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Abstract:  

1) Restriction site Associated DNA sequencing (RAD-seq) has become a widely 

adopted method for genotyping populations of model and non-model organisms. 
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Generating a reliable set of loci for downstream analysis requires appropriate 

use of bioinformatics software, such as the program Stacks. 

2) Using three empirical RAD-seq datasets, we demonstrate a method for 

optimising a de novo assembly of loci using Stacks. By iterating values of the 

program’s main parameters and plotting resultant core metrics for visualisation, 

researchers can gain a much better understanding of their dataset and select an 

optimal set of parameters; we present the 80% rule as a generally effective 

method to select the core parameters for Stacks. We also demonstrate that 

building loci de novo and then integrating alignment positions is more effective 

than aligning raw reads directly to a reference genome.  

3) Visualisation of the metrics plotted for the three RAD-seq datasets show that 

they differ in the optimal parameters that should be used to maximise the 

amount of available biological information. We also demonstrate that building 

loci de novo and then integrating alignment positions is more effective than 

aligning raw reads directly to a reference genome.   

4) Our methods will help the community in honing the analytical skills necessary to 

accurately assemble a RAD-seq dataset.  

 

Keywords: alignment, de novo assembly, population genetics, RADseq, Stacks, 

parameter optimization  

 

Introduction  

The last decade has been punctuated by innovations in the generation of 

genomic data for evolutionary and ecological science. The development of 

massively parallel, short-read sequencing, associated with lowered costs and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

open-access analysis tools, has enabled the genomic interrogation of a multitude 

of model and non-model species. Restriction site-Associated DNA sequencing 

(RAD-seq) has been proven to be an effective method for identifying and 

screening high-resolution polymorphism within and between populations 

(Lescak et al. 2015; Blanco-Bercial & Bucklin 2016), ecotypes (Hale et al. 2013; 

Pavey et al. 2015) and species (Nadeau et al. 2012; Wagner et al. 2013; Pante et 

al. 2015).  

 

RAD-seq involves creating a reduced representation of a genome by isolating the 

DNA connected to a set of restriction enzyme cut sites. This cost-effective 

approach can be repeated in large numbers of samples to produce nearly the 

same reduced subset of the genome in each individual. After sequencing, the data 

are re-assembled into loci, anchored by the presence of the restriction enzyme 

cut-site (Baird et al. 2008; Etter et al. 2011), and subsequently SNPs are 

identified across those loci. Many different flavours of the original RAD protocol 

are now used (e.g. ddRAD, ezRAD, GBS, 2bRAD) and several analysis programs 

exist (reviewed in Andrews et al. 2016). RAD-seq provides a highly flexible 

experimental approach, which can be tuned by choosing restriction enzymes 

with different properties, such as cutting frequency, or by choosing combinations 

of enzymes; however, this flexibility also brings challenges, such as the quality of 

DNA required and ascertainment bias stemming from natural variation in 

restriction enzyme cut sites across a set of populations or species. A number of 

studies have outlined these aspects of experimental design and technical 

considerations (Davey et al. 2011; 2013; Rowe et al. 2011; Arnold et al. 2013).  
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RAD-seq is facilitating a shift from using scores of genetic markers to make 

biological inferences (e.g. microsatellites), to using large-scale data obtained 

from tens of thousands of loci. The transition from familiar and well-established 

genotyping techniques into more complex genomic analyses remains a daunting 

task for many researchers. Thus, the ability to correctly handle the bioinformatic 

analysis of these vastly larger datasets is essential.  Error quantification and 

hierarchical methods for filtering datasets to obtain biologically robust RAD-seq 

data do exist. However, these techniques require additional sequencing effort 

(Mastretta-Yanes et al. 2015) and particular RAD datasets for which testing the 

error is feasible (Fountain et al. 2016). Moreover, a RAD-seq analysis relies on 

competent bioinformatics knowledge, all of which are demanding, especially in a 

cost- or time-limited framework. To this end, a fundamental protocol for 

developing an accurate and economical RAD-seq data interrogation strategy is 

currently lacking.  

 

One of the most widely used programs for processing RAD-seq data is Stacks 

(Catchen et al. 2011; 2013a), a software pipeline designed to assemble loci from 

short-read sequences derived from restriction enzyme-based protocols, such as 

RAD-seq. Stacks can be used to assemble markers for genetic mapping analyses 

(Amores et al. 2011), or for population genomics (Epstein et al. 2016; Laporte et 

al. 2016), phylogeography (Emerson et al. 2010; Bryson et al. 2016), and 

phylogenomics (Jones et al. 2013; Díaz-Arce et al. 2016). The popularity of Stacks 

lies in its versatility and user-driven application. After cleaning and 

demultiplexing raw data (process_radtags), the researcher can proceed 

through one of two main pipelines depending on the availability of a reference 
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genome, to build loci either de novo (denovo_map.pl; hereafter de novo map) 

or reference aligned (ref_map.pl; hereafter ref map). Throughout an analysis, 

values must be chosen for key parameters, which frequently have a significant 

effect on the building and quality of the resulting loci.  

 

Stack assembly is controlled by several main parameters, the choice of which 

will depend on key features of a RAD-seq dataset: (i) Biological, such as the 

inherent polymorphism, level of ploidy, and the biological hypothesis being 

tested; (ii) Study–dependent, such as the number of individuals multiplexed, 

RAD flavour (e.g. RAD, ddRAD, 2bRAD) and restriction enzyme used, including 

the number of cut sites, the number and length of raw reads, coverage, 

sequencing platform and inherent error and iii) Library-development issues, for 

example degraded DNA (Graham et al. 2015) and exogenous contamination 

(Trucchi et al. 2016). Given the uniqueness of each dataset, choosing which 

parameters are optimal for stack assembly can be difficult.  

 

We tested and optimised the three main parameters within the de novo map 

pipeline (Table 1), which determine the number and the polymorphism of loci in 

a RAD-seq dataset. The first two affect how loci are built within each individual 

sample using the core component ustacks, where m is the minimum number of 

raw reads required to form a stack (or putative allele) and M is the number of 

mismatches allowed between stacks in order to merge them into a putative locus 

(Catchen et al. 2011; 2013a).  
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After the building of loci at an individual level, cstacks attempts to match loci 

across samples to build a catalog, which represents the homologous loci across 

all population samples. In order to accommodate fixed differences in loci 

between individuals, mismatches are also allowed during the construction of the 

catalog and the number allowed is controlled by the n parameter. Here, we 

outline a method where we demonstrate that by iterating a range of values for 

the main parameters, followed by plotting core assembly metrics gathered from 

the Stacks output files, the researcher can observe and make an informed choice 

of the best parameter sets for their data (Table 2).  

 

An attractive attribute of RAD-seq is that it can be adopted in model and non-

model organisms alike, by using either a reference genome or by constructing 

loci de novo. Both approaches require optimisation of the parameter space; in the 

case of a de novo assembly the parameters must be supplied to Stacks directly, 

whereas in a reference-aligned analysis the analogous parameters must be 

supplied to the chosen aligner. An advantage of a de novo assembly is that Stacks 

will identify putative alleles one after another and then merge them into putative 

loci—leveraging biological information—while an aligner will independently 

align each raw read. The reference genome also acts as a filter; for example, a 

draft genome will exclude loci not contained in the assembly and may fail to align 

reads that belong to loci captured in the reference more than once (e.g. as 

haplotypes). Alternatively, a reference genome of the study species may not be 

available, but the genome of a closely related species may be, providing 

positional information for loci at a reduced precision. We have developed a novel 

method to incorporate reference genome alignment information by building loci 
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de novo and subsequently integrating the alignments of the consensus sequences 

into their de novo dataset (available in Stacks 1.42).   

  

In order to extract meaningful biological information from a RAD-seq dataset, it 

is crucial to explore the parameter space and assess how the analysis software 

interacts with the biological signal. Below, we use empirical datasets from three 

different species to demonstrate (a) a method of de novo parameter optimisation, 

and (b) how integrating alignment information from a reference genome can be 

used to supplement alignment information to loci built de novo.  

 

Materials and Methods 

RAD-seq datasets 

We used three empirical RAD-seq datasets for analysis, representing a 

phylogenetically diverse group of organisms (Table 3). The first dataset (TRT) 

consists of data from brown trout (Salmo trutta L.) samples occupying two 

different environmental niches (Paris et al. 2015): clean (8 individuals) and 

metal-impacted (8 individuals) sites. The second dataset (PGN) is from the king 

penguin (Aptenodytes patagonicus), from two different colonies on different 

archipelagos (Cristofari et al. 2016a): KER (8 individuals) and PCM (8 

individuals). The final dataset (ETW) contains 16 red earthworm (Lumbricus 

rubellus) individuals from a single population (OL2; Giska et al. 2015).  

 

Analyses of the datasets were performed using Stacks version 1.42 (Catchen et al. 

2011; 2013a). Data quality was first checked using FastQC (Andrews et al. 2010). 

If required, reads were cleaned and demultiplexed using the 
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process_radtags program. Using each dataset’s respective reference genome, 

the restriction enzyme used and type of RAD library preparation, we estimated 

the expected number of cut-sites and RAD loci in silico (Table 3). For ETW, two 

estimates were made; the first by searching for the MseI cut-site 200-400bp 

downstream/upstream of SphI (liberal estimate) and a second estimation 

accounting for a second (MseI) cut-site occurring within 0-200bp 

downstream/upstream of the first cut site (representing allele dropout; 

conservative estimate). For each dataset, we used kmer_filter in Stacks to 

visualise the error profiles of the cleaned RAD-seq reads; resulting K-mer 

frequency distributions were plotted in Gnuplot (version 5.0, 

http://gnuplot.info).  

 

De novo map and parameter optimisation  

For each dataset, we ran de novo map several times, varying just one parameter 

with each parse of the program. For the primary analysis, we varied the 

ustacks -m parameter from 1 to 6 (m1–m6), the ustacks -M parameter from 

0 to 8 (M0–M8) and the cstacks -n parameter from 0 to 10 (n0–n10), whilst 

keeping all other parameters consistent (m3, M2 and n0). For further validation, 

we repeated these same runs with the defaults set to (m6, M4/M6, n0).  

 

We extracted and collated data on de novo map assembly metrics for each 

parameter iteration including: (i) the number of assembled loci; (ii) the number 

of polymorphic loci; and (iii) the number of SNPs for the parameters m and M. 

For the m parameter, we also collected data on coverage. This information is 

reported by Stacks’ component programs and captured in the log files of both de 
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novo map and ref map. We extracted this data using simple shell scripts, which 

we provide (distributed with Stacks).   

 

Differences in both natural polymorphism and read depths can vary across 

individuals (Davey et al. 2013), and so exploring discrepancies between the 

individuals across a dataset is important. For each parameter run for m, M and n 

we visualised the data across the population of samples using Stacks’ 

populations module, varying the value for the –r parameter so that a locus 

had to be present in a minimum of 40%, 60% and 80% of individuals (for m and 

M) and 80% of individuals for n. In order to further interrogate how M controls 

polymorphism, we assessed how many new polymorphic loci were identified 

across 80% of the population (r80 loci) for each increment of M. 

 

To observe variation in changing the number of fixed differences allowed 

between loci across individuals when forming the catalog (the n parameter), we 

compared the SNPs from each individual with those in the catalog using a 

custom Python script (count_fixed_catalog_snps.py; distributed with Stacks). The 

script tabulates: (i) the number of heterozygous SNPs found in each individual; 

(ii) the variable sites identified across the whole population; (iii) the number of 

SNPs found in the catalog; and (iv) the number of SNPs found in the catalog but 

not found in any individual sample – i.e. the fixed SNPs captured during the 

construction of the catalog. For increments of n, we also calculated the 

distribution of SNPs per catalog locus, as well as SNP distributions across 

polymorphic loci identified in 80% of the population (r80 loci).  
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Metrics for m, M, and n were plotted in Gnuplot (version 5.0), visually assessed 

and optimal sets of parameters were chosen, specific to each dataset. The results 

generated by the optimal parameters were plotted against those obtained from 

an analysis using the Stacks default parameters (m3, M2, n1), and common 

population genetic statistics were calculated to assess how the optimal 

parameter runs compared to using the default values.  

 

Comparing loci built de novo to reference-aligned raw reads 

Our next objective was to compare loci derived from reference-aligned raw reads 

(ref map) with loci first assembled de novo and then aligned back to a genome – 

integrating the alignment position for each locus back into the Stacks output files 

(integrated).  

 

For the ref map analyses, clean raw reads were aligned to either a 

complementary reference genome of the same species or to that of a closely 

related sister species (Table 3). Raw reads were aligned using GSNAP (version 

2015-12-31; Wu & Nacu 2010) specifying a maximum of 5 mismatches (-m 5), an 

indel penalty (-i 2) and turning off terminal alignments (--min-coverage=0.95). 

Only reads that aligned uniquely (unpaired_uniq) were used. TRT was 

aligned to the closely related Atlantic salmon genome (Salmo salar, NCBI 

accession GCA_000233375.4), PGN was aligned against the emperor penguin 

(Aptenodytes forsteri, NCBI accession GCF_000699145.1), a close relative of the 

king penguin, and ETW was aligned against a draft genome of the same species 

(P. Kille and L. Cunha, Cardiff University). Resulting alignment files were run 

through ref map.  
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For the integrated analyses, we used GSNAP (using the same parameters as 

outlined above) to align the consensus sequence of the catalog loci from the 

optimal de novo map runs for each species against their respective genomes and 

used a Python script (integrate_alignments.py; distributed with Stacks) to 

integrate alignment information back into the original de novo map output files. 

We compared the number of uniquely mapping loci that were assembled using 

an alignment from ref map, to those aligned using de novo map consensus 

sequences – the integrated method.  

 

Results 

Raw data statistics 

Reads from the TRT samples were 95bp in length with an average of 2,880,327 

(± 290,590 SE) reads per sample (Table S1); the PGN dataset was 96bp with 

3,312,159 (± 337,146 SE) reads per sample; the ETW dataset was 95bp with 

3,629,617 (± 409,701 SE) reads per sample. To get a sense of error and repeats, 

we generated the distribution of K-mer counts from our set of raw reads. Each 

true RAD locus can be described by a set of K-mers (sub-sequences of length K) 

and those K-mers will appear in the distribution in proportion to the number of 

times a RAD locus was sequenced. The mean of the K-mer distribution reflects 

the sequencing depth, rare K-mers represent sequencing or PCR error, and 

frequent K-mers describe repetitive loci. Figure S1 demonstrates that ETW 

contains significantly more error than TRT and PGN.  
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Choosing a value for the minimum number of raw reads (m) requires 

mediating the promotion of error reads to putative alleles versus excluding 

true alleles 

The first stage in the assembly of loci de novo (Catchen et al. 2011) is to collapse 

identical raw reads into stacks and consider them putative alleles. The number of 

raw reads required to form an allele is governed by m. The general pattern for m 

is that using higher values increased average sample coverage (Fig. 1) but 

decreased the number of assembled loci (Fig. 2A) and the amount of 

polymorphism (Fig. 2B-C).   

 

Figure 1 (green) shows that stack coverage improved with increasing values of 

m, and that after merging putative alleles into loci, coverage further increased 

across all datasets (Fig. 1, purple). Coverage between the datasets varied with 

PGN showing the highest coverage, followed by TRT and finally ETW (Table S2). 

With the Stacks default value of m3; the average coverage for TRT was 23x (17x-

38x). Merging putative alleles into loci increased coverage further to 28x (16x-

51x). PGN had the highest coverage: 42x (30x–58x) and a merged coverage of 

49x (31x–72x). ETW had the lowest coverage at 19x (14x–23x), and only reached 

21x (15x–28x) after merging alleles. 

 

At a value of m1, every raw read is treated as a putative allele and thus all 

datasets showed the most loci assembled for this value (Fig. 2A; Table S3a) 

Proportionately, we saw the fewest number of polymorphic loci and the fewest 

number of SNPs (Fig. 2B-C; Table S3b-c) for m1. Moreover, almost none of these 

SNPs were shared across the population.  
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When we increased m1 to m2, the average number of loci formed dropped 

dramatically. For ETW, ~50% more loci were assembled at m1 compared to m2, 

suggesting that ETW contains many unique reads, potentially indicating a large 

amount of PCR or sequencing error. This was confirmed in the K-mer 

distribution plots (Fig. S1). In all datasets, we observed a large drop in the 

number of loci assembled between m2 and m3, but after m3 the number of loci 

that were built stabilized.  

 

The average number of assembled loci was significantly higher in ETW (138,905 

at default m3) despite having the lowest coverage, moderate in TRT (92,626, 

default m3), and the fewest loci were assembled in PGN (58,876, default m3), 

despite its very high coverage. These results are consistent with our in silico 

estimates of the number of RAD loci (Table 3). The TRT dataset contained the 

lowest variance and also showed high consistency in the homologous loci being 

repeatedly assembled in 60% and 80% of the population. PGN showed a high, 

but consistent variance in the number of loci assembled, with many fewer loci 

shared across 60% and 80% of individuals in the population; however, the high 

coverage and consistent results with m3–m6 implies a true biological signal, and 

the distribution of assembled loci was likely bimodal. Indeed, considerably more 

loci were assembled in the KER population (m3: 74,646 ± 6,934), compared to 

the PCM population (m3: 49,280 ± 5,363), also representing higher levels of 

polymorphism (m3: KER: 7,717 ± 1,146; PCM: 2,475 ± 427). Such patterns could 

be the result of a batch bias generated by sequencing the two populations on 

different lanes. Alternatively, this could be due to biological processes such as 
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population bottlenecks, founder effects or stochastic demographic histories. 

Conversely, ETW showed very few loci assembled consistently across the 

population; combined with the low coverage, this again suggests a signal of 

error.  

 

The average number of polymorphic loci in TRT and PGN (Fig. 2B) decreased by 

~100 loci with each higher value of m, suggesting that increasing read depth 

excluded only a small amount of biological polymorphism.  Given that M was 

fixed for these tests, we determined that m does not have a significant effect on 

polymorphism or SNP detection (Fig. 2C) and this was further confirmed in 

additional parameter tests (Fig. 2C; Table S4 & S5). In ETW, several hundred loci 

were lost with each increasing value of m, corroborating the hypothesis for a 

high amount of error. 

 

In a biologically unambiguous dataset with reasonable sequencing coverage (e.g. 

TRT), the m parameter converges after a value of 3 and on its own does not have 

a large impact on the detection of polymorphism. However, by varying m, we 

observed differences in a high coverage dataset that appeared to have different 

subsets of loci in different individuals (PGN), versus a dataset with low coverage 

and apparently high error that does not show a strong biological signal (ETW).  
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Setting values for the maximum number of mismatches (M) is species-

specific and requires a balance between undermerging and overmerging 

loci 

After putative alleles are formed, Stacks performs a search to match alleles 

together into putative loci. This search is governed by the M parameter, which 

controls for the maximum number of mismatches allowed between putative 

alleles. The general pattern for M was that higher values decreased the number 

of assembled loci (Fig. 3A), but increased the number of polymorphic loci (Fig. 

3B) and the number of SNPs (Fig. 3C).  

 

Correctly setting M requires a balance – set it too low and alleles from the same 

locus will not collapse, set it too high and paralogous or repetitive loci will 

incorrectly merge together. When alleles from the same locus are undermerged, 

the software will incorrectly consider them as independent loci. When loci are 

overmerged, because they happen to be close in sequence space, an errant locus 

with false polymorphism will result. Therefore, M is particularly dataset-specific 

because it depends on the natural levels of polymorphism in the species, as well 

as the amount of error generated during the preparation and sequencing of the 

RAD-seq libraries.  

 

The number of assembled loci decreased with increasing values for M (Fig. 3A). 

For TRT, the proportion of putative alleles that collapsed levelled out between 

M3 and M4 (Fig 3A; Table S6a). In PGN these patterns started at lower mismatch 

values, between M1 and M2.  In ETW, the numbers that collapsed began to 

plateau between M2 and M3.   
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For the number of polymorphic loci (Fig. 3B; Table S6b) and the number of SNPs 

(Fig. 3C; Table S6c), obviously M0 is incorrect.  A high number of loci were 

assembled (Fig. 3A) simply because putative alleles were not correctly merged 

into heterogeneous loci. Increasing M from 0 to 1 permitted alleles with a single 

polymorphism to merge and with increasing values of M no clear limit was seen 

in the average amount of polymorphism detected.    

 

At M1, the majority of polymorphism and SNPs were already captured in PGN, 

and the amount of polymorphic loci was relatively uniform; the highest 

polymorphism detected across 80% of the population was at M2. In TRT, the 

average number of polymorphic loci identified within individuals began to 

flatten out at M5, and M5 also provided the highest amount of polymorphism 

across 80% of the population. Alternatively, in ETW, although polymorphic loci 

within individuals began to plateau at approximately M3, polymorphism at 80% 

continued to increase with incremental values of M (even up to unrealistically 

high levels of M11; Table S7), suggesting that the dataset contained a small 

number of loci with a high-density of SNPs.  

 

In both TRT and ETW (Fig. 3C) we noticed a steep increase in the number of SNPs 

obtained with increasing M; however, a much smaller increase was detected in 

PGN. The steeper increase of SNPs in TRT reflects the higher value of M required 

to detect the maximum amount of polymorphism across 80% of the population. 

Although TRT was quite polymorphic, a large proportion of these 
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polymorphisms were not shared across the population, and many of the alleles 

were at low frequency. 

 

When we observed the number of assembled loci (Fig. 3A) together with the 

number of polymorphic loci (Fig. 3B) and the number of SNPs called (Fig. 3C), we 

saw a small number of loci that contained many SNPs added with each increment 

of M. This is also reflected in the haplotype diversity in Figure S2. With high 

coverage, these are likely to be true loci as the SNP calling algorithm can assess 

SNP calls with a higher likelihood. However, with low coverage these are more 

likely to be erroneously assembled loci.   

 

Figure 4 describes how increasing values for M contributed new broadly shared, 

and therefore likely real, polymorphic loci (i.e. loci found in 80% of the 

population or, r80 loci). The number of novel polymorphic loci peaked at M3/M4 

for TRT, M1/M2 for PGN and M2/M3 for ETW, and importantly, after a particular 

value for M, identification of new polymorphic loci appears to be robust to any 

further increases in M (Table S8). The data here corroborate the levels of 

polymorphism displayed in Fig. 3B and 3C in illustrating the relative 

homogeneity of PGN, compared to TRT and ETW which were more polymorphic 

and required higher M values.  

 

Selecting a value for the number of mismatches in the catalog (n) requires 

assessing the maximum amount of 80% polymorphic loci (r80) around 

n=M 
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After loci are assembled in each individual sample, they are compared across 

samples to match homologous loci into a single catalog locus for the population. 

The n parameter controls for the number of mismatches, or fixed differences, 

allowed during this process. The general pattern for n is that higher values 

increased the number of fixed differences found between samples (Fig. S3; Table 

S9). Choosing the value for n involves a trade-off between setting it too low and 

failing to find homologous loci in different samples that contain fixed differences, 

and setting n too high and thereby further collapsing loci close together in 

sequence space within and across samples.  

 

At n0, some loci (and the variants they contained) had not been integrated into 

the catalog. However, once n was set higher than 0, the number of variant sites in 

the population stabilised. In all three datasets, increasing values of n provided a 

linear increase in the identification of more fixed differences between individuals, 

and increasing values of n did not cause the number of fixed differences to 

plateau (Fig. S3). There appears to be an unlimited number of loci that can be 

connected together in the catalog with increasing values of n, so we chose to 

focus again on optimising for broadly available loci, r80 loci. 

 

By iterating over values for n0-n10 for M2, M4 and M6, we saw that at M2 all 

datasets contained the highest amount of r80 loci at n=M. At M4 and M6, the 

highest r80 values were obtained for values of n one iteration either side of n=M, 

so that n=M-1 or n=M+1 (Table S9). The optimal value of n for TRT (n4) provided 

a total of ~153K SNPs, of which ~24K (15%) were fixed (Table S10). In PGN, n2 
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provided ~62K SNPs, with ~8K being fixed (13%) and for ETW (n3) contributed 

~156K SNPs and ~33K (21%) of these SNPs were fixed.   

 

The maxims for selecting optimal parameters in Stacks 

Through collecting and plotting metrics of the iterations of m, M and n we have 

identified two general rules that allow for the identification of optimal 

parameters: (i) the 80% polymorphic (r80) loci rule, and (ii) n=M plus or minus 

one iteration for linking loci together across samples. There are many possible 

metrics related to the de novo construction of loci we could focus on to optimise 

parameters. We chose to select a stable set of loci that are highly replicated 

across the population; these r80 loci are unlikely to be derived from paralogous 

or repetitive sequence, nor have a lot of sequencing error, and serve as a proxy 

for the true genome. Importantly, although we are using the r80 loci as an 

optimisation target, we are not required to use only the r80 loci for downstream 

analyses – we still have all subsets of the loci available to us, we have simply 

used the r80 loci to optimise the assembly of all loci. 

 

A value of m3 was optimal in providing the highest amount of polymorphism 

across all three datasets at 40%, 60% and most importantly 80% of the 

population. We observed that the PGN dataset was relatively monomorphic, and 

the highest amount of polymorphism identified at r80 was detected at a value of 

M2. The TRT and ETW datasets showed higher polymorphism; indeed, the 

largest amount identified at r80 was found at M5 for TRT, making this the most 

polymorphic dataset. In ETW, the polymorphism at r80 continued to increase 

with higher M values, but Figure 4 showed that very few new polymorphic loci 
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were added at M values greater than 3. Given the potential error in ETW, for this 

dataset, M3 also provides a balance between obtaining true polymorphism and 

introducing sequencing error. 

 

All datasets continued to show more fixed SNPs with increasing values of n 

(Figure S3). PGN showed a very gentle increase, TRT a moderate increase and 

ETW the steepest increase in fixed SNPs. This alone however does not provide 

enough information to choose a value for n. We found that the highest 

polymorphism of r80 loci resulted from either n=M, n=M-1 or n=M+1 (Table S9) 

and suggest this as the best method for obtaining the optimal value for n. The 

following optimal parameters were therefore chosen so that: TRT = m3, M5, n4; 

PGN = m3, M2, n2; ETW: m3, M3, n3.  

 

Using these optimal parameter sets, in TRT, ~244K loci were identified across 

the population, 22% were polymorphic containing an average of 3.18 SNPs per 

locus; for PGN, ~155K loci were assembled, 32% were polymorphic, with 1.74 

SNPs per locus; in ETW, ~865K loci were assembled, 13% were polymorphic, 

with 2.83 SNPs per locus. We suggest assessing and reporting these metrics in 

any RAD-seq analysis. 

 

Figure 5 shows the main metrics plotted for the Stacks default parameters (m3, 

M2 and n1) and the optimal parameters for each dataset. Significantly, when 

compared to the defaults, the optimal parameters modified the number of 

constructed loci, the polymorphism levels, and the numbers of SNPs (Fig. 5, 

Table S11). Moreover, the number of polymorphic loci discovered across 80% of 
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the population (r80) increased with optimal parameters (Fig. 5, green dots). 

Although overall measures of population genetic statistics were not considerably 

altered (Table S12), changing the values for M considerably altered global SNP 

and haplotype diversity statistics across all three datasets (Fig. S2, Table S13). 

 

De novo analysis recovers more loci compared to reference-aligned raw 

reads  

It was apparent that in all three datasets that the de novo-integrated approach 

recovered thousands more loci than ref map (Figure S4; Table S14). In TRT, a 

total of ~116K de novo consensus loci aligned to the reference genome. Of this 

total, ~84K represented consensus loci that aligned to unique positions in the 

reference. This compares to just ~66K alignments using ref map. Similarly, in 

PGN over 117K consensus loci aligned using the integrated method, ~104K of 

which were aligned uniquely, in comparison to under 92K using ref map. The 

most obvious discrepancy was seen with the ETW dataset where ~253K loci 

aligned with the integrated method (~172K unique alignments) in comparison to 

just ~100K loci using ref map. In the large majority of cases, raw reads that were 

poorly aligned compared to well-integrated consensus de novo sequences were 

due to either insertions into the reference, or deletions in the sequence relative 

to the reference.  Our comparison is of course dependent on the corresponding 

reference alignment parameters used; more promiscuous values may have 

closed the gap between de novo map and ref map a small amount. 
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Discussion 

RAD-seq data interrogation is a non-trivial, yet necessary process for avoiding 

inaccurate building of loci, erroneous SNP calls and a loss of important biological 

information. Our aim was to develop a straightforward method for surveying and 

visualising the trends of assembly metrics from the output of Stacks, and we 

suggest that by doing so, researchers can accurately identify optimal parameter 

sets. We present two general maxims that can be used to optimise parameter 

space, but highlight that the r80 rule, which uses a set of polymorphic loci 

repeatedly assembled across a set of samples, will provide an effective 

optimisation target. Furthermore, we have shown that incorporating alignment 

information from a reference genome is an advantageous approach compared to 

using a standard method of alignment, particularly if using a draft reference 

genome or if the genome is phylogenetically distant from the focal species.  

 

The Stacks de novo assembly algorithm proceeds in each individual sample in 

several stages (Catchen et al. 2011). First, exactly matching reads are collapsed 

into putative alleles, controlled by m. Sets of exactly matching reads with a size 

smaller than m are set aside and are referred to as secondary reads. Putative 

alleles are then compared against one another and collapsed into putative loci, 

controlled by M. Once the loci are formed, the secondary reads are aligned back 

against assembled loci with a relaxed mismatch limit (the -N parameter to 

ustacks) to increase locus depth. Next, the SNP model is executed and it 

evaluates the evidence at each nucleotide position for a homozygote or 

heterozygote. The model takes into account depth of coverage and the amount of 

error present (i.e. non-matching nucleotides at the current position) in a 
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maximum likelihood statistical framework. Finally, after loci are assembled in 

each sample, homologous loci must be matched across samples to make a 

population-wide catalog of loci. Loci are compared across samples and 

sequences within a certain distance are collapsed into a single catalog 

(population-wide) locus, governed by n (cstacks).  

 

We recommend scrutinising sample coverage as the first assembly metric when 

assessing the suitability of any given RAD-seq dataset and we suggest aiming for 

coverage thresholds greater than 25x. Fountain et al. (2016) showed that 

genotyping error rates were considerably higher when coverage was between 5 

and 10x, and error rates were mostly robust to variation in sequence quality 

when coverage was ≥10. Yet, published datasets with coverage below 10x are 

not uncommon (e.g. Xu et al. 2014; Boehm et al. 2015; Razkin et al. 2016; Ivy et 

al. 2016). 

 

As seen here, the main way the de novo assembly algorithm interacts with 

coverage is though the m parameter. If m is set to 1, each raw read becomes a 

putative allele and there are no secondary reads. However, as m is increased the 

status of a putative allele requires more evidence and the number of secondary 

reads grows. If m gets too large, alleles lacking coverage will not be recognized 

and will become secondary reads. These secondary reads will still be made 

available to the SNP calling model, as long as one of the two alleles was 

assembled, but if both alleles fall below a high m threshold the locus will be lost.  
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In the literature, wide ranges of values for the m parameter have been used. In 

some cases, the investigation was specifically addressing phylogenetic 

differences between divergent species, and hence under-detection of species-

specific polymorphism when building loci was inconsequential (for example, 

m50 – Keller et al. 2012; m125 – Wagner et al. 2013). Furthermore, a higher 

value of m may be required to exclude exogenous contamination (Trucchi et al. 

2016). However, other studies have used inappropriately high values of m 

(Suyama & Matsuki 2015; Jezkova et al. 2015; Palaiokostas et al. 2015), 

presumably due to the assumption that higher values will reduce genotyping 

error. If m is set unrealistically high, secondary read incorporation must be 

disabled (-N option). This was demonstrated when comparing m3 and m6 with 

iterative values for M, where at M0 more SNPs were supposedly called at m6, 

compared to m3 (Table S5). However, these are not true SNPs, but simply 

represent sequencing error incorporated by secondary reads at higher read 

depths.  

 

We recommend setting m high enough only to deny errant reads the status of a 

putative allele. We therefore do not suggest using a value for m >5 and we have 

demonstrated here that the default value of m3 was favourable for all test 

datasets. Testing a range from 3-7 should allow the correct exploration of this 

parameter under most biological scenarios. If coverage is exceptionally high (i.e. 

>40x), or levels of polymorphism are exceptionally low (as in the PGN dataset), 

m can still be left at a moderate value, but secondary reads can be discarded 

entirely (setting N to 0), making for a clearer signal (e.g. Longo & Bernardi 2015). 

Despite controlling for the minimum read depth of alleles at the ustacks phase 
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of the pipeline, many studies also incorporate a minimum stack depth required 

for individuals at a locus in the populations module of Stacks (e.g. Gaither et 

al. 2015; Kjeldsen et al. 2016; Ivy et al. 2016). Such a method is undesirable, as 

read depth has already been accounted for by the SNP model. Once the SNP 

model has made a determination, its evaluation should be trusted and using 

further non-statistically-based limits on depth of coverage is ill advised and will 

result in the arbitrary dropping of loci. 

 

Species with higher levels of polymorphism will require higher values of M 

(Campagna et al. 2015; Ravinet et al. 2016), as do studies assessing levels of 

genomic divergence (Jones et al. 2013; Lozier et al. 2016). If M is too small, 

alleles will not collapse into loci within individuals. When the catalog is 

constructed, different individuals will map alternative alleles together creating 

loci that appear homozygous, while the other alleles are excluded and may 

themselves form distinct loci. On the other hand, if M is too high, repetitive or 

paralogous loci will be erroneously merged together. These loci are noticeable, 

as they will appear as heterozygous in a large majority of individuals; they can be 

filtered out by the populations module after the main pipeline runs, based on 

their high heterozygosity (--max_obs_het option). 

 

The three datasets examined here required different values for M. The ETW 

dataset is likely quite polymorphic; high levels of polymorphism have been 

shown in the Lumbricus genus (Kautenburger 2006; Shepeleva et al. 2008; 

Donnelly et al. 2014). However, the low coverage and potential error in the 
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dataset means a definitive determination of true polymorphism could not be 

reliably assessed, but M3 provided the highest amount of r80 loci.  

 

For the TRT dataset, M5 was the most suitable value for identifying 

polymorphism, and this is considerably higher than M2 as most commonly used 

in salmonid RAD-seq studies (Lemay & Russello 2015; Bernatchez et al. 2016) 

and in other teleost species (Catchen et al. 2013b; Martin & Feinstein 2014; 

Fowler & Buonaccorsi 2016). Observations of the TRT dataset suggested a large 

proportion of the alleles were at a low frequency; these could be filtered out 

after the main pipeline executes by implementing a minor allele frequency 

threshold (--min_maf option to populations). 

 

On the other hand, the PGN dataset was relatively uniform and exhibited low 

levels of polymorphism. This corroborates with limited genetic variation and 

high gene flow that has been shown to exist in penguin colonies (Roeder et al. 

2001; Freer et al. 2015; Nims et al. 2008). The bimodal distribution for the 

number of loci observed in PGN corroborates well with the known stochastic 

demographic history of the species (Cristofari et al. 2016a). Considerably fewer 

loci were observed in the PCM population, a colony sampled from an archipelago 

that was recolonised later after glaciation, i.e. later than the archipelago home to 

the KER colony. Whilst the length of the loci that were generated should be 

considered, with most short-read sequencing (~100bp) surveying M1 to M8 

should allow sufficient mismatch parameter-space exploration for the large 

majority of RAD-seq datasets. Of course, if read lengths are longer (250bp+), 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

users should re-scale the parameter, testing higher values of M as appropriate 

for the longer read length.  

 

A main consideration when deciding on the number of mismatches allowed in 

the catalog (n) is how many fixed differences might be expected between 

individuals. In a closely related set of populations, it makes intuitive sense to set 

n=M, since M controls matching alleles within an individual, and n controls 

matching of the same set of alleles across individuals. If, by chance for a 

particular locus, only homozygous individuals were sampled, setting n=M will 

allow the correct relationship for that locus to be recovered across individuals. If 

population sample sizes are large (so heterozygotes should have been found), 

and fixed differences are rare, it may make sense to set n to a value less than M 

(Barnard-Kubow et al. 2015; Saenz-Agudelo et al. 2015). Alternatively, if the 

samples originate from highly divergent individuals (Ravinet et al. 2016; 

Rougemont et al. 2016), or phylogenetic relationships are being explored 

between species (Combosch & Vollmer 2015; Tariel et al. 2016), then a higher 

value of n may be required to detect these fixed polymorphisms. This being said, 

it may be difficult to derive a biological judgement of the known amount of 

differentiation between individuals – for example if cryptic population structure 

exists. Therefore, it is essential to plot and explore how iterative values for this 

parameter affect how many fixed differences are detected.  

 

Although the number of fixed SNPs continued to grow with incremental values 

for n for both TRT and ETW, the highest amount of r80 loci was equal to n=M for 

ETW.  High levels of intraspecific divergence are common in earthworm species 
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(Klarica et al. 2012) and, in particular, natural populations of L. rubellus have 

been shown to consist of highly divergent mtDNA lineages representing a 

complex of cryptic species (King et al. 2008). Thus, high divergence between 

individuals, even within the same population is very likely and validates the 

patterns we observed. The TRT dataset showed a moderate number of fixed 

SNPs, and the highest number of polymorphic r80 loci were recovered for n=M-1. 

This is in accordance with high levels of differentiation between geographically 

proximate populations of the species, occupying metal-contaminated and clean 

rivers (Paris et al. 2015). In king penguins, studies have shown low levels of 

genetic divergence both within (Cristofari et al. 2015) and between (Freer et al. 

2015) colonies, and it has recently been suggested that Antarctic penguins 

should be considered single panmictic populations due to extreme levels of 

genetic homogeneity and low FST values between populations (Cristofari et al. 

2016b). Coupled with the low levels of within-individual polymorphism, n=M 

resolved the most polymorphic r80 loci across the populations for this dataset. 

Thus, the general maxims and visualisation of the RAD-seq plots created here 

and the subsequent parameters chosen corroborate well with the known biology 

of these species.  

 

Our data clearly show (Fig. S5; Table S15) that in all three datasets there are a 

small number of loci containing high densities of SNPs. These loci appear in a de 

novo dataset with high values of M, and also appear in a reference-aligned 

dataset with promiscuous alignment parameters. Including these loci will affect 

standard population genetic statistics (Fig. S2; Table S13), naturally inflating 

them. Experiments that rely only on downstream population genetic measures to 
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assess accuracy need to account for this (Rodríguez-Ezpeleta et al. 2016; Shafer 

et al. 2016) or they may produce misleading results. 

 

A reference genome is a great asset in a RAD-seq analysis, enabling loci to be 

considered positionally and statistics to be computed across chromosomes. 

However, one aspect that may be both an asset and a liability is that the 

reference genome can act like a strict filter, and so what a researcher can’t 

observe as aligned on a chromosome isn’t included. In addition, alignment 

programs align each read independently and alignment algorithms can score 

different combinations of gaps and mismatches the same way, which can lead to 

alignment variation. Further, RAD-seq is a key technology for non-model 

organisms, so, often a reference genome, if available, is a draft, or is a closely (or 

not so closely) related species, exacerbating the above problems. By building loci 

de novo, individual reads have already been merged into biologically-plausible 

loci, thereby leveraging the maximum amount of information obtained from each 

individual read. In a straight alignment approach, each read is treated 

independently of every other read. Our method of building loci de novo, aligning 

the consensus sequences to a reference, and then reintegrating alignment 

positions into the de novo data to compute chromosome-level statistics combines 

positive aspects of both de novo and reference analyses.  

 

Other studies have used a version of the de novo integrated approach (Jones et al. 

2013; Wagner et al. 2013). In all datasets analysed here, the de novo and 

integrated method performed better than alignment and ref map. In both the 

brown trout (TRT) and king penguin (PGN) cases, the reference genome was not 
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from the same species, but belonged to the same genus, suggesting that the 

genome of a closely related species can be utilised. Gene synteny is conserved 

between brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) (Gharbi et 

al. 2006) and the species are known to hybridise (Leaniz & Verspoor 1989; Elo et 

al. 1997). Similarly, phylogenetic relationships within the genus Aptenodytes, i.e. 

the king penguin (A. patagonicus) and emperor penguin (A. forsteri), are closely 

related (Baker et al. 2006; Ksepka et al. 2006). In both cases, the RAD-seq reads 

for the TRT and the PGN datasets aligned successfully to the reference genome, 

but this was improved by building loci de novo, most likely the result of 

constructing species-specific loci first, which accounts for the variance between 

the reference genome and the samples used.  

 

In contrast, the genome used for the red earthworm ETW, L. rubellus, was from 

the same species. The highly divergent L. rubellus species consists of 11 lineages 

(Sechi 2013); the samples used for the RAD-seq analysis were identified as 

lineages A, C and E (Giska et al. 2015) and the reference genome was sequenced 

from lineage B. COI analysis has shown that other lineages are >12% different to 

lineage B and only 20% of RNA-seq reads map from lineage A to lineage B (Kille 

pers comm, unpublished data). The straight alignment method using ref map was 

relatively unsuccessful. However, here the integrated method successfully 

aligned all of the de novo reads to the genome.  

 

We have demonstrated how the Stacks software can be tailored to a researchers’ 

RAD-seq dataset; we have provided a method of parameter optimisation and 

exhibited how to effectively implement and test our optimisation strategy using 
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Stacks. These parameters should be adjusted to complement the biology of the 

species being studied, the biological hypotheses, the library construction and 

error inherent in the dataset. While we focused on Stacks in this work, other 

RAD-seq analysis software uses the same algorithmic strategy, governed by 

analogous parameters. Analyses in other domains also use similar strategies, 

such as assembling metagenomic loci, or during alignment for shotgun 

resequencing analyses; thus, this basic approach has broad relevance and can be 

widely applied.  
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Table 1. (Top) Three main parameters that control locus formation and 
polymorphism in Stacks, the default values, the Stacks component program that 
uses the parameter, and a description of what part of the processes each 
parameter controls. (Bottom) Four additional parameters referenced in the 
paper (but not part of the optimisation process). 

Parameter 
Default 
value 

Stacks 
component 

Description 

m 3 ustacks 
Minimum number of raw reads required to 
form a stack (a putative allele). 

M 2 ustacks 

Number of mismatches allowed between stacks 
(putative alleles) in order to merge them into a 
putative locus. 
 

n 1 cstacks 

Number of mismatches allowed between stacks 
(putative loci) during construction of the 
catalog. 
 

N M+2 ustacks 

Number of mismatches allowed to align 
secondary reads (reads that did not form 
stacks) to assembled putative loci to increase 
locus depth. 
 

r 0 populations 

Percentage of individuals that must possess a 
particular locus for it to be included in 
calculation of population-level statistics. 
 

--max_obs_het 1 populations 
For a particular locus the maximum number of 
heterozygous individuals that may be present. 

--min_maf 0 populations 
For a particular locus, alleles occurring below 
this frequency are discarded. 
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Table 2. Decision framework for each main Stacks parameter that control locus 
formation and polymorphism in Stacks, the values that users should test and 
considerations when exploring the parameter space.  

Param
eter 

Test  Decision framework 
Other 

considerations 

m 3 to 7 
↑ if 

coverage < 
15x 

↑ if 
contaminat

ion 

↑ if 
conducting 
phylogenet

ics 

if > m6 disable use 
of secondary reads 

M 1 to 8 
↑ if high 

polymorph
ism 

↑ if high 
genomic 

divergence 

↓ if 
repetitive 

or 
polyploid 
genome 

if M is too high, 
paralogous loci can 

be filtered in 
populations. Re-
scale parameters 

with increased 
read length 
(250bp+). 

n 
= M 

= M+1 
= M-1 

↑ if high 
polymorph

ism 

↓ if 
sampled 

from same 
population 

↑ if 
conducting 
phylogenet

ics 

plot to observe 
changes in SNP 

heterozygosity and 
fixation 
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Table 3. Details of the three RAD-seq datasets used for analysis. For each of the 
three species: the dataset abbreviation used; estimated genome size of the 
species; the type of RAD sequencing and restriction enzyme(s) used; the 
reference genome used for alignment analysis; in silico estimation of the number 
of RAD cut-sites and resultant RAD loci using the reference genome and the 
number of RAD loci assembled de novo using optimal parameters. For ETW, two 
estimates of reference-related RAD cut-sites and loci are presented to show both 
conservative and liberal estimates based on ddRAD digest sites and allele 
dropout. For de novo estimation, the total number assembled across the dataset 
is presented, and numbers in brackets represent those assembled across 40% 
and 80% of individuals within the dataset.  

Dat
aset 

Species Estim
ated 
geno
me 
size 

RAD 
flavo

ur 

Restri
ction 
Enzy
me 

Refere
nce 

genom
e 

Refere
nce 

estima
tion of 

cut-
sites 

Refer
ence 

estim
ation 

of 
RAD 
loci 

De novo 
estimati

on of 
RAD loci 

TRT 

Brown 
trout 

(Salmo 
trutta) 

3 Gb 

Single 
digest 
(1x10
0bp) 

SbfI 

Atlanti
c 

salmon 
(Salmo 
salar) 

58,197 
116,39

4 

257,322 
(62,767 - 
82,406)  

PGN 

King 
pengui

n 
(Apteno

dytes 
patago
nicus) 

1.2 
Gb 

Single 
digest 
(2x10
0bp) 

SbfI 

Emper
or 

pengui
n 

(Apten
odytes 
forsteri

) 
 

43,435 86,870 
156,725 
(20,664 - 
71,122) 

ET
W 

Red 
earthw

orm 
(Lumbri

cus 
rubellus

) 

420 
Mb 

Doubl
e 

digest 
(1x10
0bp) 

SphI 
and 
MseI 

Red 
earthw

orm 
(Lumbr

icus 
rubellu

s) 

127,40
2/ 

278,54
4 

143,38
0/ 

399,73
1 

832,898 
(5,884 - 
56,666) 
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Figure 1.  

Plots of mean coverage for TRT, PGN and ETW. Coverage for each of the 16 

individuals is represented as a box plot, where mean coverage (in green) is the 

average mean coverage for primary reads and mean merged coverage (in purple) 

is the coverage after merging alleles.  

Figure 2.  

Plots of iterating values the minimum number of raw reads required to form a 

stack (m) for the metrics: (A) the number of assembled loci; (B) the number of 

polymorphic loci and (C) the number of SNPs in TRT, PGN and ETW. Blue squares 

represent data found in at least 40% of the samples, red circles 60% and green 

diamonds 80% (r80). 

Figure 3. 

Plots of iterating values for the distance allowed between two stacks (M), for the 

metrics: (A) the number of assembled loci; (B) the number of polymorphic loci 

and (C) the number of SNPs in TRT, PGN and ETW. Blue squares represent data 

found in at least 40% of the population samples, red circles 60% and green 

diamonds 80% (r80). 

Figure 4.  

Plots of the number of new polymorphic loci (r80 loci) added for each iteration of 

M (the distance between stacks) for the three datasets: TRT, PGN and ETW.   

Figure 5. 

Plots showing the differences between the default Stacks parameters (m3, M2, 

n1) and the optimal parameters selected for each dataset: TRT: m3, M5, n4; PGN: 

m3, M2, n2 and ETW: m3, M3, m3 for the number of assembled loci, the number 

of polymorphic loci and the number of SNPs. For every dataset, the optimal 
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parameter sets gave the highest amount of polymorphic loci in 80% of the 

population (r80 loci, green diamonds). 
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