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Abstract

In this article we prove a local Riemman-Hurwitz formula which compares the dimensions
of the spaces of vanishing cycles in a finite Galois cover of type (p,p,--- ,p) between formal
germs of p-adic curves and which generalises the formula proven in [Saidil] in the case of
Galois covers of degree p. We also investigate the problem of the existence of a torsor
structure for a finite Galois cover of type (p,p,--- ,p) between p-adic schemes.

§0. Introduction

Let K be a complete discrete valuation ring of mized characteristic, R its valuation ring, and
k := R/mR the residue field of characteristic p > 0 which we assume to be algebraically closed.
We suppose that K contains a primitive p-th root of 1. In [Saidil] the first author proved a local
Riemman-Hurwitz formula which compares the dimensions of the spaces of vanishing cycles
in a finite Galois cover of degree p between formal germs of R-curves. This formula is quite
explicit and involves the (usual) “generic”different, which measures the ramification at the level
of generic fibres, and a certain “special”different which involves certain “conductors” attached
to the induced covers between the formal boundaries of the formal germs (cf. loc. cit. Theorem
3.4).

In this paper we generalise this formula to the setting of Galois covers of type (p,p, - ,p),
i.e., with Galois group Z/pZ X - - - x Z/pZ. In principle one can apply the formula in the Galois
degree p case obtained in [Saidil] iteratively to derive such a formula. However, the difficulty
here lies in computing the conductors involved in the special different at the various degree p
intermediate covers; the possibility of having generically purely inseparable extensions at the
level of special fibres doesn’t allow the use of the standard ramification theory as in [Serre] in
order to compute these conductors. In this paper we are able to compute in §1 these conductors
at the various degree p intermediate levels via direct, rather tedious, computations (cf. Theorem
1.1). Although our main result computing these conductors is stated only in the case of Galois
covers of type (p,p) (cf. loc. cit.), it is quite straightforward to deduce from this result the
relevant value conductors as well as the corresponding Riemman-Hurwitz formula in the case
of general Galois covers of type (p,p,---,p) (cf. Example 1.7 for an illustration). In §2 we
derive an explicit local Riemman-Hurwitz formula which compares the dimensions of the spaces
of vanishing cycles in a finite Galois covers of type (p, p) between formal germs of R-curves, which
can be easily iterated to deduce a similar local Riemman-Hurwitz formula in the general case of
finite Galois covers of type (p,p, - ,Dp).

In §3 we investigate the problem of the existence of a torsor structure for a finite Galois cover
of type (p,p,--- ,p) between R-(formal) schemes where we allow R to be of equal characteristic
p > 0. Let X be a normal flat and geometrically connected R-(formal) scheme with an integral
special fibre X, := X xpk, {f; : Yi = X}, torsors under finite and flat R-group scheme G;



which are generically pairwise disjoint, 1 <i <n, and f: Y — X the morphism of normalisation
of X in (the fibre product over X := X xg K) [[, Yi kx, where Y;  :=Y; xg K. Assume
the special fibre Y := Y xpg k is reduced. Our main result Theorem 3.4 gives necessary and
sufficient conditions for f to have the structure of a torsor under a finite and flat R-group
scheme (necessarily isomorphic to G1 Xg -+ Xg G, ). In the case where X is a relative curve
these conditions are equivalent to the condition that at least n — 1 of the group schemes G; are
étale (cf. Theorem 3.5). This latter fact is false in relative dimension > 1 (cf. 3.8).

Notations

In this paper p > 2 is a prime integer, K is (unless we specify otherwise) a complete discrete
valuation ring, char(K) = 0, R its valuation ring, m a uniformising parameter, vg will denote
the valuation of K which is normalised by vk (7)) = 1, and k := R/wR the residue field of
characteristic p > 0 which we assume to be algebraically closed. We suppose R contains a
primitive p-th root of 1.

For an R-scheme X we will denote by X := X xg K (resp. Xy := X x gk) the generic (resp.
special) fibre of X. If X = SpfA is a formal affine R-scheme we will denote X := Spec(A®g K)
and X}, := Spec(A/7) the special fibre of X.

A formal (resp. algebraic) R-curve is an R-formal scheme of finite type (resp. scheme of
finite type) flat, separated, and whose special fibre is equidimensional of dimension 1.

We will refer to a (generically separable) cover Y — X between normal connected (formal
R-)schemes which is Galois with Galois group Z/pZ x Z/pZ as a Galois cover of type (p,p).

Let X be a proper, normal, (formal) R-curve with X geometrically reduced. For z € X a
closed pointlet F,, = Spf(@x,x) be the formal completion of X at x, which we will refer to as the
formal germ of X at x. Thus, OX,I is the completion of the local ring of (the algebraisation) of
X at x. Let {P;}_; be the minimal prime ideals of OAX@ which contain m; they correspond to
the branches {n;}?_, of the completion of X}, at x (i.e., closed points of the normalisation of X
above z), and X; = X, ; := Spf(OAmypi) the formal completion of the localisation of F, at P;. The
local ring OALpi is a complete discrete valuation ring with uniformiser m. We refer to {X;}, as
the set of boundaries of the formal germ F,. We have a canonical morphism X; — F, of formal
schemes, 1 <1i < n. B

With the same notations as above, let x € X be a closed point and X}, the normalisation
of Xj. There is a one-to-one correspondence between the set of points of Xj_above x and the
set of boundaries of the formal germ at the point x. Let z; be the point of X} above x which
corresponds to the boundary X;, 1 < ¢ < n. Then the completion of X} at x; is isomorphic
to the spectrum of a ring of formal power series k[[t;]] over k, where t; is a local parameter at
xz;. The complete local ring Oz,Pi is a discrete valuation ring with uniformiser 7, and residue
field isomorphic to k((¢;)). Fix an isomorphism k((¢;)) ~ Ox, p,/m. Let T; € Ow, p, be an element
which lifts (the image in Ow p,/m under the above isomorphism of) ¢;; we shall refer to such an
element T; as a parameter of Om p;, or of the boundary X;. Then there exists an isomorphism

R[[T{T; '} ~ O, p,, where

R[[T]{T™'} ;:{ i a; T, Jim il :0}

1=—00

and | | is a normalised absolute value of R (cf. [Bourbaki|, §2, 5).



Given a power series g € k((z)) where z is an indeterminate we write

g9(z) = Z a;z" + higher order terms,
i€ICZ

meaning all remaining monomial terms in z are of the form cz! where ¢ € k and ¢ > i for at least
one 0 # i € I. Also given a power series H(Z) € R[[T]{T~'} we write

H(Z)=(F(2))P + Z ¢ 20 + higher order terms,
i€ICZ

meaning all remaining monomial terms in Z are of the form dZ' where either v (d) > vi(c;)
for all ¢ € I or there exists at least one ¢ € I such that vk (d) = vk (c;) and ¢ > 1.

Background

In this section we collect/improve some background material form [Saidil] that will be used in
this paper. Let A := R[[T]]{T~'} and f : Spf (B) — Spf (A) a non-trivial Galois cover of degree
p. We assume that = (which is a uniformiser of A) is a unifomiser of B (this condition is satisfied
after possibly base changing to a finite extension of R, cf. [Epp]). Proposition 2.3 in [Saidil]
shows that f has the structure of a torsor under one of the three group schemes, p,, H, where
0 <n <wg(A),or Hy, ) (cf. loc. cit. 2.1 for the definition of these group schemes and the local
explicit description of torsors under these group schemes). To the torsor f are associated some
data: the acting group scheme as above, the degree of different §, the conductor variable
m, and ¢ = —m the conductor (cf. loc. cit. definition 2.4. The notation ¢ is introduced in this
paper, only the conductor variable m was considered in loc. cit.). Adapting slightly the proof of
Proposition 2.3 in [Saidil] provides the following details in the three occurring cases:
(a) For the group scheme p, where § = vk (p), the torsor equation is of the form

ZP =u

whereuw =3, a;T" € A* is a unit such that its image @ modulo 7 is not a p-power. On the level
of special fibres the induced y,-torsor is given by an equation 2 = @ where u = Y., a;t* € k((t))
for some integer I with @; # 0 (here ¢ equals T modulo 7). There are two cases to consider:

(al) ged(l,p) = 1. We have & = t'(}",5,a;t""") and v := >, a;t""! € K[[t]] is a unit.
Further, we can write u = T'v where v := Y., ;7" € R[[T)]{T~'} is a unit whose reduction
modulo 7 equals ©. After possibly multiplying u by a p-power we can assume 0 < [ < p. The
unit v € A* admits an I-th root s € A since [ is coprime to p and k is algebraically closed. Thus,
st = v in A and after replacing the parameter T by T’ := T'.s, which is also a parameter of A,
our p,-torsor f : Spf (B) — Spf (A) is defined by the equation Z? = (T")".

(a2) ged(l,p) > 1, in which case [ is divisible by p and @ = Y, a;t'. After multiplying
u by T~! (which is a p-power) we can assume % = ZiZlditi_l = 2 i>0 a;jt! € k[[t]]. Let
m = min{i | vg(a;) = 0,ged(i — I,p) = 1} = min{j | ged(j,p) = 1}. We can write & =
ap+atP+-- -—&—Et[m/p]t[m/p}p—k&mtm+higher order terms, and v = ag+a1TP+- - -+a[m/p]T[m/p}P—|—
> v (a)=0 @i T + ZUK(%»O a;T". If @ € A is a unit we can write a = bP + ¢ with b € A a unit

i>m
and vk (c) > 0. Thus, we can assume without loss of generality that u = af + a?T? 4 --- +
afm/p]T[m/p]p—FZq,K(ai):o ai T+, (ary>0 @T" Now ag+af TP+ - +af) /p}T[m/p]p = (ap+a T+

[m
i>m

- ~+a[m/p]T[m/p])p—p(ao +a1T+-- ~+a[m/p]T[m/p])+higher order terms, and after replacing u by



u(ag+ar T+ +ap,/p ]T[ /p])_p we can assume without loss of generality that the torsor equation
is: ZP = 1+ amT™ + > ux(ar) —oa; Tt + ZUK(G )>0 a;T¢. Further, a,,T™ + Z'UK (ai)=0 @i T* +

i>m i>m

ZUK(M)>O a;T" = T™v where v = a,, + > v (as)=0 a; 7™ + ZUK(M)>O a;T™ € A is a unit
which admits an m-th root u € A. Thus, u™ l:>71,; in A and after replacing the parameter T by
T’ := T.u, which is also a parameter of A, our p,-torsor f : Spf (B) — Spf (A4) is defined by the
equation ZP =14 (T")™

Simplified form: After a possible change of the parameter T" of A, the torsor equation
ZP =y can be reduced to either the form

(al) ZP =T" where h € F,

or of the form
(a2) zP=14+1m

where m is as defined above for these two cases. The conductor is given in both cases by
(al) ¢ =0, and (a2) ¢=—m.

(b) For the group scheme H,, where 0 < n < vg(A) and 6 = vg(p) — n(p — 1), the torsor
equation is of the form
(1+7"ZY =1+ 71"Pu

where u =}, a;T" € AX is a unit such that modulo 7 it is not a p-power. Reducing modulo
m, on the special fibre the acting group scheme is o), and the torsor is given by an equation
2P = @ where & = Y, a;t" € k((t)) for some integer | with @ # 0 and which is defined
up to addition of a p-power. We define m := min{i|vk(a;) = 0,gcd(i,p) = 1} € Z. Then u =
Ezl/pt”'l/p+- . ~+a[m/p]t[m/f’1p+amtm+higher order terms, and u = al/pr'l/p+- . -+a[m/p]T[m/p]p+
> vk (a)=0 @i T + Do (an)>0 a;T". If a € A is a unit we can write a = bP + ¢ with b € A a unit
i>m
and vk (c) > 0. Thus, we can assume without loss of generality that u = a 1p TPle 4.4
afm/p]T[m/P]P+szi(§%:O a; T 4+ 10 a;T". Now 1+ 7" (q P/ TPl/p .. —l-a[ I ]T[m/P] )=
(L+7"(ay TP+ + a[m/p]T[m/p]))p —pr™(ay, T Py 4 a[m/p]T[m/”]) + higher order terms.
Thus, since np < vk (p) + n, the torsor equation can be written (14 7"Z)P = (1+ 7" (a;/,TV? +
o Ay TP+ 1P (3 (=0 @i T + 2ok (as)>0 a;T?) and after multiplying by (1 +

vk (a;

i>m
W”(al/pTl/p +oe a[m/p]T[m/p]))*p =1—pr™(a TP +--- + a[m/p]T[m/p]) + higher order terms,
we get an equation (1 +7"Z)P = 14+ 7" (34 (as)=0 61" + 22, (a1)>0 @1") and can assume
izm , ,
u = ka(al —oa;T? +ZUK aiTi Further, amnT™ 43 o (a)=0 @1+, (0,50 @1 =T™v

z>m

where v 6 A is a unit which admlts an m-th root h € A. Thus, h™ = vin A and after replacing the
parameter T by T” := T.h, which is also a parameter of A, the H,-torsor f : Spf (B) — Spf (4)
is defined by the equation Z? = 1+ 72 (T")™
Simplified form: After a change of the parameter T', the torsor equation can be reduced to
the form
ZP =1+ a"PT™

where m is as defined above. The conductor is given by ¢ = —m.




(c) For the group scheme #,, (x) where § = 0, the torsor equation is of the form
(I1+AZ2)P =14 Nu

whereu =3, ., a;T* € A% isaunit. On the special fibre the acting group scheme is Z/pZ and the
torsor is given by an equation 2P — z = @ where 4 = ) ., a;t* for some integer [ with a; # 0 and
which is defined up to addition of an Artin-Schreier element of the form b” —b. In fact, after such
an Artin-Schreier transformation, % can be represented as: % = @y, t™ +8ppy1t™ T . d a1t =
Z;lm a;t* where a,, # 0 and m < 0 is the conductor variable such that ged(m, p) = 1. Indeed, for
F(8) = Yimp ait’ € M[t]] we have f(2) = (F(6)+ @7+ F () +- )= (F(O)+F O +F O+ ).
Moreover, i = Gmt™ + Gmi1t™ T+ ... +a_1t7! = t™b where ¥ = Gy, + A1t +...+a_ 7" E
E[[t]] is a unit. Let v = am + ami1T + ... + a_1T~™"1 € R[[T]] be an element which lifts o
and h an m-th root of v in R[[T]]. Then after replacing the parameter T' by 7" := T.h, which
is also a parameter of A, our H,, (y-torsor f : Spf (B) — Spf(A) is defined by the equation
ZP =14 \P(T")™.

Simplified form: After a change of the parameter T, the torsor equation over R can be
simplified to the form

ZP =14+ NPT

where m is as defined above. The conductor is given by ¢ = —m.

§1. The type (p,p) case

In this section A := R[[T]{T~'} and X, := Spf(A). Let fix : (Xip)x — (Xp)x be two
(generically) disjoint non-trivial degree p Galois covers. We have the following diagram:

(Yo)r = (X1p) K X(x0)x (Xop)K

’ !
Gl i G2,K

(Xl,b)K G1,xk xG2 K (XZ,b)K

(Xv) K

where G; x and G; x are the acting group schemes on the various covers and as char(K) = 0,
we have G; x = GQ,K ~ Z/pZ ~ i, is étale for i = 1,2. For i = 1,2, let f; : X;, — X, be the
Galois covers of degree p where X is the normalisation of X}, in (X, ;) k. Similarly, let Y}, be
the normalisation of Xy in (Y3) so that f:Y, — X is a non-trivial Galois cover of type (p, p).
We assume that (V})x is reduced. Note that in this case X; is isomorphic to Spf (R[[T;][{T; '})



for 1 <4 <2 (cf. [Bourbaki], §2, 5]). We have the diagram:

Yy = (X1p Xx, X2p)™"

Xy, = Spf(A)
where:

e Y, and X, are normal for ¢ = 1,2, and Y}, is the normalisation (X7 5 X x, X2,)"°" of the
fibre product (X1 X x, Xap)-

e ¢; (respectively c}) denotes the conductor of the torsor X;, — X, (respectively Y, — X, ).
The conductor ¢; (respectively c}) is dependent on the conductor variable m; (respectively
m}) (cf. Background).

e G; (respectively G7) denotes the finite and flat (commutative) R-group scheme of the torsor
Xip — Xp (respectively Y, — X;3). We know G;, G are among the R-group schemes
How(A)s Hps OF Hy for 0 < n < wvg(X) (cf. loc. cit.).

On the level of special fibres over k we have a diagram:

(Ys)r

(X1,0)k =~ Spec k((t1)) (Xa2,p)k =~ Spec k((t2))

Gl,k G2,k

(Xp)k = Spec k((t))

where:



o (V) and (X; )k are reduced for ¢ = 1,2.

o K((t) = A/(r) (respectively Ay/r = k((t1)), Az/7 = k((t2))) where ¢ (respectively ¢, and
t2) is the reduction modulo 7 of T' (respectively T7, To, where T; is some suitable parameter
of X;; fori=1,2).

e Giy, = G; xgk and G;ﬁk = G} xp k are the acting group schemes over k, a field with
characteristic p, so that these group schemes are necessarily isomorphic to either Z/pZ, p,
or oy,

We aim to express the conductor ¢} in terms of ¢; and c¢; for the various torsor combinations
and likewise for ¢. To achieve this, we express the conductor variables m) and m} in terms
of my and my. We have six cases to consider by taking all possible pairs of the group schemes
How(r)s Hp and Hy, over R acting on X p, Xo ;. The following is one of our main results.

Theorem 1.1. Let X, = Spf (A4) and suppose we have two (generically) disjoint non-trivial
degree p Galois covers f; k : (Xip)xk — (Xp)k, for i = 1,2. Let (Y)x be the compositum of
these covers.

Fori=1,2, let f; : X;p = Xp be the Galois covers of degree p where X, p is the normalisation
of Xy in (Xip) k. SetYy as the normalisation of Xy in (Y3) i so that f: Yy, — X4 is a non-trivial
Galois cover of type (p,p). We assume that the ramification index of the corresponding extension
of DVR’s equals 1 and that the special fibre of Yy is reduced. Thus, f; is a non-trivial torsor
under a finite flat R-group scheme G; of rank p with conductor variable m; for i =1,2. Let m/
denote the conductor variable of the torsor Y, — X, . Then, for all possible pairs of G1 and Ga,
we can express the conductors m), in terms of the m; conductor variables for i =1,2 as follows:

Xip Xop

1. For Gy = G2 = Hy, (n) we have that m = my and mby = mip —ma(p — 1) when my < ma,
and my = maop —mi(p — 1) and mbh = mq when my > ma.

For G1 = Hy(n) and Ga = p, we have that my = map —mi(p — 1) and my = m;.
For G1 = Hy(n) and G2 = H, we have that my = map —my(p — 1) and mhH) = m;.

For G1 =H,, and Go = p, we have that m}j = map —mi(p — 1) and mh = m;.

Grod e e

For Gi = G = 1, we have that m} = my and mh = mip —ma(p — 1) when my < mg, and
my = maop —my(p — 1) and mby = my when my > mo. In this case these results are only
valid when at least one of my and my is non-zero (cf. Proof and Remark 1.8).



6. For Gy = H,, and Gy = H,, we have that my = mg and mh = mip — ma(p — 1) when
ny < ng, that my = map — mi(p — 1) and mh = my when ny > ng, that m}y = ma and
mby = myp — ma(p — 1) when both ny = ny and my < mso, and mj = map — my(p — 1) and
my = my when both n1 = ny and my > mgy, where 0 < n,ny,ne < vi(A).

§1.1 Proof of Theorem 1.1

Proof. We treat each of the six occurring cases individually. However, there is an important
distinction between the first three cases and the remaining cases.

In the first three cases, that is when at least one of the acting group schemes is the étale
group scheme H, (1), one can work modulo 7 at the level of special fibres for, in this case,
YE, = Xl,b XX, Xg)b which implies (Yb)k = (XLb)k X(Xb)k (Xg,b)k. Indeed, suppose Gl = HvK(/\)
so that the torsor X;; — Xj is étale. Then, by base change, the torsor Xy, x Xop — Xo is
automatically étale. The special fibre of Xy is reduced (because it is dominated by Y; whose
special fibre is reduced) but as X1 X X2 — Xop is étale, this implies the special fibre of
X1 x Xay is also reduced. Then, by Theorem 3.4 in this paper, X;; X x, X2 is normal and
equal to Y}, as required.

In the last three cases, we do not have this situation, which means one must work above
X over R without being permitted to reduce to the special fibre. However, we still proceed
in a similar fashion, even if the computations are more involved. In particular, we start with
the equation of X, — X3, base change it to X, for j # i and make appropriate (Kummer)
transformations in order to find the torsor equations of ¥, — X, and read off the conductors
m} for j = 1,2. Note that in each case we can perform a change of the parameter T of A =
R[[T]{T~'} so that one of the two torsor equations above X, = Spf (A) is in its simplified
form but we must assume the other equation remains in its original full power series form (cf.
Background).

1. (Hogn) Hogny)- Here my,my < 0. The H,, (n) torsor equation X;, — X is given by
(14+AZ;)P = 14+ N\Pu; where u; € A*. Modulo 7, these torsor equations reduce to z¥ — z; = @; on
the special fibre, i = 1,2. We start by computing m/. We can choose the parameter T so that
up =T™  ug =3 .cp a;T" is a power series, accordingly, @, = t™* and Uy = Zz;lm a;t' (cf. loc.
cit.) where G, # 0. We can write ¢ in terms of z; in (X1 )x: 2} —21 =t & 27 (1 — zl p) =
™ et = (/™ (1 Vi Thus a ter of is 21/ i

( 1 ) ( 1 ) . parameter of (X1p) is 2 and so by letting
z = zi/ml we can write t = 2P (1 — 2 . We can now proceed to base change the
torsor equation of (Xa )k — (Xp)k to (X1,5)k to obtain the torsor equation for (Y3)r — (X1,5)x:

—1 . —1 .
i/m .
= Z at' = 3 a;! (1 - z—"“(p—l)) t_ 3 (1 _ miz—"“(”‘“ + )
1

i=mao i=mso i=mso

—mq (P_l)) 1/m1

— amzzmzp (1 _ @Z—ml(P—l) + ) + @m2+1z(m2+1)p (1 _ Mz—7rzl(p—1) + ) + ...
mi mi

= by, 2"M2P — mi:;”? zm2p=m1(P=1) | higher order terms.

Expressing 2% as 2P — 2%+ 2* gives rise (after an Artin-Schreier transformation) to an equation
of the form: 25 — 2o = @pp,2™2 — mzal"’z zm2p=m1(P=1) 4 higher order terms. The conductor
variable m] is the smallest power of z in the above expression which is coprime to p. The

expression above indicates there are two candidates, namely mo and mop — mi(p — 1). Note



that maop — my(p — 1) < my is equivalent to my > mg. Therefore, when my > ms we have
my = map —my(p — 1) and when my < may we have m) = mg. The formula for m/, is obtained
in a similar way as a consequence of the symmetry occurring in this case.

2. (Hyx(n)s tp). Here my < 0 while mg > 0 hence m; < my. The torsor equation for H,, (x
is given by (14 AZ1)P =1+ Nuy and for p, by Z§ = uy where uy,uy € A*. Modulo , these
torsor equations reduce to 2z — z; = 4; and 25 = 4y with acting group schemes Z/pZ and p,
respectively on the special fibre.

We start by computing mj. We can choose the parameter T so that uy = T™! but us =
> icz @il i remains as a power series and therefore, accordingly, #; = t™ and iy = Y o>t a;t* for
some integer ! where a; # 0. As in case 1 of this proof, we have that the parameter of (X1 )

1 . _ —1)\L/ma
is z := zl/ and we can write t = 2P (1 — z—mlp 1)) . We now have two cases to treat,

namely (al) and (a2), depending on whether or not  is coprime to p.
(al) In this case, ged(l,p) = 1 = mg = 0. We base change the torsor equation of (Xs ) —
(Xp)k to (X1) Kk to obtain the torsor equation for (Y3)r — (X1,5)x:

25 fZat fZaz lfz*ml(p 1) i/ma *Zal lfmilz*ml(pfl)Jr...)

i>1 i>1 i>1

szml(pfl) + ) + al+1z(l+1)17(1 _ Hil

Tl Gy
my mi

As this is a p,-torsor equation, the factor Ezlzlp can be eliminated by multiplication by a suitable
p-power to obtain an equation: z§ =1 — — L z=m1(r=1) 4 higher order terms. So the conductor
variable is mj = —m;(p — 1), as this is the smallest power of z in the above expression which is
coprime to p.

(a2) In this case ged(l,p) # 1. By the details outlined at the start of this paper (cf. Back-
ground), we know that the torsor equation of (X2p)r — (Xp), can be expressed as follows:

= 14 Qmt™ + 30, @it' = 14+ 3,5, ait'". By a suitable change of variables, we can
express this p-torsor as: 25 = 1+ 3,5, @it' & (22 — 1)P = 3,5 ait' = 25 = Y0, a;t’.
We can now proceed to base change the torsor equation of (X2 4)r — (Xp)k to (X1,)r to obtain
the torsor equation for (Y3)r — (X1,p)x:

25 = Z a; 2P (1 - z_ml(p_l)) — Z 2P (

i>mo i>me

- —ml(p—l) + )
mi

— amg 5m2p (1 o2 —7n1(p—1) + ) + dm2+1z(m2+1)p (1 . mo + 1Z—m1(p—1) + ) + .
mi

mi

= dm22m2p - m zm2P=m1(P=1) | higher order terms.

Som} = mgp m1(p — 1) as this is the smallest power of z in the above expression which is
not divisible by p.

We now determine mj}. We choose T so that u; = ZieZ a;T* and us is given by T" in the
case (al) and by 1+ 7™2 in the case (a2). After reducing these equations modulo 7, we have
-z = Zi_:lml a;t* and (al) 2§ = t" or (a2) 2z} = 1+ ™2 on the special fibre.

p
(al) We can write ¢ in terms of 25 in (Xa4)x since 25 = t" & ¢ = (z;/h> . This implies

1/h

that z := z3’" is a parameter of (Xa,), and we have that ¢ = zP. We base change the equation



of (X15)k — (Xp)k to (X2)r to obtain the torsor equation for (V) — (Xop)k: 27 — 21 =

oy @itt = Y @2" = Gy, 2™ P + higher order terms. The leading term 2™ (as well as
all the other terms 2?) is a multiple of p but, as in case 1 of this proof, after an Artin-Schreier
transformation we obtain: zf — 21 = @, 2™ + higher order terms. Therefore, the conductor
variable m}, = m.

(a2) As above, we write ¢ in terms of 29 in (Xop)g: 25 = 1+t™2 & 28—1=1"2 & (20— 1)P =
tm2 &t = ((22 — 1)1/m2)p. This means that the parameter of (Xo4)y is 2z := (2 — 1)1/™2
and so, from the above, we obtain ¢ = 2. Now, we base change the equation of (X1)r —
(Xp)r to (Xa,)k to obtain the torsor equation for (Y3), — (Xop)k: 27 — 21 = Ei_:lml
Z;:lml @; 2P = G, 2™P +higher order terms. After an Artin-Schreier transformation we obtain:
2¥ — 21 = G, 2™ + higher order terms. Therefore, as in the (al) case, the conductor variable
Mo =1Mj.

a;t" =

3. (Hyx(n)s Hn). Here m; < 0 while my € Z. The torsor equation for H,, () is given by
(1+XZ1)P =14 Nuy and for H,, by (1 4+ 7"Z3)P = 1 4+ 7™Pug where ug,us € A*. Modulo T,
these torsor equations reduce to 2} — 21 = @; and 25 = @y with acting group schemes Z/pZ and
oy, respectively on the special fibre.

We start by computing m/j. We can choose the parameter T so that u; = T™! but us =
Zz‘eZ a;T? remains as a power series and therefore, accordingly, %; = t™ and @y = Y oisi a;tt
for some integer [ where a; # 0. Recall that [ = mo here. As in case 1 of this proof, we have
that the parameter of (X;3); is z := z}/ml and we can write t = 2P (1 — z’ml(p*l))l/ml. We
base change the torsor equation of (X2 )r — (Xp)i to (X1,4)r to obtain the torsor equation for

(Yo)e — (X1p)k:

B=Dat = ar (1- 2@ = N g (1 = milz*ml(p*” + )

i>1 i>1 i>1

mi mi

= g;2" (1 - Lz‘ml(”‘” + ) + Gyq 1 2P0FY (1 — H—lz—ml@—l) + ) + ...

=a2P — %zl”_ml(p—” + higher order terms.

As this is an a,-torsor equation, the term @;2?! can be removed and we can ignore the terms
involving 4’s which are divisible by p. So the conductor variable m} = maop — mq(p — 1), as this
would be the smallest power of z which is not divisible by p.

It remains to compute mj in this case. This time we choose the parameter T so that u; =
ZZEZ a; T is the power series and us = T™2. After reducing modulo 7, we have @ = Z;:lml a;t?
and Gz = t™2 on the special fibre. We can write ¢ in terms of 2o in (Xa)s since zg =t" &

P
t= (221/"”) . This implies that z := zé/mz is the parameter of (X5 ), and we have that t = 2.
We base change the equation of (X ) — (Xp)r to (X2,)r to obtain the torsor equation for
(Yo)i = (Xop)k: 27 — 21 = Zi_:lml a;tt = Z;lml @; 2P = Gy, 2™P + higher order terms. After
an Artin-Schreier transformation we obtain: zf — 21 = Gm, 2™ + higher order terms. Therefore,
the conductor variable mj = m;.
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We remind the reader that in the remaining three cases, we cannot reduce modulo 7 and
work at the level of special fibres. Thus, the computations here are slightly more involved. It
will be useful to recall in advance here the following equality given by the Binomial Theorem

p—1
14 (7"bZ)" = (1+7"bZ)" = (p> (7"b2)F (%)

k=1 k

which can be generalised to the Multimonomial Theorem (or Identity)

P
1+ Z (ﬂ'"biZi)p = (1 + Zw”biZi> — pr"biZi + higher order terms (k).

We also mention here that to circumvent our inability to take, say, p-th roots of coefficients
belonging to the ring R, we can adopt the following technique for a given element a; where
vk (a;) = 0; namely, it can be expressed as a; = bY 4 ¢; for some b;, ¢; € R such that vg(b;) =0
and vk (¢;) > 0.

4. (Hn, ptp). Here my € Z while mg > 0. The torsor equation for H,, is given by (1+7"Z7)P =
14 7Py and for u, by Z§ = uy where uy,us € A*. We start by computing m/. We can choose
the parameter T so that u; = T™! but us = ZieZ a; T remains as a power series. We can
express T in terms of Z; in order to read off the parameter for X;;: (1 4+ a"Z1)P = 1+
aPT™ & ﬂ”pi—i—Zi; (Z)ﬂ"ka +1=147"T" & W”pi—i—ZZ: (z)w”kZ{“ = "™ &
20 (20 A Qi 2) = o 23 (1450 (e m ) = T s 7

1/m p —1 n(k— k— l/ml
(Zl/ 1) (1 3 () (k=p) 7] p)

We know from the proof of case 3 that Z := le/ml is the parameter of X; ; modulo 7 (hence
it is a parameter of X ;) and so we can write:

p—l 1/m1
p —n(p—k —m —k
T=27°(1+ q—n(p—k) z—mi(p—k) .

For convenience, set B = Y.b_} (?)n "=k z=mi@=k) g0 that T = 27 (1 + B)Y™  We now
have two cases to treat, namely (al) and (a2), depending on whether or not | = min{é|vk (a;) = 0}
is coprime to p.

(al) In this case, ged(l,p) = 1 = mg = 0. We base change the torsor equation of X, — X,
to X1 to obtain: Z§ =3, a;T" =, ., a2 (1+ B)/m = > ien @i Z™ (1 + =B+ ) =

Yz 2P+ Nicn 2B A o = U (a)=0 G Y (050 LT Vg i ZPB A
For the terms where vg(a;) = 0, we can express a; = b’ + ¢; for some b;, ¢; € R with vk (b;) =
0 and_vK(ci) > 0 to obtain: Z§ = 33, =0 biZ% + 22, (ey>0 giZZp + D ok(a)>0 42T +
Sz MZPB 4 =3 =0 (02 50 G+ Yy B ZPB + .., where we set
d; = ¢; if vg(a;) =0 and d; = q; if v (a;) > 0. Now, as this is generically a p,-torsor we can
take the p-power term (blZ l)p in the first summation into factor, so that we get a new equation:

78 =1+ Z”“ZZFO (b0 Z7)" + X, a0 by i 2P0 £, Pt ZPG-D B 4 which
7

can be rewritten using the identity (xx), and after multiplying by a suitable p-power, as: Z§ =

L=D> vx(bi)=0 byt 2+ ZUK(d,»)>0 b, Pd; ZP=0 + Y ez ibTTpfin(i_l)B + higher order terms.
i#l )
The summation Z’L}K(di)>0 dib, ?ZPi=) does not contribute to the conductor variable since the
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powers of Z involved are p-powers so we can safely exclude it. Indeed, if the coefficient with small-
est K-valuation in the right hand side of the above equation occurs in the above summation say in
the term d;b; * ZP0~Y then vy (d;) is necessarily divisible by p (since (Y3) is reduced), and we can
assume without loss of generality that this summation is of the form w?!(f(Z)? + wg(Z)), where
f(Z) € Ay is aunit and g(Z) € A;. Writing 1+ 77 f(Z)P = (147t f(Z))P — S P_] *) (wtf(Z))k
and multiplying the above equation by (1 4+ 7'f(Z))™? we obtain an equation: Z§ = 1 —
P v by=0 b 02 = S () (wtf(2)" + Y iz lb’Tpla"’Zp(i_l)B + higher order terms. Fur-
i#l
thermore the summation Zi: ) (= f(Z ))k doesn’t contribute anymore towards the coefficient
with smallest possible valuation in the right hand side of the above equation. For the rest
of this proof we will automatically operate in this way and ignore such summations. Then,
up to multiplying the coefficients by units, we have: Z§ = 1 — UK (P) > o (bs)=0 bflbiZi_l +
il

ruk®-ne-D 3 ’ "as zp(i=D=mi(p=1) 4 higher order terms.

Clearly the smallest power of 7 is v (p) —n(p—1) and so we look to the summation with that
coefficient for the conductor variable. For zero valuation coefficients, the index of the summation
will start at the integer [, the index corresponding to the lowest zero valuation coefficient. As
m} is the smallest exponent appearing in the relevant summation which is coprime to p, we have
that mj = —my(p —1).

(a2) In this case ged(l,p) # 1. Again, we take T = ZP (1 —&-B)l/m1 where B is as de-
fined previously. We then base change the j,-torsor equation of X, — X3 to X;; to obtain:

Zg = Zzez azT =1+ ZUK (ai)= OazT + ZUK >0 azT =1+ va (ai)= =0 ;2" p(l + B)Z/ml

z>m z>m

Do (a)>0 a; Z% (1 + B)"/™ F;r the terms where vk (a;) = 0, we can eQXpress a; = b + ¢; for
some b;, ¢; € R with vg(b;) = 0 and vk (¢;) > 0 so that: Z) =1 T2 o (bi)=0 WZzw(1+ B)i/ml +
D=0 G2 (L+ B)™ 4 D (a)>0 GZP (1 + B)/™ =1 T i biy=o VE 2P (1 + B)/™
2 or(d)>0 d; Z% (1 + B)i/ml where we again set d; = ¢; if vg(a;) = 0 and d; = a; if vg(a;) > 0.
Now we continue by expansion of the binomial terms: Z§ = 1437, 1o 0 Z* (1 + =B+ ) +

> o (ds )>Od-Z’p (1 + B +.. ) =1+ b= o (0:29)° + ZUK(bi):O m—lbfZlPB
+ 2o (@>0 GiZ" + ka(d )0 42"’ P B + higher order terms.

The summation ZUK (d)> o di Z does not contribute to the conductor variable since the
powers of Z involved are p—powers so we can safely exclude it (cf. Proof in case (al)). Now
using the identity (x), and after multiplying by a suitable p-power, we obtain an equation:
zZy=1- psz(b 0biZt + > or(bi)=0 70t Z'P B + higher order terms = 1 —p>Z,5, 02" +
iy V2B + h1gher order terms, which equals:

L=p> ism, biZt+ Zl>m2 — A (Z ( ) —nlp=k) z—mi(p= k)) + higher order terms =1 —
VK (®) > isma b Zi v (p)—nlp=1) 32 b gip—ma (p— D thigher order terms; up to multiplying

the coefficients by units. The second slggingtllon has the smallest 7 valuation and so the conductor
variable is m}j = maop — my(p — 1).

We now determine mj. We choose the parameter 7" so that u1 =), a;T" and ug = T" in
the case (al) while ug = 1+ T™2 in the case (a2).

(al) In this case, mg = 0. The parameter of Xop is Z = Z;/h where T' = ZP is obtained
1/p\?

from the torsor equation Z§ = T" « (Z = T. We base change the torsor equation

of X1, — Xp to Xop to obtain: (1 +7"Z1)P = 147", a; T =1+ 7" Yicz a; 2P =
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L+ 7" 3, (a)=0 a; ZP" 4 w"P 2ok (i) >0 a;ZP'. For the terms where v (a;) = 0, we can ex-
press a; = bY 4 ¢; for some b;,¢; € R with UK(b) =0 and ’UK(Ci) > 0. Hence (1 4+ 7"Z)P =

n n n i __ n i\ P
L4+a™P 3 biy=0 OF ZP+r Py k(>0 GZP HTP 3 (a0 G2 —_1"‘2@ (b:)=0 (m"b:2°)" +
ZUK(01)>07T pCZZp + ZUK(M)>O7T PaZZp =1+ Z’UK(bi =0 (ﬂ- biZl) + va >07T "Pd; sz
where we again set d; = ¢; if vg(a;) = 0 and d; = a; if vig(a;) > 0. Using the 1dent1ty (%),
and after multiplying by a suitable p-power, we get: (1 + 7"Z;)P =1 — vaK(bi):O b, Z" +
Z’L}K(di)>0 7" d; ZP" + higher order terms = 1 — gvx (P)+n D ismy b; Z* +higher order terms; up to
multiplying the coefficients by units. Now, m} is the smallest exponent appearing in this leading
summation which is coprime to p and so mf = m;.

(a2) In this case ged(l,p) # 1. From the torsor equation ZJ = 1+ T™2 we can de-
duce: Z8 = 14T™ & Z8 —1 = T™ & (Zy — 1) — Y02 (B)(—1)kZE = T2 & (Z, —
1)r (1 — (Zy—1)P 0} (g)(—l)kzg) = T which implies:

1
T=((%- 1)%)'” (1= (2 - )7 2L Q) (-1} 25) ™, and so we take Z = (2, — 1)/,
which we already know to be the parameter olf X2, by case 2 of this proof, in order to write: T' =
zZP (1 — Z7mep SR (P) (—1)R(1 + Z’”?)k) ™2 _ For simplicity, let us denote SO+
Z™m2)F by B so that we can write T = ZP (1 — Z‘m”’B)’%z. We can now base change the
torsor equation of X, — Xj to Xpp to obtain: (1 +7"Z)P = 1+ 7" ,aT" = 1+
T Y g 2P (L= 2T B)TE = 14a Yy i 2P (1= L 2T B L) = 1 S g a2
-y %Z”(i_m”B—i—.... Partitioning any summation above over the index ¢ into the terms
where vg (a;) = 0 and the terms where vg (a;) > 0 gives: (14+7"Z1)P = 147" " e (a:)=0 a; 2P —
TP va(ai):O :7‘; zpli=m2) B 4 pnp ZUK(M)>O a; ZP* — P ZUK(G )>0 :7‘: Zprli= m2)B + .... Again,
for the terms with vk (a;) = 0, we can express a; = b + ¢; for some b;,¢; € R with vk (b;) =0
but vk (¢;) > 0 and so we have:

(AaZy)P = 1+7"P 30, ()0 U7 ZP 7P Zv_K(cipoCiZm—W"vaK (b:)=0 m;ZW ")

P ZUK(C1)>O vzn (= m2)B + " Z’UK(!M,)>O a; 4P —m"? ZUK(G1)>O ;s; zrtm) B

+higher order terms = 1+ o (b 2 P_qnp b, Z”(Z m2) B4 higher order terms;
g v (b;)=0 v (b;)=0 my g

excluding summations whose coefficients have positive valuation. Using the identity (xx), and
after multiplying by a suitable p-power, yields:

(I+7"Z)P =1 _vax(b A —7T"P Y (b)= 0 by Zp(z ™2) B 4 higher order terms = 1 —
R SR IVARS DY ibi gp(i=m2) (Z i )( k(1 + Zm2) )Jrhlgher order terms

v (bi)=0 mqy
= ror (AN S b Z0 + vk (P)Anp D on b1)=0 :}Z; zp(i=m2)(1 4 Z™2) 4 higher order terms; up
to multlplylng the coefﬁments by units. Slnce vk (p) + n is the smallest exponent of 7 and
I = min{i|vi (a;) = 0,gcd(i,p) = 1} = my is the starting index, we have that m, = my is the
conductor variable.

5. (ip, f1p). Here my,mo > 0. The first p,-torsor is given by the equation Z¥ = u; and the
second p,-torsor by Z§ = uy where uy,us € A*. Modulo 7, these torsor equations reduce to
2y = 1y and 25 = Gy with acting group schemes 11, on the special fibre. On the special fibre the
reduced power series are of the form @ = Y., @;t* for some integer . Depending on whether
or not these | are coprime to p or not, there are three cases to consider. In particular, the pairs
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(al,al), (al,a2) and (a2,a2). We only treat the cases (al,a2) and (a2, a2), the case (a2,al) is
treated in a similar way to the case (al, a2). For the case (al,al) see Remark 1.8.
(al,a2) Here my = 0 and mo > 0. We start by computing m/. We can choose the parameter

T so that u; = T" but ug = 1 + ZUI(_(>ai):O a; T + Z'UK(ai)>O a;T* remains as a power series.
1=M2
From the torsor equation Z} = T" we can write T = ZP where Z = le/h is the parame-
ter of X; . Then we can base change the torsor equation of X5, — Xj to X;;, and obtain:
Zy =14 P (a=0 61" + 30 (050 61" = 1+ 2o (a)=0 62" + 2o (a)>0 @i 2" For the
i>mo i>mo
terms with v (a;) = 0, we can express a; = b¥ + ¢; for some b;,¢; € R with vg(b;) = 0 and

vk (¢;) > 0 and so we have: Z5 = 14 3, (5)=0 DY 27" + D 0 (ei)>0 i7" + D (a)>0 WLV =

i>mo i>ma
L+ > uw(bi)=0 (biZi)p + D vk (e)>0 ¢ ZP + ZUK(M)>O a; ZP!. Using the identity (+), and af-
iZmz ing . .
ter multiplying by a suitable p-power, we get: Z) =1 — pZUK£bi):0 b;Z" + Zvrg(>0i)>0 i 2P +
12Mma 1Z2m2
Z’UK(U«L')>O a; ZP'+higher order terms = 1—mvx (@) Z’UK(bi):O biZZ+EUK(Ci)>O Cin1+ZUK(ai)>0 a; P
i>me i>mo

+higher order terms, up to multiplying the coefficients by units. Therefore, m} = ms. Here we
ignored the last two summands in the above equality (cf. proof of case 4 computing m/).

Now we want to determine m5. We can choose the parameter T' so that u; = ZieZ a; T? is

a power series and ups = 1 + T™2 is in simplified form. We know from case 4 that the torsor
1

equation Z§ =1+ T"™2 gives rise to: T = Z? (1 — Z7mep SR () (—1)R(1 + Z’”Q)’“)7T2 where

7 := (Zy — 1)}/™2 is the parameter of X5 ;. We have that Z} = Y ez a;T" = > vx (ai)=0 a; T" +
i>l

2ok (@) >0 a;T* where [ is such that ged(l,p) = 1. We can write T = ZP (1 — Z—mng)% by

letting B = Zﬁ;i (P)(=1)k(14Z™2)*. Then we base change the torsor equation of X1, — X, to

Xap and obtain: 2} = Su(a=0 @27 (1= Z7™PB)™ + Y, 0 a2 (1~ Z B

For the terms where vk (a;) :_O, We can express a; = bf + ¢; for some b;, ¢; € R with v (b;) =0
and vk (¢;) > 0 and so we have: _ _
A ka(bi)zo bfZ”’ (1- Z”"“’B)"%2 + va(ci)>0 c; 2% (1 — Z*m?pB)"%2

>0 ) >l )
+ ZUK(M)>O a; 7% (1 — Z‘”‘”’B)"+2 = Z'UK(bi)ZO bfZip (1 —Z—m2PB)m2

i>l

+ka(dj)>0 d; Z% (1 — Z*m?pB)ﬁ , where d; = ¢; if vg(a;) = 0 and d; = a; for vk (a;) > 0.
Hence: Z¥ = ZUK('I;[)ZO A (1 — mLZZ—mﬂ?B + ) +E’U}((di)>0 d; 2 (1 — mizz—mzpB + ) =

=0 Y27 = L0 B 2V 27 B T (00 427~ Sayo 427 51577 Bt
higher order terms. -

Taking into factor the p-power b Z'P = (blZl)p we obtain: ZV = 1+ZUK(1;l):0 b, by ZpD —
Z”K(lgl):o b;pbfzp(i_l) %Z_mzpB+Z”K(di)>0 b;pdizp(i_l)_zvl((di)>0 b;pdizp(i_l) %Zﬂan_F
higher order terms = 1 + S orci=o0 (07027 =3 viy=0 b, by Zzprmh = z=mar B

i>l i>l

+ ke (di)>0 b, Pd; zP0=0 — Dok (di)>0 b;pdin(i’l)miQZ*;”pB + higher order terms. Using the

identity (xx), and after multiplying by a suitable p-power, we get Z7 = 1—p D v (bs)=0 bl_lb,-Zi*l—
i>l
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va PbPZP(z ) _i Z_mzpB+ZvK(d ob pdin(i_l)_ZvK(dibo bl_pdin(i_l)%Z_mzpB-&-
hlgher order terms = 1—p ZUK(bil)Zo bl_lbz'ZFl*ZvK(l;l):o b, Pbf Zpli=h) Lz mep (Zi;i P (k1 + ZmQ)k)
> 2
+higher order terms = 1—a"®) 3" ¢y b 1 Zi 4o )20 b, P} = zplimmmap (14
i>1 i>

Z™2) + higher order terms, up to multiplying the coefficients by units. Then, clearly, mh =
—ma(p — 1) is the conductor variable. Here we ignored the term 3, .50 b, Pd; ZP(=0 in the
above summation (cf. proof of case 4 computing m}).

(a2,a2) Here both mi,ma > 0 and we start by computing mj. The parameter T can
be chosen so that wqy = 1 4+ T™! but uy = Zz‘ez a;T* remains as a power series. From
the torsor equation Z7 = 1+ 7™ we know from case 4 that we can write T as: T =

Zp< Zmmp 5 ( Y(=DF(1+ 2m) )Wl where Z := (Z; — 1)"/™ is the parameter of

X1,. As before, for purposes of convenience, we write 7' = Z? (1 — Z_’””’B)ﬁ where B =
S ()(=1)F (1 + Z™)*. Then we can base change the torsor equation for Xop, — Xp to X1
and obtain: Z§ = 1—&—2%(;1.):0 aiTi+sz(ai)>O a;T" = 1+ZUK(>ai):O a; Z% (1 — Z""“’B)ﬁ +
12MmM2 ) 1=Zma
ka(ai)>0 aiZip (1 - ZﬁmlpB)mil =1+ ZUK(M)=O aiZip (1 o %ZimlpB + )
ing

+ ZUK(ai)>O a; 7P (1 — #Z*mlpB + ) = 1+va(a¢):0 aiZip_ZvK(ai):O aizipﬁzfmlpB_F
) i>mo i>ma

Do) >0 GZP =3, (050 @2 1= Z 7P B+higher order terms. For the terms where v (a;) =

0, we can express a; = b¥ +¢; for some b;, ¢; € R with ’UK(b ) =0 and vk (c;) > 0 to obtain: Z§ =

1Y o (5 =0 B 2P =Y ) m0 V2P S 27 B 0 G 2P =Y (050 GiLT S 2P B4

i>me i>mo .
ZUK(M»O a; Z'P — EUK(ai)>O aiZimelZ PR hlgher order terms = 1+ >, (5,)= (b A )
. 1>m2
> ok (b)=0 bfZipmilZ_mlpB—FZvK(di»O d; 7 =2 (d)>0 d; 2P m—lZ_m”"B—Fhlgher order terms,
’izmg

where we take d; = ¢; if vk (a;) = 0 and d; = a; with vk (a;) > 0. Using the identity (), and af-
ter multiplying by a suitable p-power, we get: Z5 = 1—p > 0, (5:)=0 biZ =Y v (bs)=0 bfZipmilZ_mlpB—i—
7,'2177,2 iZmz

higher order terms = 1-p >, (5:)=0 b-Zi—ZUK(b )=0 pripiZ’mlp (prl (p)(—l)k(l + Zml)k)+

i>mo i>meo
higher order terms. Then up to multlplylng the coefﬁments by units we have:

Z8 =17 P 3 =0 bi ZiHTE P ST =0 BF mi Z(i=m1)p (14 7™ )+ higher order terms.
1>ma i>ma
In order to determine which is the smallest power of Z and hence the conductor variable

m), we need to compare mg with mop —m4(p — 1) since both summations have coeflicients with
the same 7 valuation. Note that mo < mop — mi(p — 1) is equivalent to m; < mgy. Assuming
my < mgy, we have m} = mgy and, by symmetry, m}, = mip — ma(p — 1). The case m; < my is
entirely similar.

6. (Hn,,Hn,). Here mq,mqa € Z and both are coprime to p. The H,,-torsor equation is
given by (7" Zy + 1)P = 1 + 7P™u; and the H,,-torsor equation by (7275 4+ 1)P = 1 4 wP"2uy
where u1,us € A*. The two torsors have associated conductor variables m1,mo respectively.

We begin by computing m}. We can choose the parameter T so that u; = 7™ but

_ _ 71/ m1
ug = Y,z a;T" remains as a power series. By case 4, we can express T in terms of Z := Z,
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1

the parameter for X 3, as: T = ZP (1 + Zi;i (i)wfnl(p*k)Z’ml(p*kU m and, for convenience,
we set B = Zi;} (P)ym—m@=R Z=m=k) 5o that we can write T = ZP (1+ B)mil Then we
base change the torsor equation for X, — X; to X7, to obtain: Z§ = 1 + P2 Z ez a; Tt =
L4237, (any=0 aiT" + 77" 2ok (@) >0 aiT" =1+ 7P" 3 (a)=0 @i 2P (1 + B)™1

i>mo i>mo

+mPm2 EUK(G )>Oa1Zp(1 —I—B)’”l =14 P2 va(a )= Oalz” (1 + 7B_|_ )
i>me
+mPne va(ai)>0 a; 2" ( o B t ) = 14mme ZUK(ai):O a; Z"+mPnz ZUK(ai):O aiZipLB—i_

i>ma i>ma

P2 ZUK(M)>O a; Z%® + qpne ZUK(M aZZ”’ B + higher order terms. For the terms where
vi(a;) = 0, we can express a; = bY + ¢; for some bi,c; € R with vg(b;)) = 0 and vk (c;) > 0

to obtain: Z§ =1+ 7P 3", 4, Ob Z%® 4 P2 N (bi)= Opr’p—B—l—pr ka(c 0 GZP +
z>m2 i>ma
T2 Y e (e)>0 c; 7P B+7Tp”2 > oge(ai)>0 @i Z"° p+7rp"2 D on aiZ”’—B—i—hlgher order termg =
10 (by=0 (7 szzl) FTP2 Y7 (bi)=0 U] 2P e BmrPn ZU ()50 GZPHTP2 T 1ys0 GiZP
i>mo z>m2

higher order terms, where d; = ¢; if vig(a;) = 0 and d; = a; if vig(a;) > 0. Using the identity
(#x), and after multiplying by a suitable p-power, we get
(72 Zo+1)P = 1=p> e (b)=0 T"20s 274" 7 (hiy=0 b 2P = B—|—h1gher order terms = 1—

i>mo 1>m,z
P ur (bs)=0 7"2b; Zi 4 mPn2 D v (b pr”’ (Z ( ) m(k=p) z—ma(p— k))—l—hlgher order terms.
i>mo zv>7”'7/2

Then up to multiplying the coefficients by units we have: Z§ =1 — qvx®)Ftn2$> (0 (b, Z0 +
ing
VK (P)+pna—n(p—1) ZUK_’SM‘):O bfZimelZ*ml(p’l) + higher order terms.
=M

We have to compare vk (p) + no with vg(p) + pne — ni(p — 1) in order to determine the
smallest power of 7. Note that v (p) + na < v (p) + pna — n1(p — 1) is equivalent to ny < ng
and so when this happens, m)| = mg and when n; > na, we have m} = map — myi(p — 1). We
also need to consider the case where n; = ny. Comparing me with mop — my(p — 1) we have
that:
if my < mo

) ) ma
m) = min{mg, map —my(p— 1)} = i
mop —my(p—1) if my > mo

Now we want to determine m/, but by the symmetry present in this case this is entirely similar
to the above consideration. In particular, if ny < ng then mf = mip — ma(p — 1), if ny > no
then m/, = my and, finally, if ny = ny then:

mip —ma(p—1) if my < mo

mb = min{ma, mip — ma(p— 1)} = ;
my if my > mao

All six possible cases have now been treated. O

We are also able to state when the Galois cover Y, — Xj has a torsor structure by taking
into account when base changing in the above proof without additional modification resulted in
the equation of the normalisation (see also Theorem 3.4).

Theorem 1.2. Let f; : X;, — X3 be non-trivial Galois covers of degree p above the formal
boundary X, which are generically disjoint for i = 1,2. Let G; be the corresponding group
schemes fori=1,2 and let Y, be as defined in Theorem 1.1. Then Y, = X1 Xx, Xop, tn which
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case Y, — Xy is a torsor under G Xgpecr G2, if and only if at least one of the two group schemes
G is the étale group scheme H,, (x)-

Proof. See Theorem 3.5. O

Definition 1.3. For the extension B/A of DVR’s where X, = Spf (A) and Y, = Spf (B) are as
in Theorem 1.1, we define the special different(s) by

dey = (c1 = Dp(p = 1) + (c; = )(p—1)

dsy = (c2 = 1)p(p — 1) + (e = 1)(p— 1)
Lemma 1.4. The above two special differents are in fact equal: ds;, = ds, .

Proof. Follows immediately by substituting the possible values for ¢} and ¢}, under each of the
six cases given in Corollary 1.2. O

This ds,, ¢ = 1,2, coincides in fact with the term ¢(s) which appears in Kato’s vanishing
cycles formula in the case of a Galois cover of type (p,p) (Theorem 6.7 in [Kato]). We will also
see this variable makes an appearance in our genus formula in Theorem 2.2.1 in the next section.

Corollary 1.5. We have the following relationship between conductors:

cy —cy = (e1 — ca)p.

Proof. Follows from rearranging the relationship between conductors given by ds, = ds,. O

Had Corollary 1.5 been given, we would have only needed to perform half of the computations
in the proof of Theorem 1.1. In particular, with m} (or equivalently ¢|) obtained, m} (or
equivalently ¢,) would be determined by this relationship. In fact, this formula could have been
derived independently using the theory of higher ramification groups as per [Serre] but only
for the (”HUK(A),’HUK(A)) case, the first of the six cases in Theorem 1.1. This is because this
ramification theory only holds when the residue field extension is separable and so both group
schemes G, i = 1,2, must be étale.

From the calculations in the proof of Theorem 1.1 it is also possible to compute the degree
of the different 4 in the extension B/A. Since the ramification index of this extension e = 1, we
see easily that 6 = d; + 6] = d2 + 85 (cf. Theorem 1.6 for notations).

Y,

N

X1p 5 Xap

NLA

Xy
Theorem 1.6. With the situation described in Theorem 1.1, let &, (resp. §;) denote the degree

of the different corresponding to the extension Y, — X, (resp. X;p — X3), i = 1,2. Then, for
all possible pairs (G1,G2), we can explicitly state the values for 8} as follows:
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Table 1: Degree of the differents ¢}, d}

| (G1,G2) | o4 | &4
H’U A 7H'u A
K(\) K(\) 0 0
Hoge (N5 Hp vK (p) 0
Hore () Hn vir(p) —n(p —1) 0
Ho, pip vi (p) — =D 1) vi (p) — HEBEE (p — 1)
Iips Ip vie(p) — 22 (p — 1) v (p) — 22 (p — 1)
If n1 < no then &) equals: If n1 < no then 65 equals:
Hoys Hio vk (p) — vK(Pp)Jrnz (p—1) vk (p) — UK(P)‘F"I;’*’”Z(P*D (p—1)
If n1 > no then &5 equals: If n1 > no then &5 equals:
v (p) — UK(P)+"2;’*“1(P*1) (p—1) v (p) — vx(pp)er (p—1)

Proof. For an arbitrary rank p torsor with conductor variable m and torsor equation ZP =
1 + 7™T™ + higher terms, where 0 < n < vg()), the degree of the different is given by § =
vi (p) — n(p — 1). This means that computing the degree of the different § reduces to obtaining
n from the exponent of 7 in the coefficient of the term corresponding to the conductor variable
m. From our calculations obtained in the proof of Theorem 1.1, we can simply read off the n
value in each of the cases and substitute into the formula v (p) — n(p — 1) to obtain the degree
of the different at that particular stage. Strictly speaking, we can only rely on this approach for
the last three cases because in the first three cases we worked modulo 7w on the special fibre. In
the first three cases to compute d we use the fact that the degree of the different is preserved by
étale base change. O

Example 1.7. With the type (p,p) case established it is possible to manually perform the same
calculations in the type (p,...,p) setting. We illustrate this with a type (p,p, p) example, using
the (p,p)-type results in Theorem 1.1 and Corollary 1.2 iteratively at each stage to determine
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the conductors in terms of the base level conductors.

Y

(X1 x Xy)" (Xo x X3)®

\/

Suppose X; — X are torsors under the R-group scheme G; of rank p for ¢ = 1,2,3 which are
pairwise generically disjoint, i.e X; is generically disjoint from X; for i # j. Write (X; x Xa)"°"
and (X x X3)"°" for the normalisation of X in X7 g X x, Xo x and Xa i X x, X3 i, respectively,
and Y for the normalisation of X in X1 g X x, Xo K XXK X3 k. For the purposes of an example,
let G; = Hy () for all i and assume ¢; < ¢z < c3 and ch < 4. Then, by applying the type (p,p)
formula 1terat1ve1y we can compute the conductor ¢f as follows (51m11ar1y one can compute ¢ ):
cf =chp—ch(p—1)=(esp—c2(p—1))p—(c1) (p— 1) = csp® —cap(p — 1) —ca(p — 1).
Remark 1.8 We discuss an example which illustrates the case (al,al) occuring in the proof of
Theorem 1.1, the case (pp, 1tp). Here mi = mo = 0. In this case one can show that the group
schemes acting on the torsors Y, — X, ;, with conductor variables m/ are Hn; with 0 < n} < vg(A)
for i = 1,2. Moreover, one can show n} = n} and m} = mj. Suppose u; = T" and uy = T" (v(T))
where v(T) = >°.o, a;T" such that ag € R* is a unit. The conductor variables m}, m} are in fact
encoded in v(T). The proof is complicated to present in general. Instead, we treat an instructive
example to illustrate the computations involved.

Suppose p # 2, u; = T and us = T + T3 = T(1 + T?). Then the u,-torsors above X,
generically defined by Z7 = T and Z§ = T(1+ T?) are linearly disjoint. We begin by computing
m}. We can write T' = ZP where Z = Z; is the parameter of X; ;. Then we can base change
the torsor equation for Xap, — Xp to X140 Z5 = T(1 4+ T?) = ZP(1 + Z?P). Removing the
multiplicative factor ZP (which is a p-power) gives rise to an equation of the form: Z¥ = 14227 =
(1 + ZQ)p — Zp_l (p) Z%k Multiplying this equation by the p-power (1 + Z2)_p =1-pZ%+ ..,
results in an equation of the form: Z§ =1 — Zi;} (z) Z?F 4 higher order terms. The smallest
power of Z which is coprime to p is obtamed when k = 1. Therefore, m} = 2.

Now we want to determine mj. We have that Z§ = T(1 4+ T?) which we can write Z} =
T' < ZP = T where the parameter of Xop is Z = Z, and the relation 77 = T'(1 + T?) im-
plies: T =T (1+T2) " =T (1-T2+T =TS +..) = T' + (-T'T2 + T'T* — T'T® + ...) .
From this we deduce that T can be expressed as T'+ higher powers of T'. In particular,
T =T -T2 +T°—-T7 4+ ... We can now proceed to base change the torsor equation of
Xip — Xp to Xop: ZV =T =T — T + T — T'" + higher order terms = 2?7 — Z37 +
Z% — Z™ + higher order terms = ZP (1 — Z?F 4 Z*" — Z% + higher order terms) . Removing
the multiplicative factor ZP, gives rise to an equation of the form: Z7 = 1 — Z% + 7% —
Z5P + higher order terms = (1 - 7%+ Z4...)p —p>2(Z% + Z* + ...) + higher order terms; by
using the formula (x+). Multiplying this equation by the inverse p-power (1 — 22+ Z4..)™",
results in an equation of the form: Z¥ = 1 — p> (Z% + Z* + ...) + higher order terms =

1 —7avx®) S (Z2 + Z* + ...) + higher order terms; up to multiplying the coefficients by units.

v (p) _ 7

Therefore, the conductor variable is mj = 2 = m} and ny = “05 = nj.
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§2 Computation of vanishing cycles

§2.1 Computation of vanishing cycles in Galois cover of degree p

In this section we recall some results from [Saidil].

Definition 2.1.1. For an R-curve X and a closed point x € X, we let X := Spf(;)xw denote
the formal spectrum of the completion of the local ring of X at x. Assume Xy is reduced. Then
the genus of the point x is given by:

9z =0 — T+ 1

where

o 6, = dimy, (om /ox),

o 1, is the number of mazimal ideals in O.

Here O, := @X,x/w denotes the stalk of the special fibre X}, at x and O, denotes its normalisation
in its total Ting of fractions.

If g, = 0, the point « is either a smooth or an ordinary multiple point (where §,, = r,—1). Here
is a result which provides an explicit formula—a local Riemann-Hurwitz formula—comparing the
(above) genus in a Galois cover of degree p.

Theorem 2.1.2. (¢f. Theorem 3.4 in [Saidil]) Let X := Spf (@l> be the formal germ of an

R-curve at a closed point x with X, reduced (cf. Notations). Let f : Y — X be a Galois cover of
degree p with Y normal and local. Assume that the special fibre Yy, of Y is reduced. Let {p;}icr
be the minimal prime ideals of O, which contain m, and let X, = Spf ((’jp> be the formal
completion of the localisation of X at ;. For each i € I the above cover f induces a torsor
fo. : Yo, = Xp, under a finite and flat R-group scheme G; of rank p above the boundary Xy, with
conductor c;, we write ¢; = 1 in case this torsor is trivial. If y € Y s the closed point of Y,
then:
29y — 2 =p(292 — 2) + dy — ds

where g, (resp. g) denotes the genus of y (resp. ), d,, is the degree of the divisor of ramification
in the morphism fx : Y — Xg induced by f on the generic fibre, and ds =, ;(c; —1)(p—1).

We will refer to this formula simply as the genus formula. The following corollary is immediate
from Theorem 2.1.2.

§2.2 Computation of vanishing cycles in Galois covers of type (p,p)
In this section we prove that the degree p genus formula in Theorem 2.1.2 can be extended to
the case of Galois covers of type (p,p). Let f: Y — X be a Galois cover of type (p,p) where X

is a formal germ of an R-curve, Y is local and normal, and Y} is reduced. We can express [ as
the compositum of two, generically disjoint, degree p Galois covers Y; — X with Y; normal and
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local for i = 1,2 as follows:

Y2 Y
9us

Y1 Y Y,
o Z/pZ Z/pZ

x X

Let {z;}; C Xk be the (finite) set of branched points in the cover fx : Y — X between
generic fibres and {y;;}; ; C Yk the set of ramified points in fx with r = Card{{y;;}: ;}. Thus,
for fixed i the {y;;}:; are the points of Y above z;.

We assume there are r1 points (C Y7) ramified in Y7 ¢ — X and ro ramified points (C Y)
in Yx — Y1 k. Because the Galois group G is of type (p, p) an inertia subgroup of G has at most
cardinality p since char(K) = 0 and so the inertia subgroups must be cyclic. Therefore, two
cases occur: at the first stage we have one point above a branched point then at the second stage
there must be p points which sit above it or at the first stage we have p points above a branched
point then at the second stage there is 1 point above each of these p points. In summary, for a
branched point x = x;, we have one of the two situations occurring:

N1

The diagram on the left depicts ramification occurring at the first stage while the diagram on
the right depicts ramification occurring at the second stage. Since these two cases are disjoint,
this gives us that r = r1p + ro where:

e r; = Card{ ramified points in Y1 — X }
e 7o = Card{ ramified points in Y — Y7 }

For the branched points {z;}; C Xk in the cover fx : Yx — Xk, we can visualise the general
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picture, including decomposition groups, as follows:

{yijtij C Yk

Yi,j

fx {Wijtiy C Y1k

Yi,j

{z;}i € Xk

where Dy, . < Z/pZ and D,, , < 7Z/pZ denote the decomposition groups of the point §; ; at the
first stage and the point y; ; above ¢; ; at the second stage respectively. If only one point sits
above x; in Y} then the order of the decomposition group Dy, ; (resp. Dy, ) will equal p (resp.
1) and, otherwise, the opposite is true. This means we have a natural test for ramification in the

first and second step as follows:
p=|Dy, ;| & p#|Dy, | =1 x; ramifies at 1st stage

p# |Dy, ;| =1 p=|D,y, | < z; ramifies at 2nd stage

Now we turn to address the decomposition above the boundaries. Let {Xp,}; denote the
boundaries of X. For each ¢, the Galois cover f :Y — X induces a Galois cover f; : ¥}, — X,
above the boundary X3, (note that Y}, is not necessarily connected). Unlike the degree p case,
the cover Y;, — Xj, is not a torsor under G ; X Ga; unless at least one of the group schemes
G1: and G, is étale (see Theorem 1.2 and Theorem 3.5). However, at each intermediate degree
p stage, the corresponding cover is indeed a torsor where c; ; and ¢z (respectively ¢} , and c5 ;)
are the conductors associated to the torsor under the finite flat R-group schemes G ; and G+
respectively (respectively G ;, and G5 ;). Below is the picture when Y}, is connected; the case
we refer to as being unibranched throughout.

Y,

t

(Gll,tvcll,t) (Glz,uclz.t)
Y1, You,
(G1,t5c1,t) (Ga,t,c2,t)

Xy

t

Our main Theorem in this section compares the genus in a Galois cover of type (p,p).
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Theorem 2.2.1. Let X := Spf (@x> be the formal germ of an R-curve at a closed point x

with Xy reduced. Let f :' Y — X be a Galois cover with group Z/pZ x Z/pZ—that is, of type
(p, p) —where Y is normal and local and the special fibre Yy, of Y is reduced.

Let f1 : Y1 — X and fy : Yo — X be two generically disjoint degree p Galois covers such that
Y is the compositum of Y1 and Ya. Let { Xy, }ter denote the boundaries of X. The Galois cover
f1 induces a torsor Y1, — Xp, under a finite and flat R-group scheme of type p with conductor
c1t for each t. Similarly, ¢}, denotes the conductor associated to the torsor Yy, — Y1p,. In
cases these torsors are trivial we write ¢y = 1 and ¢} , = 1, respectively. We let r1 (resp. 12)
denote the number of ramified points in Y1 x — Xk (resp. Yk — Y1 k).

Ify € Y is the closed point of Y, then:

29y -2 :p2(291 _2) +dn —ds

where g, (resp. g,) denotes the genus of y (resp. x), d,, := (11 +12)p(p — 1) is the degree of the
divisor of ramification in the morphism fx : Yx — Xk induced by f on the generic fibre and

do= > [chy,=D@—1)+(ce—Dpp—1)]

boundary unibranched

throughout
/
+ g (c1t —Dp(p—1) + E (i —D-1).
boundary unibranched boundary p-branched
then p-branched then unibranched

Proof. By Theorem 2.1.2 we have the following genus formula for the degree p Galois cover
Y1 — X expressing gy, in terms of g, where y; is the point of Y7 above x: 2¢g,, — 2 = p(2g, —
2) +ri(p—1) = > 4cs(cr,e —1)(p — 1). Bach boundary Xj, is either unibranched or p-branched
in Y7 and so we can break up the dy summation as follows:

29y, —2=p(29, —2) +r(p—1) — Y (e =Dp-D— D (a—Dp-1).

tel tel
Xp, unibranched Xp, p-branched

Also by Theorem 2.1.2 we have the following genus formula for the degree p Galois cover Y — Y3

expressing g, in terms of g,,: 2g, —2 = p(2gy, —2) +r2p(p—1) = > ,c;(ch, — 1)(p—1). Again,
we rewrite the d; summation into unibranched or p-branched cases:

29y —2 = p(2gy, —2)+r2p(p—1) - > (¢he=Dp—1)— > (= Dp-1).

tel tel
Y15, unibranched Y15, p-branched

Tracing a boundary X, through the entire type (p,p) Galois cover f : Y — X, keeping in
mind that under the cover Y7 — X the boundary can be p-branched or unibranched and, likewise,
under the cover Y — Y7, we have four possible cases which can arise. In particular, the boundary
is unibranched throughout, unibranched and then p-branched p-branched and then unibranched
or finally p-branched throughout. Now, substituting, our first genus formula expressing g,, in
terms of g, into the second genus formula expressing g, in terms of g,,, will give us a genus
formula expressing g, in terms of g,, as required:

29y —2=p2gy, —2)+r2p(p—1) =3 er (D=1 => er (1, —Dp-1)

Yl,bt uni. Yl,bt p—b.
—p (020 =D 4D =T ey (- DD er (o= Do) +ranlp -
by uni. by P-b.
D=Y e (@=DE-D=% e (ch=Dp—1)=p*2g, ~2)+ (1 +r2)plp—1) -
1,b, UNIL. 1,b; P-D.
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Yooser e —=Dplp—1)+ (D -D] =X e (ci—Dplp—1)=> e (¢, —

uni., uni. uni., p-b. p-b., uni.
Dp—1)—=% w0
p-b., p-b.
So, we obtain a genus formula in the form 2g, — 2 = p*(2g, — 2) + d,, — ds where d,, and d;
are as expressed in the statement of the Theorem. O

For illustration purposes, we explain this picture on the boundary in the case of a uni-
branched throughout cover above an open disc and, so in what follows X = SpfR[[T]] and
Xy, = SpfR[[T){7}-

Case: unibranched throughout. Write, as above, ¢; for the conductor in the first stage
and ¢ for the conductor in the second stage above Xj,. By Corollary 2.1.3 we have that g, =
% and by the genus formula given in Theorem 2.1.2 we can write 2g, — 2 = p(2g,, —
2)+rap(p—1)—(cf —1)(p—1) and so substituting the first equation into the second results in 2g, —

2 = p(2gy, — 2)+7”2p(p D—=(d—Dp-1) =p((ri—aa-p-1) - 2)+7”2P(P 1)—(ch=1)(p—
1) = —2p* + 2p? —2p+(r1+r2) (p—1)—(p—1) () =1+ p(c1 + 1)) = p*>(0=2)+(r1+72)p(p—1)—
—_———
0
(P=1)(ch —1+pler+1) =2p) =p*(0=2)+ (r+r2)p(p — 1) = (p— 1) (¢} = 1) + ple1 — 1))

d, d

The results from the above discussion are summarised in the above table.

Table 2: Values for d,, and d, in the (p,p) setting above one boundary

1st step | 2nd step dy ds
uni uni (ri+r2)plp—1) | (e =1)(p—1)+(c2 = Dplp—1)
uni P (ri+r2)p(p—1) p(p—1)(c—1)
P uni (r1+r2)p(p— 1) (p—1)(c—-1)
P p (r1+r2)p(p—1) 0

From this we can deduce that the general form for the genus formula for (p, p)-type covers in
case X = Spf(O,) has a unigque boundary (or equivalently X} is unibranch) is given by

29y — 2 =p*(29, — 2) + d,, — ds

where d,, = (r1 + 72)p(p — 1) and where

(¢f —1)(p—1)+ (c1 — 1)p(p—1) boundary unibranched throughout
4 — (c—Dp(p-1) boundary unibranched, then p-branched
T e=Dp-1) boundary p-branched, then unibranched
0 boundary p-branched throughout

We can derive from the above formula some interesting results:

Proposition 2.2.2. Let X = Spf (R][[T]]) be the formal germ of an R-curve at a smooth point
x andlet f:Y — X be a Galois cover with group Z/pZ X Z/pZ. AssumeY is normal and local
and that the special fibre Y}, of Y is reduced. Let Xy, = Spf(R[[T]|{T~1}) be the boundary of X
and fp : Yo — Xp the induced Galois cover on the boundaries. Let y be the unique closed point
of Vi, and d,, := (r1 + r2)p(p — 1) be the degree of the divisor of ramification in the morphism
fx : Yk = Xk induced by f on the generic fibre and ¢; and ¢} are as in cases 2 and 3 below
and where ¢ is the only acting conductor at the relevant unibranched stage. Then:
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1. If Yy, is unibranched above x then g, = (p(”JrTQ_Cl_;)_C;_l)(p_l).

2. The morphism Yy, — Xi is unibranched and then p-branched above x then
(p(ritra—c—1)—2)(p—1)
5 )

9y =

3. The morphism Yy, — Xy is p-branched and then unibranched above x then

gy = (p(r1+7“272)27071)(p71) )

— (p(ri+r2—2)-2)(p—1)
5 .

4. The morphism Yy, is p*-branched above x then g,
Proof. Follows directly from rearranging the type (p, p) vanishing cycles formula with g, = 0. O
In this situation, we have the following test for whether y is a smooth point or not.

Corollary 2.2.3. With the same assumptions as in Proposition 2.2.2, y is a smooth point if
and only if we are in the case 1 of loc. cit. and p(r1 + 12 — 1) =1+ ¢} + e1p holds.

Proof. (=) Suppose y is a smooth point. Then §, = dim(0,/O,) = 0 and 7, = 1 since there is
one branch and so g, = 0y —ry,+1=0—-14+1=0. If g, = 0 in the unibranched case then, by the
previous proposition, p(r1+ry—c1 —1)—c} —1 = 0 which rearranges to p(r1+re—1) = 1+ +c1p.

(<) Suppose that we are in case 1 and p(r1 + 72 — 1) = 1+ ¢| + ¢1p, then g, = 0. As there
is one branch r, = 1 and so we have that J, = g, + 7, —1 = 0+ 1 — 1 which in turn implies y is
a smooth point. O]

§3. On the existence of a torsor structure

In this section we discuss the question of the existence of a torsor structure for a Galois cover
of type (p,p) between formal normal R-schemes. In addition to the notations set at the begin-
ning of this paper, in this section we allow R to be a complete discrete valuation ring of equal
characteristic p > 0 with algebraically closed residue field k. Let X be a (formal) R-scheme of
finite type which is normal, geometrically connected, and flat over R. We further assume that
the special fibre Xy of X is integral. Let fx : Yx — Xk be an étale torsor under a finite étale
K-group scheme G of rank p' (¢t > 1), with Yx geometrically connected, and f : Y — X the
corresponding morphism of normalisation. (Thus, Y is the normalisation of X in Yx.) We are
interested in the following question.

Question 3.1. When is f : Y — X a torsor under a finite and flat R-group scheme G which
extends G, i.e., with Gg = G?

The following is well known.

Theorem 3.2. (Proposition 2.4 in [Saidi2]; Theorem 5.1 in [Tossici]) If char(K) = 0 we assume
that X is locally factorial. Let n be the generic point of Xj, and O, the local ring of X atn, which
is a discrete valuation ring with fraction field K(X): the function field of X. Let fr : Yk — Xk
be an étale torsor under a finite étale K-group scheme G of rank p, with Y connected, and let

K(X) — L be the corresponding extension of function fields. Assume that the ramification index
above O,, in the field extension K(X) — L equals 1. Then f:Y — X is a torsor under a finite

and flat R-group scheme G of rank p which extends G (i.e., with G = é)

25



Strictly speaking the above references treat the case where char(K) = 0. For the equal
characteristic p > 0 case see [Saidi3], Theorem 2.2.1. Theorem 3.2 also holds when X is the
formal spectrum of a complete discrete valuation ring (cf. [Saidil], Proposition 2.3, and the
references therein in the unequal characteristic case, as well as Proposition 2.3.1 in [Saidi4] in
the equal characteristic p > 0 case). It is well known that the analog of Theorem 3.2 is false in
general. There are counterexamples to the statement in Theorem 3.2 where G is cyclic of rank
p?, see [Tossici], Example 6.2.12, for instance.

Next, we describe the setting in this section. Let n > 1, and for ¢ € {1,--- ,n} let
fix : Xik = Xk

be an étale torsor under an étale finite commutative K-group scheme éi, with X; g geometri-
cally connected, such that the {f; x}7_, are generically pairwise disjoint, i.e. f; k and f; x are
generically disjoint for ¢ # j. Assume that f; x : X; k = Xk extends to a torsor

fz'SXZ‘—>X

under a finite and flat (necessarily commutative) R-group scheme G; with (G;)x = G;, and with
X; normal, Vi € {1,--- ,n}. (Thus, X; is the normalisation of X in X, x.) Let

Xr = X1,k XX Xo,k XX " " XXe X, K>

and X the normalisation of X in )Z'K. Thus, )?K is the generic fibre of X and we have the
following commutative diagrams

Xk
X1,Kx Xo.x X3k Xn.K
e
e G
Xk
and
X

G2
G1 Gn
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where X7 X x Xo xx -+ X x X,, denotes the fibre product of the {X;}? ; over X, the morphism
X = X1 xx Xoxx - xXx Xy is birational and is induced by the natural finite morphisms X =
X, Vie{l,--- ,n}. Notethat fx : Xx — Xk (resp. f: XixxXoxx - -xxX, — X)isatorsor
under the étale finite commutative K-group scheme G = él X SpeCKéQ X SpecK " 'XSpecKén (resp.
a torsor under the finite and flat commutative R-group scheme G1 X speck G2 XSpeck * * XspeckGn),
as follows easily from the various definitions. Note that (G Xgpecr G2 XSpecr =+ XSpeck Gn) ¢ =
G.

In this setup Question 1 reads as follows.

Question 3.3. When is f : X — X a torsor under a finite and flat (necessarily commutative)
R-group scheme G which extends G, i.e., with Gx = G?

Our main result in this paper is the following.

Theorem 3.4. We use the same notations as above. Assume that )Z'k is reduced. Then the
following three statements are equivalent.

1. f: X — X is a torsor under a finite and flat commutative R-group scheme G, in which
case G = G1 XspecR "+ * Xspeck G necessarily.

2. )Z':Xl Xx Xo Xx -+ Xx Xpn, tn other words X1 Xx Xa Xx -+ Xx X, s normal.
3. (X1 xx Xo Xx -+ xx Xp), 15 reduced.

Note that the above condition in Theorem 3.4 that )~(k is reduced is always satisfied after
possibly passing to a finite extension R'/R of R (cf. [Epp]). It implies that the (X;) are
reduced, Vi € {1,--- ,n}. Moreover, Theorem 3.2 and Theorem 3.4 provide a “complete” answer
to Question 1 in the case of Galois covers of type (p,---,p), i.e., the case where rank(G;) =
p, Vi€ {l,---  n}.

In the case of (relative) smooth curves one can prove the following more precise result when
rank(G;) =p, Vi€ {1,--- ,n}. .

Theorem 3.5. We use the same notations and assumptions as in Theorem 8.4. Assume further
that X is a (relative) smooth R-curve, n > 2, and rank(G;) = p for 1 <i <mn. Then the three
(equivalent) conditions in Theorem 3.4 are equivalent to the following.

4. At least n-1 of the finite flat R-group schemes G; acting on f; : X; — X are étale, for
ie{l,---,n}.

Remark 3.6. 1) Theorem 3.4 holds true if X is the formal spectrum of a complete discrete
valuation ring (cf. the details of the proof of Theorem 3.4 below which applies as it is in this
case).

2) In §3 we provide examples showing that Theorem 3.5 doesn’t hold in relative dimension > 1.

Proof of Theorem 3.4

Next, we prove Theorem 3.4. We start by the following.

Proposition 3.7. Let G be a finite and flat commutative R-group scheme whose generic fibre is
a product of group schemes of the form Gx = G1 Xgpeck G2 - - - Xspeck Gn, Where the {G;}7_; are
finite and flat commutative K-group schemes. Then G is a product of finite and flat commutative
R-group schemes {G;} 4, i.e., G = G1 Xspeck G2 Xspeck - ** XSpeck Gn, With (G;)x = Gi.
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Proof. First, we treat the case n = 2. Thus, we have G = C~7'1 X SpecK ég and need to show
G = G1 Xgpecr G2 where (G)x = éi, for i = 1,2. Let G; be the schematic closure of CNJZ in G,
for i = 1,2 (cf. [Raynaud], 2.1). Therefore, G; and G2 are closed subgroup schemes of G which
are finite and flat over SpecR (cf. loc. cit.). We have a short exact sequence

1-G—»G—G/Gy =1,

and likewise
125Gy —G— G/Gy — 1,

of finite and flat commutative R-group schemes (cf. loc. cit.). It remains for the proof to
show that the composite homomorphism Gy — G — G/G; is an isomorphism. The morphism
G — G/G1 is finite. The morphism Gy — G is a closed immersion, hence finite. The composite
G2 — G/Gy of the above morphisms is then finite. We will show it is an isomorphism. The
morphism Gy — G/G1 is a closed immersion since its kernel is trivial. Indeed, on the generic
fibre the kernel is trivial: (G1 NG2), = @; N évg = {1}. The map Gy — G/G; is then an
isomorphism as both group schemes have the same rank. Similarly, the morphism G; — G/G2
is an isomorphism. Therefore, G = G1 Xgpecr G2 as required. Now an easy devissage argument
along the above lines of thought, using induction on n, reduces immediately to the above case
n=2. O

Proof of Theorem 8.4

Proof. (1 = 2) Assume that f : X — X is a torsor under a finite and flat R-group scheme
G. In particular, G = G and G is necessarily commutative. We will show that X = X1 xx
Xo Xx ... Xxx Xp, 1., show that X7 xx Xo Xx ... Xx X, is normal (this will imply that G =
G1 XSpecR " * * Xspeck Gn necessarily, as G XgpecR --- XSpecr G i the group scheme of the torsor
f : X1 Xx Xo Xx - xx X,, = X). One reduces easily by a devissage argument to the case
n = 2 which we will treat below.

Assume n = 2. We have the following commutative diagrams of torsors

Xk
2N
X1k Xo K
N
Xk

and
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X
Gl l G,
X1 Xx X2
7N
Xo

X1

where X — X, is a torsor under a finite and flat R-group scheme G;, for j # i. Moreover,
~ \ schematic closure
) (where the schematic closure is taken

Gl = (G1 , and G = (6;2
inside G) holds necessarily, so that G = G Xgpecr G4 (cf. Proposition 1.1). Note that X/G, = X,

must hold as the quotient X /G is normal: since ()?/G’l)k is reduced (as X, is reduced and X

) schematic closure

dominates X/G}), and ()Z'/Gﬁ)K = X i is normal (cf. [Liu], 4.1.18). Similarly X/G, = X,

holds. We want to show that X = X 1 X x X2, and we claim that this reduces to showing that the
natural morphism G' — G Xgpecr G2 (cf. the map ¢ below) is an isomorphism. Indeed, if one has
two torsors, in this case X - X and X 1 Xx X2 — X above the same X, under isomorphic group
schemes, which are isomorphic on the generic fibres, and if we have a morphism X — X; x x X5
which is compatible with the torsor structure and the given identification of group schemes (cf.
above diagrams and the definition of ¢ below), then this morphism must be an isomorphism.
(This is a consequence of Lemma 4.1.2 in [Tossici]. In [Tossici] char(K) = 0 is assumed, the
same proof however applies if char(K) = p.) We have two short exact sequences of finite and flat
commutative R-group schemes (cf. above diagrams and discussion for the equalities G1 = G/G),
and Gy = G/GY)
155G, —G— G =G/Gy)—1,

and
1-G,—-G— G =G/G| — 1.

The morphisms G — G1, and G — G4, are finite. Consider the following exact sequence

1 — Ker(¢) - G — G1 Xspecr G2,

where ¢ : G — G1 Xgpecr G2 is the morphism induced by the above morphisms. We want to
show that the map ¢ : G — G Xspecr G2 is an isomorphism. We have Ker(¢) = G| N G
by construction. However, G} N G5 = {1} since G = G| Xgpecr G4 by Proposition 1.1, and
therefore Ker(¢) = {1} which means ¢ : G — G1 Xspecr G2 is a closed immersion. Finally, G
and G Xgpecr G2 have the same rank as group schemes which implies ¢ is an isomorphism, as
required.

(2 = 3) Clear.

(3 = 1) By assumption (X7 xx X2 Xx ... xx Xy),, is reduced. Moreover, we have
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(X1 xx XoXx oo Xx Xp) e = X is normal. Hence X X x X2 X x ... X x X, is normal (cf. [Liu],
4.1.18), and X = X1 Xx X3 Xx ... Xx Xn. We know that f: X; xx Xp Xx ... Xxx Xp — X is
a torsor under the group scheme G Xgpecr G2 XSpecR -+ XSpeck Gn, SO f X — X is a torsor
under the same group scheme. O

Proof of Theorem 3.5

Next, we prove Theorem 3.5.

Proof. (1 = 4) Suppose that f: X — X is a torsor under a finite and flat R-group scheme G;
in which case X = X1 xx XoxXx ... xx X, and G = G XspecRr - - - Xspeck Gn (cf. Theorem 3.4).
We will show that at least n — 1 of the finite flat R-group schemes G; (acting on f; : X; — X)
are étale, for i € {1,--- ,n}. We argue by induction on the rank of G.

Base case: The base case pertains to rank(G) = p? and n = 2. Thus, rank(G;) = rank(G>) =
p. We assume X = X1 xXx X5 and prove that at least one of the two group schemes G; or Gs is
étale. We assume that X is a scheme, and not a formal scheme, in which case the argument of
proof is the same.

Let x € X be a closed point of X and X the boundary of the formal germ of X at x, so X
is isomorphic to Spec (R[[T]]{T~'}) (cf. Background). We have a natural morphism X — X of
schemes. Write A7 := X Xx X, &2 := X xx X», and X=X X x X. Thus, by base change,
X — X (resp. X1 — X, and Xy — X) is a torsor under the group scheme G (resp. under Gy,
and G2) and we have the following commutative diagram

f:Xl XxXg

/ X&
X Xy
X

Note that X is normal as (X)y, is reduced (recall (X)j is reduced) and (X)x is normal (cf. [Liu],
4.1.18), hence X = Xy x x X holds (cf. Theorem 3.4 and Remarks 3.6, 1).

_ Assume now that G and G2 are both non-étale R-group schemes. Then we prove that
X — X can not have the structure of a torsor under a finite and flat R-group scheme which
would then be a contradiction. More precisely, we will prove that X; Xy A5 can not be normal
in this case, hence the above conclusion (cf. Theorem 3.4).

We will assume for simplicity that char(K) = 0 and K contains a primitive p-th root of 1. A
similar argument as the one used below holds in equal characteristic p > 0. First, X is connected
as Xy is unibranch (the finite morphism Xj — X is radicial). As the group schemes G and
G are non étale, their special fibres (G1), and (G2) are radicial isomorphic to either u, or
ap. We treat the case (G1)x is isomorphic to p, := pp i and (Ga)y is isomorphic to o, := ayp k;
the remaining cases are treated similarly. Recall X is isomorphic to Spec (R[[T]]{T'}). For a
suitable choice of the parameter T the torsor X5 — X is given by an equation Z) = 1 + x"PT™
where n is a positive integer (satisfying a certain condition) and m € Z (cf. Background. Also
see Proposition 2.3.1 in [Saidi4] for the equal characteristic case), and the torsor X; — X is given
by an equation Z¥ = f(T) where f(T) € R[[T]]{T~'} is a unit whose reduction f(7') modulo
7 is not a p-power (cf. loc. cit.). We claim that X = Xy X x X5 can not hold. Indeed, by base
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change X xx Xo — X is a Gp-torsor which is generically given by an equation Z? = f(T),
where f(T) is viewed as a function on X5. But in X3 the function T becomes a p-power modulo
7 as one easily deduces from the equation Z§ = 1+ 7"PT™ defining the torsor X> — X. Indeed,
after a change of variables we can write the above equation as (1 +7"Z5)P = 1 + «#™PT™ which
reduces, after an easy computation, to an equation 2 = t™ hence ((zé)#)p = t. In particular,
the reduction f(T) modulo 7 of f(T'), viewed as a function on (X),,, is a p-power. This means
that (X7 Xy X2)k is not reduced and X — Xy can not be a Gy ~ pu, g-torsor (cf. the proof of
Proposition 2.3 in [Saidil]), and a fortiori X # X; x x Xs.

Inductive hypothesis: Given G, we assume that the (1 = 4) part in Theorem 3.5 holds true
for smaller values of n > 2. Then )?1 = X1 Xx X Xx ... xx Xp—1 is normal (since its special
fibre is reduced (as it is dominated by X whose special fibre is reduced) and its generic fibre is
normal (cf. [Liu], 4.1.18)), hence at least n — 2 of the corresponding G;’s, for ¢ € {1,--- ,n — 1},
are étale by the induction hypothesis. We will assume, without loss of generality, that G; is étale
forl1<i<n-—2.

Inductive step: 'We have the following picture for our inductive step (the case for n):

/\
/\

We argue by contradiction. Suppose that neither G,,—; nor G, is étale. This would mean
that X, — X, where X, is the normalisation of X in (X,_1)x Xx, (Xn)x, does not have
the structure of a torsor (as this would contradict the induction hypothes1s) This implies that
X — X does not have the structure of a torsor since it factorises X — X2 — X, for otherwise
Xg — X being a quotient of X — X would be a torsor. Of course, X — X is a torsor to start
with by assumption and so this is a contradiction. Therefore, at least one of G,,_1 and G, is
étale, as required.

(1 < 4) Suppose that at least n—1 of the G; are étale, say: G1,Ga, - ,Gp_1 are étale. Write
)?1 = X1 XxXoXx...XxX,_1. Then )~(1 — X is a torsor under the finite étale R-group scheme

/1 = G1 XSpeCRGZ XSpecR" " XSpeCRanL Moreover, X1 XxXQ Xx .o XX Xn = X1 XxXn, and
X1 Xx Xo Xx ... xx X, = X,, is an étale torsor under the group scheme G} (by base change).
In particular (X1 xx X2 Xx ... xx Xp), is reduced as (Xp,)x is reduced. Indeed, X dominates
X,, and Xk is reduced. Hence X = X1 xx Xo Xx ... xx X, (cf. Theorem 3.4) and X > Xisa
torsor under the group scheme G := G Xgpecr G2 XSpecR -+ XgpecR Gn- O
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3.8. Counterexample to Theorem 3.5 in higher dimensions

Theorem 3.5 is not valid (under similar assumptions) for (formal) smooth R-schemes of relative
dimension > 2. Here is a counterexample. Assume char(K) = 0 and K contains a primitive
p-th root of 1. Let X = Spf(A) where A := R < Ty, Ty > is the free R-Tate algebra in the two
variables T7 and Ty. Let G1 = G2 = up, := pp g, neither being an étale R-group scheme. For
i = 1,2, consider the G;-torsor X; — X which is generically defined by the equation

7P =T,

We have the following commutative diagram

X1 X X2
Hp Hp
(Z3)P=T> (Z1)P=T1
X1 Xo
ZP=Ty Z3=T>
Hp Hp

X =Spt (R<T1,Ts >)
The torsor X; xx Xy — X5 is a G = py-torsor defined generically by the equation
(Z1)P =T

where T7 is viewed as a function on X,. This function is not a p-power modulo 7 as follows
easily from the fact that the torsor X5 — X is defined generically by the equation Z§ = T,. In
particular, X; X x Xo — X5 is a non trivial pp,-torsor, and (X x x X2)i — (X2)x is a non trivial
p k-torsor. Hence (X7 X x X2)y is necessarily reduced (as (X2) is reduced since (Xa2)r — (X1)k

is a non trivial p, g-torsor). Thus, Xy x x X is normal (cf. Theorem 3.4) and X7 xx X = X,

where X is the normalisation of X in (X1 xx X2) Kk, which contradicts the statement of Theorem
3.5 in this case.
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