 × 10−6 0.13 × 10−6

12 −0.02 × 10−6 −0.05 × 10−6 −0.06 × 10−6 −0.04 × 10−6 −0.11 × 10−6

Figure 4. Density anomaly ( )r¢ r in a meridional plane caused by the zonal
winds and confined between the molecular-metallic interface m and the 1 bar
pressure surface o with =H 0.78.

Figure 5. Density anomaly ( )r¢ r in a meridional plane caused by the zonal
winds and confined between the molecular-metallic interface m and the 1 bar
pressure surface o with =H 0.90.
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An introduction of the location of the molecular-metallic
interface m in the multi-layered model represents a significant
advantage in constraining the structure of the zonal winds. This
is because the cloud-level zonal winds are unlikely to extend all
the way on the cylinders, particularly in higher latitudes, from
the northern to southern atmosphere without being hindered by
the Jovian convective dynamo (Liu et al. 2008). It follows that,
when probing the deep structure of the zonal winds, a depth
parameter needs to be introduced in the model of Jovian
gravitational sounding. One possible way is to introduce the
radially decaying factor Hr (Kaspi et al. 2010) in the form

~
- -⎜ ⎟⎛

⎝
⎞
⎠u e .

R r
H0

e

r

However, according to the well-known theory of rotating fluid
dynamics (Chandrasekhar 1962) and the known result of
rotating convection and dynamo simulations (Zhang &
Schubert 2000; Heimpel et al. 2005; Gastine & Wicht 2012;
Jones & Kuzanyan 2012), the zonal winds u0 are likely, even in
the presence of stratified layers, to extend on cylinders parallel
to the rotation axis but cannot penetrate into the metallic
dynamo region because of magnetic braking. In other words,
the cylindrical structure confined in m and the location
parameter H in our multi-layered model (the size of H actually
provides a measure of the unknown size of the Jovian dynamo
region) reflect not only the possible internal structure of Jupiter,
but also the correct dynamics controlled by the effect of its
rapid rotation.

A direct comparison of our present results and those of Kaspi
et al. (2010; referred to as the other model below) is
uninformative because of the following reasons. First, our
model has non-spherical, multi-layered geometry and is able to
produce the known mass, the known equatorial and polar radii,
and the known coefficient J2 of Jupiter within their error bars,
while the other model is spherical and single-layered. Second,
our model is mathematically marked by a unique solution of
the well-defined equations satisfying the appropriate boundary
conditions while the other model is based on the thermal-wind
equation that merely represents a diagnostic relation, i.e., it
does not have a unique solution and does not require any
boundary condition. Third, the thermal-wind equation should
be generalized to account for an associated gravitational
perturbation (Zhang et al. 2015), which results in the
thermal-gravitational wind equation, a two-dimensional kernel

integral equation with the Greenʼs function in its integrand,
whose mathematical and physical properties are poorly
understood.

K.Z. is supported by Leverhulme Trust Research Project
Grant RPG-2015-096 and by Macau FDCT grants 039/2013/
A2 and 007/2016/A1. The computation made use of the high
performance computing resources in the Core Facility for
Advanced Research Computing at Shanghai Astronomical
Observatory, Chinese Academy of Sciences.
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