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While representations of 3D shapes are used in the teaching of geometry in lower 
secondary school, it is known that such representations can provide difficulties for 
students. In order to assess students’ thinking about 3D shapes, we constructed an 
assessment framework based on existing research studies and data from G7-9 
students (aged 12-15). We then applied our framework to assess students’ 
geometric thinking in lessons. We report two cases of qualitative findings from a 
classroom experiment in which Grade 7 students (aged 12-13) tackled a problem 
in 3D geometry that was, for them, quite challenging. We found that students who 
failed to answer given problems did not mentally manipulate representations 
effectively, while others could mentally manipulate representations and reason 
about them in order to reach correct solutions. We conclude with the proposition 
that this finding shows the framework can be used by teachers in instruction to 
assess their students' 3D geometric thinking.  
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1. Introduction 
The episode shown in Figure 1 was observed in one of the authors’ geometry classes 
for trainee teachers in primary schools. 
Teacher: “Suppose we have a cube and AE=1 cm, and you need to 
find the length of MN (M and N are mid-points of edges).”  

Student: “[After 5 min working] … I cannot calculate the length of 
MN. It is too hard.”  

Teacher: “OK, what have you tried?”  

Student: “First, I noticed AM=0.5 cm, and AD=1 cm. I applied the 
Pythagorean theorem to find DM, which is 1.1180339 (with a 
calculator). DN will be about 1.1180339 too. Now I need to apply 
Pythagoras again to find MN, as the triangle DMN is a right angled 
triangle, but this is too complicated…” 

 

Figure 1: Student’s thinking with 3D representation 
The student quoted in the episode, and many others in the class, did not recognise that 
MN is the same as AC and therefore the length of MN is √2 cm. Instead, they saw 



triangle DMN as a right-angled triangle, and tried to use the Pythagorean Theorem to 
calculate the length MN.  
Küchemann and Hoyles (2006) suggest that to solve geometrical tasks with reasoning 
it is important to consider how to support students “to balance their need to be 
rigorous with the use of spatial intuition” (p. 604). As this episode illustrates, students 
can have difficulties in interpreting 3D representations, and, as such, more attention 
needs to be paid to how students reason about 3D shapes when they are undertaking 
problems in mathematics as well as other subjects (such as design and technology). It 
is especially important to focus on 2D representations of 3D shapes as these can be the 
main mediational means (for example, on the classroom board or in textbooks or other 
teaching materials).  
The teaching of geometry provides both a fundamental means of developing learners’ 
spatial visualisation skills and a vehicle for developing their capacity with deductive 
reasoning and proving (Battista, 2007; Royal Society, 2001). Also, most school 
curricula aim to develop learners’ understanding of 3D figures. As such, seeking ways 
to develop and assess learners’ spatial thinking in 3D geometry is an important 
research area with one long-standing topic being how learners’ reasoning is influenced 
by the ways in which geometric objects are represented (see Godfrey, 1910; 
Ben-Chaim, et al, 1989; Hershkowitz, 1990; Mesquita, 1998). While the term 
‘representation’ can refer to internal (mental) and to external (concrete) 
representations, in this paper our focus is on how students reason and make use of 3D 
shape properties through external representations such as the various representations 
of a cube in Figure 2. Our particular case of interest is when the geometric object 
being represented is three-dimensional while the medium of representation is 
two-dimensional (as is necessarily the case in this article), and our target educational 
stage is from upper primary to lower secondary, when students start learning more 
geometry more formally with various forms of mathematical reasoning and 
manipulations of shapes.  
In order to scrutinise students’ thinking with representations of 3D shapes, our aim is 
to deepen understanding of how students use representations in order to deduce 
information and solve geometric problems with cubes. We chose a cube to exemplify 
students’ thinking because a) it is one of the familiar 3D shapes for many students, b) 
it can be a source of problem solving in geometry and c) even when problem solving 
with cubes students demonstrate a greater variety of forms of thinking and strategies 
than we expect. We address the following two research questions (RQ):  

• RQ1: What assessment framework can be constructed to assess students’ 
geometric thinking when they are solving 3D geometry problems with 2D 
representations?  

• RQ2: How can we apply this framework to assess various forms of students’ 
geometrical thinking in geometry lessons? 



Sections 2-5 address research question 1. We take as our starting point a brief 
exploration of the different types of representations students may encounter and their 
different forms of thinking with them. In reviewing existing studies we examine two 
themes, ‘nature of 3D representations’ and ‘manipulation of 3D representations’, in 
order to develop a detailed assessment framework of students’ thinking with 3D 
shapes in relation to their interpretation of diagrammatic information (Bishop, 1983). 
We propose our assessment framework is a new way to better capture students’ 
thinking when they solve 3D geometry problems with 2D representations. To 
construct our framework, we take a bottom-up approach in that it is derived primarily 
from data from a set of assessment questions answered by 1025 students in Grade 7-9. 
In section 6-7 we apply our framework to classroom episodes taken from four lessons 
from a teaching experiment with Grade 7 students (addressing research question 2). In 
considering how our framework could be useful to assess various forms of students’ 
geometrical thinking in geometry lessons, and in applying these findings, we discuss 
how we can characterise students’ thinking, and what actions our insights might lead 
us to take in terms of how we might advance students’ thinking with 3D shapes – a 
form of mathematical thinking that is known to be challenging for many students (e.g. 
Ben-Chaim, et al, 1989; Widder and Gorsky, 2013). 
 
2. 3D geometrical thinking – Existing knowledge and gaps 
2.1. Geometrical thinking with representations of 3D shapes 
Beginning with the theme of the nature of 3D representations, one phenomenon 
related to learners’ understanding of geometric representations is the well-established 
‘prototype effect’ by which a certain representation is judged more representative than 
another (Hershkowitz, 1990, p. 82; Fujita, 2012). Due to this ‘effect’, learners are 
much better at recognising isosceles triangles that are ‘standing on their base’ than 
ones that are presented in a different orientation. A variety of methods are available 
for representing 3D geometric objects such as a cube on a two-dimensional medium 
such as paper or the classroom board. Perhaps the most classical representation of a 
cube in two dimensions is the oblique parallel perspective, in which parallels sides are 
drawn as parallels edges and one face of the cube is drawn as a square. Figure 2 shows 
two orthogonal projections (a and b) and an example of an oblique parallel projection 
(c).  

   

(a) (b) (c) 

Figure 2: orthogonal and oblique parallel projections of the cube 



 
Another convention is the use of dotted lines to show the ‘hidden’ edges of the cube 
(as in Figure 1). 
Existing research evidence indicates that representations of 3D shapes can have 
various impacts on learners’ reasoning processes. Parzysz (1988; 1991), for example, 
reported that not only do learners prefer the parallel perspective (as compared to 
projective representations) but, in particular, learners prefer the oblique parallel 
perspective in which the cube is drawn with one face as a square. An important issue 
that this oblique parallel perspective representation raises for research in geometry 
education is the way in which learners’ reasoning might be influenced by the manner 
in which representations are presented (such as in Figure 1) given the difficulties 
pupils have with 3D representations even when 3D dynamic geometry software is 
available (Mithalal, 2009). 
Fischbein (1987, p. 41) argued that a “productive reasoning process” aims at solving a 
“genuine problem”. He suggested that in productive reasoning “images and concepts 
interact intimately” (Fischbein, 1993, p. 144). By this we surmise that Fischbein is 
referring to the notion of ‘figural concept’ as capturing the combined role of the 
figural and the conceptual in geometry. As Mesquita (1998) explains, an external 
representation of a geometrical problem does not, by itself, enable someone to solve a 
geometric problem, but it may contribute to the problem-solver’s definition of the 
structure of the problem. One way this happens, according to Mesquita, is when the 
representation gives support to geometrical intuition, which in some situations can be 
very powerful by helping individuals “to apprehend relationships among geometrical 
objects” (p. 184). Yet, Mesquita goes on to show, external representations can lead to 
some ambiguities with the result that particular geometrical relationships might appear 
as ‘evident’ to students in a way that can prevent geometrical reasoning from 
developing. What Mesquita calls the double status of a geometrical representation is 
that it can represent “either an abstract geometrical object, or a particular 
concretization” (p. 186). It is this double status that impacts student reasoning.    
For the theme of the manipulation of 3D representations, the evidence above suggests 
that, for a particular geometry problem that makes use of a particular representation, 
students may or may not invoke theorems or properties that their teacher might expect 
them to use to form, and then prove, a conjecture. This is because the representations 
may - or may not - appear to the students as ‘typical’. In cases like these, as Mesquita 
(1998) suggested, an external representation may become an ‘obstacle’ to student 
understanding.  
 
2.2. Existing research on interpreting 3D shape representations 
Researchers have proposed a variety of ways to categorise capacities for 3D geometric 
thinking. For example, van Nes and van Eerde (2010, p. 146-7) argue that ‘spatial 



sense’ has three components: ‘spatial visualization’ (the capacity to picture mentally 
the movements of 2D and 3D objects), ‘spatial orientation’ (the capacity to change the 
frame of reference with respect to the environment), and ‘shape’ (the capacity to 
manipulate mentally spatial forms from a fixed perspective). Spatial capacities 
proposed by Pittalis and Christou (2010) are similar to van Nes and van Eerde, but 
they also identified five additional capacities that they argue are more specific to 3D 
geometrical thinking: ‘to manipulate different representational modes of 3D objects’; 
‘to recognise and construct nets’; ‘to structure 3D arrays of cubes’; ‘to recognise 3D 
shapes’ properties and compare 3D shapes’; and ‘to calculate the volume and the area 
of solids’ (ibid pp. 193-4). Their study found that 3D geometrical thinking can be 
described by four types of reasoning: reasoning related to the representations of 3D 
objects; spatial structuring; conceptualisation of mathematical properties; and 
measurement.  
In terms of interpreting 3D shape representations, Pittalis and Christou (2013) studied 
learners constructing 2D representations of 3D shapes (such as nets) and interpreting 
structural elements or properties of 3D shapes (such as enumerating the 
vertices/faces/edges of 3D shapes or recognising parallel/perpendicular faces/edges). 
They found that when interpreting representations of 3D figures, learners utilise two 
capabilities: ‘recognising the properties of 3D shapes and comparing 3D objects’ and 
‘manipulating different representational models of 3D objects’.  
 
2.3. The need to further analyse 3D geometrical thinking 
Existing research provides a way forward for analyzing 3D geometric thinking. 
However, it has not fully captured aspects of students’ thinking process when they 
face a challenging problem together with being given a 3D representation (such as 
Figure 1) that requires capability to reason beyond recognising properties such as 
parallel/perpendicular faces/edges. We can illustrate the issue by considering the 
geometric problem set out in Figure 3.  

 

What is the size of the angle BED? 
How did you determine the angle measure?  

Figure 3: angle in a cube problem (survey problem version) 
The existing literature reviewed above suggests that when working with problems 
with given 3D shape representations, two capacities are particularly important for 
working with their construction of internal representations and use of them in their 
problem solving: the capability to manipulate the representation and the ability to 
reason with the properties of shapes. By ‘manipulating representations’ we mean the 



capacity mentally to add lines, edges, faces, etc., and change orientations from, for 
example, orthogonal to oblique parallel projections, to imagine a net of given 
representations, and so on. This might be observed when learners actually interact 
with the given external representations, e.g. using a pen to draw lines on the given 
representations. To solve the problem in Figure 3, one approach is to draw the line 
DB, deduce that triangle BDE is an equilateral triangle, and then conclude that angle 
BED is 60 degrees. Here, drawing a line DB can be seen as a productive manipulation 
to the figure that allows the student to reason about angle BED using the newly 
formed triangle BED. In this paper, we take 3D geometric thinking as mental 
processes which involve both manipulations and reasoning about 3D geometric figures 
and their properties.  
With these two capacities in mind, and using data from part of our larger-scale study 
of the geometrical thinking of 570 students from Grades 7-9 in Japan (Kumakura, et 
al, 2000; Jones, et al. 2012), we undertook an initial analysis of responses to the 
question shown in Figure 3. We found that students’ incorrect responses were the 
result either of faulty reasoning with 3D shapes’ properties or faulty manipulations of 
shapes, or both. Not all manipulations and interpretations of the given representations 
were useful, and this echoes what existing studies suggest; that is, “visualizations are 
more beneficial if they also support human reasoning” (Huang, 2009, p. 150). Overall 
we found similar behaviours to the types identified by Pittalis and Christou (2013). As 
such, we could classify students’ answers into the following five categories:  
(A1) no answer (15.4%).  
(A2) incorrect answer led by 2-dimensional or intuitive global judgment; answers such 

as 30o with no reason stated (20.0%);  
(A3) incorrect answer led by intuitive knowledge and visual information; answers 

such as half of ∠DEB=90/2=45 o (41.8%);  
(B) incorrect answer with some manipulations of a cube but influenced by visual 

information; answers such as drawing a net, and then 45o+45 o =90o (10.7%);  
(C) incorrect answer by using sections of cube but influenced by intuitive knowledge 

and visual information; answers such as in triangle BDE, ∠B=∠D=45 o, therefore ∠ 
DEB =90o (5.1%); 

(D) correct answer with valid reasoning; answers such as in triangle BDE, 
DE=EB=BD and therefore ∠BED=60o (7.0%)． 

Our analysis indicates that it is difficult for many students in G7-9 to reason correctly 
with a given representation. This finding warrants further investigation - in particular 
we need to construct a comprehensive assessment framework when students undertake 
problem solving with 3D shapes, at the educational stage when students are in G7-9 in 
lower secondary schools. In the next section, we describe our methods for constructing 
such an assessment framework.   



 
3. Methods 
3.1. Context  
This study of 3D geometric thinking is situated within a larger study that demonstrates 
how geometry teaching plays a role in developing students’ ideas about geometrical 
figures in Japan in Grades 8 and 9 in geometrical proof and proving, as illustrated by 
the curriculum used in primary and lower secondary schools in Japan (emphasis 
added, as explained below):  

• In primary school (Grades 1-6), basic properties of plane and solid figures are 
studied informally, mainly in relation to everyday life objects. Students also 
start developing their drawing skills to represent 3D shapes on a 2D plane; 

• In Grade 7, students (aged 12-13) study geometrical constructions, symmetry, 
and selected properties of solid figures (names of 3D shapes, nets, sections of 
cube, surface areas and volume) informally, but logically, to establish the 
basis of the learning of proof (note that the measure of the angle between two 
lines in 3D space is not formally considered); 

• In Grade 8, students (aged 13-14) are introduced to formal proof through 
studying properties of angles, lines, congruent triangles, and parallelograms, 
during which they learn the structure of proofs, how to construct proofs, and 
how to explore and prove properties of triangles and quadrilaterals including 
inclusion relationships between these;  

• In Grade 9, students (aged 14-15) study similar figures and properties of 
circles, drawing on their consolidated capacity to use proof in geometry and 
Pythagorean Theorem with both 2D and 3D shapes. 

As evident in this progression, while primary students make some informal study of 
3D shapes (shown in italics above), students in Japanese lower secondary school have 
relatively limited opportunities to study and explore 3D geometry. As a consequence, 
secondary school students tend to have difficulties when they are faced with 3D 
geometry problems (for instance, when, in Grade 9, they are finding the lengths of a 
diagonal of a cube by utilising the Pythagorean Theorem). 
 
3.2. Assessment questions  
In order to study students’ 3D geometrical thinking, we devised a set of problem 
solving questions. Given the advice of Widder and Gorsky (2013, p. 97) to include 
items that probe “understanding based on given verbal information and logical 
analytical thinking” (what they call a-type items) and items that probe “understanding 
based on visualization” (that is, the mental manipulation of a given geometric 
configuration; what they call b-type items), we designed our assessment to include 
both types of understanding, i.e. the questions required both logical analytical thinking 



and mental manipulations. For example, in order to solve Q1, students must first 
visualise angle ABC and then activate their knowledge of properties of cubes. For 
Q2-② students undertake a simple manipulation, e.g. mentally seeing CD as a 
diagonal of the face, and then reason CD is longer than AB by activating their 
knowledge of squares such as diagonals of a square is longer than its side. Q3 requires 
both manipulations and reasoning as described above (e.g. to draw the line DB, 
deduce that triangle BDE is an equilateral triangle, and then conclude that angle BED 
is 60 degrees). For each item we used oblique parallel projections as this would 
require students to activate their capabilities not only to reason based on given 
information but also to manipulate representations to reach their conclusions. Figure 4 
shows the items we used. 

Q1 In a cube, find the size of angle ABC in each case.  

 
Q2 In a cube, which is longer, AB or CD? Choose your answers from a)-d) for each case. 

 
a) AB is longer 

b) CD is longer 

c) AB=CD 

d) I am not sure which is longer. 

Q3 From B and D of a cube, draw straight lines to E. What is the size of the angle BED? 
Also state your reason why.  

 
Figure 4: Assessment questions 

We acknowledge that our assessment includes only five questions and that the only 
geometric shape represented among them is a cube, but these questions do not appear 
in Japanese textbooks which mainly provide learning contents for names of 3D shapes, 



nets, sections of cube, surface areas and volume. By using problems in unfamiliar 
situations, we hypothesised that we would be able to assess geometric thinking beyond 
that which is typically elicited in conventional lessons. We also acknowledge the 
limitation our assessment: although a cube is a canonical geometric shape, a limitation 
of the framework is that it does not span greater range of geometric shapes. 
 
3.3 Participants  
In order to investigate a considerable path of 3D thinking, we implemented an 
assessment in four junior high schools in Japan: 145 G7, 157 G8 and 153 G9, in total 
455 students between February and March 2015. All four schools are recognised as 
ordinary local schools in Japan, i.e. there is a range of student ability within them. The 
assessment questions were posed only after all students had studied the required 
content of the geometry curriculum as described in section 3.1. 
 
4. Results  
Our preliminary assumptions are as follows: Q1 and Q2 are rather straightforward 
questions in that their solutions follow from the properties of a cube without the 
extensive need for manipulation and without much breadth of logical inference. 
Performing poorly on these items would indicate such students might be influenced by 
the visual information of the representations in terms of their appearance alone as 2D 
shapes. If a student answers items Q1 and Q2 correctly, then her/his understanding 
will be examined further by Q3, for which we expect both reasoning and 
manipulations would be involved in order to answer correctly.  
Tables 2, 3, 4 and 5 summarise the overall results of from 455 students (%s, 145 G7, 
157 G8 and 153 G9 in total 455 students). The first question asks students to judge the 
size of the angle in a cube, and as we expect, almost all students answered this 
question correctly. The students did well for Q2-① but G7 and G8 students had 
difficulties answering Q2-②. This might be because this question requires students to 
manipulate the representation either mentally or by drawing to see relevant lengths 
more clearly. Also G9 students did well, probably because they had studied the 
Pythagorean Theorem and this helped them determine the length of CD. Consistent 
with our findings in the pilot assessment with 570 students, all the students had 
difficulties with item Q3 with the identified the five categories (see Section 2.3), i.e. 
(A1) no answer, (A2) incorrect answer led by 2-dimensional or intuitive global 
judgment; (A3) incorrect answer led by intuitive knowledge and visual information; 
(B) incorrect answer with some manipulations of a cube but influenced by visual 
information; (C) incorrect answer by using sections of cube but influenced by intuitive 
knowledge and visual information;  and (D) correct answer with valid reasoning. G9 
students performed better and again this may be due to their learning of the 



Pythagorean Theorem. 
Table 2: Q1 results 

 

Q1 
① % answers ② % answers 

90° Correct Other answers 45° Correct Other answers 

G7 87 14 80 20 

G8 90 10 89 11 

G9 97 3 95 5 

 

Table 3: Q2-① results 

Q2-① 

(%) 
a)  b) c) Correct d) No answer 

G7 1 3 96 0 0 

G8 1 6 91 2 0 

G9 0 1 96 3 0 

 

Table 4: Q2-② results 

Q2-② 

(%) 
a)  b) Correct c) d) No answer 

G7 10 58 30 2 1 

G8 13 55 29 4 0 

G9 7 86 5 1 1 

 
Table 5: Q3 results 

Q3 (%) Type of 
error: A1 

Type of 
error: A2 

Type of 
error: A3 

Type of 
error: B 

Type of 
error: C 

Correct 
answer: D 
(60 
degrees)  

G7 17 15 55 10 2 1 

G8 23 15 39 15 3 4 

G9 19 8 20 22 7 24 



We also examined the relationships between Q2-②, and Q3; see Tables 6, 7, and 8. 
While many of the students who answered Q2-② correctly answered Q3 incorrectly 
(with all types of errors), almost all the students who could answer Q3 correctly could 
answer Q2-② correctly. These tables suggest the hierarchical relationship between 
Q2-② and Q3 (with Q3 being higher), despite the overall percentage of those who 
succeeded in Q3 being low. We return to the latter point further below. 

Table 6: Relationship between Q2-② and Q3, G7 

 Answers 
to 
Q2-②/
Q3  

A1 A2 A3 B C D Correct 

a) 4 2 7 1 0 0 

b) Correct 12 11 48 10 2 1 

c) 9 7 23 3 1 0 

d) 0 2 1 0 0 0 

No answer 0 0 1 0 0 0 

 

Table 7: Relationship between Q2-② and Q3, G8 

 Answers 
to 
Q2-②/
Q3 

A1 A2 A3 B C D Correct 

a)  9 4 6 1 0 0 

b) Correct 13 12 38 16 2 5 

c) 12 7 18 5 3 1 

d) 2 1 2 1 0 0 

No answer 0 0 0 0 0 0 

 

Table 8: Relationship between Q2-② and Q3, G9 

Answers 
to 
Q2-②/
Q3 

A1 A2 A3 B C D Correct 

a) 2 1 1 3 1 2 



b) Correct 22 8 26 31 10 35 

c) 4 2 1 0 0 0 

d) 0 0 2 0 0 0 

No answer 1 1 0 0 0 0 

 
In order to see the overall relationships between the five questions in terms of their 
difficulties, we first produced a 455x5 matrix with (Not correct, Correct)=(0, 1) 
variables and conducted the Rasch model analysis with R 3.3.1 with the package ‘ltm’ 
ver. 1.0 (produced by Dimitris Rizopoulos in 2013) which enables us to conduct the 
latent trait models under the Item Response Theory approach. The calculated 
coefficients for difficulties are summarised in the table 9 below: 

Table 9: coefficients for difficulties for Q1-3 
Assessment question Difficulty values Std. Error 95% confidence 

intervals 

Q1-① -1.8451   0.1442 -2.1277 ~ -1.5625 

Q1-② -1.5526   0.1248 -1.7972 ~ -1.3080 

Q2-① -2.1227   0.1662 -2.4383 ~ -1.7869 

Q2-② -0.5483   0.0827   - 0.7104 ~ -0.3862  

Q3 1.7222   0.1329   1.4617 ~ 1.9827  

Also the following item characteristic curves are drawn from the above data (note that 
in figure 5, Q1-① is represented as Q11 and so on). 



 
Figure 5 Item Characteristic curve for Q1-3. 

What the table 9 and Figure 5 imply is as follows. Suppose in the population group the 
average ability is 0, and -4 as least ability and 4 as best. The difficulty values suggest 
that for example even a student with ability of -1.8 has 50% chance for answering 
correctly for Q1-①, suggesting this question is very easy. On the other hand, even a 
student with 1.7 ability has 50% of chance for answering correctly for Q3, suggesting 
this question is very hard in this population group. Also, the first three questions’ 95% 
confidence intervals are almost overlapping, but Q2-② is separated, and Q3 is 
separated again. These as a whole suggest that that the three difficulties for assessment 
questions in our sample of 455 students, i.e. {(Q1-①, Q1-②, Q2-①), (Q2-②), (Q3)}. 
Also, it is clear that there is a rather big gap between Q2-② and Q3, and this is indeed 
consistent with our findings of various types of errors in Q3, identified as (A1) no 
answer, (A2) incorrect answer led by 2-dimensional or intuitive global judgment; (A3) 
incorrect answer led by intuitive knowledge and visual information; (B) incorrect 
answer with some manipulations of a cube but influenced by visual information; (C) 
incorrect answer by using sections of cube but influenced by intuitive knowledge and 
visual information.  
 
5. Assessment framework for geometrical thinking with cube representations 
The results from 455 students suggest that for even a set of simple assessment 
questions students demonstrated a greater range of different (and interesting) answers 
that are suitable for categorisation. In particular the following two points are 
informative for constructing an assessment framework: a) students’ difficulties are 



categorised in terms of their performance of {(Q1-①, Q1-②, Q2-①), (Q2-②), (Q3)}, 
b) there are various forms of thinking observed between Q2-② and Q3, exemplified as 
A1, A2, A3, B, C and D (see Section 2.3) and c) thinking is classified in terms of 
manipulations and reasoning. We take manipulations as students’ interactions with 
both physical and mental representations, e.g. drawing lines, nets, cube from different 
orientations, applying measurement apparatuses, etc. By considering these points, we 
propose our assessment framework (table 10 and figure 6) consisting of seven 
categories as a way to assess students’ geometrical thinking when they undertake cube 
problems. Next, we take geometric reasoning to mean the use of geometric properties 
and other information in problem solving. For example, for type A2, and 3 it is 
difficult to assess their reasoning based on properties of shapes because they judged 
the size of angle from visual information directly. For B, their reasoning may be 
correct, but the activated manipulations lend themselves to misinterpretations. For 
example, drawing the net and deducing 90 degrees is correct itself, but with this 
manipulation it is impossible to find the size BED. For C, by manipulation, triangle 
BED is identified but influence from visual aspects of the representation do not allow 
for the recognition of the triangle as equilateral, and, as a result, the problem solver is 
likely to make an invalid deduction. By proposing this framework we provide our 
answer to the RQ1 ‘What assessment framework can be constructed to assess 
students’ geometric thinking when they are solving 3D geometry problems with 2D 
representations?’  

Table 10 Assessment framework for the results from 455 students 
Category Assessment descriptors 

Category 0 

 

Students who failed to answer all of the assessment questions. 
These students might not recognise given representations as 3D 
geometric shapes. 

Category 1 

 

Students who only answered correctly for the first set of three 
questions Q1-①, Q1-② & Q2-①, but failed to answer and 
Q2-② and Q3. Failing to answer Q2-② means they have 
difficulties finding the length of CD, suggesting weaker capacity 
to manipulate to compare AB and CD, and therefore they do not 
reason why CD is longer. As students in this category fail to 
answer Q2-②, Q3 was too difficult for these students.   

Category 2-A 

 

Students who answered correctly for the first set of four 
questions, Q1-①, Q1-② & Q2-①, and Q2-②. This suggests that 
students in this category can undertake simple manipulations, e.g. 
mentally seeing CD as a diagonal of the face. For Q3, 
students in this category made type A1, A2 or A3 errors, 
indicating that their reasoning is influenced by only immediately 
available visual information or intuitive judgement.  



Category 2-B In this category students answered Q1-①, Q1-② & Q2-①, and 
Q2-② correctly but Q3 with type B error, suggesting that 
students in this category attempted to manipulate with 
representation, e.g. drawing a net, but this manipulation does not 
lead the faulty reasoning that led to an incorrect for Q3.  

Category 2-C 

 
In this category students answered Q1-①, Q1-② & Q2-①, and 
Q2-②correctly but Q3 with type C error. Manipulations such as 
drawing a line DB and then detaching a triangle DEB is 
activated, but their reasoning was informed by, for example, 
seeing the triangle DEB as a right-angled triangle and deducing 
from that observation that one if its angles measures 90 degrees.  

Category 3 

 

Students who answered all the five questions correctly. Indicating 
e.g. to draw the line DB, deduce that triangle BDE is an 
equilateral triangle, and then conclude that angle BED is 60 
degrees.  

 
Figure 6: Assessment categories 



We now present how we can categorise the responses from the 455 students by 
considering their overall performance in terms of the descriptions above, summarised 
in Table 11. Our findings indicate that the majority of our sample students are 
assessed as either category 0, 1 or 2-A thinking with 3D shape representations. In 
category 2 there are more type-A than other types. The G9 students’ result is better, 
but 24% in category 3 is still low.  

Table 11: Distribution of students’ 3D thinking 
Category(%) 0 1 2-A) 2-B) 2-C) 3 Not categorised 

G7 8.3 33.1 43.4 6.9 1.4 0.7 6.2 

G8 8.3 36.3 38.2 10.8 1.3 3.8 1.3 

G9  1.3 11.0 35.1 20.8 6.5 24.0 1.3 

For each grade, there are small numbers of students whose thinking is assessed to be 
‘Not categorised’. Not adequately being able to explain and understand these students’ 
thinking is one of the limitations of our approach and we do not claim our assessment 
framework can fully explain everything about all students’ geometric thinking as any 
model has its limitations (e.g. for van Hiele’s model see Fuys et al. 1998; Lehrer et al. 
1998; Clements, et al. 2001; Sinclair and Bruce, 2015). In particular our framework 
does not take any account of discursive aspects of geometrical thinking, which has 
been recognised as one of the important aspects of thinking (Sinclair, et al. 2016). We 
will discuss these limitations in the later part of this paper. Nevertheless, about 97% 
students’ thinking in our sample can be categorised by our framework, which provides 
useful information for the teaching and learning of geometry with 3D representations. 
Another issue is that we constructed our assessment framework from a set of 
structurally similar problems, and it is still unknown how our framework is applicable 
to other situations. In the next section, in order to address our RQ 2 ‘How can we 
apply this framework to understand various forms of students geometrical thinking in 
everyday lesson situations?’, we further provide two cases of examples from our 
classroom-based studies.  
 
6. Students’ 3D thinking in classroom based studies 
6.1. Classroom-based study background  
We use data from the following two sets of lessons which were part of our larger-scale 
of study of the teaching and learning and learning of geometry (informed by 
Kumakura, et al., 2000): 

• Lessons A two lessons (each 50 minutes) in which the students worked with the 
same Q3 but were presented with a different orientation to the one used in our 
assessment question (see figure 7); 



• Lessons B two lessons in which students were asked to construct a net and 
make the model including the face DPFQ, where P and Q are the mid-points of 
AE and CG respectively, illustrated in Figure 1 (that the points D, P, F and Q 
are on the same plane should be proved but this fact was tacitly assumed).  

We refer to the above classroom-based data because such qualitative data can further 
complement our understanding of students’ thinking. . In the Lessons A the cube in 
the problem uses the oblique parallel projection and the angle to be found is changed 
from the original assessment problem. All this means that it is not straightforward to 
know, for example, the size of angle BGD because of this representation (see Figure 7 
below). We included Lessons B in order to see whether our framework can be applied 
to other problem situations which do not appear in our assessment questions, which is 
to reason about quadrilateral DMFN in Figure 1. To reason the shape is a rhombus, 
students need not only deduce the shape satisfies a definition of a rhombus, but also 
they need to tackle the problem effectively to elucidate some hidden relationships such 
as DF>MN.   
For Lessons A, two 50 min lessons were taught by a teacher to a class of 28 Grade 7 
students (aged 12-13) in a public school in Japan in 2012. The class teacher, Mrs M, 
has more than 20 years teaching experience, and is particularly interested in students’ 
geometrical reasoning processes. Given that teachers’ interactions with students are 
crucial to encourage students’ reasoning (e.g. Jones and Herbst, 2012), in general her 
role in the lessons was to facilitate students’ discussions by suggesting where to direct 
their attention in the problem, which properties might be used, and so on. Through 
following the Japanese geometry curriculum, the students had already studied selected 
properties of solid figures such as nets, sections of a cube, surface areas and volume 
(note that the measurement of the angle between two lines in 3D space is not formally 
studied within the prescribed curriculum). For Lessons B two 50 min lessons were 
jointly taught by Mrs M and one of the authors to a class of 28 Grade 8 students (aged 
13-14) in the same school in 2011. For both lesson sets, field notes were kept and the 
audio was transcribed. In addition, student worksheets from both lessons were 
collected to obtain information on how the students’ reasoning changed across the 
lessons. 
All data were analysed qualitatively in terms of the categories of 3D thinking 
proposed above, i.e. we particularly analysed students’ interactions with the teacher 
during the lessons and their answers and explanations in their worksheets. Through 
this we describe students’ thinking in terms of our assessment framework by 
identifying their types of manipulations and reasoning with representations.  
 
6.2. Lessons A: What is the size of the angle? 
6.2.1 Overall lesson progressions 



In order to answer survey question Q3 (Figure 3) correctly students could deduce that  
triangle BGD is an equilateral triangle. During the two lessons of Case 1, the 25 
students (3 students were absent during the first lesson) attempted to solve the 
problem with a different orientation as presented by the teacher, Mrs M. In the first 
lesson, after the problem was posed, the students began by tackling the problem 
individually. Their initial answers from their worksheets are shown in Table 12. As 
can be seen from the Table, only five of the students correctly answered that the angle 
measured 60°.  

Table 12: Students’ initial answers to the problem 

Answer  90° 60° 22.5° 30° 45° 35° 90° or 60° 

Number of students 8 5 4 2 2 1 2 

In total 24 answers; one student did not write any answer. 
After this initial stage of working individually, the teacher asked the students to share 
their ideas and answers in groups, and then the teacher selected six different students 
to present their answers to the class (she observed these six different answers when 
she was observing students in their individual/group activities). The six answers in 
Figure 7 were presented.  

(1) 35° (Student F1) 

I thought it is 35° because I 
used a set square (to measure 
the angle in the representation), 
and it seems 10° smaller. 

(2) 45° (student Y)  

I used a net and if I cut it 
from B to D, then it is 45°. So 
∠BGD＝45° 

 

(3) 90° (Student F2) 

I rotated the cube and I can 
make an isosceles triangle 
BGD. And ∠BGD＝90° 

 

(4) 60° (Student IM) 

In a cube all diagonals of each 
face are the same. I added a 
line BD and we have a triangle 
BGD which is an equilateral 
triangle. And ∠BGD＝60° 

 

(5) 22.5° (Student K) 

A line DG halves a square, 
and another line BG further 
halves it. So 90×1/2＝45, and 
45×1/2＝22.5. 

 

(6) 30°  (Student H)  

No explanation and angles are 
measured as 2D angles. 

 



Figure 7: Presenting students’ answers 
At the start of the second lesson the 24 students (four were absent during the second 
lesson) continued to exchange their ideas and reasoning in groups. First, Mrs M asked 
the students whether they would change their answers or not, based on the six 
presentations of their fellow students at the end of the first lesson. The students’ 
revised answers are shown in Table 12.  

Table 12: Students’ revised answers to the problem 

Answer 90° 60° 22.5° 30° 45° 35° 22.5° or 60° 

Number of students 6 16 0 1 0 0 1 

The number of students giving the answer 60° had risen to 16, which was recognised 
as an improvement by the teacher but she observed not all students who agreed with 
60° could explain why it would be 60°. Also, some students still argued why they did 
not recognise the angle as 60°. For example, a student who once changed his/her 
answer from 45° to 60° stated that ∠BGC and ∠CGD might be 45°. Mrs M asked the 
students to consider an explanation which would help everyone in the class to consider 
whether the answer was 60°. One student explained BGD is an equilateral triangle. 
Mrs M then asked the students to further develop an explanation that would enable 
everyone to agree that the answer is 60°. Student IM proposed refuting 90° by 
showing that it is impossible to have three 90° angles in an equilateral triangle. This 
thinking is beyond what we would expect at grade 7, since students in that grade have 
not yet learned to write formal proofs: 

L2a-S24: Student IM  (writing the following answer) The sum of the inner angles of 
a triangle is 180° so 90° does not work. D=90°, B=90°, 
G=90°. D+B+G=90°+90°+90°=270°.  

L2a-T29: Mrs M Can you explain this? 
L2a-S25: Student IM If the line BD, DG and BG are all the same, then … no, 

sorry. If you add the angles of a triangle, then 180°, and if 
∠BGD is 90°, then it is an equilateral, so all angles should be 
the same and the other two angles are also 90°, and add them 
together it will be 270°. This does not work. 

Mrs M then used a physical model of a cube to demonstrate the reasoning. This 
completed the second lesson.  
 
6.2.2. Assessment of students’ thinking with the framework 
The nature of the solutions given in Figure 7 indicates that their reasoning is likely to 
be categorised into the criteria discussed in Table 10. As might be expected, students 
in the class illustrated various forms for solving Q3. In the first lesson, some students 



determined the size of the angle neither by referring to the properties of 3D shapes nor 
by manipulating the presented figure. In our case, student F1 (the Figure 7-(1)) or H 
(in Figure 7-(6)) for example, used measurement from the given representation, and 
did not have any idea why this would not be correct. These students can be considered 
as at least Category 2-A or below in our assessment framework.  
Meanwhile, some students demonstrated their capacities to use the properties of a 
cube and some manipulations. For example, student K in Figure 7-(5) ‘extracted’ a 
part of a cube (manipulation) and then reasoned the size of angles. Such thinking can 
be considered as Category 2-B, i.e. they utilised properties of shapes and started to 
manipulate the given representation, but their manipulations were influenced by the 
visual information, and did not activate useful properties for correct answers. Like 
student Y in Figure 7-(2), student C utilised a net to consider the size of the angle 
BGD to deduce the angle is 90°, as illustrated in Figure 8. As evident, this approach 
does not work because the angles in the net and the angle required in the problem are 
different. Yet this student did not see this by using only the net representation, i.e. they 
did not utilise the properties of cubes independently from the used representations, 
again classified as Category 2-B. 

 
Figure 8: Answers by C  

Other students used more manipulations of shapes and also started using properties of 
shapes to construct some deductions. In our study an example of this was when 
student F2 (Figure 7-(3)) joined B and D to form triangle BDG and started examining 
what the triangle BDG would be to deduce the size of the angle. However, the 
following exchange shows that this student did not recognise the triangle BGD as an 
equilateral because of how the representation of the cube looked: 

L1a-S72: Student F2 I joined B and D.  
L1a-T76: Mrs M Join B and D, and then? 
L1a-S73: Student F2 Then I see a right-angled isosceles triangle (Figure 2-(3)). 
L1a-T77: Mrs M OK, you thought the triangle is a right-angled isosceles 

triangle… 

L1a-S74: Student F2 So, G should be 90°? 
It is notable that student F2 changed the oblique parallel projection to an orthogonal 
projection (see Figure 7-(3)) as the result of the mental rotation of the representation. 
However F2’s inferences from that rotation were incorrect.. F2’s mental rotation can 



go in the right direction, but after drawing a new picture, F2 considered the triangle as 
a right-angled isosceles triangle (e.g. line L1a-S73) and this led to reason the angle 
would be 90 degree, categorised as Category 2-C. 
Nevertheless, it was the case that even in the first lesson some students demonstrated 
their reasoning which was not overly influenced by the external representation of the 
cube but was more controlled by logical thinking and deductions from properties of 
the 3D shapes,demonstrating Category 3 thinking. For example, student IM explained 
his reasoning as follows: 

L1a-S78: Student IM Because in a cube all diagonals should be the same length, 
this triangle is an equilateral.  

L1a-T82: Mrs M OK, you thought it will be an equilateral because of the 
length of the diagonals. 

L1a-S79: Student IM [nods] Each angle of an equilateral triangle is 60°, so ∠BDG 
is 60°. 

 
6.3. Lessons B: Let us make a model of the shape! 
6.3.1. Overall lesson progressions 
In the Lessons B, as described in Section 5.1, the students were not only expected to 
identify the face DMFN (Figure 1 in this paper), but also to construct an actual net and 
make a model of it. This additional practical requirement is a particularly important 
learning opportunity in these lessons as we consider this is more likely to create 
perturbations (such as the square DMFN does not fit) which for many students leads 
them to finding the solution more easily than a question that solely asks students to 
determine the shape of the face DMFN. In the latter case, students might say that the 
face is a square, and it might be more difficult for them to recognise that it is not a 
square without physically creating the model. Also, when students engage with 
physical models, geometrical thinking can still be observed by examining the verbal 
articulations and their interactions with the model. This was indeed observed in our 
case presented below. In the lesson, after the problem was introduced, students started 
making a model individually and then exchanged their ideas in a small in a small 
group, which allowed us to observe their thinking through recording their verbal 
communications when interacting with physical models. Towards the end of the 
second lesson Mrs M discussed what shape DMFN was through whole class 
interactions.  
 
6.3.2. Assessment of students’ thinking with the framework 
In these lessons, a range of different forms of thinking was observed and characterised 
by our assessment framework. For example, the following conversations by two 
students indicate their thinking is likely to be Category 2-A, as one of the students 



(L1-S43: Student C) reasoned only by looking at the diagram, and the other student 
agreed with this idea (L1-S44: Student D). 

L1b-S40: Student D So, if we put this square to the edges by force, then it would 
not fit. Look, the angles look different (to 90 degree). 

L1b-S41: Student C You are saying this is not a square? But if you see the 
diagram which was given to us, it is a square? 

L1b-S42: Student D Really? 
L1b-S43: Student C We do not know the size of angle from the diagram, but all 

the sizes are the same so it should be a square. 
L1b-S44: Student D OK, then we can just cut a bit of the shape (DMFN), and 

then… Does this work? 
Also, some students cut the face DMFN by placing the model directly on the paper 
(Figure 9). This manipulation did suggest to students that the angle might not be 90 
degree but students who used this approach did not reason why the shape is a 
non-square rhombus, and we thus consider this is similar to thinking in Category 2-B 
as this physical manipulation did not activate thinking around the properties of shapes 
to expand their reasoning. .  
 

    
Figure 9: Cutting the face directly 

At the end of the first lesson students started noticing the shape is not square but did 
not decide and reason why it is a non-square rhombus. Many students drew diagonals 
of DMFN on the given diagrams, and this manipulation could have been used for 
deducing what shape DMFN might be, but they could not reason why further, 
therefore such thinking is judged as Category 2-C.  
In the second lesson, with the teacher’s instructional intervention, some students 
managed to explain why DMFN is a non-square rhombus and not a square by looking 
at the lengths of DF and MN. After interactions with the class teacher, finally a 
student (MF) could explain why the shape is not a square.  

L2b-T24: Mrs M So do you think the length of MN is equal to a diagonal AC? 
L2b-20: Student MF Yes, equal. 
L2b-T25: Mrs M Why? 



L2b-21: Student MF They look equal, parallel lines.  
L2b-T26: Mrs M AMNC, what quadrilateral is it? 
L2b-22: Student MF  Rectangle. 
L2b-T27: Mrs M OK, if you dissect this cube along AC to bottom, where will 

we reach? 
L2b-23: Student MF EG  
L2b-T28: Mrs M OK, and now, what is AEGC? 
L2b-24: Student MF Rectangle. 
L2b-T29: Mrs M And what is AMNC, which is the half of AEGC? 
L2b-25: Student MF Rectangle (Figure 10 left) 
L2b-T30: Mrs M OK? So let us continue, student MF. 
L2b-26: Student MF If we cut along DB to HF, then DHFB is a rectangle, and the 

diagonal is DF (Figure 10 right), so the length of DF is 
different from MN (as MN=AC, and therefore DFMN is not 
a square). 

         
Figure 10: MF’s reasoning 

Here MF reasoned why MN is not equal to DF by using the properties of rectangle. 
We consider this as Category 3 thinking as MF not only (mentally) manipulated the 
given representation effectively but also used the properties well in order to deduce 
DF>MN, and refute DMFN would be a square  
In summary, by using the preliminary category presented in Table 10 and the observed 
students’ problem solving processes described above, their thinking can be categorised 
as follows (with the caveat that the type of thinking might depend on the problem).  

Table 13: Categorised students’ thinking for the Lessons B 
Category Assessment descriptors 

Category 0 

 

Students in this category cannot explore thinking with 3D shape 
with representation. As the lesson used physical model, it was not 
observed in the lessons B.  



Category 1 

 

Students in this category consider that DMFN is a trapezium 
including physically creating a trapezium with paper (by 
perceiving the shape as 2D without mentioning any properties of 
shapes. This was not observed in this experimental lesson but 
observed other lessons). 

Category 2-A 

 

Students in this category consider that DMFN is a square without 
stating any reasoning with given information in the representation. 
When they use physical models, they often attempt to fit the square 
by force, considering, for example, “because of measurement 
errors it does not fit” (e.g. Students C and D).  

Category 2-B 

 

Students in this category attempted to manipulate the 
representation, e.g. placing the model directly on the paper, but 
this manipulation does not lead to to reason what DMFN is (such 
as the example shown in Figure 9).  

Category 2-C 

 

Students in this category manipulate the representations such as 
drawing diagonals in the given 2D representation and this can be 
used for deducing the correct answer but still did not reason why 
DMFN is not a square.  

Category 3 

 

Students in this category can manipulate the representations 
effectively and as a result they reason correctly why DMFN is a 
rhombus (such as Student MF) 

 
7. A modified assessment framework based on the two case studies 
In terms of our research question 2 “How can we apply this framework to understand 
various forms of students geometrical thinking in everyday lesson situations?”, from 
what we have observed in the four lessons that we studied, including in the students’ 
worksheets, it is possible for us to characterise students’ 3D thinking with our 
assessment framework. A similar tendency was also recognised in the Lessons B. 
Based on our preliminary assessment framework and observations from the Lessons A 
and B, we suggest that our assessment framework be summarised, in more general 
term than those in tables 10 and 13, as follows. 

Table 14: Assessment framework for 3D geometric thinking with representations 
Category Assessment descriptors 

Category 0 No capacity to manipulate or reason with 3D representations 

Category 1 

 

Limited capacity to undertake simple manipulations with 3D 
representations mentally seeing CD as a diagonal of the face, 
resulting in difficulties to activate their knowledge to reason for 
even simpler questions e.g. Q2-②. 

Category 2-A 

 

Capacity to undertake relatively simple manipulations with 3D 
representations, enabling students to answer correctly for Q2-②. 
For complex problems such as Q3 or lessons B, there are no 
manipulations but some flawed deduction based on visual 



appearances in the given representations.  

Category 2-B 

 

Capacity to undertake relatively simple manipulations with 3D 
representations, enabling students to answer correctly for Q2-②. 
For complex problems, they are capable of undertaking 
manipulations, drawing/adding to figures (e.g. adding extra lines, 
drawing a net etc.), but such manipulations do not activate their 
knowledge that can be used to deduce a correct answer for 
given problems.  

Category 2-C 

 

Capacity to undertake relatively simple manipulations with 3D 
representations. For more complex problems, students are 
capable of undertaking manipulation or addition to the figure 
which can be used to activate their knowledge in properties 
which are useful to generate the correct answers, but they 
cannot proceed further with their reasoning. This is due to, for 
example, influences by ways they visualise geometric shapes from 
the given representations (e.g. seeing a detached triangle as a right 
angled triangle).     

Category 3 

 

Capacity to manipulate the representation and demonstrate 
valid reasoning by using properties of geometrical figures, 
resulting in correct answers to complex problems such as Q3 or 
lessons B 

 
Reflecting on the above assessment, we can return to the classroom episode captured 
in Figure 1 at the beginning of the paper. The student in this classroom episode made 
no effective manipulations, and thus demonstrated flawed deduction based on visual 
appearance, i.e. how the triangle ‘looks’. As such, according to our assessment 
framework this student’s thinking is categorised as 2-A or below.   
 
8. Conclusion  
The intention of this paper is to propose a framework for 3D geometrical thinking. In 
this paper, we investigated students’ problem solving with 3D shape representations. 
We first examined the nature of representations of geometrical figures by referring to 
Bishop (1983), Fischbein (1993) and Mesquita (1998), and suggested that an external 
representation may become an ‘obstacle’ to student understanding. Based on the 
existing studies (van Nes and van Eerde, 2010; Pittalis and Christou, 2010; 2013) and 
our own empirical data, we then developed an assessment framework of geometrical 
thinking that can be used to capture students’ thinking with challenging problems 
involving 3D shape representations. In conclusion it is sobering to reflect on the words 
of Freudenthal (1971, pp. 417-418) “The deductive structure of traditional geometry 
has never been a convincing didactical success.... It failed because its deductivity 
could not be reinvented by the learner but only imposed”. As this observation by 



Freudenthal suggests, students’ learning processes, and teachers’ teaching approaches, 
in thinking with 3D representations are neither simple nor straightforward.  
Meanwhile, we have made a small step towards better understanding of students’ 3D 
geometrical thinking by providing the assessment category summarised in Table 14. In 
doing so, new questions have arisen during our research. For example, we found 
different types of thinking, but what are relationships between these forms of 
thinking? Are they hierarchical relationships between them or not? Which 
manipulations are more difficult than the others? In order to answer such questions, 
we need to devise more assessment questions which are likely to be more difficult 
than Q2-② but less difficult or similar to Q3 so that we can study students’ thinking in 
this range of the difficulty more closely.  
In our classroom episodes, it was useful when students in the class shared their ideas 
about various manipulations of shapes, reasoning and so on. In particular, student IM 
(Lessons A) or MF (Lessons B)’s refutations, which were each valid use of reasoning 
with properties, were recognised as a highlight of the lessons. Also it was important to 
allow students to think freely and follow this with small group discussion and then 
whole class discussion; an approach that might be particularly effective for promoting 
student thinking (see e.g. Yackel, et al, 1991; Boaler, 2016). This echoes what 
Fischbein (1987, p. 41) characterises as a “productive reasoning process”. In the case 
studies we also could observe towards the end of the lessons students’ visual thinking 
was challenged by the following lesson progression: The problem is first introduced, 
and then students share various ideas to investigate their ideas; Students were given 
opportunities to reason their answer, to share their reasoning and to modify their initial 
thinking; A correct answer was further confirmed by refuting answers which were 
visually influenced by the given representations. We are not in a position to claim that 
one or two lessons which follow the above progression will make significant changes 
to students’ 3D geometrical thinking but we suggest that if lessons with such 
progressions are regularly implemented, then students’ 3D geometrical thinking might 
be better developed. This of course needs further investigation to confirm this 
hypothesis.  
Finally, we have not yet examined in detail what learning units that encourage 
“productive reasoning process” (Fischbein, 1987, p. 41) can be designed, how such 
units or lessons are effective to promote geometrical thinking and how mathematics 
teachers’ instructional interventions impact students’ learning. For example how can 
teachers support students' manipulations and interpretations of 3D shapes? And how 
can teachers help students check their interpretations of given representations of 
geometric figures and then make better use of them in their problem solving (i.e., 
move beyond 2-B thinking)? As Hiebert and Grouws (2007) explain in their 
comprehensive review, there remains much to learn about the inter-relationships 
between teachers’ practices and students’ learning. Indeed, according to Hiebert and 
Grouws, robust theories of teachers’ instructional practices do not, as yet, exist. Thus, 



one of our future tasks is to work with issues such as the influence of different 
teaching instructions by teachers on students’ decision-making, conjecture-production, 
and proof construction processes. 
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