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Abstract
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1 Introduction

The penny auction was popularized by firms like Swoopo and is still used by online auction com-

panies, as well as by traditional retailers across the world.1 In a penny auction, bidding usually

starts at zero and bidders must pay a bid cost to increase the sale price by a small amount –

typically one penny, hence the name of the auction.2 A key attraction of this type of auction is the

possibility of paying substantially less than the retail price for an object. However, this does not

necessarily mean the auctioneer has made a loss. For instance, if each bid in a penny auction costs

$1 to place, an iPad with a retail price of $500 which is sold for $75 in a penny auction yields a

revenue of $7575 to the auctioneer ($7500 from bid costs plus $75 from the actual sale price) and

a substantial profit margin. Indeed, the recent interest in penny auctions has been driven both

by its popularity as an e-commerce mechanism, as well as by the empirically observed high profit

margins —a clear violation of auction theory (expected revenue should equal the good’s value) and

yet another real-world example of overbidding in auctions.

The standard game theoretical analysis assumes players arrive at a Nash equilibrium through

an introspective process, in which they form beliefs about their opponents’ actions, and beliefs

about their opponents’beliefs about their own actions, and so on. While real people may be able

to engage in this type of mental process in simple games with few players and with a unique Nash

equilibrium, it is less reasonable to expect this to be true in more complex games with many players

and multiple equilibria, as is the case of penny auctions. Instead, as already suggested in the penny

auction literature, which we review below, it may be that repeated experience (over time, within

a given auction or in subsequent auctions) in this type of game allows players to learn what the

optimal strategy is (or at least allows players to identify and use payoff-enhancing strategies).

1Swoopo filed for bankruptcy in 2011.
2Whilst penny auctions bear some resemblance to the war-of-attrition game, a type of all-pay auction, they are

not a special case of any type of all-pay auctions (Hinnosaar, 2014).
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However, a dimension which has thus far been ignored is the potential contribution that partic-

ipation in simultaneous auctions has in this learning process. Indeed, ‘experience’may be obtained

‘vertically’, over time through bid submission or auction participation, but also ‘horizontally’, within

a time window but through bid submission or simultaneous participation in more than one auction.

Theoretically (Mertens, 1992) one would expect such parallel auctions to be independent and thus

not affect bidding behavior; in reality it may actually speed up the bidders’learning process. To

the best of our knowledge, this is a little-explored subject in the economics literature.3 In penny

auctions, bidders are learning a complex object. We conjecture that by virtue of participating

in concurrent auctions with different types of bidders, or even by bidding in auctions at different

stages, subjects can learn (i) how to play a particular optimal strategy, or learn that (ii) there are

potentially different optimal strategies faster than if they only take part in one auction.

There is a small (experimental) literature on behavioral spillovers which is somewhat related to

these learning effects. Cason et al. (2012) consider a behavioral spillover to exist when observed

behavior in a game is different depending on whether that game is played together with other games

or in isolation and acknowledge that learning effects can be a source of such spillovers.4

With the objective of analyzing such learning effects, we study data from 403 penny auctions

conducted by a telecommunications operator between June and December 2011.5 Our database of-

3 In neuroscience, Sigman et al. (2008) show the coexistence of serial and parallel brain processes during the
performance of a cognitive task. Gombrich (2011) puts forward a tentative definition of series learning (equivalent to
our ‘vertical’ learning) as opposed to parallel learning (equivalent to our ‘horizontal’ learning), borrowing from the
working of electric circuits: through series learning, one learns one thing after another to arrive at a total amount of
knowledge, whilst through parallel learning one learns several things at the same time to arrive at the same amount
of total knowledge. In the machine learning (and artificial neural networks) literature, Caruana (1995) proposes
and tests several mechanisms through which neural nets learning through multiple related tasks can outperform
sequential learning, as it enables a more generalizable representation of a particular feature. Wason (1960) pioneered
the paradigm of rule discovery, which studies how humans develop hypotheses from observing data from unknown
data generation processes. This is also illustrated well by Baxter (1995), who points out that engaging in multiple
tasks enables learning more general representations of concepts.

4 In particular, Cason et al. (2012) look at (two different) coordination games and find strong spillovers when the
games are played sequentially, but not when they are played simultaneously. In the same vein, Falk et al. (2013)
analyze two identical and completely independent (coordination or public good) games, played simultaneously, and
also find no evidence of behavioral spillovers. By contrast, Bednar et al. (2012) do find spillovers when (two different)
games are played simultaneously, but these games are different from Cason et al. (2012).

5The operator requested its identity not to be disclosed.
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fers distinct advantages to study the role of learning through participation in simultaneous auctions.

The telecommunications operator auctions off essentially five types of items: mobile phones, tablet

PCs, laptops, mobile services (e.g., games, etc.) and USB pens for mobile internet access. Whilst

certainly differentiated within each type, these items belong to a relatively homogeneous category

of products: devices and/or services which may enhance users’benefits from their current mobile

subscriptions. In that sense, these auctions may attract a relatively homogeneous set of potential

bidders and this appears to be adequate to study learning effects. By comparison, Swoopo or other

major penny auction websites sell a wider variety of items to certainly more heterogeneous bidders.

We find that the telecommunications operator has an average profit margin of 219%: it obtains

an average revenue of €1,224 per auctioned item, whose average retail price is €370. There is

significant dispersion in profit margins (including large negative profit margins), and its distribution

exhibits positive skewness and is, thus, right-tailed. Our detailed bid-level dataset allows us to

investigate drivers of bidding behavior. First, we analyze the decision to participate in a penny

auction and find that the probability of participation by an individual bidder is decreasing with the

number of simultaneous auctions and bidder experience – evidence of both vertical and horizontal

learning effects. Second, we investigate what determines the likelihood of an active bidder dropping

out of the auction. We find evidence of Augenblick’s (2016) sunk cost fallacy in our data: the

probability of an individual bidder leaving an auction decreases with the number of bids she has

already placed in that auction. However, experience contributes significantly towards alleviating it

(as in Augenblick, 2016), as does – to a more noticeable extent – the simultaneous participation

in more than one penny auction, suggesting that horizontal learning may be more effective than

vertical learning. This empirical evidence appears to support the existence of behavioral spillovers,

both when auctions are conducted sequentially, as well as simultaneously, and the latter is in
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contrast with the (experimental) evidence of Falk et al. (2013).6

The remainder of the paper is organized as follows. Section 2 contextualizes our paper in

the literature. Section 3 describes the data and Section 4 contains the main analysis. Section 5

concludes. Appendix A contains additional material.

2 Literature review

The literature on penny auctions is relatively recent. Augenblick (2016) proposes a tractable penny

auction model, for which he obtains a Markov perfect equilibrium. He uses auction-level and bid-

level data from Swoopo to show that the sunk cost fallacy (as bidders spend more money on bids,

they become more reluctant to leave the auction although the bidding costs are sunk) explains the

persistence of auction participation above and beyond the prediction of the normative model. In

turn this provides a rationale for the observed high and positive (51%) average profit margins in

Swoopo auctions. Bidders apparently learn how to use more effective bidding strategies (including

aggressive bidding strategies), but such learning takes place at a very slow rate and requires a large

number of submitted bids (and consequently high losses).

Hinnosaar (2014) provides an alternative analysis of the penny auction game and shows that

there are multiple symmetric, stationary, subgame-perfect Nash equilibria. Platt et al. (2013) an-

alyze a penny auction model which explicitly allows bidders to have risk-loving preferences (rather

than the traditional assumption of risk neutrality), in an attempt to explain excess profits. Using

data from Swoopo, they find that bidding patterns are consistent with some degree of risk lov-

ing, thus rationalizing the observed high average profit margins. However, they do not analyze

individual-level behavior because they rely solely on auction-level data.

Byers et al. (2010) also try to explain excess profits by considering informational asymmetries,

6Particular care must be taken in interpreting (and comparing) this result because, unlike the experimental setup
of Falk et al. (2013), the environment which characterizes simultaneous penny auctions does not control for all
possible differences between the auctions.
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whereby some bidders are better informed regarding the number of active bidders at any given

point in time.7 Unlike Augenblick (2016), Byers et al. (2010) find that whilst aggressive bidding

strategies are associated with higher winning probabilities, they also lead to lower bidder surpluses.

Wang and Xu (2012) use data from BigDeal.com to study the role of bidder sophistication. In

particular, they find that auctioneers benefit from penny auctions only if participating bidders are

inexperienced. Experienced and strategically sophisticated bidders, who over time learn how to

time their bids so as to maximize their surplus, earn a small and positive surplus.

Goodman (2012) also uses data from Swoopo and explores effective strategies (bidding fre-

quently, bidding immediately after the previous bid and using automated bidding services) that

bidders use to increase their surplus, typically associated with aggressive and reputation-building

behavior. Experimentally, Caldara (2012) finds that overbidding decreases over time, risk averse

individuals submit fewer bids than risk-neutral individuals, strategic sophistication is an important

driver of outcomes (confirming Wang and Xu’s, 2012, results), signaling strategies are used, but

with little success, and the learning process also involves learning not to bid in further auctions.

3 Data description

The data used in this paper consists of penny auctions conducted by a telecommunications operator

roughly on a monthly basis for a period of five working days which we define as ‘auction week’.8

On average, there are approximately 10 penny auctions in each day of the auction week. Auction

weeks were advertised in advance on the operator’s website as well as through targeted emails,

blogs, social networks and other websites. Bidding was restricted to that operator’s subscribers

and could be done through SMS or through the operator’s auction website.

7Byers et al. (2010) also exploit the role of asymmetric valuations of the good for sale, as well as asymmetries in
bidding costs.

8As we will later see, the only exception to this rule occurred in December 2011, where the auction lasted for 10
working days (over a two-week period).
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The operator’s website displayed all of the day’s penny auctions, as well as each auction’s

starting time. Typically, each auction started 30 minutes after the previous one began. Mobile

phones were the most commonly auctioned item, but laptops, tablet PCs, USB pens for broadband

wireless access and services (e.g., one year of free SMS, 6 months of free online gaming, etc.) were

also auctioned. For each auction, a detailed description of the item was provided, including its

main characteristics, as well as its retail price.

All auctions shared the following features: auctions were conducted in euros (€), the starting

price was €0 and the auction finishing time was set for one hour after its start; each bidder placed

bids, which raised the current high bid by a fixed €0.01 increment; each bid placed had a non-

refundable bid cost of €0.50 (charged directly to the bidder’s phone bill). All bids placed within

the first hour of the auction did not change its finishing time; however, all bids placed after the

initial one hour period extended the auction finishing time by one minute. The winning bidder

was whoever held the current high bid once the auction reached its finishing time. The winning

bidder’s total auction cost for the good was the number of bids placed times the bid cost plus the

final auction price. All other bidders forfeited their bidding costs.

After each auction finished, the operator posted on the website the auction duration, final price,

the difference between final price and retail price, and the bid, time of bid and identity of the bidder

for the last five bids (including the auction winner). This information was publicly available until

the start of the following auction week (roughly for a one-month period) and we manually collected

it for 414 auctions pertaining to seven auction weeks between June and December 2011.

In addition to this, we contacted the operator in order to obtain more detailed bid-level data,

which includes, for each auction, the time of the bid and the (numeric) identity of the bidder. In

total, we received bid level information for all 414 auctions in the auction database, totaling 956,742

bids placed by 38,733 unique bidders. A closer inspection of the two databases revealed a ‘coverage’
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problem, which has led us to exclude 11 auctions from the analysis and focus on 403 auctions, for

which we have 940,968 bids placed by 38,000 unique bidders in the bid level database.9

Table 6 (Appendix A) presents the descriptive statistics of the auction-level database. On

average, the final auction price was €24.01 and bid costs yielded €1,200.50 in revenue, which

means that, using as a reference the average retail price of €369.97, each auction yielded a net

profit of €854.77 - a profit margin of 219%.10 Figure 1 (Appendix A) shows that some auctions

present negative (and large, in absolute value) profit margins, but others yield extremely high profit

margins. There is also some variability across auction weeks and between item types. On average,

there are 6.88 auctions active at the same time (simultaneous auctions) and, in each auction, 2,401

bids were placed by 439 unique bidders. Table 7 (Appendix A) presents the descriptive statistics

of the bid-level database, which contains 176,908 unique bidder-auction combinations.

9Note that the auction-level database, by registering the final bid, allows us to infer the total number of bids
placed in each auction because each bid increment is fixed and equal to €0.01. Comparing the total number of bids in
each auction both in the auction-level as well as in the bid-level database, we noted that the latter typically contained
fewer bids than suggested by the former. This problem was particularly acute for 11 auctions in the original sample.
In 10 out of these 11 auctions, the coverage was below 30%. We suspect that this may have been due to an error
in the bid-registering software (the operator could not explain this), as all these 11 excluded auctions occurred on a
given day (14th December 2011) and the missing bid-level observations related to bids placed after 7pm. The average
coverage of these 403 auctions was 97.2%. The coverage problem was widespread and affected 76% of these 403
auctions —that is, the two databases only coincided fully for 24% of all auctions. But in most cases, the differences
were relatively small – basically a few missing bids from the bid level database for each auction (the median is 8
missing bids per auction), which could be explained by small errors in the operator’s registering procedure: 44.5%
of auctions were missing less than 1% of bids; 57% were missing less than 2%; and 66.5% were missing less than 5%.
Therefore, only 9.5% of auctions had missing bids in excess of 5%.
10The average profit margin in our dataset (219%) is clearly higher than in Augenblick (2016) (51%). This could

be associated with the type of good most frequently auctioned in our dataset: mobile phones account for 85% of
total auctions. Augenblick (2016), Platt et al. (2013), Byers et al. (2010) and Goodman (2012) all focus on Swoopo
auctions —typically auctions of consumer goods, such as home electronics, computer accessories, videogames-related
items and other consumer goods. Platt et al. (2013, Figure 2) present evidence of significantly higher deviations
(reported in standard deviation units) between observed and theoretical average revenue for videogames-related items:
the distribution is clearly right-tailed, with 30% (approx. 50%) of items having average revenue greater than one
(one half) standard deviation above the model’s prediction. Byers et al. (2010, Figure 3) present evidence of an
average profit margin of 86%, with the item that is more frequently auctioned obtaining an average profit margin of
365% (Wii Play with Wii Remote). Goodman (2012, Table 3) provides a breakdown of average profit margins by bid
increment and by good value: although the average (overall) profit margin is 67%, for some bid increments (2 cents
and 6 cents) it is higher than that —126% and 132% respectively —, and, for those same increments and for goods
whose value is in the $25-$50 range, it is even higher (477% and 240% respectively). Therefore, although average
profit margins in our dataset’s penny auctions are higher than in Swoopo auctions, there are several instances in
which the latter yield comparable or even higher profit margins.
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4 Analysis and results

4.1 Auction level analysis

Using data from the auction-level database, we wish to understand the main drivers of final prices

in penny auctions. The auction price is, in effect, a duration-type variable: higher auction prices

indicate, according to the bidding rules, longer durations and, because we have normalized auction

prices by dividing them by the retail price of the auctioned item (as suggested by Augenblick, 2016),

we can compare the durations of auctions of different items.11 On this basis, we have estimated a

model assuming the Gompertz and the Weibull distributions for the hazard rates, as well as Cox’s

partial likelihood model (which places no restrictions on the shape of the baseline hazard rate).12 ,13

As potential explanatory variables we have included: (i) the average number of simultaneous

auctions; (ii) the number of normalized (divided by the retail price) first hour bids;14 (iii) the

auction week in question; (iv) the type and (v) brand of the auctioned item; (vi) the number

of unique bidders; and (vii) a Herfindahl-Hirschman concentration index of unique bidders’bids.

Table 9 displays the results of our estimations.

First, note that all models produce very similar estimates, which is somewhat reassuring. Sec-

ond, the exponentiated (significant) coeffi cient of the average number of simultaneous auctions

11 In order to establish a parallel with survival analysis, we refer to the normalized auction prices as ‘normalized
time’. Figure 2 (in Appendix A) presents the estimated (smoothed) hazard rate using a kernel with a bandwidth of
2, where we can see that the hazard rate appears to be (almost always) increasing with normalized time; in Figure
2, we have also plotted the logarithm of the cumulative hazard against that of normalized time. The fact that we
obtain a relatively straight line suggests that the underlying hazard rate in the data could be coming from a Weibull
distribution.
12We have estimated the hazard rates for each parametric distribution and for each model and obtained their

respective Akaike’s Information Criterion (AIC). This method takes into account a model’s log-likelihood, but also
the number of covariates and the number of model-specific parameters (see Akaike, 1974, or Cleves et al., 2010, p.
281, on its application for survival analysis). We have thus identified the two parametric distributions with lower
AIC scores in Table 8 (Appendix A). The Weibull and the Gompertz distributions emerge as sensible candidates.
13As Jenkins (2005) notes, models differ not only in terms of the shape assumed for the hazard rate but also in terms

of their specification and interpretation. They can be divided into proportional hazard (PH) models or accelerated
failure time (AFT) models. Of the estimated models, Cox and Gompertz are PH, whilst the Weibull model can be
written in both specifications. In PH models, (exponentiated) coeffi cients are hazard ratios: a coeffi cient of 1.05 for
an explanatory variable indicates that a unit increase in that explanatory variable increases the baseline hazard rate
by a factor of 1.05.
14This variable measures the extent to which bidders may be using signaling strategies by bidding in the first hour

(a weakly dominated strategy), as documented by Goodman (2012).
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indicates that, all else constant, an additional simultaneous auction increases the baseline hazard

rate by 21-27%. Third, the number of normalized first hour bids significantly decreases the hazard

rate (by 81-88%), i.e., first hour bidding activity is an important explanatory factor of auction

duration. And, finally, all else constant, an additional unique bidder decreases the hazard rate by

0.5%. Relating these results to our main research question, we find that, at the auction level:

Observation 1: Auction duration varies inversely with the number of simultaneous auctions.

This could be interpreted as a supply-induced effect (more simultaneous auctions could induce

a fixed number of constrained bidders to bid less) or as a first hint for the existence of (aggregate)

horizontal learning effects (if the supply-induced effect is small).

4.2 Bid level analysis

4.2.1 Decision to participate in an auction

We have used the bid-level database to construct a balanced panel with 15,314,000 observations,

which includes all unique bidders (38,000) in all auctions (403). In that panel, the dummy variable

‘participate’takes on the value of 1 if bidder i participated in auction j and 0 otherwise.

Our purpose is to look deeper into the motivation of each bidder to participate in an auction.

In addition to the average number of simultaneous auctions, the auction week in question, the type

and brand of the auctioned item, we also consider three additional variables: the retail price, the

number of bids previously submitted by each bidder (in other auctions) and the number of auctions

previously won by each bidder. The number of previously submitted bids is of particular interest

for two reasons: on the one hand, because it entails a cost, bidders who have already submitted

many bids prior to auction j may be (relatively more) financially constrained and hence decide not

to participate in that auction; on the other hand, it is clearly a proxy for bidder experience (as

in Augenblick, 2016, or Goodman, 2012). Moreover, we have adapted the variables related to the
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dependent variable: participate

dummies for auction w eek

dummies for type of good

dummies for brand of good

retail price 0.00002 (0) ***

average number of simultaneous auctions ­0.00167 (0.00001) ***

HHI of unique bidders' bids until participation decision 0.000002 (0) ***

number of unique bidders until participation decision ­0.00002 (0) ***

number of previously submitted bids ­0.00002 (0) ***

number of previous auction w ins 0.00785 (0.00019) ***

N

Log­likelihood

LR (chi­square) / Wald (chi­square)

(***) Significant at the 1% level; (**) Signif icant at the 5% level;

(*) Signif icant at the 10% level

15,314,000

­837,004

169,935

yes

yes

yes

RE probit

Coef. (Std. error)

Table 1: Random-effects probit results on decision to participate

number of unique bidders and the HHI of unique bidders’bids to this setting.15

Table 1 contains the results of a random-effects probit specification, with ‘participate’as the

dependent variable. The results are presented as marginal effects evaluated at the mean. Almost

all variables are statistically significant and the coeffi cients’signs appear plausible.16 For instance,

a higher retail price increases the probability of bidder participation, whilst a higher number of

simultaneous auctions decreases it. Interestingly, the probability of a bidder participating in an

auction is decreasing with the number of previously submitted bids. This suggests that as bidders

become more experienced over time, they learn to participate less often in penny auctions.17

Observation 2: More experienced bidders are less likely to enter in new auctions.
15Given that the participation decision occurs at a given moment in time (when the bidder submits her first bid

in a given auction), we have computed the number of unique bidders and the HHI of unique bidders’bids in that
auction until that point in time - effectively measuring potential ‘perceived’competition up to the point where the
bidder decides to participate. If the bidder decides not to participate, we use the number of unique bidders and HHI
of unique bidders’bids at the end of the auction.
16The marginal effects appear to be very small, but one must bear in mind that 98.8% of the observations for the

dependent variable (‘participate’) take on the value of 0, that is, we only observe 176,908 bidder-auction participations
(see Table 7) in a total of 15,314,000 possible combinations. Therefore, although the marginal effects (evaluated at
the mean) are small, they entail rather more noticeable percentage increases in the participation probability.
17 In addition, the number of auctions previously won has a positive coeffi cient, which implies that previous auction

wins have a positive effect on the probability of participating in subsequent auctions. Finally, perceived competition
(measured through the number of unique bidders until the participation decision) has a negative effect on the partici-
pation probability. However, unique bidders’bid concentration has the opposite effect: that is, a higher concentration
of bids (which could be interpreted as a ‘seriousness of competition’indicator) actually increases the probability of
participation.
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Observation 3: The higher is the number of simultaneous auctions, the lower is the probability of

entering an auction.

4.2.2 Individual pseudo-hazard rates

We have also adopted Augenblick’s (2016) methodology to estimate individual-level pseudo hazard

rates, which are defined as the probability that an individual exits an auction given the number

of bids she has already submitted up to that point. Therefore, we have created a dummy variable

‘leave’which is equal to 1 if a bidder’s bid in an auction is her last bid in that auction and 0

otherwise. We have then estimated a random-effects probit model for two different specifications.

Under a first specification, we have included as explanatory variables: (i) the average number

of simultaneous auctions; (ii) a first hour bid dummy variable; (iii) the number of simultaneous

auctions in which the bidder is actively participating; (iv) the number of unique bidders until the

moment a bid is submitted; (v) the Herfindahl-Hirschman concentration index of unique bidders’

bids until the moment a bid is submitted; (vi) the number of bids submitted by the bidder in

that auction; (vii) the number of bids submitted by the bidder in previous auctions (a proxy for

experience);18 (viii) the number of auctions previously won by the bidder; (ix) the bid amount; (x)

the auction week dummies; (xi) the type and (xii) brand of the auctioned item.

Under a second specification, we have followed Augenblick (2016) by adding an interaction

variable between experience (number of previously submitted bids) and the number of bids placed

in the auction. We have also interacted simultaneous auction participation with the number of

bids placed in the auction. Finally, we have also interacted the first hour dummy variable with

experience and the number of simultaneous auctions in which the bidder is participating. Table 2

presents the results as marginal effects evaluated at the mean.

First, the coeffi cient on the average number of simultaneous auctions is positive and statistically

18Rather than using the absolute number of bids (in the auction and in previous auctions), we have chosen to use
their logs because of convergence problems in model estimation.
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dependent variable: leave

dummies for auction w eek

dummies for type of good

dummies for brand of good

average number of simultaneous auctions 0.02955 (0.00055) *** 0.02958 (0.00055) ***

f irst hour bid (dummy) ­0.00657 (0.00366) * ­0.01419 (0.00589) **

f irst hour bid (dummy) x ln(number of previously submitted bids) ­0.00392 (0.00262)

first hour bid (dummy) x ln(number of simultaneous auctions in w hich bidder is participating) 0.01911 (0.00584) ***

number of unique bidders until bid submitted 0.00011 (0.00001) *** 0.00011 (0.00001) ***

HHI of unique bidders' bids until bid is submitted 0.00000 (0) 0.00000 (0)

ln(number of bids submitted in auction) ­0.11852 (0.00071) *** ­0.17833 (0.00184) ***

ln(number of previously submitted bids) 0.05555 (0.00099) *** 0.04739 (0.00102) ***

ln(number of simultaneous auctions in w hich bidder is participating) 0.05263 (0.00132) *** 0.04533 (0.00178) ***

ln(number of previously submitted bids) x ln(number of bids submitted in auction) 0.01428 (0.00043) ***

ln(number of simultaneous auctions in w hich bidder is participating) x ln(number of bids submitted in auction) 0.00597 (0.00089) ***

number of previous auction w ins 0.01592 (0.00459) *** ­0.00215 (0.00461)

bid amount 0.00011 (0.00011) ­0.00001 (0.00011)

N

Log­likelihood

LR (chi­square) / Wald (chi­square)

(***) Signif icant at the 1% level; (**) Signif icant at the 5% level; (*) Signif icant at the 10% level

RE probit RE probit

Coef. (Std. error) Coef. (Std. error)

yes

yes

yes yes

yes

yes

940,968

­385,991

40,800 42,429

­385,315

940,968

Table 2: Pseudo hazard rate estimation

significant. Second, first hour bids decrease the pseudo-hazard rate, that is, a bidder who submits a

bid in the first hour of the auction is less likely to drop out.19 Third, the sunk cost fallacy is present:

the probability of leaving the auction decreases with the number of bids already placed by the

bidder in that auction. By contrast, participation in simultaneous auctions increases the drop out

probability, as does experience. Fourth, we find that bidder experience does tend to reduce the effect

of an additional bid on the probability of leaving the auction (interaction term between experience

and the number of bids submitted in the second column), that is, it alleviates the sunk cost fallacy,

a result which is similar to that obtained by Augenblick (2016). Interestingly, participation in

multiple simultaneous auctions also appears to have an important role towards alleviating the sunk

cost fallacy, as the interaction variable between simultaneous auction participation and the number

of bids submitted has a positive (and significant) coeffi cient (second column).

Observation 4: There is evidence of behavioral spillovers, some of which consist of vertical and
19This seems to suggest that first hour bids may indeed be used as signaling or reputation-building strategies, as

suggested by Goodman (2012).
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horizontal learning effects. Both types of learning contribute to alleviating the sunk cost fallacy.

4.3 Individual level analysis

In order to gain a better understanding of bidding behavior, we now turn our attention to in-

dividual bidders and to the possible existence of a positive relationship between bidder surplus

and experience.20 We explore the issue in more detail by calculating total auction surplus for

each bidder-auction combination and then regress it on several variables of interest using OLS.

Table 3 reports the results. The first two columns refer to a generic specification (with and without

bidder-specific fixed effects) where a bidder’s surplus in an auction may be explained by a quadratic

function of experience (measured through the number of previously submitted bids), a quadratic

function of the number of simultaneous auctions in which the bidder is participating, a dummy

variable which takes on the value of 1 if a particular bidder has won that specific auction and two

measures of bidding competition (the number of unique bidders in that auction until the bidder in

question decides to quit and a HHI index of those unique bidders’bids).

In both specifications, experience exhibits a broadly negative relationship with surpluses, whilst

participation in simultaneous auctions has a broadly positive impact on surplus. Evaluated at

the mean, the marginal effect of experience on surplus under both specifications is negative; in

addition, it is negative for almost all experience levels under column 1’s specification and only

becomes positive for very high experience levels (99th percentile). Also evaluated at the mean, the

marginal effect of simultaneous auction participation on surplus is positive; however, it becomes

negative for high levels of simultaneous auction participation (4th quartile).

These results are largely consistent with earlier literature and show that experience and simulta-

neous auction participation induce different bidder responses in the bidding process. Some factors

could help explain why more experienced bidders exhibit a different bidding behavior and we look

20Augenblick (2016), Goodman (2012) and Wang and Xu (2012) find such a positive relationship.

14



Dep. variable: individual auction surplus

dummies for auction w eek

dummies for type of good

dummies for brand of good

individual­specif ic dummies (f ixed ef fects)

number of previously submitted bids ­0.0363 (0.0005) *** ­0.0529 (0.001) *** ­0.0198 (0.0005) *** ­0.0347 (0.001) ***

(number of previously submitted bids)^2 0.000006 (0) *** 0.000014 (0) *** 0.000002 (0) *** 0.000008 (0) ***

number of simultaneous auctions in w hich bidder is participating 0.085 (0.05) * 0.143 (0.07) ** 0.108 (0.04) ** 0.165 (0.06) ***

(number of simultaneous auctions in w hich bidder is participating)^2 ­0.013 (0.006) ** ­0.023 (0.009) *** ­0.002 (0.005) ­0.005 (0.008)

proportion of ow n bids in total bids ­761.71 (5.42) *** ­732.78 (6.55) ***

(proportion of  ow n bids in total bids)^2 1,200.89 (28.35) *** 1,030.99 (35.88) ***

number of bidder f irst hour bids ­0.678 (0.02) *** ­0.668 (0.03) ***

bidder proportion of f irst hour bids 67.73 (2.32) *** 64.13 (2.96) ***

number of bidding streak episodes ­0.002 (0.0007) *** ­0.001 (0.0009)

auction w inner dummy 333.99 (0.53) *** 335.31 (0.58) *** 345.60 (0.5) *** 346.17 (0.55) ***

HHI of unique bidders' bids until bidder quits ­0.00001 (0.0001) 0.00016 (0.0001) ** 0.00027 (0.0001) *** 0.00031 (0.0001) ***

number of unique bidders until bidder quits ­0.0021 (0.0001) *** ­0.0029 (0.0001) *** ­0.0027 (0.0001) *** ­0.0033 (0.0002) ***

constant ­1.026 (0.21) *** ­2.570 (0.3) *** 0.305 (0.2) ­0.710 (0.28) **

N

R2

F­test

(***) Signif icant at the 1% level; (**) Signif icant at the 5% level; (*) Signif icant at the 10% level

176,908

0.74

14,971

176,908

0.74

12,147

176,908

0.70

14,406

176,908

0.71

12,086

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

OLS OLS w ith f ixed effects OLS OLS w ith f ixed effects

Coef. (Std. error) Coef. (Std. error) Coef. (Std. error) Coef. (Std. error)

Table 3: Individual-level auction surplus regressions

at them under the specifications of the 3rd and 4th columns (with and without bidder-specific fixed

effects) of Table 3. For example, both Augenblick (2016) and Goodman (2012) identify bidding

runs as a potential signaling mechanism through which a bidder signals her commitment and in-

terest in winning the auction. In our data, once bidder-specific fixed effects are considered, such

bidding streak episodes do not appear to affect surpluses in a significant way.21 In addition, we

follow Goodman (2012) and introduce a quadratic function of own bid proportion in total auction

bids - possibly a signaling device used by more experienced bidders. We find that for 99.7% of

bidder-auction observations, own bid proportion has a negative effect on auction surplus.22 First

hour bids may be particularly effective signaling devices, as they allow for reputation effects to be

established early in the auction (Goodman, 2012). Therefore, we have also included as potential

explanatory variables the number of first hour bids and the proportion of a bidder’s first hour bids

21Without fixed effects, bidding streak episodes have a negative impact on surplus, a result which is opposite to
that obtained by Augenblick (2016) and Goodman (2012).
22This result contrasts with that of Goodman (2012), who finds that own bid proportion has a positive impact on

surplus for a much lower threshold, i.e., bidding frequently and (possibly) in a well-timed manner raises surplus.
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in total first hour bids and find that, similarly to Goodman (2012), first hour bids appear to be a

useful and effective signaling mechanism.23

Importantly, with the exception of first hour bids, these signaling strategies are rather ineffective.

When they are taken into account (3rd and 4th column of Table 3), the marginal effect of experience

on surplus is not as high (in absolute value) as in columns 1 and 2, but remains negative for virtually

all experience levels. At the same time, the positive marginal effect on surplus of simultaneous

auction participation is higher than in columns 1 and 2, further reinforcing the previous result that

this is a much more effective learning tool.

Observation 5: Simultaneous participation in multiple auctions (horizontal learning) is a more

effective learning mechanism than bidding over time within and across auctions.

4.4 Robustness of results

4.4.1 Budget constraints

The participation of bidders in simultaneous auctions raises the possibility that they may be allo-

cating a fixed budget across auctions, in the vein of Colonel Blotto games, a constant-sum game in

which two players simultaneously distribute forces across n battlefields and, within each battlefield,

the player who has allocated a higher force wins (see Roberson, 2006, or Hart, 2008).24 There are

three notable differences between Colonel Blotto games and penny auctions: (i) in Colonel Blotto

games, the chosen strategy has an opportunity cost (the potential benefit of using a force in a

different battlefield) whilst in penny auctions there is a direct bidding cost; (ii) the Colonel Blotto

game is a static constant-sum game whilst penny auctions are dynamic non constant-sum games;

23The number of first hour bids attempts to capture absolute reputation signals, whilst the proportion of a bidder’s
first hour bids attempts to capture relative reputation signals. We find that the marginal effect of an additional first
hour bid is negative (and larger, in absolute value, than €0.50, the bid cost) but the marginal effect of a bidder’s
first hour bid proportion is positive. When the latter is evaluated at the mean, the marginal effect of an additional
bid is very close to the bid cost (€0.52). This suggests that provided the proportion of a bidder’s first hour bids is
relatively high (certainly higher than the mean), there may be an expectation of a net positive marginal effect on
surplus of first hour bids (insofar as the expected surplus gain through a first hour bid is higher than the bid cost),
that is, first hour bids appear to be a useful and effective signaling mechanism.
24We would like to thank an associate editor and an anonymous referee for suggesting this line of analysis.
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(iii) and in Colonel Blotto games, the final (non-negative) payoff is the proportion on wins across

battlefields (regardless of the force levels allocated to each battlefield), whilst in penny auctions

the final payoff crucially depends on the overall bid costs across all auctions.

Nevertheless, a relevant similarity is that bidders in penny auctions may be budget constrained

when choosing their strategies and it is important to test whether that is the case. The data does

not allow for a direct test and we have thus followed an indirect approach. First, within each

auction week, we assume that budget constraints may affect bidding behavior on a daily basis,

that is, the behavior of bidder i in auction day t is affected by her decisions (and total financial

expenditure) in day t − 1. Second, we assume that bidders are not financially constrained across

auction weeks.25 With this framework in mind, we use the bid level database and calculate, for each

bidder and for each auction day in which she was active, bidder-specific and auction day-specific

variables (in total, 80,349 active bidder-auction day observations).26

Our general approach was the following: does a bidder’s choice of (i) how many bids to place

or (ii) the total number of auctions in which she participates depend on other bidder-specific or

auction day-specific variables, including the previous day’s total financial expenditure (a proxy for

the possible existence of a budget constraint)? To answer this question, we have implemented

two specifications. In a first specification, we have expanded our dataset to include all ‘inactive’

auction days which immediately follow an ‘active’auction day because, if a bidder is financially

constrained, it may be that exhausting the available funds in day t makes her not bid in day t+1.

This yields a total number of 131,089 bidder-auction day observations. Because of the large number

of zeros for the dependent variable ((i) or (ii)), we conducted a tobit regression with clustered (by

25This strikes us as sensible, because auctions are typically conducted on a monthly basis; that is, roughly a month
goes by between auction weeks.
26The bidder-specific variables are (i) the total number of bids placed, (ii) the total number of auctions in which

she has participated, (iii) the total financial expenditure incurred (which includes bid costs as well as the final auction
price if she has won an auction) and (iv) the number of previous auction wins. We have also created lagged variables
for (ii) and (iii). The auction day-specific variables are: the total number of auctions, the average retail price of all
items to be auctioned during the day, the number of auctions for each item brand and for each item type.
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number of daily auctions for each brand

number of daily auctions for each type of good

number of previous auction w ins 15.54 (2.17) *** 1.11 (0.07) *** 9.49 (0.92) *** ­0.19 (0.07) ***

total expenditure in previous day 0.46 (0.03) *** 0.01 (0.002) *** ­0.27 (0.01) *** 0.00 (0.001)

number of auctions w here bidder w as active in previous day ­3.82 (0.22) *** ­0.33 (0.01) *** 0.80 (0.07) *** ­0.09 (0.005) ***

average retail price of daily auctions ­0.07 (0.003) *** ­0.01 (0.0002) *** 0.00 (0.003) 0.00 (0.0002) ***

number of daily auctions ­1.92 (0.18) *** ­0.25 (0.01) *** 2.05 (0.82) ** 0.33 (0.06) ***

constant 28.61 (1.45) *** 4.95 (0.12) *** 9.78 (1.66) *** 2.81 (0.12) ***

N

Pseudo­R2

F­test

(***) Signif icant at the 1% level; (**) Signif icant at the 5% level; (*) Signif icant at the 10% level

yes

yes

yes

yes

80,349

0.005

46.9

80,349

0.005

145.9

Dep. variable: (i)=total number of bids placed by each bidder
during an auction day; (ii)=total number of auctions in w hich
bidder is active during an auction day

131,089

0.012

35.5

131,089

0.030

554.9

yes

yes

yes

yes

tobit (i) tobit (ii) FE (i) FE (ii)

Coef. (Std. error) Coef. (Std. error) Coef. (Std. error) Coef. (Std. error)

Table 4: Indirect test for the existence of budget constraints

bidder) standard errors. The results are presented as ‘tobit (i)’and ‘tobit (ii)’ in Table 4. In a

second specification, we have only resorted to the active bidder-auction day data and performed a

fixed-effects (FE) regression. This is presented as ‘FE (i)’and ‘FE (ii)’in Table 4.

When the dependent variable is the total number of auctions in which the bidder participates,

the financial expenditure in the previous day yields a positive and significant (albeit small) or

insignificant effect, in the tobit (ii) and FE (ii) models respectively. That is, bidders do not appear

to have daily financial constraints in what concerns their choice of how many auctions to participate

in. When the dependent variable is the total number of bids placed, the previous day’s financial

expenditure appears with a positive or negative (significant) coeffi cient in the tobit (i) and FE (i)

models respectively.27 The latter is the only model for which the existence of a daily financial

constraint could not be rejected, although the marginal impact is rather small.28

Observation 6: Bidder behavior does not seem to be affected by financial constraints.

27 In a way, the FE specification (indirectly) tests the possible existence of financial constraints conditional on a
bidder being active, whilst the tobit specification is more general and takes into account the possibility that financial
constraints may lead to bidder inactivity (zero values for the dependent variables). If the latter is the true underlying
model, then FE would yield biased estimates (as it considers only the uncensored observations) and this can explain the
different signs across models for the ‘total expenditure in the previous day’variable (as well as for other explanatory
variables).
28The average total expenditure in the previous day is €2.25, which means that the respective marginal effect

(evaluated at the mean) is −0.27× 2.25 = −0.61 (the mean number of submitted bids is 11.71). Therefore, evaluated
at the mean, a €1 increase in the previous day’s total expenditure (a large increase in relative terms) reduces the
number of submitted bids by 0.61.
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4.4.2 Possible differences in bidder strategies

Another possible concern with our results is whether the effect of participating in multiple simulta-

neous auctions is truly a learning effect.29 Indeed, different types of bidders may be using different

strategies. In order to analyze this possibility, we have classified bidders in one of three possible

categories: ‘simultaneous bidders’ are bidders who have participated in more than one simulta-

neous auction throughout the period we analyze; ‘seasoned bidders’are bidders who have never

participated in more than an auction at a time, but who have either submitted multiple bids in

a single auction or a single bid in multiple (non-simultaneous) auctions; and ‘single bid bidders’

are bidders who have only submitted one bid in one single auction. Table 5 summarizes some

interesting descriptive statistics (averages for each bidder category).

First, most bidders are simultaneous bidders (68%) and account for a very large proportion of

all submitted bids (92%). Single bid bidders are relatively few (12%) and seasoned bidders (21%)

account for a very small proportion of all submitted bids (7.5%). Second, simultaneous bidders

participate in more auctions than seasoned bidders (6.3 vs. 1.4) but submit relatively fewer bids

(5.1 vs. 6.9). Therefore, overall, simultaneous bidders submit a larger number of bids across all

auctions than seasoned bidders (34 vs. 9) mainly because they participate in more auctions. Third,

simultaneous bidders are much more experienced at the time when they submit their first auction

bid and win slightly more often, despite participating in auctions for items with relatively lower

retail prices. Fourth, simultaneous bidders submit their first bid at a time when fewer unique

bidders have already submitted bids and submit relatively fewer first hour bids.

Leaving aside the case of single bid bidders, this allows us to conjecture that although there

are some differences between simultaneous and seasoned bidders, the main difference appears to be

related to the number of auctions in which they participate and their experience when they make the

29We would like to thank a referee for suggesting this line of analysis.
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Variable
Simultaneous bidders
(% of total)

Seasoned bidders (%
of total)

Single bid bidders (% of
total)

Total

total number of bidders 25,652 (68%) 7,864 (21%) 4,484 (12%) 38,000
total number of submitted bids 865,970 (92.0%) 70,514 (7.5%) 4,484 (0.5%) 940,968

average number of submitted bids in all auctions 33.8 9.0 1.0 24.8
average number of auctions in which they participate 6.3 1.4 1.0 4.7
average number of bids per auction 5.1 6.9 1.0 5.0
average daily expenditure (€) 7.5 3.4 0.5 5.8
average experience (number of submitted bids) when submitting first bid 11.54 0.97 0.0 7.99
average percentage of wins in  auctions in which they participate 0.12% 0.09% 0.04% 0.10%
average retail price in auctions in which they participate 456.7 501.4 489.1 469.8
average number of unique bidders until they decide to enter 345.9 394.5 378.1 359.8
average percentage of first hour bids 5.7% 7.4% 10.3% 6.6%

Table 5: Descriptive statistics of bidder categories

decision to enter. That is, their being active in simultaneous auctions emerges as the most striking

difference between bidder types. This suggests that our results may indeed be picking up a learning

effect. In order to confirm this conjecture, we ran the pseudo hazard rates regression presented in

Section 4.2.2 for simultaneous bidders only. The results are presented in Table 10 (Appendix A)

and indicate that, for simultaneous bidders, the sunk cost fallacy is present, but learning effects –

both through experience as well as through participation in simultaneous auctions – are rather

helpful in mitigating its effects, thus broadly confirming the results presented in Section 4.2.2.

5 Discussion and conclusion

This paper contributes to the emerging empirical evidence on penny auctions, an auction format

which typically raises significantly higher revenue than the underlying market value of the auctioned

item. Our particular interest is the effect of learning over time and across auctions as bidders become

more experienced. In the dataset we have used, possibly because it is related to a relatively more

homogeneous set of products than that used by earlier literature, profit margins are very high: on

average, 219%. We find that, using auction-level data, the standard supply and demand variables

have the expected effects on final auction prices: increased supply (through a higher number of

penny auctions occurring simultaneously) reduces final auction prices, whilst increased demand

(through a higher number of unique bidders) increases them. In addition, first hour bidding activity
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contributes positively towards higher auction prices, to the benefit of the auctioneer.

Using bid-level data, we find that more experienced bidders learn to participate less often in

penny auctions and, as one would expect, the participation decision is negatively influenced by

perceived competition. We also find evidence of the sunk cost fallacy, identified by Augenblick

(2016): bidders are more reluctant to drop out the higher is the number of bids they have already

submitted. Experience acquired through bids submitted in one or more auctions over time does

alleviate the sunk cost fallacy, but participation in multiple simultaneous auctions emerges as a

significantly more effective learning mechanism. Therefore, we find evidence of behavioral spillovers,

some of which appear to be learning effects. Looking at individual auction surplus confirms these

results: experience exhibits a negative relationship with surplus, but participation in simultaneous

auctions is associated with higher surpluses. Signaling and reputation-building strategies do appear

to be used, but, with the exception of first hour bids, with little success in terms of outcomes.

Although our penny auction data has some limitations - for instance, it does not allow us to use

bidder sophistication indicators such as those used by Wang and Xu (2012) - and is certainly smaller

than that used by previous authors, it is suffi ciently homogeneous to present a coherent picture of

bidding behavior in penny auctions. Our most striking finding is that ‘horizontal learning’(within

a time window but through bid submission or participation in more than one simultaneous auction)

is a much more effective learning mechanism than ‘vertical learning’(through bid submission or

auction participation over time). This, to the best of our knowledge, is a novel result in the penny

auction literature and bears some relationship with the behavioral spillovers literature (Bednar et

al., 2012; Cason et al., 2012; Falk et al., 2013). More generally, this result raises relevant questions

on behavioral spillovers/learning effects that may occur in other sequential games (e.g., bargaining

games). In particular, it raises the possibility that, in some games, players may arrive more quickly

at equilibrium strategies when playing two identical or similar games simultaneously rather than
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sequentially, although preliminary evidence by Falk et al. (2013) does not appear to corroborate this

claim. In addition, this paper is eminently empirical and our finding of evidence of both ‘vertical’

and ‘horizontal’learning effects clearly suggests that a theoretical extension to Augenblick’s (2016)

model which incorporates these two features is warranted. Such a model would yield equilibrium

predictions for the role played by each type of learning effect, which could then be reconciled with

our empirical results. These are likely to be the next steps in our research.
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A Appendix - Auxiliary Tables and Figures

Variable
Number of
observations

Mean
Standard
deviation

Minimum Maximum

final auction price 403 24.01 25.25 0.10 167.89
retail price 403 369.97 198.07 9.90 999.90
profit (euros) 403 854.77 1191.21 ­788.76 7962.49
profit (percentage of retail price) 403 219.30 249.84 ­95.92 1327.30
average number of simultaneous auctions 403 6.88 1.67 1.80 12.97
number of unique bidders 403 438.98 333.37 8.00 2019.00
HHI of unique bidders' bids 403 230.72 307.04 28.31 2861.23

Profit percentage of auctions over time
auction week 1 61 192.51 270.44
auction week 2 46 385.50 302.84
auction week 3 44 296.61 264.00
auction week 4 48 183.11 202.49
auction week 5 48 185.60 205.33
auction week 6 47 203.66 195.49
auction week 7 109 170.47 234.69
TOTAL 403 219.30 249.84

Profit percentage by type of good
PC 24 292.92 241.76
pen 2 ­3.63 44.63
services 22 84.21 235.47
tablet PC 12 350.11 244.51
mobile phone 343 219.54 248.32
TOTAL 403 219.30 249.84

Profit percentage of mobile phones by brand
Apple 55 307.81 313.71
BlackBerry 38 185.21 174.00
Google 4 352.32 267.62
HTC 49 110.89 182.18
Huawei 3 346.12 139.76
LG 39 99.04 140.06
Nokia 43 278.79 268.49
Optimus 44 277.99 242.01
Samsung 40 240.12 264.60
Sony 28 205.90 252.79
TOTAL 343 219.54 248.32

Auction level data

Table 6: Description and summary statistics of main variables in auction level database
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Figure 1: Profit margins in penny auctions
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Figure 2: Empirical hazard rate (left) and graphical check of adequacy of Weibull distribution
(right) for final auction prices
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Variable
Number of
observations

Mean
Standard
deviation

Minimum Maximum

total number of bids 940,968
expected total number of bids (*) 967,781
coverage 97.2%

average number of bids per auction 403 2,334.9 2,405.8 10 16,709
expected total number of bids per auction (*) 403 2,401.4 2,525.2 10 16,789
average coverage 403 98.1% 4.3% 65.1% 100.6%

total number of unique bidders 38,000
average number of individual bids per auction 176,908 5.32 14.12 1 1518
(*)  us ing data  from auction database

Bid level data

Table 7: Description and summary statistics of main variables in bid level database

distributions AIC score

Exponential 948.6
Weibull 596.7
Gompertz 590.2
Lognormal 640.8

Loglogistic 605.6

Generalized Gamma 598.7

Table 8: AIC scores for final auction prices and underlying distributions

dummies for auction w eek

dummies for type of good

dummies for brand of good

average number of simultaneous auctions 1.269 (0.057) *** 1.211 (0.052) *** 1.268 (0.055) ***

number of (normalised) f irst hour bids 0.121 (0.038) *** 0.165 (0.049) *** 0.193 (0.054) ***

number of unique bidders 0.994 (0.0004) *** 0.995 (0.0003) *** 0.995 (0.0004) ***

HHI of unique bidders' bids 1.001 (0.0002) *** 1.001 (0.0002) *** 1.001 (0.0002) ***

constant 0.070 (0.038) *** 0.011 (0.006) ***

N

Log­likelihood

LR (chi­square)

(***) Signif icant at the 1% level; (**) Signif icant at the 5% level; (*) Signif icant at the 10% level

­1,710

616

403

yes

yes

yes

yes

403

­268

553

Cox (PH) Gompertz (PH) Weibull (PH)

Coef. (Std. error) Coef. (Std. error) Coef. (Std. error)

403

­271

541

yes

yes

yes

yes

yes

Table 9: Hazard rate estimation
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dependent variable: leave

dummies for auction w eek

dummies for type of good

dummies for brand of good

average number of simultaneous auctions 0.02959 (0.00056) *** 0.02981 (0.00056) ***

first hour bid (dummy) 0.00434 (0.00391) 0.00179 (0.00691)

first hour bid (dummy) x ln(number of previously submitted bids) ­0.00369 (0.00274)

first hour bid (dummy) x ln(number of simultaneous auctions in w hich bidder is participating) 0.01063 (0.00609) *

number of unique bidders until bid submitted 0.00012 (0.00001) *** 0.00013 (0.00001) ***

HHI of unique bidders' bids until bid is submitted ­0.000001 (0) ­0.000002 (0)

ln(number of bids submitted in auction) ­0.11932 (0.00073) *** ­0.18247 (0.002) ***

ln(number of previously submitted bids) 0.06402 (0.00102) *** 0.05624 (0.00106) ***

ln(number of simultaneous auctions in w hich bidder is participating) 0.06467 (0.00135) *** 0.05868 (0.00181) ***

ln(number of previously submitted bids) x ln(number of bids submitted in auction) 0.01455 (0.00045) ***

ln(number of simultaneous auctions in w hich bidder is participating) x ln(number of bids submitted in auction) 0.00664 (0.00092) ***

number of previous auction w ins 0.01225 (0.00457) *** ­0.00441 (0.00463)

bid amount 0.00004 (0.00012) ­0.00007 (0.00012)

N

Log­likelihood

Wald (chi­square)

(***) Signif icant at the 1% level; (**) Signif icant at the 5% level; (*) Signif icant at the 10% level

RE probit RE probit

Coef. (Std. error) Coef. (Std. error)

865,970

­351,912

41,042

865,970

­351,287

42,219

yes

yes

yes

yes

yes

yes

Table 10: Pseudo hazard rate estimation for ‘simultaneous bidders’only
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