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Abstract. This article describes the xtdpdqml command for the quasi-maximum
likelihood estimation of linear dynamic panel data models when the time horizon
is short and the number of cross-sectional units is large. Based on the theoretical
groundwork by Bhargava and Sargan (1983) and Hsiao, Pesaran, and Tahmiscioglu
(2002), the marginal distribution of the initial observations is modeled as a function
of the observed variables to circumvent a short-T dynamic panel data bias. Both
random-effects and fixed-effects versions are available.

Keywords: st0001, xtdpdqml, dynamic panel data, random effects, fixed effects,
short-T bias, quasi-maximum likelihood estimation, initial observations, unbal-
anced panel data

1 Introduction

The estimation of linear dynamic panel data models has become increasingly popular
in the last decades. When the time horizon is short, ordinary least squares (OLS)
or generalized least squares (GLS) estimators for random-effects or fixed-effects models
that condition on the initial observations yield biased estimates due to the correlation of
the lagged dependent variable with the combined error term.1 An analytical expression
of this bias in fixed-effects models has been obtained by Nickell (1981).

Quasi-maximum likelihood (QML) estimation can circumvent this bias by modeling
the unconditional likelihood function instead of conditioning on the initial observations.
While this requires additional assumptions about the marginal distribution of the initial
observations, the QML estimators are an attractive alternative to other estimation ap-
proaches in terms of efficiency and finite-sample performance if all the assumptions are
satisfied. Some of those assumptions can be easily tested within the QML framework
by means of a likelihood-ratio test if they lead to nested models.

This paper describes the new Stata command xtdpdqml that provides an easy-to-use
implementation of the QML estimators by Bhargava and Sargan (1983) for the dynamic
random-effects model and by Hsiao et al. (2002) for the dynamic fixed-effects model.
Their estimators are extended to accommodate unbalanced panel data, provided the
sample selection is non-systematic. Standard errors that are robust to cross-sectional

1. In Stata, these least squares estimators for the random-effects and fixed-effects models are imple-
mented in the command xtreg.
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2 QML estimation of linear dynamic panel models

heteroskedasticity are available following Hayakawa and Pesaran (2015). Both QML
estimators can be characterized as limited information maximum likelihood (LIML)
estimators that are special cases of a structural equation modeling (SEM) or full infor-
mation maximum likelihood (FIML) approach with many cross-equation restrictions.
For the latter, Williams et al. (2015) recently presented the similarly named command
xtdpdml that builds on Stata’s sem feature.2

When the first two moments of the model are correctly specified, the QML estima-
tors are consistent with potentially sizeable efficiency benefits. Yet, there is a tradeoff
between efficiency and robustness. In particular, the QML approach discussed here
would turn inconsistent if the explanatory variables (other than the lagged dependent
variable) are no longer strictly exogenous with respect to the idiosyncratic error com-
ponent, or if there is remaining serial correlation that is not captured by the first-order
autoregressive term.3

In empirical research, the use of instrumental variables in the context of the general-
ized method of moments (GMM) is the predominant estimation technique to cope with
this problem, in part because of the availability of user-friendly estimation commands in
standard statistics software. In Stata, the Arellano and Bond (1991) “difference GMM”
estimator is implemented in the command xtabond, and the “system GMM” extensions
by Arellano and Bover (1995) and Blundell and Bond (1998) in the command xtdpdsys.
Both commands are wrappers for the more flexible command xtdpd that performs the
actual computations. A much respected user-written command with full flexibility and
many additional options is xtabond2, described in detail by Roodman (2009).

While GMM estimation is very attractive due to its flexibility and ease of implemen-
tation, other promising methods remain underrepresented in empirical work. Besides
the QML approach, the bias-correction procedures proposed by Kiviet (1995), Bun and
Kiviet (2003), and Everaert and Pozzi (2007), among others, can be a more efficient al-
ternative in dealing with the endogeneity of the lagged dependent variable. Bruno (2005)
and De Vos et al. (2015) provide the user-written Stata implementations xtlsdvc and
xtbcfe, respectively. Both obtain biased estimates first and subsequently remove the
bias based on analytical bias expressions or with a bootstrap procedure. In contrast,
the QML and GMM approaches are designed to avoid the bias in the first place.

In applied work, the robustness of the estimates obtained with different methods
allows an assessment of the reliability of the model’s specification assumptions. The new
estimation command presented in this paper extends the ready-to-use methodological
toolkit for the estimation of short-T dynamic panel data models. It also supports
specification testing, in particular the familiar Hausman (1978) test to differentiate
between the random-effects and the fixed-effects model.

2. Note the missing q in the command name xtdpdml compared to the xtdpdqml command discussed
in this paper. The names are constructed by combining Stata’s prefix xt for panel data commands,
dpd as an abbreviation for dynamic panel data, and ml or qml as an indication for the FIML and
QML method, respectively.

3. While in principal the QML estimators can be extended to include higher-order lags of the depen-
dent variable, this requires additional modeling effort and is not implemented in xtdpdqml.
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Section 2 outlines the dynamic random-effects and the dynamic fixed-effects model.
Section 3 describes the syntax and options of the xtdpdqml command, and Section 4
does the same for postestimation commands. An example is discussed in Section 5.
Section 6 concludes. Methodological details are relegated to an online Appendix.4

2 Dynamic panel data model

Consider the following linear panel data model with first-order autoregressive dynamics:

yit = λyi,t−1 + x′itβ + f ′iγ + εit, εit = ui + eit, (1)

where xit is a Kx × 1 vector of time-varying variables and fi a Kf × 1 vector of time-
invariant variables. The sample is observed for i = 1, 2, . . . , N cross-sectional units and a
short number of t = 1, 2, . . . , Ti consecutive time periods, with Ti ≥ 2 possibly different
across units but without gaps.5 The initial observations yi0 and xi0 are observed as
well. The combined error term εit consists of a time-invariant unit-specific component
ui and an idiosyncratic component eit. The latter is assumed to be independent and
identically distributed (i.i.d.) with mean zero and variance σ2

e .

2.1 Dynamic random-effects model

Under the random-effects assumption, the unit-specific intercepts ui are i.i.d. random
variables with mean zero and variance σ2

u.6 In particular, they are assumed to be uncor-
related with the exogenous regressors xit and fi. Nevertheless, the estimation of model
(1) with least-squares techniques conditional on the initial observations is inconsistent
when the time horizon is fixed. By construction of the model, the lagged dependent
variable yi,t−1 is correlated with the time-invariant unit-specific error component ui, and
this is therefore also true for the initial observations yi0. To account for this correlation
with a likelihood approach, we need to specify the joint distribution of all observations
yi = (yi0, yi1, . . . , yiTi

)′, conditional on the strictly exogenous regressors xit and fi.
Yet, equation (1) is not sufficient to define the marginal distribution of yi0 due to the
unobserved yi,−1.

Unrestricted initial observations

Instead of assuming yi0 to be exogenous, Bhargava and Sargan (1983) advocate the
following representation for the initial observations:

yi0 =

T∗∑
s=0

x′isπx,s + f ′iπf + νi0, (2)

4. The online Appendix is available at www.kripfganz.de.
5. The command xtdpdqml automatically drop units with gaps from the estimation sample.
6. The mean zero assumption is without loss of generality when we include a constant term in the set

of time-invariant variables fi.
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where πx,s, s = 1, 2, . . . , T ∗, and πf are additional parameter vectors to be estimated.
When the panel data set is balanced, Ti = T ∗ for all i, all available observations of
the right-hand side variables can be used in the projection (2). With unbalanced panel
data sets, as a computationally straightforward way, I suggest to use as many forward-
looking periods as are available for the shortest panel, T ∗ = min(Ti), such that equation
(2) is well defined for all units i. With V ar(νi0) = σ2

0 , a suitable parameterization for
the covariance between the error terms of the initial observations and the subsequent
periods is Cov(νi0, εit) = φσ2

0 , where both φ and σ2
0 can be treated as free parameters.

Restricted initial observations

Assuming |λ| < 1 and that the initial observations are generated by the same data
generating process as the remaining observations, we can motivate equation (2) also by
iterating the process continuously backwards in time:

yi0 = λmyi,−m +

m−1∑
s=0

λsx′i,−sβ +
1− λm

1− λ
f ′iγ +

1− λm

1− λ
ui +

m−1∑
s=0

λsei,−s. (3)

If the process for yit started far away in the past, m → ∞, the first term λmyi,−m
eventually vanishes. Further assuming stationarity of the exogenous regressors, we can
project their past and unobserved occurrences, xi,−s for all s > 0, on the observed
values of xis, s = 0, 1, . . . , T ∗, and fi to obtain the initial-observations representation
proposed by Bhargava and Sargan (1983). Equation (2) can thus be seen as a way to
obtain an optimal prediction for the systematic part of yi0 conditional upon the observed
values of the exogenous variables.7 Notice that under these additional assumptions the
second-last term in equation (3) implies a restriction on the covariance between the
initial observations and the unit-specific effects, namely φσ2

0 = σ2
u/(1− λ), that can be

incorporated into the log-likelihood function to obtain more efficient estimates.

Now reconsider model (1) without exogenous time-varying regressors xit (while still
allowing for time-invariant regressors fi). Assuming again that the process started in
the infinite past and that |λ| < 1, we obtain

yi0 =
1

1− λ
f ′iγ +

1

1− λ
ui +

∞∑
s=0

λsei,−s.

A comparison with equation (2) reveals the parameter restrictions πf = γ/(1 − λ),
σ2
0 = σ2

u/(1−λ)2 +σ2
e/(1−λ2), and φσ2

0 = σ2
u/(1−λ).8 Since the model with restricted

7. As m → ∞, the coefficients πf in equation (2) are equal to γ/(1 − λ) plus a second component
that depends on the unknown projection parameters. Unless fi does not help to explain the
unobserved xi,−s such that this second component disappears, we can ignore the restriction on the
first component and treat πf as a free parameter vector. Similar arguments apply to πx,s.

8. The coefficients πf and the variance σ2
0 are no longer confounded by projections of unobserved on

observed variables. Compare Hsiao et al. (2002) for the autoregressive model with a constant term
only. Conceptually, time-invariant regressors are no different than the constant term here. With
the xtdpdqml command, the restrictions can be imposed by the option stationary; see Section 3.2.
However, the assumption |λ| < 1 is not enforced which may lead to contradictory results.
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initial observations is nested in the unrestricted model, the validity of these stationarity
assumptions can be tested with a likelihood-ratio test.9

Quasi-maximum likelihood estimation

For balanced panel data, Bhargava and Sargan (1983) set up the log-likelihood func-
tion for the system of equations consisting of equation (1) for all time periods t ≥ 1
and the initial-observations equation (2) for period t = 0. Under the usual regularity
assumptions, the log-likelihood function is well behaved and can be maximized with a
gradient-based optimization technique.10 For such an iterative optimization procedure,
appropriate starting values are needed. They can be taken from any initial consistent
estimator such as a GMM or minimum distance estimator.11

2.2 Dynamic fixed-effects model

The random-effects assumption that rules out any correlation between the unobserved
unit-specific effects and the exogenous regressors is often too restrictive. A first step in
dealing with this issue is to remove the unit-specific error component by a first-difference
transformation:

∆yit = λ∆yi,t−1 + ∆x′itβ + ∆eit, (4)

where the transformed error term now exhibits negative first-order serial dependence,
Cov(∆eit,∆ei,t−1) = −σ2

e . The transformation also removes all time-invariant regres-
sors fi from the model.

Maximum likelihood estimation of the transformed model (4) conditional on the
initial observations under i.i.d. normally distributed disturbances eit is equivalent to
GLS estimation. As demonstrated by Bun and Kiviet (2006), the GLS estimator is
invariant to the model transformation in balanced panels and equals the least squares
dummy variables (LSDV) estimator. Due to the correlation of the initial observations
∆yi1 with the transformed error term, such a conditional likelihood approach is in-
consistent when the time horizon is fixed. Again, specifying the joint distribution of
∆yi = (∆yi1,∆yi2, . . . ,∆yiTi)

′ conditional on the strictly exogenous regressors xit can

9. The stationarity assumptions are sufficient for equation (2) to be a valid initial condition for consis-
tent estimation of the parameters of interest. Yet, equation (2) without the parameter restrictions
also remains valid under alternative assumptions, for example if λ ≥ 1 but the process was initial-
ized in the finite past; see Bhargava and Sargan (1983).

10. Supported maximization algorithms by xtdpdqml are Stata’s modified Newton-Raphson algorithm,
technique(nr), the Davidson-Fletcher-Powell algorithm, technique(dfp), the Broyden-Fletcher-
Goldfarb-Shanno algorithm, technique(bfgs), and combinations of them; see Gould et al. (2010)
for details. Further options for controlling the optimization procedure are available; see Section
3.2. The unrestricted and restricted log-likelihood functions and their analytical first-order and
second-order derivatives are documented for unbalanced panel data in the online Appendix.

11. By default, the xtdpdqml command uses GMM estimates for the coefficients λ, β, and γ. Starting
values for the initial-observations parameters are obtained from a separate OLS estimation, and
starting values for the variance parameters σ2

u, σ2
e , σ2

0 , and φ are calculated based on the estimated
residuals. Alternative starting values can be specified with the from() and initval() options. See
Section 3.2 and the online Appendix for further details.
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address this problem.12

Unrestricted initial observations

Similarly to the random-effects model, Hsiao et al. (2002) propose the following feasible
representation for the initial observations of the transformed model:

∆yi1 = b+

T∗∑
s=1

∆x′isπs + νi1, (5)

with T ∗ = min(Ti) as before. A useful parameterization for the variance of the initial-
observations projection error turns out to be V ar(νi1) = ωσ2

e , where ω can be treated as
a free parameter. The projection error further satisfies the properties Cov(νi1,∆ei2) =
−σ2

e and Cov(νi1,∆eit) = 0 for t = 3, 4, . . . , Ti.

Restricted initial observations

To motivate the representation (5), we can apply the same idea as in the random-effects
model. Assuming that the initial observations are generated by the same data gener-
ating process as the subsequent observations, we can iterate the process continuously
backwards to obtain

∆yi1 = λm∆yi,1−m +

m−1∑
s=0

λs∆x′i,1−sβ +

m−1∑
s=0

λs∆ei,1−s. (6)

Further assuming that the strictly exogenous regressors xit are trend or first-difference
stationary, Hsiao et al. (2002) project the unobserved terms, ∆xi,1−s for all s > 0, on the
current and observed realizations of the transformed regressors, ∆xis, s = 1, 2, . . . , T ∗.
Under the stationarity assumption, |λ| < 1 and m → ∞, the first term λm∆yi,1−m
vanishes. The resulting initial-observations representation is again equation (5) but with
the restriction b = 0, provided that in addition the exogenous regressors are stationary
in levels (or integrated of order one without drift).

Finally, consider a situation without time-varying regressors xit. With |λ| < 1 and
m→∞, equation (6) simplifies to

∆yi1 =

∞∑
s=0

λs∆ei,1−s.

A comparison with equation (5) reveals the restrictions b = 0 and ω = 2/(1 + λ).13

12. In contrast to the argumentation by Hsiao et al. (2002), the estimator is inconsistent if the regressors
are weakly exogenous (predetermined) due to the serial correlation of the transformed errors.

13. With xtdpdqml, the restrictions on b and ω can be imposed by the option stationary; see Section
3.2. However, the assumption |λ| < 1 is not enforced. Hsiao et al. (2002) also consider the
alternative assumption that the process has started from a finite period in the past with identical
expected changes in the initial endowments across all units i and without requiring that |λ| < 1.
In this case, the intercept b is still allowed to be nonzero and ω = 2(1 + λ2m−1)/(1 + λ) can be
treated as a free parameter as long as m is unknown and identical for all i.
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Quasi-maximum likelihood estimation

Hsiao et al. (2002) provide the log-likelihood function in the case of balanced panel data
for the system of equations formed by equations (4) for the time periods t ≥ 2 and (2) for
t = 1. It can again be maximized with an iterative procedure. As in the random-effects
model, appropriate starting values can be obtained from initial consistent estimates.14

3 The xtdpdqml command

The xtdpdqml command has standard Stata syntax known from other estimation com-
mands. The lagged dependent variable is added automatically to the set of regressors.15

Several options are available to specify the precise model and to control the optimization
process. The default is to estimate a fixed-effects model.

3.1 Syntax

Random-effects model

xtdpdqml depvar
[
indepvars

] [
if
] [

in
]
, re

[
projectionopt re stationary

noeffects noconstant vce(vcetype) mlparams display options from(init specs)

storeinit(name) initval(numlist) method(method) maximize options
]

where projectionopt re is

projection(varlist
[
, leads(#) omit

]
)

Fixed-effects model

xtdpdqml depvar
[
indepvars

] [
if
] [

in
] [

, fe projectionopt fe stationary

noconstant vce(vcetype) mlparams display options from(init specs)

storeinit(name) initval(numlist) inititer(#) concentration

method(method) maximize options
]

where projectionopt fe is

projection(varlist
[
, leads(#) nodifference omit

]
)

14. The starting values used by the xtdpdqml command are obtained in a similar way to the random-
effects model. Details as well as analytical expressions of the unrestricted and restricted log-
likelihood functions and their respective derivatives for the case of unbalanced panel data are
documented in the online Appendix.

15. xtdpdqml does not support higher-order autoregressive dynamics. Including distributed lags of the
exogenous regressors is straightforward by using Stata’s time-series lag operator L.
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3.2 Options16

projection(varlist
[
, leads(#) nodifference omit

]
) specifies the exogenous vari-

ables that are used in the initial-observations projection. leads(#) restricts the
number of leads. The default is leads(.) which means that all available leads
are used. In the fixed-effects model, first differences of varlist are used unless
nodifference is specified. By default, all indepvars are used unless varlist is ex-
cluded with omit. You may specify as many sets of projection variables as you
need.17

stationary assumes that the process of depvar started in the infinite past, the autore-
gressive coefficient is less than unity in absolute value (which is not enforced), and
all indepvars are stationary as well (in first differences if a fixed-effects model is esti-
mated). As a consequence, the initial-observations parameters are restricted to equal
their long-run values if there are no time-varying indepvars, and the constant term in
the initial-observations equation is restricted to zero (unless a random-effects model
with constant term is estimated). By default, none of the parameter restrictions are
imposed.18

noeffects restricts the variance of the unit-specific error component in the random-
effects model to be zero.

noconstant; see [R] estimation options.19

vce(vcetype) specifies the type of standard error reported; see [R] vce option.

vce(oim), the default, uses the observed information matrix (OIM).

vce(opg) uses the sum of the outer product of the gradient (OPG) vectors.

vce(robust) uses the sandwich estimator.

mlparams reports all quasi-maximum likelihood parameter estimates including the model
coefficients, the initial-observations coefficients, and the variance parameters. By de-
fault, only the model coefficients are reported.

display options: level(#), coeflegend, noheader, notable, first, neq(#), noci,
nopvalues, noomitted, vsquish, cformat(%fmt), pformat(%fmt), sformat(%fmt),
and nolstretch; see [R] estimation options.

from(init specs) specifies initial values for the coefficients; see [R] maximize. By de-

16. Further information related to the available options can be found in the online Appendix.
17. The option projection() specifies the right-hand side variables of equation (2) or (5), respectively,

as discussed in Section 2. The default specifications are those suggested by Bhargava and Sargan
(1983) or Hsiao et al. (2002).

18. In the random-effects model, the option stationary enforces restrictions on the parameters πf , σ2
0 ,

and φ. In the fixed-effects model, it enforces restrictions on the parameters b and ω. The respective
restrictions depend on the inclusion of time-varying exogenous variables in the model; see Section
2.

19. If the constant is suppressed by the option noconstant, an intercept is still included in the marginal
distribution of the initial observations unless the option stationary is specified as well.
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fault, initial values are taken from GMM estimation; see [XT] xtdpd.20

storeinit(name) stores the initial GMM estimation results; see [R] estimates store.

initval(numlist) specifies initial values for the variance parameters. In the fixed-effects
model, at most two numbers are allowed. The first entry refers to the variance of the
idiosyncratic error component, σ2

e , and the second entry to the initial-observations
variance relative to that of the idiosyncratic component, ω. By default, the first
parameter is computed from the residuals given the initial coefficient values, and the
last parameter from the first-order condition of the maximization problem given all
other parameters. In the random-effects model, at most four numbers are allowed.
The first entry refers to the variance of the unit-specific error component, σ2

u, the
second entry to the variance of the idiosyncratic error component, σ2

e , the third
entry to the initial-observations variance, σ2

0 , and the fourth entry to the covariance
of the initial observations with the unit-specific error component relative to the
initial-observations variance, φ. Missing values are allowed to request the default
initialization.21

inititer(#) specifies the number of iterations used to update the initial values be-
fore maximizing the log-likelihood function of the transformed fixed-effects model.
inititer(0), the default, uses the initial values for the coefficients and variance pa-
rameters as specified with the from() and initval() options. inititer(1) starts
the maximization with the minimum distance estimates given the estimate of the
initial-observations variance parameter from the previous step. From the second
iteration onwards, the analytical first-order condition for the initial-observations
variance parameter is evaluated at the parameter values from the previous iteration
step, and subsequently new minimum distance estimates are obtained for the other
parameters given the updated value of the initial-observations variance parameter.

concentration specifies that the concentrated log-likelihood function of the trans-
formed fixed-effects model with the initial-observations variance as single parameter
should be maximized. All other parameter estimates are obtained from the analyti-
cal first-order conditions given the optimal value of the initial-observations variance
parameter. By default, maximization is done over all parameters simultaneously.
A concentrated log-likelihood function is not available with the option stationary

when the model is a pure autoregressive process without additional indepvars.

method(method) specifies the evaluator method for the log-likelihood function, where
method is one of d0, d1, d2 (or the respective long form); see [R] ml. Default is
method(d2). This option is seldom used.

maximize options: technique(algorithm spec), iterate(#),
[
no
]
log, showstep,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and

20. Initial one-step GMM estimates are obtained with GMM-type instruments for the lagged dependent
variable, as proposed by Arellano and Bond (1991), and standard instruments for the strictly
exogenous regressors in the first-differenced equation. If applicable, standard instruments for time-
invariant regressors are added to the level equation in the random-effects model, as suggested by
Arellano and Bover (1995).

21. See the online Appendix for the formulae used to compute the default initial values.
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nonrtolerance; see [R] maximize. These options are seldom used. Supported
algorithm spec are nr, dfp, and bfgs (and combinations). iterate(0) can be used
to evaluate the log-likelihood function at the initial parameter values.

3.3 Saved results

Scalars
e(N) number of observations e(k eq) number of equations in e(b)
e(N g) number of groups e(ll) log likelihood
e(g min) smallest group size e(rank) rank of the Hessian matrix
e(g avg) average group size from the ML optimization
e(g max) largest group size e(ic) number of ML iterations
e(k aux) number of ancillary e(converged) 1 if converged, 0 otherwise

parameters in e(b) e(stationary) 1 if option stationary specified

Macros
e(cmd) xtdpdqml e(ml method) type of ml method
e(cmdline) command as typed e(vce) oim, opg, or robust
e(ivar) variable denoting groups e(vcetype) title used to label Std. Err.
e(tvar) variable denoting time e(properties) b V
e(predict) xtdpdqml p e(depvar) name of dependent variable
e(model) re or fe

Matrices
e(b) coefficient vector e(gradient) gradient vector
e(V) variance-covariance matrix of e(ilog) iteration log (up to 20

the estimators iterations)
e(V modelbased)model-based variance; not

always saved

Functions
e(sample) marks estimation sample

4 Postestimation commands

The xtdpdqml command supports many postestimation commands, including hausman,
lrtest, nlcom, predict, and test.22 Predictions are obtained similar to Stata’s xtreg
command. In addition, predict supports the computation of equation-level scores.
As a consequence, the suest command works after xtdpdqml, for example to combine
estimation results from the random-effects and the fixed-effects models to perform a
generalized Hausman test.23

4.1 Syntax for predict

predict
[
type

]
newvar

[
if
] [

in
] [

, xb|stdp|ue|xbu|u|e equation(eqno)
]

predict
[
type

]
{stub∗|newvar1 ...newvarq}

[
if
] [

in
]
, scores[

equation(eqno)
]

22. See help xtdpdqml postestimation for an extended list.
23. suest requires xtdpdqml to be used with option mlparams; see Section 5 for an example.
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4.2 Options for predict

xb, the default, calculates the linear prediction from the fitted model; see [R] pre-
dict. After xtdpdqml, fe mlparams it calculates the linear prediction from the
first-differenced model.

stdp calculates the standard error of the linear prediction; see [R] predict.

ue calculates the prediction of ui + eit, the combined residual; see [XT] xtreg postes-
timation. This option is not available after xtdpdqml, fe mlparams.

xbu calculates the linear prediction including the unit-specific error component; see
[XT] xtreg postestimation. This option is not available after xtdpdqml, fe

mlparams.

u calculates the prediction of ui, the estimated unit-specific error component; see
[XT] xtreg postestimation. This option is not available after xtdpdqml, fe

mlparams.

e calculates the prediction of eit; see [XT] xtreg postestimation. After xtdpdqml,

fe mlparams it calculates the prediction of ∆eit, the first-differenced residual.

scores calculates the equation-level score variables; see [R] predict. This is the deriva-
tive of the log-likelihood function with respect to the linear prediction. Ancillary pa-
rameters make up separate equations. This option is available only after xtdpdqml,
mlparams without option stationary.

equation(eqno) specifies the equation to which you are referring; see [R] predict.

5 Example

Let us now consider an example based on abdata.dta that contains unbalanced labor
demand data for 140 companies in the United Kingdom during the period 1976–1984:

. webuse abdata

It is the data set used by Arellano and Bond (1991) in their influential paper on
GMM estimation of dynamic panel data models. They estimate employment equations
to explain the logarithm of the number of employees (n). Strictly exogenous explanatory
variables are the real wage (w), the gross capital stock (k), and the industry output (ys).
For a concise presentation, I ignore the last variable which Arellano and Bond (1991)
find to be statistically insignificant in their analysis, and I also refrain from including
distributed lags of the exogenous regressors. After losing one observation due to the
lagged dependent variable we can include time dummies for the years from 1978 to 1984.
As a first step, let us estimate a dynamic fixed-effects model with the Hsiao et al. (2002)
QML estimator, the default of xtdpdqml:
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. xtdpdqml n w k yr1978-yr1984

Quasi-maximum likelihood estimation
Iteration 0: f(p) = 493.05804
Iteration 1: f(p) = 564.51413
Iteration 2: f(p) = 671.67656
Iteration 3: f(p) = 693.5917
Iteration 4: f(p) = 694.4851
Iteration 5: f(p) = 694.49228
Iteration 6: f(p) = 694.49228

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286

(Estimation in first differences) max = 8

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .7181159 .0349792 20.53 0.000 .6495579 .7866738

w -.4210157 .0512701 -8.21 0.000 -.5215034 -.3205281
k .2487324 .0255407 9.74 0.000 .1986736 .2987911

yr1978 -.0214489 .0149487 -1.43 0.151 -.0507478 .00785
yr1979 -.0319754 .0149372 -2.14 0.032 -.0612518 -.0026991
yr1980 -.0637126 .0148821 -4.28 0.000 -.092881 -.0345441
yr1981 -.1130657 .0150739 -7.50 0.000 -.14261 -.0835213
yr1982 -.0844508 .0160798 -5.25 0.000 -.1159666 -.052935
yr1983 -.0461928 .0197008 -2.34 0.019 -.0848057 -.0075798
yr1984 -.0115354 .0241271 -0.48 0.633 -.0588236 .0357528
_cons 1.74826 .1705756 10.25 0.000 1.413938 2.082582

The results are reported for the levels equation (1), even though the actual estimation
is performed on the first-differenced equation (4).24 For clarity of the main results,
the default output table does not include the additional coefficients from the initial-
observations projection (5) and the ancillary variance parameters. We can display the
whole set of parameter estimates with the option mlparams, suppressing for convenience
the iteration log with option nolog:

. xtdpdqml n w k yr1978-yr1984, mlparams nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286
max = 8

24. This is in line with the “difference GMM” estimation command xtabond. While the first-difference
transformation removes all time-invariant variables, xtdpdqml still reports a constant term for the
fixed-effects model in levels unless the option noconstant or mlparams is specified. It is obtained
with the two-stage approach proposed by Kripfganz and Schwarz (2015). The first-stage residuals

from the untransformed equation, yit − λ̂yi,t−1 − x′itβ̂, are regressed on a constant term, and the
standard errors are appropriately corrected to account for the first-stage estimation error.
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D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_model
n

LD. .7181159 .0349792 20.53 0.000 .6495579 .7866738

w
D1. -.4210157 .0512701 -8.21 0.000 -.5215034 -.3205281

k
D1. .2487324 .0255407 9.74 0.000 .1986736 .2987911

yr1978
D1. -.0214489 .0149487 -1.43 0.151 -.0507478 .00785

yr1979
D1. -.0319754 .0149372 -2.14 0.032 -.0612518 -.0026991

yr1980
D1. -.0637126 .0148821 -4.28 0.000 -.092881 -.0345441

yr1981
D1. -.1130657 .0150739 -7.50 0.000 -.14261 -.0835213

yr1982
D1. -.0844508 .0160798 -5.25 0.000 -.1159666 -.052935

yr1983
D1. -.0461928 .0197008 -2.34 0.019 -.0848057 -.0075798

yr1984
D1. -.0115354 .0241271 -0.48 0.633 -.0588236 .0357528

_initobs
w

D1. .1745629 .0835193 2.09 0.037 .010868 .3382578
FD. .4866594 .1160984 4.19 0.000 .2591107 .714208
F2D. .234992 .0921914 2.55 0.011 .0543001 .4156838
F3D. .180422 .0831649 2.17 0.030 .0174218 .3434222
F4D. .1587507 .0822884 1.93 0.054 -.0025316 .3200329
F5D. .1828358 .0801948 2.28 0.023 .025657 .3400147

k
D1. .2516903 .0514379 4.89 0.000 .1508739 .3525068
FD. -.0759983 .0442764 -1.72 0.086 -.1627784 .0107819
F2D. .0345647 .0402481 0.86 0.390 -.0443201 .1134496
F3D. .0426643 .0416536 1.02 0.306 -.0389754 .1243039
F4D. .0180357 .0354471 0.51 0.611 -.0514394 .0875108
F5D. .1373772 .0420249 3.27 0.001 .0550099 .2197445

yr1978
D1. .0472505 .0347851 1.36 0.174 -.0209269 .115428
FD. .0336196 .0205327 1.64 0.102 -.0066237 .073863

_cons .0034106 .0211468 0.16 0.872 -.0380363 .0448575
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/_sigma2e .0107403 .0005952 .0095737 .011907
/_omega 1.219196 .0690326 1.083894 1.354497

. estimates store fe

The first equation in the output table, labeled model, reports again the main co-
efficients of interest but now highlights the first-difference transformation. The second
equation, labeled initobs, contains the initial-observations coefficients. The last two
parameters in the table refer to the estimates of the variance parameters σ2

e and ω.
In balanced panels, all of the time dummies would have been omitted automatically
from the initobs equation because of perfect collinearity with the constant term. In
unbalanced panels, as in the present case, the initial period might differ across units
and some time dummies are retained to account for differences in the initialization.

We observe that the first three coefficients in the model equation are highly sta-
tistically significant and the same is true for the majority of the time dummies. The
coefficient of the lagged dependent variable is well within the stationarity region, |λ| < 1.
Under some additional assumptions, this could imply that the initial-observations in-
tercept vanishes. We indeed observe that the constant term in the initobs equation
is not statistically significant. To obtain more efficient estimates, we can remove this
intercept with the option stationary:25

. xtdpdqml n w k yr1978-yr1984, stationary mlparams nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286
max = 8

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_model
n

LD. .7175702 .0347616 20.64 0.000 .6494386 .7857017

w
D1. -.4219682 .0509203 -8.29 0.000 -.5217701 -.3221662

k
D1. .2493912 .0251776 9.91 0.000 .2000439 .2987384

yr1978
D1. -.0212959 .0149167 -1.43 0.153 -.0505321 .0079404

25. That is b = 0 in equation (5) under the assumptions |λ| < 1, an initialization in the infinite past,
and trend or first-difference stationarity of the exogenous regressors w and k. Due to the presence
of the latter, the variance parameter ω remains unrestricted. See the discussion about restricted
initial observations in Section 2.2.
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yr1979
D1. -.0317929 .0148925 -2.13 0.033 -.0609817 -.0026041

yr1980
D1. -.0633101 .0146697 -4.32 0.000 -.0920621 -.0345581

yr1981
D1. -.1125881 .0147782 -7.62 0.000 -.141553 -.0836233

yr1982
D1. -.0839164 .0157373 -5.33 0.000 -.1147609 -.053072

yr1983
D1. -.0455604 .0193118 -2.36 0.018 -.0834109 -.0077099

yr1984
D1. -.0107753 .0236674 -0.46 0.649 -.0571625 .0356119

_initobs
w

D1. .1734465 .0833066 2.08 0.037 .0101686 .3367244
FD. .4915282 .1122137 4.38 0.000 .2715934 .7114631
F2D. .2351962 .0922567 2.55 0.011 .0543763 .4160161
F3D. .1847706 .0787435 2.35 0.019 .0304362 .3391051
F4D. .1623383 .0793019 2.05 0.041 .0069094 .3177673
F5D. .1883984 .0724927 2.60 0.009 .0463153 .3304815

k
D1. .252992 .0508592 4.97 0.000 .1533099 .3526741
FD. -.0768106 .0440244 -1.74 0.081 -.1630968 .0094757
F2D. .0344116 .0402711 0.85 0.393 -.0445184 .1133416
F3D. .0410705 .0404996 1.01 0.311 -.0383073 .1204483
F4D. .0168102 .0346589 0.49 0.628 -.05112 .0847404
F5D. .13622 .0414449 3.29 0.001 .0549894 .2174506

yr1978
D1. .0515849 .0221159 2.33 0.020 .0082386 .0949312
FD. .035909 .0148529 2.42 0.016 .0067979 .0650202

/_sigma2e .0107368 .0005943 .009572 .0119015
/_omega 1.220071 .0688652 1.085097 1.355044

. estimates store fe_s

The remaining coefficients changed only slightly but the two time effects in the
initobs equation turned statistically significant at the 5% level. This does not invali-

date our assumptions. All it means is that we should control for different starting points
in the observed sample. We have stored the results from the previous two estimations
under the names fe and fe s, respectively, which we can now use to double check the
validity of the imposed restriction with a likelihood-ratio test:

. lrtest fe_s fe

Likelihood-ratio test LR chi2(1) = 0.03
(Assumption: fe_s nested in fe) Prob > chi2 = 0.8720
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The test does not reject the restriction on the initial-observations intercept such
that we can retain the stationarity assumption in the further analysis. If the time
effects in the initobs equation were jointly insignificant, we could also exclude them
by specifying the option projection(yr*, omit):26

. xtdpdqml n w k yr1978-yr1984, stationary projection(yr*, omit) mlparams nolog

(output omitted )

. lrtest fe

Likelihood-ratio test LR chi2(3) = 6.29
(Assumption: . nested in fe) Prob > chi2 = 0.0983

Based on the conservative significance level of 10%, this likelihood-ratio test suggests
not to exclude the time dummies jointly with the intercept from the initial-observations
equation. As an asymptotically equivalent test, the Wald test on joint insignificance of
the respective coefficients in the unrestricted model yields the same conclusion:

. estimates restore fe
(results fe are active now)

. test [_initobs]: D.yr1978 FD.yr1978 _cons

( 1) [_initobs]D.yr1978 = 0
( 2) [_initobs]FD.yr1978 = 0
( 3) [_initobs]_cons = 0

chi2( 3) = 6.36
Prob > chi2 = 0.0955

The option projection() can also be used to restrict the number of time leads of the
exogenous regressors in equation (5). By default, all current and future observations (up
to the shortest time length in unbalanced panels) are used as separate variables in the
initial-observations projection. With a large time dimension, the number of correspond-
ing coefficients becomes large as well. This problem is aggravated with an increasing
number of exogenous time-varying regressors. The following example illustrates how to
use only contemporaneous values of the first-differenced regressors:27

. xtdpdqml n w k yr1978-yr1984, stationary projection(w k, leads(0)) mlparams nolog

(output omitted )

. lrtest fe_s

Likelihood-ratio test LR chi2(10) = 42.46
(Assumption: . nested in fe_s) Prob > chi2 = 0.0000

In the present case, the number of parameters is reasonably small and the likelihood-
ratio test clearly rejects this restricted model version. Alternatively, we might want to
use all the available levels of the exogenous variables instead of their first differences

26. This excludes the time dummies only from the initobs but not the model equation.
27. An alternative might be to use the scores of a principal-components analysis applied on the projec-

tion variables in equation (5). Bontempi and Mammi (2015) suggest such a strategy to reduce the
instrument count for GMM estimators, and it is also implemented in the command xtabond2 by
Roodman (2009). To be used with xtdpdqml, these scores would have to be computed separately
beforehand, for example with the pca2 command by Bontempi and Mammi (2015), and could then
be supplied with the option projection(). The credit for this idea goes to the anonymous referee.
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in the initobs equation.28 To achieve this, technically we need to both drop the
first-differenced variables and to add the levels:

. xtdpdqml n w k yr1978-yr1984, stationary projection(w k, omit)
> projection(w k, nodifference) mlparams nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286
max = 8

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_model
n

LD. .7169499 .0348373 20.58 0.000 .64867 .7852298

w
D1. -.4231864 .0512345 -8.26 0.000 -.5236041 -.3227686

k
D1. .2501779 .0254106 9.85 0.000 .200374 .2999817

yr1978
D1. -.0211017 .0149431 -1.41 0.158 -.0503896 .0081861

yr1979
D1. -.0315607 .0149312 -2.11 0.035 -.0608253 -.0022961

yr1980
D1. -.0628003 .0148639 -4.23 0.000 -.0919331 -.0336676

yr1981
D1. -.1119848 .0150481 -7.44 0.000 -.1414784 -.0824911

yr1982
D1. -.0832384 .016064 -5.18 0.000 -.1147233 -.0517536

yr1983
D1. -.044769 .0196758 -2.28 0.023 -.083333 -.0062051

yr1984
D1. -.0098343 .0240858 -0.41 0.683 -.0570416 .0373729

_initobs
yr1978

D1. .056943 .0335663 1.70 0.090 -.0088458 .1227318
FD. .0387561 .0200159 1.94 0.053 -.0004743 .0779865

28. Phillips (2014) finds simulation evidence that using levels of the right-hand side variables in equation
(5) can lead to an improved performance over using first differences. This idea is similar to the
use of lagged levels as instruments for the first-differenced equation as proposed by Anderson and
Hsiao (1981, 1982) and Arellano and Bond (1991) in the context of instrumental variable or GMM
estimation.
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w
L1. -.1708625 .0853048 -2.00 0.045 -.3380569 -.0036681
--. -.3271109 .1564291 -2.09 0.037 -.6337063 -.0205155
F1. .2625743 .1459992 1.80 0.072 -.0235788 .5487274
F2. .0456837 .1010946 0.45 0.651 -.1524581 .2438255
F3. .0217997 .1003578 0.22 0.828 -.1748979 .2184973
F4. -.0289995 .0609608 -0.48 0.634 -.1484805 .0904816
F5. .1955317 .0799724 2.44 0.014 .0387887 .3522746

k
L1. -.2545108 .0526105 -4.84 0.000 -.3576254 -.1513962
--. .3322412 .0816502 4.07 0.000 .1722097 .4922727
F1. -.1117364 .064621 -1.73 0.084 -.2383912 .0149184
F2. -.0051431 .0526266 -0.10 0.922 -.1082892 .0980031
F3. .0245103 .058062 0.42 0.673 -.0892891 .1383096
F4. -.1203073 .0578168 -2.08 0.037 -.2336263 -.0069884
F5. .1350255 .0419887 3.22 0.001 .0527292 .2173219

/_sigma2e .0107329 .0005941 .0095685 .0118972
/_omega 1.220817 .0689984 1.085583 1.356051

The coefficients of main interest in the model equation hardly differ from the earlier
specification. Because first differencing is equivalent to imposing linear restrictions on
the coefficients of the levels, we have again two nested models such that we can use
another likelihood-ratio test to decide about the preferred specification:

. lrtest fe_s

Likelihood-ratio test LR chi2(2) = 0.05
(Assumption: fe_s nested in .) Prob > chi2 = 0.9776

Clearly, there is no gain from using the levels of the exogenous variables instead of
their first differences in the initobs equation.

All of the above QML estimates are based on “difference GMM” estimates as starting
values for the iterative maximization algorithm. We can recover these initial estimates
by specifying a name for them with the option storeinit():29

. xtdpdqml n w k yr1978-yr1984, stationary storeinit(gmm)

(output omitted )

. estimates replay gmm

Model gmm (initial estimates for xtdpdqml )

29. The initial GMM estimates provide starting values for the parameters λ and β in equation (4).
They are the same irrespective of the use of the options stationary or projection() that only
affect the parameters in equation (5). Starting values for the latter and for the variance param-
eters are obtained automatically by xtdpdqml based on the initial estimates of λ and β; see the
online Appendix for the respective formulae. The whole set of starting values can be displayed by
combining the options mlparams and iterate(0).
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Dynamic panel-data estimation Number of obs = 891
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 6
avg = 6.364286
max = 8

Number of instruments = 38 Wald chi2(10) = 2218.24
Prob > chi2 = 0.0000

One-step results

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .32667 .0768081 4.25 0.000 .1761289 .477211

w -.4763421 .0530543 -8.98 0.000 -.5803266 -.3723575
k .3271291 .0280945 11.64 0.000 .2720648 .3821934

yr1978 -.0285803 .0117587 -2.43 0.015 -.0516269 -.0055337
yr1979 -.0359986 .0117658 -3.06 0.002 -.0590592 -.0129381
yr1980 -.0637982 .0116966 -5.45 0.000 -.0867231 -.0408733
yr1981 -.118767 .0120325 -9.87 0.000 -.1423503 -.0951837
yr1982 -.1233297 .0159048 -7.75 0.000 -.1545025 -.0921569
yr1983 -.1054798 .0225806 -4.67 0.000 -.149737 -.0612227
yr1984 -.0878231 .0287666 -3.05 0.002 -.1442045 -.0314417
_cons 2.398147 .1740268 13.78 0.000 2.057061 2.739233

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w D.k D.yr1978 D.yr1979 D.yr1980 D.yr1981 D.yr1982

D.yr1983 D.yr1984
Instruments for level equation

Standard: _cons

The initial estimates for the QML estimator can be overwritten with the option
from(), for example if a “system GMM” estimator is justified:30

. xtdpdsys n w k yr1978-yr1984, twostep

(output omitted )

. matrix b = e(b)

. xtdpdqml n w k yr1978-yr1984, stationary from(b, skip)

(output omitted )

. estimates store fe_eq1

The QML estimator converges to the same results under both initializations. While
the estimator of Hsiao et al. (2002) is consistent both in a fixed-effects and in a random-
effects world, the Bhargava and Sargan (1983) estimator would be more efficient under
random effects but inconsistent in the presence of fixed effects. In the present case,
it turns out that the starting values for the variance parameters in the random-effects
model are infeasible:

30. Alternative starting values for the variance parameters σ2
e and ω could be supplied with the option

initval(); see Section 3.2. To be feasible, the starting value for ω needs to be larger than (T−1)/T ,
where T = max(Ti).
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. xtdpdqml n w k yr1978-yr1984, re

Quasi-maximum likelihood estimation
initial values not feasible

We can supply alternative starting values for the variance parameters with the option
initval():31

. xtdpdqml n w k yr1978-yr1984, re initval(.1 .2 .2 .3) nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 1031
Time variable: year Number of groups = 140

Random effects Obs per group: min = 7
avg = 7.364286
max = 9

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6827449 .0264105 25.85 0.000 .6309813 .7345085

w -.304499 .0422167 -7.21 0.000 -.3872423 -.2217557
k .2630639 .0214882 12.24 0.000 .2209478 .30518

yr1978 -.0215183 .0148306 -1.45 0.147 -.0505856 .0075491
yr1979 -.0326742 .0148093 -2.21 0.027 -.0616998 -.0036485
yr1980 -.0639498 .014763 -4.33 0.000 -.0928847 -.0350148
yr1981 -.1171753 .0148591 -7.89 0.000 -.1462986 -.0880519
yr1982 -.0953542 .0151577 -6.29 0.000 -.1250628 -.0656456
yr1983 -.0651054 .0180881 -3.60 0.000 -.1005575 -.0296533
yr1984 -.035986 .0226091 -1.59 0.111 -.080299 .0083271
_cons 1.43717 .1517998 9.47 0.000 1.139648 1.734692

. estimates store re_eq1

For the random-effects QML estimator, a specification test rejects the restriction
imposed by the stationarity assumptions on the dependent variable and the regressors:32

. xtdpdqml n w k yr1978-yr1984, re stationary initval(.1 .2 .2 .3)

(output omitted )

. lrtest re_eq1

Likelihood-ratio test LR chi2(1) = 4.05
(Assumption: . nested in re_eq1) Prob > chi2 = 0.0443

31. The option initval() specifies starting values for the variance parameters in the following order:
σ2
u, σ2

e , σ2
0 , and φ; see Section 3.2. The chosen values should satisfy the particular constraint

(σ2
u − φ2σ2

0)T > −σ2
e , where T = max(Ti), taking into account the restrictions on the variance

parameters if the option stationary is specified; see Section 2.1 and the online Appendix for details.
32. In contrast to the fixed-effects model, the restriction in the random-effects model is not on the

initial-observations intercept but on the covariance between the initial-observations error term and
the unit-specific effects. Moreover, in the fixed-effects model first-difference stationarity of the
regressors is required compared to stationarity of the levels in the random-effects model, besides
|λ| < 1 and an initialization of the process in the very past; see Section 2.
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Assuming that the model is correctly specified, we can employ the traditional Haus-
man (1978) test to discriminate between the fixed-effects and the random-effects model:33

. hausman fe_eq1 re_eq1, df(3)

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
fe_eq1 re_eq1 Difference S.E.

n
L1. .7175701 .6827449 .0348253 .0226022
w -.4219682 -.304499 -.1174692 .0284715
k .2493912 .2630639 -.0136728 .0131214

yr1978 -.0212959 -.0215183 .0002224 .0016011
yr1979 -.0317929 -.0326742 .0008813 .0015725
yr1980 -.0633101 -.0639498 .0006397 .
yr1981 -.1125881 -.1171753 .0045871 .
yr1982 -.0839164 -.0953542 .0114378 .0042314
yr1983 -.0455604 -.0651054 .019545 .006765
yr1984 -.0107753 -.035986 .0252107 .0069979

b = consistent under Ho and Ha; obtained from xtdpdqml
B = inconsistent under Ha, efficient under Ho; obtained from xtdpdqml

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 240.26

Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)

The null hypothesis is strongly rejected in favor of the fixed-effects model. Notice
that the hausman command was executed with the option df(3). The reason is that we
cannot include the time effects in the comparison due to a singularity in the asymptotic
covariance matrix of the difference between the fixed-effects and the random-effects
estimates. The degrees of freedom therefore equal the number of time-varying regressors
excluding the time dummies.34

An underlying assumption of this Hausman test is that one of the estimators is
efficient. However, this would no longer be the case if the model is misspecified. For
example, the assumed error covariance structure might be invalid. Exemplarily for the
fixed-effects estimator, we observe that the standard errors indeed increase sizeably if we
use a variance-covariance estimator that is robust to cross-sectional heteroskedasticity
with the vce(robust) option:35

33. The hausman command cannot compare the fixed-effects coefficients reported for the first-differenced
equation with the random-effects coefficients for the levels equation. Therefore, we had to estimate
the models without the mlparams option such that all coefficients are reported for the levels equation.
The remaining parameters are not needed for this test.

34. See Wooldridge (2010, Chapter 10.7.3) for a discussion of this problem.
35. vce(robust) causes the sandwich formula to be used for the variance-covariance estimator, taking

into account that the observations are not independent across time. Robust standard errors are
also calculated for the initial GMM estimates if they are stored with the option storeinit().
Neither the initial values nor the final coefficient estimates are affected by the type of the standard
errors. Hayakawa and Pesaran (2015) demonstrate that the QML estimator remains consistent
under cross-sectional heteroskedasticity. However, it becomes inconsistent if the untransformed
idiosyncratic error component is serially correlated or heteroskedastic across time.
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. xtdpdqml n w k yr1978-yr1984, stationary vce(robust) nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286

(Estimation in first differences) max = 8
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .7175702 .0777459 9.23 0.000 .5651911 .8699493

w -.4219682 .1284262 -3.29 0.001 -.6736789 -.1702574
k .2493911 .0459749 5.42 0.000 .159282 .3395002

yr1978 -.0212959 .0140127 -1.52 0.129 -.0487603 .0061685
yr1979 -.0317929 .0163543 -1.94 0.052 -.0638468 .000261
yr1980 -.0633101 .0172692 -3.67 0.000 -.0971571 -.0294631
yr1981 -.1125881 .0196329 -5.73 0.000 -.151068 -.0741083
yr1982 -.0839164 .0174937 -4.80 0.000 -.1182034 -.0496294
yr1983 -.0455604 .0201398 -2.26 0.024 -.0850337 -.0060871
yr1984 -.0107753 .0265246 -0.41 0.685 -.0627626 .041212
_cons 1.751776 .4532361 3.87 0.000 .8634493 2.640102

If there is cross-sectional heteroskedasticity, the results from the traditional Haus-
man test are no longer valid because the random-effects QML estimator is not efficient
any more, and the hausman command refuses to accept estimates with a robust variance-
covariance estimator. As a feasible alternative, we can make use of Stata’s suest com-
mand to perform a generalized Hausman test. suest can combine the fixed-effects and
the random-effects QML estimates and it calculates a simultaneous variance-covariance
estimator. For the latter, suest needs the non-robust variance-covariance estimate for
the whole set of parameters as input. Thus, we are requested to execute xtdpdqml with-
out the option vce(robust) but with option mlparams.36 Moreover, we should specify
the option vce(cluster id) when calling suest to account for the panel structure:

. xtdpdqml n w k yr1978-yr1984, re initval(.1 .2 .2 .3) mlparams

(output omitted )

. estimates store re

. suest fe re, vce(cluster id)

(output omitted )

. test ([fe__model]LD.n = [re__model]L.n) ([fe__model]D.w = [re__model]w)
> ([fe__model]D.k = [re__model]k)

( 1) [fe__model]LD.n - [re__model]L.n = 0
( 2) [fe__model]D.w - [re__model]w = 0
( 3) [fe__model]D.k - [re__model]k = 0

chi2( 3) = 5.97
Prob > chi2 = 0.1132

36. suest also requires the postestimation command predict to produce equation-level scores. After
xtdpdqml this is only possible with the option mlparams but not with the option stationary.
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The suest output is omitted due to its length. It simultaneously reports the results
for both models as separate equations. Further above, we have seen the output generated
by xtdpdqml with the mlparams option. It separates the parameters into different
equations, the first two named model and initobs for our model parameters of main
interest and the initial-observations coefficients, respectively. suest builds its equation
names as combinations of the estimates’ name and xtdpdqml’s equation names, resulting
in fe model, fe initobs, re model, re initobs, and similarly for the variance
parameters that make up separate equations. This helps us to understand the syntax
of the test command after suest. To test for systematic differences between the fixed-
effects and the random-effects model, we need to compare the coefficients of the lagged
dependent variable and the two exogenous regressors w and k from the two models.37

As we can see, the Wald test does not reject the null hypothesis at the conventional
significance levels which is the opposite result to the traditional Hausman test above.
However, we should not be too confident about this result because the p-value is still
relatively small. With the fixed-effects QML estimator we remain on the safe side.

Finally, after having estimated our model, we might be interested in the long-run
effects of the exogenous regressors. While the coefficients β are short-run effects con-
ditional on the initial level of employment, L.n, corresponding long-run effects can be
computed as β/(1 − λ). In Stata, we can obtain such estimates with the command
nlcom:

. xtdpdqml n w k yr1978-yr1984, stationary vce(robust)

(output omitted )

. nlcom (_b[w] / (1 - _b[L.n])) (_b[k] / (1 - _b[L.n]))

_nl_1: _b[w] / (1 - _b[L.n])
_nl_2: _b[k] / (1 - _b[L.n])

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -1.494064 .4484327 -3.33 0.001 -2.372976 -.6151519
_nl_2 .8830199 .1834742 4.81 0.000 .523417 1.242623

6 Conclusion

In this article, I have presented the new estimation command xtdpdqml that extends the
available toolkit for linear dynamic panel model estimation in Stata. It implements QML
estimators for random-effects and fixed-effects models that account for the endogeneity
of the initial observations to avoid biased estimates when the time dimension is short.
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