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Abstract 

 

The development of diabetic vascular complications is initiated, at least in part, by 

mitochondrial reactive oxygen species (ROS) production in endothelial cells. 

Hyperglycemia induces superoxide production in the mitochondria and initiates 

changes in the mitochondrial membrane potential that leads to mitochondrial 

dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the 

mitochondrial oxidant production and shows efficacy against diabetic vascular 

damage in vivo. However, the half-life of H2S is very short and it is not specific for 

the mitochondria. We have therefore evaluated two novel mitochondria-targeted 

anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 

respectively) at preventing hyperglycemia-induced oxidative stress and metabolic 

changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced 

significant increase in the activity of the citric acid cycle and led to elevated 

mitochondrial membrane potential. Mitochondrial oxidant production was increased 

and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and 

AP123 (30-300 nM) decreased HG-induced hyperpolarisation of the mitochondrial 

membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30-

300 nM) increased the electron transport at respiratory complex III and improved the 

cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect 

of H2S against glucose-induced damage in endothelial cells suggesting that the 

molecular target of H2S action is within the mitochondria. Mitochondrial targeting of 

H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-

induced injury. The high potency and long-lasting effect elicited by these H2S donors 

strongly suggests that these compounds could be useful against diabetic vascular 

complications. 

 

Keywords: hydrogen sulfide; oxidative stress; electron transport; superoxide; 

hyperglycemia; endothelial cells; bioenergetics; complex II; SQR 

 



 

 

1. Introduction 

 

Diabetic complications are responsible for the majority of expenses associated with 

diabetes treatment and the costs of diabetes that currently accounts for 10% of total 

healthcare costs, is projected to increase to 17% of health resource expenditure over 

the next 20 years [1]. Diabetes diagnostic criteria were established based on the 

increased risk of microvascular and cardiovascular complications in patients with 

increased plasma glucose level [2] and glycemic control represent the foundation of 

diabetes therapy, still it provides little protection against cardiovascular disease 

(CVD) [3]. Since glucose control is ineffective against cardiovascular events in 

diabetic patients [3-5], it is important to find novel therapies that reduce the 

progression of cardiovascular disease in diabetes. Hyperglycemia induces oxidant 

production in the vessels and oxidative stress is considered as a major contributor to 

vascular damage [6]. Oxidative stress induced by hyperglycemia persists in the cells 

long after glucose levels are normalised and this phenomenon is known as “glucose 

memory” [7]. The limited CVD risk reduction in diabetes may be explained by the 

persistence of deleterious downstream effects that occur after intermittent 

hyperglycemic episodes, despite lower glycated hemoglobin levels.  

Hyperglycemia-induced mitochondrial superoxide generation is an upstream player in 

the development of endothelial dysfunction and it is responsible for the activation of 

other sources of oxidants in the cells [8]. In endothelial cells, high glucose supply 

results in increased glucose oxidation: more electron donors are pushed into the 

electron transport chain and the voltage gradient across the mitochondrial membrane 

increases. The increased transmembrane voltage induces electron leakage between 

complexes II and III and the inappropriate transfer of electrons to molecular oxygen 

generates superoxide [9]. If the mitochondrial potential is normalised in the cells by 

uncoupling protein-1 (UCP-1) overexpression or the mitochondrial respiratory chain 

is inactivated by mitochondrial DNA depletion hyperglycemia does not generate 

superoxide [8]. Blockage of mitochondrial superoxide generation by the above 

methods or neutralisation by manganese superoxide dismutase (MnSOD) inhibits 



other sources of oxidants in endothelial cells: the activation of protein kinase C (PKC) 

and the polyol pathway, the formation of advanced glycation end product (AGE) and 

the hexosamine pathway [8]. Similarly, we found that mitochondrial superoxide 

scavenging using paroxetine [10] or induction of uncoupling protein-2 (UCP-2) also 

blocked the glucose-induced oxidant production in endothelial cells [11]. While these 

methods all reduce the mitochondrial ROS production and the associated cellular 

damage, neither ROS scavenging nor mitochondrial uncoupling fully restore the 

mitochondrial energy production. If electrons are used for superoxide generation and 

the protons are released through uncoupling proteins, there will be a drop in ATP 

production via oxidative phosphorylation. 

H2S is an endogenously produced ‘gasotransmitter’ that plays key roles in regulating 

vascular tone, inflammation, cell death and proliferation as well as vascular protection 

[12-15].  Lower H2S bioavailability has been reported in the diabetic vasculature in 

humans and correlates to poorer microcirculatory blood flow [16] and impaired 

vascular H2S synthesis and/or bioavailability is also observed in the vasculature of 

several animal models of diabetes induced either pharmacologically- (e.g. 

streptozotocin-induced [17]) or genetically-induced (e.g. Akita [18],  db/db [19] and 

NOD [20]) mice. The ‘loss’ of vasculoprotective H2S is thought to contribute to 

vascular endothelial dysfunction and disease pathology suggesting approaches to 

increase H2S bioavailability could be therapeutic benefit in diabetes and vascular 

disease. One key mechanism by which H2S is beneficial is by serving as an inorganic 

electron donor to the respiratory chain [21]. The oxidation of H2S is a multi-step 

process and electron transfer to the respiratory chain may be dissociated from the 

subsequent steps of proton transfer and oxygen consumption [22]. Thus, unlike the 

main electron donors, nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FADH2), H2S can provide the respiratory chain with electrons only. 

This effect of H2S is supported by the findings that exogenous H2S, albeit at high 

concentrations, can normalise the mitochondrial membrane potential and reduce 

mitochondrial superoxide generation in hyperglycemic endothelial cells and also 

prevent the development of endothelial dysfunction in streptozotocin-induced 

diabetes [17, 23]. Furthermore, H2S, in the form of inorganic salts (e.g. NaSH and 

Na2S) have protective effects against diabetic retinopathy and nephropathy [24-26] 

and also has cardioprotective effects in diabetic models [19, 27, 28]. The 



administration of H2S using its sodium salts is inconvenient in long-term diseases 

because it has a short half-life and lacks cellular targeting. Natural sources of H2S 

such as garlic were therefore, also tested with similar results: garlic extract protects 

against diabetic nephropathy, vasculopathy and cardiomyopathy [29-31] and its active 

constituents were found to be diallyldisulfide (DADS) and diallyltrisulfide (DATS) 

[32], which are slower H2S donors than Na2S [33].  Since the protective effect of H2S 

is mostly mitochondrial in the hyperglycemic endothelium, we tested the efficacy of 

novel mitochondria-targeted H2S donors against the glucose-induced oxidant 

production. AP39 is a slow-release H2S donor that was shown to accumulate in the 

mitochondria [36, 37] and protect against oxidative stress-induced mitochondrial 

DNA and protein damage in endothelial cells [34]. We compared the efficacy of 

AP39 and AP123, a newer mitochondrial H2S donor, against glucose-induced 

endothelial dysfunction and we found that mitochondrial slow-release H2S donors are 

>1000-fold more potent than Na2S against hyperglycemia-induced oxidant production 

and also have beneficial effect on cellular bioenergetics in endothelial cells.  

 

2. Methods 

 

2.1. Synthesis of (10-(4-Carbamothioylphenoxy)-10-

oxodecyl)triphenylphosphonium bromide (AP123) 

AP39 was synthesised as previously described by us [35], extinction coefficient in 

DMSO (400nm = 6162 M-1 cm-1 ; (327nm = 12000 M-1 cm-1). AP123 was synthesised 

using the following procedure: acetonitrile (8 cm3) was added to 10-bromodecanoic 

acid (400 mg, 1.59 mmol) and triphenylphosphine (418 mg, 1.59 mmol) and the 

resulting mixture was stirred and heated under reflux for 48 h [36]. The acetonitrile 

was evaporated in vacuo and the colourless, oily residue was triturated with toluene (3 

x 10 cm3) before thorough drying on a rotary evaporator and dissolution in 

dichloromethane (15 cm3). At room temperature, 4-hydroxythiobenzamide (244 mg, 

1.59 mmol) was added to the stirred solution, followed by a solution of N,N-

dicyclohexylcarbodiimide (330 mg, 1.60 mmol) in dichloromethane (8 cm3) and 4-

dimethylaminopyridine (10 mg, 0.08 mmol). After stirring for 22 h, the reaction 

mixture was filtered through a cotton wool plug and after removal of the solvent in 



vacuo, the crude product was applied as a dichloromethane solution onto a silica gel 

flash chromatography column ca 120 cm3 silica gel, 3 cm diameter column). After 

flushing the silica gel with ethyl acetate (200 cm3), the product was eluted with 

methanol (200 cm3) and after evaporation of the solvent in vacuo, the product was re-

dissolved in dichloromethane (20 cm3) and the resulting solution was dried 

(magnesium sulfate), filtered and evaporated in vacuo to give the title compound (516 

mg, 50%) as a crisp, yellow foam (found [M-Br]+ (ES+) 568.2429, C35H39NO2PS 

requires 568.2434); max (KBr disc)/cm-1 3415 (m), 3055 (m), 2925 (s), 2853 (s), 1752 

(s) (C=O), 1619 (s), 1599 (s), 1587 (m), 1504 (m), 1483 (m), 1464 (w), 1438 (s), 1384 

(m), 1311 (m), 1264 (m), 1205 (s), 1167 (s), 1112 (s), 1014 (m), 995 (m), 892 (m) and 

851 (w); 1H NMR (300 MHz, CDCl3) 9.26 (1H, br s, NH), 8.20 (2 H, part of AA'BB', 

J = 8.5 Hz, aryl CH), 7.89-7.62 (16H, complex, phenyl CH and NH), 7.02 (2H, part of 

AA'BB', J = 8.5 Hz, aryl CH), 3.50 (2H, m, CH2P
+), 2.52, (2H, t, J = 7 Hz, CH2C(O)), 

1.72-1.55 and 1.42-1.13 (6H and 8H, 2 x broad m, (CH2)7C(O)); 31P NMR (121 MHz, 

CDCl3) 24.0 (P+); 13C NMR (100 MHz, CDCl3) 200.0 (C=S), 171.8 (C=O), 153.5 

(aryl C-O), 135.6 (aryl C-C(S)), 135.2 (d, J = 3 Hz, phenyl C-H), 133.5 (d, J = 10 Hz, 

2 x phenyl C-H), 130.5 (d, J = 13 Hz, 2 x phenyl C-H), 129.7 (aryl C-H), 121.0 (aryl 

C-H), 118.1 (d, J = 86 Hz, phenyl C-P+), 34.2 (CH2C(O)), 30.3 (CH2), 30.1 (CH2), 

28.9 (CH2), 28.8 (CH2), 28.6 (CH2), 28.5 (CH2), 24.5 (CH2), 22.9 (CH2) and 22.4 (d, J 

= 18 Hz, CH2P
+), extinction coefficient in DMSO (308nm = 5275 M-1 cm-1 ; (262nm = 

8108 M-1 cm-1). 

 

 

2.2. H2S release detection 

H2S donors were dissolved and diluted in DMSO. Compounds or vehicle were added 

in 1/10 volume and mixed with DMEM supplemented with 10% FBS and 0.5 mg/ml 

MTT. Free H2S as strong reducing agent reacts with the tetrazolium dye MTT and 

forms purple colour formazan. Changes in absorbance were recorded every 24 hours 

on a microplate reader (Molecular Devices Spectramax M2e, Sunnyvale, CA) at 570 

nm with background measurement at 690nm. The reaction was carried out in a 

humidified incubator at 37 C with 5% CO2 atmosphere to closely mimic the cell 

culture conditions and minimise evaporation. H2S calibration curve was created by 



preparing serial dilutions of freshly dissolved Na2S (Alpha Aesar, Haverhill, MA) and 

by measuring the reducing capacity. The slow release H2S donors liberate H2S over 

several days and the low background of MTT reduction allows H2S detection up to 2 

weeks. The H2S generation is shown as the cumulative increase or daily change in 

absorbance with respective H2S values. 

 

2.3. Cell culture and toxicity assay 

b.End3 murine microvascular endothelial cells were obtained from the European 

Collection of Cell Cultures (ECACC, Salisbury, UK) as described, passage numbers 

24-30 were used [37]. The b.End3 cells were established form brain endothelial cells 

of 129/Sv mice by immortalisation with the Polyoma virus middle T-antigen [37]. 

The cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

(Biochrom AG, Berlin, Germany) containing 1g/l glucose supplemented with 10% 

fetal bovine serum (FBS, Hyclone, Logan, UT), 1% non-essential amino acids, 100 

IU/ml penicillin and 100 µg/ml streptomycin (Invitrogen, Carlsbad, CA) at 37 C in 

5% CO2 atmosphere [10, 11].  

b.END3 endothelial cells (20 000/well) were seeded in 96 well plates and cultured in 

DMEM containing 1 g/l glucose supplemented with 10% FBS, 1% non-essential 

amino acids and antibiotics at 37 C in 5% CO2 atmosphere for 5 days. H2S donors 

were diluted in PBS containing 10% DMSO and added in 1/20 volume, then cells 

were incubated at 37 C for 24 hours.  Non-mitochondrial H2S donors were added in 

the concentration range of 100nM to 1mM and mitochondrial H2S donors in the range 

of 10nM to 100M. After 24 hours, the supernatant was saved to detect LDH release 

and fresh culture medium supplemented with 0.5 mg/ml MTT was added to the cells. 

MTT and LDH assays were performed as detailed below. The cellular viability values 

and percent cell lysis values were plotted and the 50% toxic concentration was 

calculated using Prism 6 analysis software (GraphPad Software, Inc., La Jolla, CA). 

 

2.4. In situ detection of H2S in endothelial cells 

b.End3 cells (2x105/well) were seeded on 4-well Nunc Lab-Tek chambered 

coverglass (Nalge Nunc, Rochester, NY) and cultured overnight. H2S donor 



compounds were diluted in PBS and DMSO and were added at 30 M final 

concentration in 1/20 culture volume. The cells were treated with the compounds at 

37 C for 2 hours, followed by loading with fluorescent H2S sensor 7-azido-4-

methylcoumarin (AzMc) (40nM, Sigma-Aldrich, St. Louis, MO) and Mitotracker 

Green FM (200 M, Life Technologies, Carlsbad, CA) mitochondrial stain at 37 C 

for 1 hour to detect H2S release simultaneously with the endogenous H2S production. 

AzMc fluorescence and the MitoTracker signal were detected on a Nikon TE2000 

inverted microscope (Nikon UK Limited, Surrey, UK) using a Hamamatsu ORCA-ER 

monochrome camera (Hamamatsu Photonics UK Ltd., Hertfordshire). The H2S signal 

is shown in green and the MitoTracker signal in red.   

 

2.5. High glucose-induced endothelial dysfunction 

Mitochondrial ROS generation was induced in b.End3 endothelial cells by prolonged 

exposure to high glucose as we previously described [10, 11]. Microvascular 

endothelial cells (20 000/well) were seeded into 96-well tissue culture plates and were 

cultured for 24 hours. Hyperglycemia (40 mM glucose) was initiated by replacing the 

culture medium with fresh DMEM containing 7.2 g/l glucose supplemented with 10% 

FBS, 1% non-essential amino acids, 100 IU/ml penicillin and 100 µg/ml streptomycin 

and the cells were exposed to high glucose level for 7 days. The culture medium was 

supplemented with pyruvate (10 mM) as fresh source of energy after 3 days of 

exposure. H2S donor compounds were dissolved in dimethyl sulfoxide (DMSO) and 

dilutions were made in phosphate buffered saline (PBS) to administer the compounds 

in 1/20 culture volume with final DMSO concentration of 0.5 %. The cells were 

treated with the compounds for 3 days by administering the drugs on the 4th day of the 

hyperglycemic exposure.  

 

2.6. MTT and LDH assays 

The MTT assay and LDH activity measurements were performed as previously 

described [38, 39]. Briefly, the cells were incubated in culture medium containing 0.5 

mg/mL 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT, 

Calbiochem, EMD BioSciences, San Diego, CA) for 1 hour at 37 °C at 10% CO2 

atmosphere. The converted formazan dye was dissolved in isopropanol and the 



absorbance was measured at 570 nm with background measurement at 690 nm. 

Absorbance values are shown as the cellular MTT conversion rate (metabolic activity) 

in hyperglycemic cells. Cellular viability rates are calculated using serial dilutions of 

cells and the percent survival rates compared to vehicle treated controls were 

calculated.  

Total LDH content of the cells was measured by lysing the cells in 0.15 M saline 

containing 1% Triton-X-100 and measuring the LDH activity by adding 100 μl LDH 

assay reagent containing 110 mM lactic acid, 1350 mM nicotinamide adenine 

dinucleotide (NAD+), 290 mM N-methylphenazonium methyl sulfate (PMS), 685 mM 

2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) and 200 

mM Tris (pH 8.2). The changes in absorbance were read kinetically at 492 nm for 15 

min (kinetic LDH assay). LDH activity values are shown as Vmax values. In the 

toxicity assay, cell death was measured by LDH release in the cell culture supernatant 

(30 l/well) after 24 hours exposure.  

 

2.7. Measurement of mitochondrial ROS production  

Μeasurements of the mitochondrial superoxide generation by MitoSOX Red and the 

cellular reactive oxygen species (ROS) production by CM-H2DCFDA were 

previously described [10]. After the hyperglycemia exposure the cells were loaded 

with the mitochondrial superoxide sensor MitoSOX™ Red (2.5 µM, Life 

Technologies, Carlsbad, CA) or with the cell-permeable ROS indicator 5-(and-6)-

chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA, 10 μM, Life 

Technologies, Carlsbad, CA) and DNA stain Hoechst 33342 (10 µM) for 25min. 

Reading medium (PBS supplemented with 1 g/l glucose and 10% bovine growth 

serum (BGS, Hyclone, Logan, UT) was added to the cells and the oxidation of 

MitoSOX™ Red (Ex/Em: 530/590nm) or CM-H2DCFDA (Ex/Em: 485/528 nm) was 

recorded kinetically on Synergy 2 plate reader (BioTek, Winooski, VT) at 37C for 

35 min. ROS production is shown as the Vmax value of the fluorescence probe 

oxidation or as percent values of Vmax values of control cells. The fluorescence of 

Hoechst 33342 (Ex/Em: 360/460 nm) was used to confirm that there was no change in 

the cellular viability.  

 



2.8. Mitochondrial membrane potential  

The mitochondrial potential was measured with JC-1 (Sigma-Aldrich, St. Louis, MO) 

fluorescent probe as previously described [11, 40]. The cells were loaded with the dye 

by exposing them to JC-1 stain solution containing 10 M JC-1 and 0.6 mM -

cyclodextrin (Sigma-Aldrich, St. Louis, MO) in OptiMEM I medium at 37 °C for 30 

min. Subsequently, the cells were washed in phosphate buffered saline (PBS) and the 

red (Ex/Em: 485/528nm) and green (Ex/Em: 530/590nm) fluorescence was measured 

on a microplate reader (Synergy 2, Biotek, Winooski, VT, USA). The mitochondrial 

potential is expressed as the relative ratio of the mitochondrial J-aggregates (red 

fluorescence) and the cytoplasmic monomer form of the dye (green fluorescence). 

 

2.9. ATP assay 

ATP concentration was determined by the commercially available CellTiter-Glo® 

Luminescent Cell Viability Assay (Promega, Madison, WI) as previously described 

[11]. The cells were lysed in 100 µL of CellTiter-Glo reagent according to the 

manufacturer’s recommendations and the luminescent signal was recorded for 1 s on 

a high sensitivity luminometer (Synergy Mx, Biotek, Winooski, VT, USA). The assay 

is based on ATP requiring luciferen-oxyluciferin conversion mediated by a 

thermostable luciferase that generates a stable “glow-type” luminescent signal. ATP 

standard (dilution series) was used to calculate the cellular ATP amount and the ATP 

values are shown as percent values of the normoglycemic controls.  

 

2.10. Extracellular Flux analysis 

An XF24 Analyser (Seahorse Biosciences, Billerica, MA) was used to measure 

metabolic changes in b.End3 cells [10, 41, 42]. The XF24 creates a transient 7 µl 

chamber in specialised microplates that allows real-time measurement of oxygen and 

proton concentration changes via specific fluorescent dyes and calculates OCR 

(oxygen consumption rate) and PPR (proton production rate), measures of 

mitochondrial respiration and glycolytic activity. The proton production rate is 

expressed in pMol/min, while ECAR is in pH/min. The OCR and PPR values 

represent the metabolism of cells, but may also reflect the number of viable cells.  



b.End3 cells were exposed to hyperglycemia for 7 days and treated with H2S donors 

for 3 days as described above. The culture medium was changed to unbuffered 

DMEM (pH 7.4) containing 5 mM glucose, 2 mM L-glutamine and 1 mM sodium 

pyruvate to allow measurement of the proton production. After determining the basal 

OCR and PPR values, oligomycin, FCCP and antimycin A were injected through the 

ports of the Seahorse Flux Pak cartridge to reach final concentrations of 1 µg/ml, 0.3 

µM and 2 µg/ml, respectively, to determine the amount of oxygen consumption 

linked to ATP production, the level of non-ATP-linked oxygen consumption (proton 

leak) as well as the maximal respiration capacity and the non-mitochondrial oxygen 

consumption.  

 

2.11. Respiratory complex II/ III assay 

Complex II+III activity was measured by the MitoTox Complex II+III OXPHOS 

Activity Microplate assay (Abcam, Cambridge, UK). Respiratory complex II 

(succinate-ubiquinone oxidoreductase) transfers electrons from succinate to Complex 

III (ubiquinolcytochrome c oxidoreductase) via mobile electron shuttle ubiquinone. 

Complex III transfers electrons to Complex IV (cytochrome c oxidase) via mobile 

electron carrier cytochrome c. The assay measures cytochrome c reduction using 

succinate as substrate (Complex II+III activity).  

Bovine heart mitochondria were used as source of respiratory complexes. Complex I 

was inhibited by rotenone (10 M) to block electron transfer from NADH to 

ubiquinone and Complex IV by potassium cyanide (2 mM) to avoid to reoxidation of 

cytochrome c. H2S donor compounds (10 nM to 10 M) were mixed with 

mitochondria (30 g/ml) in the presence of succinate and oxidised cytochrome c. 

Cytochrome c reduction was monitored kinetically on a microplate reader (Molecular 

Devices Spectramax M2e, Sunnyvale, CA) at 550 nm. Mitochondrial complex II/III 

activity is shown as the maximum velocity of cytochrome c reduction in mOD/min.  

 

2.12. Statistics 

One-way analysis of variance (ANOVA) was used to detect differences between 

groups. Post hoc comparisons were made using Tukey's test. A value of p < 0.05 was 



considered statistically significant. All statistical calculations were performed using 

Prism 6 analysis software (GraphPad Software, Inc., La Jolla, CA). Data are shown as 

mean ± SEM values. 

 

3. Results 

 

3.1. Mitochondria-targeted H2S-donor compounds provide controlled H2S 

release 

H2S has been proposed as an endogenous antioxidant and plays important roles in 

inflammatory and vascular diseases. The need for slow-release H2S donor compounds 

was recognised since higher concentrations of the gas are toxic, the half-life of H2S is 

very short and simple salts like sodium hydrosulfide (NaSH) and sodium sulfide 

(Na2S) can only provide instantaneous H2S generation [43-45]. Anethole 

dithiolethione (ADT-OH) and 4-hydroxythiobenzamide (HTB) represent two simple 

moieties that release H2S slowly. Mitochondrial H2S donors (AP39 and AP123) were 

generated by linking ADT-OH and HTB to a triphenylphosphonium mitochondrial 

targeting motif via a 10-carbon linker region (Fig. 1A, B, Supporting Information). 

This targeting group may result in a 500-fold accumulation of the drug in the 

mitochondria [46]. Both mitochondrial H2S donors and their non-mitochondrial 

counterparts provide gradual H2S production lasting for 7-10 days in cell culture 

medium (Fig. 1C, D).  The mitochondrial targeting group in AP39 does not change 

the time course of H2S release by ADT-OH, but slightly slows down the H2S 

liberation from HTB moiety in AP123 although the mechanism for this is not clear. 

HTB and AP123 contain a single sulfur atom, thus they can release one H2S molecule 

per donor compound. The expected molar amounts of H2S are produced over a 7-day-

long period. AP39 and ADT-OH contain 3 sulfur atoms and are possibly capable of 

higher H2S release over 10 days of follow-up. With the shorter period of H2S release, 

a steeper decrease is detectable in H2S production for AP123 and HTB than for AP39 

and ADT-OH (Fig. 1E, F). While the kinetics are different, the total amount of H2S 

production is comparable during a 3-day long treatment period: approx. 0.6 moles of 

H2S are produced by a mole the H2S donors (Fig. 1G, H).    



We investigated the cellular localisation of H2S production following the H2S donor 

administration to confirm that the presence of the mitochondrial targeting group 

increases the mitochondrial H2S release. Endothelial cells treated with the compounds 

were loaded with fluorescent H2S sensor 7-azido-4-methylcoumarin (AzMc) [27] and 

the H2S production was detected by fluorescence microscopy (Fig. 2). Cells treated 

with the mitochondrial donor compounds showed predominant mitochondrial H2S 

production. While mitochondrial H2S generation was evident in all cells, those treated 

with non-mitochondrial H2S donors showed higher presence of extra-mitochondrial 

H2S than those treated with the mitochondrial donors. It has to be mentioned that the 

ester linkage between the mitochondrial targeting moiety and the H2S donor group 

could be cleaved by cellular esterases increasing the non-mitochondrial H2S 

production in cells treated with AP39 or AP123. However, mitochondrial but not 

cytoplasmic H2S was rapidly detected with each compound suggesting esterase 

cleavage was minimal.  

It is well established that H2S causes toxicity at high concentrations by blocking the 

mitochondrial respiration. This effect is believed to occur via inhibition of complex 

IV (cytochrome c oxidase) [47-49], but blockage of the mitochondrial respiration may 

also occur as a consequence of H2S-mediated electron donation and reduction of the 

mitochondrial membrane potential. To test the tolerability of H2S donor compounds, 

we exposed b.End3 endothelial cells to H2S donors in a wide concentration range (1 

nM-10 mM) and measured the cell survival after 24 hours (Fig. 3). All compounds 

were well tolerated at lower concentrations and induced cell death in a narrow 

concentration range. Sodium sulfide was tolerated by endothelial cells up to 300 M 

but induced cell death above that (TC50=318.9 M). The tolerance of HTB was 

comparable to Na2S (TC50=165.5 M) while ADT-OH had a lower TC50 value 

(TC50=69.5 M) probably due to its higher H2S producing capacity. (It has more 

sulfurs than the other compounds and could release more than one H2S per drug 

molecule). The mitochondria-targeted H2S donors caused no toxicity up to 1 M in 

endothelial cells and the tolerable concentration was only one order of magnitude 

lower than their non-mitochondrial counterparts (AP123: TC50=16.7 M, AP39: 

TC50=7.7 M). In summary, mitochondrial H2S donors are safe to use at sub-

micromolar concentrations in endothelial cells.   

 



3.2. H2S donors inhibit the mitochondrial ROS production in hyperglycemic 

endothelial cells 

High glucose-induced mitochondrial oxidant production plays a central role in 

mitochondrial dysfunction in endothelial cells [8, 10]. The respiratory chain is 

primarily responsible for the superoxide generation in the mitochondria in 

hyperglycemia [8]. Since this process requires electrons, extra protons are left behind 

and an increase is induced in the transmembrane proton gradient. Mitochondrial 

hyperpolarisation plays an important part in the increased ROS production in 

hyperglycemia, since restoration of the mitochondrial potential blocks the 

mitochondrial superoxide generation [11]. H2S acts as an electron donor in the 

electron transport chain and it is shown to normalise the membrane potential and 

inhibit the mitochondrial ROS production in hyperglycemia [17]. The instant 

generation of H2S by NaSH or Na2S and the small portion of mitochondrial H2S 

produced by these salts requiring their use at high concentrations (and doses) are non-

ideal in long-term diseases, thus we tested the ROS-inhibitory effects of 

mitochondrial slow-release donors AP39 and AP123.   

Both AP39 and AP123 significantly reduced hyperglycemia-induced increase in the 

mitochondrial membrane potential at low nanomolar concentrations (Fig. 4A, D). 

Both compounds reduced the mitochondrial ROS production as detected by MitoSOX 

Red (Fig. 4 B, E) and also caused a slight decrease in the cellular ROS production as 

measured by CM-H2DCFDA (Fig. 4C, F). AP39 was more effective than AP123 that 

might be explained by the higher H2S release of AP39. It is of note that a single 

treatment of these mitochondrial donors provided protection over a 3-day-long period 

at 1000-fold lower concentration than the previously reported cytoprotective 

concentration of H2S using repeated administration [17].  

Mitochondrial dysfunction affects the cellular energy production in hyperglycemic 

endothelial cells and results in a decrease in the cellular ATP content after 7 days in 

b.End3 cells (Fig. 5A, D). Both AP39 and AP123 increased the cellular ATP content 

in a concentration-dependent manner (Fig. 5A, D) supporting the hypothesis that H2S-

donor-mediated electron donation increases the mitochondrial ATP production [21]. 

Hyperglycemia did not induce changes in the cellular LDH activity in b.End3 

endothelial cells (Fig. 5B, E), but there was significant increase in the cellular MTT 

converting capacity (Fig. 5C, F). This increase in the cellular MTT conversion was 



probably a compensatory activation of the citric acid cycle after long-term exposure 

to high extracellular glucose. None of the compounds affected the cellular LDH 

activity (Fig. 5B, E), but both compounds induced a significant decrease in the 

cellular MTT conversion (Fig. 5C, F).  

To test the effect of the compounds on cellular bioenergetics, we performed metabolic 

profiling of b.End3 endothelial cells treated with AP39 or AP123 for 3 days using 

extracellular flux analysis (Fig. 6). Hyperglycemia induced subtle changes in the 

cellular metabolism at this stage and there is no detectable change in the basal OCR 

and ECAR (Fig. 6C, G), but the non-mitochondrial oxygen consumption is higher in 

the hyperglycemic cells: the residual OCR is elevated after blocking the mitochondria 

with oligomycin, FCCP and antimycin A (Fig. 6A). There was no detectable change 

in oxygen consumption linked to mitochondrial ATP-production, as measured by 

ATP synthase inhibition (Fig. 6D), but the mitochondrial H2S donors induced 

significant increase in the respiratory capacity (Fig. 6E) that is in line with prior 

results showing that increased intra-mitochondrial H2S production affects this 

measure [21]. The mitochondrial H2S donors improve the coupling efficiency and 

significantly reduce the proton leak (Fig. 6F) that can explain the increased cellular 

ATP content in the cells (Fig. 5A, D) without a measurable increase in oxygen 

consumption. There is no change in the anaerobic metabolism in cells treated with 

mitochondrial H2S donors (Fig. 6G) that further confirms that the compounds do not 

inhibit mitochondrial respiration at low nanomolar concentrations. The predominantly 

mitochondrial localisation (Fig. 2) strongly suggests that there was no interference 

with anaerobic compensation following the inhibition of mitochondrial respiration 

(Fig. 6H).  

Mitochondrial H2S oxidation is a complex process that requires three enzyme 

activities: 1) sulfide-quinone oxidoreductase (SQR) catalyses the two-electron 

oxidation of H2S to the level of elemental sulfur by simultaneously reducing a 

cysteine disulfide such that a persulfide group is formed, 2) sulfur dioxygenase 

oxidises persulfides to sulfite, consuming molecular oxygen and water and 3) sulfur 

transferase produces thiosulfate by transferring a second persulfide from SQR to 

sulfite [22]. During the first step of H2S oxidation, the electrons are fed into the 

respiratory chain via the quinone pool (at the level of complex III). Oxygen 

consumption occurs only through the second step of H2S oxidation, thus feeding of 



electrons from H2S to the respiratory system does not necessarily increase the cellular 

oxygen consumption. To confirm that the action of mitochondrial H2S donors 

increase the electron transfer, we performed a Complex II/III activity assay (Fig. 7). 

We blocked input from Complex I by rotenone and inhibited cytochrome c oxidation 

(Complex IV) by potassium cyanide. In the presence of substrate (succinate) Complex 

II transfers electrons to ubiquinone and Complex III to cytochrome c. The rate of 

cytochrome c reduction was measured in the absence or presence of AP39 or AP123. 

Both compounds induced a concentration-dependent increase in complex III activity 

at concentrations below 2.5 M (Fig. 7A, B), but a decrease was detected at higher 

concentrations (5-10 M). AP123 induced similar changes to AP39 but at twice as 

high concentration possibly due to its lower H2S producing capacity. These results 

confirmed that the compounds directly affected the respiratory complex activities.  

 

4. Discussion 

 

The positive effects of H2S supplementation in diabetes were confirmed by several 

studies but long-term administration of H2S remained a challenging issue [17, 26, 50, 

51]. H2S is volatile and has short half-life in vivo, thus for long-term treatment its 

preferable to use donor molecules (prodrugs) that release H2S at a controlled rate. 

Several H2S donor compounds have been developed over the last couple of years and 

various H2S producing chemistries have been implicated but the control of H2S 

generation is still not perfect [43, 52, 53]. A further problem may arise from the side 

effects caused by the by-products that are formed during H2S release, thus in chronic 

diseases it is necessary to reduce the concentration of the donors as much as possible 

since very long treatment periods are anticipated. One option is to deliver the H2S 

donors to specific cell types or subcellular compartments to minimise the off-target 

effects. The subset of cell types, that are involved in diabetic complications and 

should benefit from H2S supplementation, includes capillary endothelial cells, 

mesangial cells, neurons and Schwann cells in peripheral nerves [8]. The glucose-

induced damage is orchestrated by the mitochondria via superoxide generation that 

promotes all other oxidative stress pathways in diabetes [8], thus mitochondrial 

oxidant production is the foremost target in the cells.  



It is difficult to determine the mitochondrial concentration of H2S that might be 

associated with beneficial effects in the cells and various methodologies produced 

strikingly different results, but the amount to produce stimulatory effect on cellular 

bioenergetics is probably between 6 nM and 1 M [21, 54, 55]. In contrast, a ~1000-

fold higher concentration (100-300 M exogenous H2S) is needed to normalise the 

mitochondrial membrane potential and decrease the oxidant production in endothelial 

cells exposed to high glucose concentrations, presumably because the H2S was not 

targeted to mitochondria [17]. Extracellular consumption of H2S, extra-mitochondrial 

metabolism and low penetration might explain this huge difference. The amount of 

H2S that blocks complex IV and has inhibitory effect on the respiration is no more 

than 1 order of magnitude higher than its stimulatory concentration [21, 48, 54, 55] 

thus dosing can be challenging. Furthermore, it is unclear whether exogenous H2S 

supplementation affects the endogenous H2S production and whether the 

concentrations determined by prior assays truly reflect the beneficial amount of H2S 

on the long term. Overall, prior results suggest that mitochondria-specific delivery of 

H2S can greatly reduce the therapeutic concentration of H2S donors. We found that 

AP39 and AP123 were effective against hyperglycemic injury at >1000-fold lower 

concentrations than Na2S in endothelial cells. The cytoprotective concentrations of the 

compounds (30-300 nM) are similar to the values previously reported for AP39 [34, 

35, 56, 57]. The mitochondrial potential normalising and antioxidant effects of the 

compounds also confirm that H2S-mediated cytoprotection depends on its 

mitochondrial effect in hyperglycemic endothelial cells. It is unlikely the mechanism 

of protection by mitochondrial-targeted H2S is by, or includes, upregulation of H2S 

synthesising enzymes as this has not been previously observed [58]. 

The triphenylphosphonium targeting moiety of AP39 and AP123 provides potential–

dependent drug accumulation in the mitochondria [46] and also assures that H2S 

concentration is kept within a safe range since normalisation of the mitochondrial 

potential will reduce the drug accumulation. On the other hand, while the 

mitochondrial membrane potential is elevated the intra-mitochondrial drug 

concentration will be higher than in cells with normal or reduced mitochondrial 

potential at a given loading concentration of the drug. Also, in metabolically active 

cells the high consumption of H2S will not result in a drop in H2S donors, since 

mitochondria will be replenished with new donor molecules by the re-equilibration 



process and a relatively stable supply of H2S will be maintained by the use of these 

donor compounds.    

The antioxidant effect of AP39 and AP123 are comparable, but the effective 

concentration of AP39 is slightly lower than that of AP123 (Fig. 4). AP39 also 

induced an increase in complex II/III activity at a slightly lower concentration than 

AP123 that supports higher mitochondrial H2S release by AP39 (Fig. 7). Both AP39 

and AP123 provide H2S release for multiple days but AP39 is capable of releasing 

more H2S than AP123 (Fig. 1). The higher H2S release by AP39 is also evidenced by 

its lower toxic concentration: AP39 has a TC50 of 7.8 M while AP123’s TC50 is 16.7 

M (Fig. 3); concentrations far exceeding that required for cytoprotection (e.g. 10-

300 nM, Figs. 3-7). The toxic concentration of the non-mitochondrial H2S donors 

ADT-OH and HTB is ten times higher (69.5M and 165.5 M, respectively) than 

their mitochondrial counterparts. The ten-fold increase in the mitochondrial H2S 

delivery achieved by the ester-linked mitochondrial targeting moiety possibly 

suggests ten times lower risk of side effects caused by the metabolites of the drugs. 

The molecular mechanism of H2S release from 1,2-dithiole-3-thione compounds are 

still unclear [59], but the mitochondrial redox environment may affect this process. 

Furthermore, H2S generation from ADT-OH or AP39 can occur through multiple 

steps and each of these steps may be affected by various metabolites in the 

mitochondria. On the other hand, HTB compounds are more likely to liberate H2S 

through a single step that is not affected by the metabolites, possibly allowing for 

better control of H2S generation. Interestingly, HTB is the chosen H2S donor moiety 

in many novel H2S-releasing therapeutics including various non-steroidal anti-

inflammatory drugs (NSAIDs) and some of them (eg. the naproxen derivative ATB-

346) already reached clinical trial phases [52].  

H2S supplementation using natural products may represent an alternative approach for 

long-term treatment. Garlic is the most commonly used sulfur-rich nutrient that can 

provide H2S using it either freshly or its extract as a dietary supplement. Allicin 

(diallyl thiosulfinate), the main source of H2S in garlic, decomposes to various sulfur-

containing compounds in aqueous solutions including DADS and DATS [33, 53, 59]. 

DADS and DATS release H2S in a thiol-dependent manner and they may deplete the 

cellular glutathione pool [60-62]. While this chemical approach may help control the 

H2S release, the loss of glutathione increases the risk of oxidative damage in a pro-



oxidant state like diabetes and H2S toxicity was also associated with it [63]. 

Interestingly, the opposite effect of DADS, an increase in the cellular glutathione 

level was also reported after prolonged treatment periods [64] that may be caused by 

H2S produced from the donors, since H2S itself increases the glutathione 

concentration [65]. However, if this is the case the elevated glutathione content 

should result in further H2S generation from thiol-dependent donors causing 

fluctuations in the H2S levels and making the dosing more complicated than with the 

HTB or ADT-OH-based donors. While the beneficial effects of garlic in diabetes 

models were confirmed by multiple studies [29-31, 66], garlic had no effect on 

endothelial function and oxidative stress in diabetic patients in a recent pilot trial and 

only little increase was detected in the glutathione level [67], which further support 

the difficulties with dosing of garlic-based dietary supplements. 

 

5. Conclusion 

Mitochondrial slow release H2S donors provide protection against the prolonged low 

level oxidative stress induced by hyperglycemia in endothelial cells. They increase 

the electron transfer rate at respiratory complex III and have beneficial effect on 

cellular bioenergetics. These compounds offer the potential to be much safer than 

inorganic sulfide salts (Na2S or NaSH) and target delivery to mitochondria: the 

concentration of AP39 and AP123 that results in these positive effects are >2 orders 

of magnitude lower than their maximum tolerated concentration in vitro, whereas the 

cytoprotective concentration of inorganic sulfide salts is very close to their toxic 

concentrations [17]. Furthermore, the slow H2S release in biological buffers combined 

with high lipophilicity and mitochondria-targeting allows fewer drug administrations 

making these compounds preferable to previously used H2S donors.  
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Figure legends 

 

Fig. 1. H2S release by mitochondrial H2S donors. A-B: The chemical structure of 

mitochondrial H2S donors: the H2S releasing groups anethole dithiolethione (ADT-

OH) in AP39 (A) and 4-hydroxythiobenzamide (HTB) in AP123 (B) are bound by 

ester linkage to 10-carbon alkyl linker region and the triphenyl phosphonium 

mitochondrial targeting group. C-D: The total amount of H2S released from non-

mitochondrial (ADT-OH, HTB) and mitochondrial (AP39, AP123) H2S donors (100-

500 M) was detected in cell culture medium (DMEM supplemented with 10% FBS) 

for 10 days. E-F: Daily H2S release values are plotted with curves fitting results to 

highlight the donor compound decomposition. G-H: The total amount of H2S 

liberated from mitochondrial and respective non-mitochondrial H2S donors over the 

first 3-day long period is shown.  

 

Fig. 2. Localization of H2S release. b.End3 microvascular endothelial cells were pre-

treated with H2S donor compounds (30 M, ADT-OH, AP39, HTB and AP123), then 

loaded with fluorescent H2S sensor AzMc and mitotracker stain. The mitochondria 

(mitotracker signal) are shown in red and the H2S production (AzMc signal) in the 

cells is shown in green. The H2S signal completely overlaps with the mitochondrial 

signal in mitochondrial H2S donor treated cells (as displayed in the merged channels), 

while in the non-mitochondrial H2S donor-treated cells higher non-mitochondrial H2S 

signal is detectable.  

 

Fig. 3. Tolerability of H2S donors. b.End3 cells were treated with mitochondrial and 

non-mitochondrial H2S donor compounds for 24 hours. A: The cellular viability was 

measured by the MTT assay. B: LDH release was detected by measuring the LDH 

activity in the cell culture supernatant. The non-mitochondrial H2S donors are better 

tolerated by the cells: the mitochondrial H2S donors reduce the cell survival at lower 

concentrations. 

 

 



Fig. 4. Mitochondrial H2S donors protect against ROS production in 

hyperglycemic endothelial cells. A-B: b.End3 endothelial cells were exposed to high 

extracellular glucose for 7 days with a single AP39 (A) or AP123 (B) treatment on the 

4th day of hyperglycemia. The mitochondrial membrane potential was measured by 

JC-1, the mitochondrial superoxide production by MitoSOX Red, and the cellular 

ROS production by CM-H2DCFDA. AP39 and AP123 restored the mitochondrial 

membrane potential and reduced the ROS production. (#p<0.05 high glucose induced 

significant increase in mitochondrial membrane potential or ROS production. *p<0.05 

H2S donor compounds significantly reduced the mitochondrial membrane potential or 

ROS production compared to hyperglycemic control cells.)  

 

Fig. 5. Mitochondrial H2S donors reduce the cellular hypermetabolism  

hyperglycemic endothelial cells. A-B: b.End3 endothelial cells were exposed to high 

extracellular glucose for 7 days with a single AP39 (A) or AP123 (B) treatment on the 

4th day of hyperglycemia. The MTT reducing capacity, the total cellular LDH activity 

and the cellular ATP content were measured on the 7th day. (# p<0.05 high glucose 

induced significant changes in the cellular MTT reducing capacity and ATP content. * 

p<0.05 H2S donor compounds significantly reduced the MTT reduction and increased 

the cellular ATP content.) 

 

Fig. 6. Mitochondrial H2S donors affect the cellular bioenergetics. b.End3 cells 

exposed to 7-day-long hyperglycemia were treated with AP39 (30 nM) or AP123 

(100nM) and the metabolic profile of the cells was studied by extracellular flux 

analysis. Sequential injections of Oligomycin (1 g/ml), FCCP (0.3 M) and 

antimycin A (2 g/ml) was used to measure A: the cellular oxygen consumption rate 

(OCR) and B: the extracellular acidification rate (ECAR). C: Basal oxygen 

consumption, D: ATP production linked oxygen consumption (determined by 

oligomycin injection), E: total respiratory capacity (determined following the addition 

of FCCP) and F: the proton leak/basal respiration was determined. G: Acid 

production of basal metabolism and H: acid production during anaerobic 

compensation was determined. AP39 and AP123 increase the respiratory capacity of 

the cells. (n=3, *p<0.05 compared to hyperglycemic control)  



Fig. 7. Mitochondrial H2S donors increase the respiratory Complex II/III 

activity. A-B: Cytochrome c reduction was monitored in bovine heart mitochondria 

following Complex I and IV blockade by rotenone and KCN, respectively. A: AP39 

was added at 10 nM to 10 M and complex II/III activity was measured kinetically, 

B: Mitochondria were treated with AP123 (10 nM to 10 M) and the respiratory 

complex activity was monitored. (*p<0.05, H2S donors significantly increased the 

respiratory complex activity) 
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