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Abstract

Ensemble forecasts of weather and climate are subject to systematic

biases in the ensemble mean and variance, leading to inaccurate estimates

of the forecast mean and variance. To address these biases, ensemble fore-

casts are post-processed using statistical recalibration frameworks. These

frameworks often specify parametric probability distributions for the ver-

ifying observations. A common choice is the Normal distribution with

mean and variance specified by linear functions of the ensemble mean and

variance. The parameters of the recalibration framework are estimated

from historical archives of forecasts and verifying observations. Often

there are relatively few forecasts and observations available for param-

eter estimation, and so the fitted parameters are also subject to uncer-

tainty. This artefact is usually ignored. This study reviews analytic results

that account for parameter uncertainty in the widely used Model Output

Statistics recalibration framework. The predictive bootstrap is used to

approximate the parameter uncertainty by resampling in more general

frameworks such as Non-homogeneous Gaussian Regression. Forecasts

on daily, seasonal and annual time scales are used to demonstrate that

accounting for parameter uncertainty in the recalibrated predictive dis-

tributions leads to probability forecasts that are more skilful and reliable

than those in which parameter uncertainty is ignored. The improvements

are attributed to more reliable tail probabilities of the recalibrated fore-

cast distributions.

1 Introduction

Raw forecasts produced by numerical atmosphere-ocean models are often not
representative of the real world. Modellers have long realised that there are sys-
tematic discrepancies between model simulations and the real world. Glahn and Lowry
[1972] suggested that a linear transformation should be applied to weather model
forecasts to issue predictions of real world observables. Similarly, Leith [1974]
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suggested that “a final regression step is needed” to get the “best estimate of
the true state”.

The past 50 years has seen a shift in focus from forecasts that are determinis-
tic in nature to probability forecasts that represent the forecaster’s uncertainty
of the future, while also providing a point forecast. To this end, ensemble fore-
casts have become widely used in the fields of climate science and numerical
weather prediction. An ensemble forecast is simply a collection of forecasts that
differ in one or more of the model physics, resolution, or initial conditions.

Statistical adjustment to better fit numerical model output to real world
observations is also known as forecast recalibration. A parametric statistical
framework is specified that takes the raw numerical model forecast as an input,
and outputs an estimate of the real world. To avoid confusion due to overuse
of the word “model”, the term “statistical framework” is used in place of the
more common “statistical model”. One of the simplest statistical forecast ad-
justments is the removal of a constant bias. The underlying assumption is that
the observation is equal to the model output plus a constant offset. The offset
is represented by an unknown parameter that must be estimated from training
data.

A variety of more flexible recalibration frameworks have been proposed.
In general, the choice of the recalibration framework depends on the forecast
quantity, and on the assumptions about the forecast errors; for example, tem-
perature forecasts require different recalibration frameworks than precipitation
forecasts. Two of the most well-known frameworks are Model Output Statis-
tics [MOS, Glahn and Lowry, 1972] and Non-homogeneous Gaussian Regression
[NGR, Gneiting et al., 2005]. MOS is equivalent to Normal linear regression of
the observations on the model output. NGR extends MOS by allowing the pre-
dictive uncertainty to depend on the ensemble spread. The more flexible the
framework, the greater the number of parameters to be estimated.

It is common practice to recalibrate the forecast using the estimated pa-
rameters as the “correct parameter values”, i.e., by treating them as known
constants. However, the parameters are estimated from a finite sample of train-
ing data and so are also subject to uncertainty. By näıvely using the fitted
parameters in issuing probability forecasts, the uncertainty in the parameter
estimates is ignored.

The problem of accounting for parameter uncertainty when recalibrating cli-
mate and weather forecasts is not unknown. Glahn et al. [2009b] state that the
predictive distribution of forecasts recalibrated by linear regression should be a
Student’s t-distribution with inflated variance. Related remarks can be found in
Mason and Mimmack [2002], Bröcker and Smith [2008], and Unger et al. [2009].
Forecast recalibration using dynamic linear models (Kalman filtering) also leads
to forecasts that follow a t-distribution [Sohn et al., 2003, Pagowski et al., 2006].
Bayesian methods can also be used to account for parameter uncertainty in fore-
casts recalibrated by linear regression [Marty et al., 2014], or by latent variable
methods [Siegert et al., 2015].

This study investigates the effect of accounting for parameter uncertainty on
the reliability and skill of recalibrated probability forecasts. Section 2 describes
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analytic methods to account for parameter uncertainty in MOS, and proposes
a simple bootstrap method to account for parameter uncertainty in NGR. Sec-
tion 3 applies the methods developed in Section 2 to three meteorological fore-
cast data sets: an annual mean temperature forecast, a seasonal forecast of the
North-Atlantic Oscillation, and a short-range 48-hour temperature forecast. All
three data sets demonstrate that accounting for parameter uncertainty improves
both the skill and reliability of recalibrated forecasts. Section 4 concludes with
a summary and discussion.

2 Methodology

2.1 Model Output Statistics (MOS)

The original application of MOS was statistical downscaling, i.e., to produce
forecasts of quantities that are not explicitly modelled numerically, such as
surface winds or probability of precipitation [Glahn and Lowry, 1972]. How-
ever, MOS has been widely used for the statistical recalibration of both deter-
ministic and ensemble forecasts [Kharin and Zwiers, 2003, Tippett et al., 2005,
Glahn et al., 2009b]. As noted above, MOS is equivalent to Normal linear re-
gression. The future (unknown) observation is represented by a linear function
of the numerical model output, with Normally distributed forecast errors. Let
yt denote the observed conditions at time t, and let mt be the corresponding
ensemble forecast mean. Then the MOS recalibration framework is given by

yt = a+ bmt + cεt, (1)

where εt is a standard Normally-distributed random variable, i.e., εt ∼ N (0, 1).
For simplicity, we focus on simple linear regression. However, all the results
presented in this paper extend easily to multiple linear regression, where the
forecast mean depends on more than one input [e.g., Glahn et al., 2009a].

The parameters a, b, and c can be estimated by maximising the log-likelihood
under the assumption that the errors εt, t = 1, 2, . . . , n are independent and
follow a standard Normal distribution. Given a training set of n ensemble
forecast means m1, . . . ,mn and corresponding verifying observations y1, . . . , yn,
the unbiased maximum-likelihood estimates of a, b, and c2 are

â = ȳ − smy

s2m
m̄, (2a)

b̂ =
smy

s2m
, (2b)

ĉ2 =
1

n− 2

n
∑

t=1

(

yt − â− b̂mt

)2

, (2c)

where m̄ and ȳ denote the overall sample means of the ensemble meansm1, . . . ,mn

and observations y1, . . . , yn in the training sample, and smy and s2m denote the
sample covariance between ensemble means and observations and the sample
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variance of the ensemble means, respectively. Note the division by n − 2 in
Eqn. 2c, to account for the fact that two mean parameters (a and b) have been

estimated [Draper et al., 1998, Chp. 1]. The fitted parameters â, b̂ and ĉ can
then be used to recalibrate new forecasts for yet unknown observations.

2.2 Non-homogeneous Gaussian Regression

Recalibration using MOS explicitly assumes that the predictive variance is con-
stant for all forecasts, i.e., equal to c2. In practice, the forecast uncertainty
might be different on different occasions due to varying error growth rates, and
more or less predictable weather regimes. If the numerical model can reproduce
this variability, then there might be useful information not only in the ensemble
mean, but also in the ensemble variance. Recalibration using NGR aims to ex-
ploit systematic relationships between the ensemble variance and the variance
of forecast errors [Gneiting et al., 2005, NGR]. The NGR forecast mean is a
linear function of the ensemble mean, mt, identical to MOS. But unlike MOS,
the forecast variance at time t is a linear function of the ensemble variance, vt.
The NGR recalibration framework for the observation yt is thus

yt ∼ N (a+ bmt, c+ dvt) . (3)

Note that NGR recalibration with the parameter d fixed at zero is equivalent
to MOS recalibration.

Gneiting et al. [2005] suggest parameter estimation for NGR by numerical
minimisation of the Continuous Ranked Probability Score (CRPS). However,
Williams et al. [2014] found little advantage of minimum-CRPS estimation com-
pared to maximum-likelihood estimation. To maintain continuity with the MOS
parameter estimators, the NGR recalibration parameters are estimated by max-
imising the log-likelihood function

ℓNGR ∝ −
n
∑

t=1

[

log (c+ dvt) +
(yt − a− bmt)

2

c+ dvt

]

. (4)

Since closed form solutions are not available for the maximum-likelihood esti-
mates of the NGR parameters, numerical optimisation is used.1 To ensure that
the forecast variance is positive, the variance scale parameter is represented by
d = δ2 and optimised over δ [Gneiting et al., 2005].

2.3 Parameter uncertainty in MOS: Analytic results

Suppose the maximum-likelihood estimates â, b̂, and ĉ from Equations 2a –
2c are known. These parameter estimates can be used to recalibrate a new
ensemble mean forecast m∗ for a yet unknown future observation y∗. It is

1Numerical optimisation is performed using the function optim in the stats package of the
R statistical programming environment [R Core Team, 2015, version 3.2.0]
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common practice to directly substitute the maximum-likelihood estimates into
the MOS recalibration framework, so that the forecast distribution for y∗ is

y∗ ∼ N
(

â+ b̂m∗, ĉ2
)

. (5)

This recalibration framework has been used for probabilistic forecasting by, e.g.,
Kharin and Zwiers [2003], Tippett et al. [2005].

Results from linear regression [Draper et al., 1998, Chp. 1] show that the
predictive distribution should also include parameter uncertainty. That is, the
predictive distribution should not only include the estimated variance of the
forecast errors ĉ2, but should also account for the estimation uncertainty in
the parameter estimates â, b̂ and ĉ2. The sampling variances of the parameter
estimates â and b̂ lead to an increase of the predictive variance of the Normal
distribution. Uncertainty due to estimation of the error variance c2 leads to a
transformation of the Normal distribution into a Student’s t-distribution.

When parameter uncertainty is taken into account, the predictive distribu-
tion in linear regression becomes a t-distribution with inflated variance:

y∗ ∼ tn−2

(

â+ b̂m∗, ĉ2

[

1 +
1

n
+

(m∗ − m̄)
2

∑n

t=1
(mt − m̄)

2

])

. (6)

The forecast variance is inflated by a term that depends on both the sample
size n, and the distance of the ensemble forecast mean m∗ from the overall
mean of the training forecasts, m̄. The function tν(µ, σ

2) denotes the non-
standardized Student’s t-distribution with ν degrees of freedom, location µ and
scale σ (see appendix). In the limit as ν → ∞, the t-distribution converges to
a Normal distribution. However, for small ν, the tails of the t-distribution are
heavier than those of the Normal distribution. Therefore, the variances of the
predictive distributions given by Equations 5 and 6 differ when the sample size
n is small, or when |m∗ − m̄| is large. Note that the forecast mean does not
change.

The difference due to the adjustment for parameter uncertainty is illustrated
in Figure 1. The standard Normal distribution N (0, 1) is compared to the non-
standardized t-distribution t18(0, 1.1). The 18 degrees of freedom correspond to
a sample size of n = 20, and a 10% inflated variance corresponds to a forecastm∗

that differs from the overall forecast mean of the training data by one standard
deviation. The example can thus be considered a typical case for what one
might expect to see with a training sample of climate forecasts. Figure 1 shows
that the difference due to the adjustment for parameter uncertainty is generally
small, and so one should not expect the differences in forecast quality to be
substantial.

2.4 Parameter uncertainty in NGR: The predictive boot-
strap

For NGR recalibration, Gneiting et al. [2005] suggest substituting the parameter

estimates â, b̂, ĉ and d̂, as well as the ensemble meanm∗ and variance v∗, directly
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Figure 1: Illustration of difference between the standard Normal distribution
N (0, 1) (solid line) and the non-standardized t-distribution t18(0, 1.1) (dashed
line).

into Equation 3. The forecast distribution for the future observation y∗ is then
given by

y∗ ∼ N
(

â+ b̂m∗, ĉ+ d̂v∗
)

. (7)

This approach has also been used to recalibrate probability forecasts in a number
of other studies, e.g., Hagedorn et al. [2008], Kann et al. [2009].

However, in keeping with the discussion in Section 2.3, simply substitut-
ing the parameter estimates and issuing forecasts with a Normal distribution
ignores parameter uncertainty. No analytic expression for the NGR forecast dis-
tribution that accounts for parameter uncertainty has been published, to date.
Therefore, a means of approximating the parameter uncertainty, and account-
ing for the parameter uncertainty in the predictive distribution is required. The
parameter uncertainty can be estimated non-parametrically by bootstrapping
[Efron, 1982]. Generating predictive distributions using bootstrap resampling
is known as predictive bootstrapping, and was originally proposed by Harris
[1989]. Given a historical archive of ensemble mean forecasts mt, ensemble
variances vt, and corresponding observations yt, for times t = 1, 2, . . . , n, the
following bootstrap resampling protocol is proposed:

1. Generate a new training data set of size n by randomly sampling n times
with replacement from the available pairs of historical forecasts and obser-
vations;

2. Compute the maximum likelihood NGR parameter estimates using this
new training data set; and

3. Repeat steps 1. and 2. K times.
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Figure 2: Illustration of the predictive bootstrap to account for parameter un-
certainty in NGR using a training data set of n = 19. The Normal forecast
distribution using maximum likelihood estimates of the NGR parameters (solid
black line), 50 Normal distributions with maximum likelihood parameter esti-
mates obtained by resampling the training data set (solid gray lines), and the
distribution obtained by the averaging the 50 bootstrap distributions (dashed
black line).

The kth resampling leads to the bootstrap parameter estimates ãk, b̃k, c̃k, and
d̃k. The collection of K bootstrap parameter estimates approximates the pa-
rameter uncertainty distribution.

The objective is to generate a recalibrated forecast for the unknown value y∗

of the observation, using the ensemble mean forecast m∗ and ensemble variance
v∗. Each set of bootstrapped parameter estimates (ãk, b̃k, c̃k, d̃k), k = 1, 2, . . . ,K
leads to a Normally-distributed forecast given by Equation 7. The K bootstrap
samples are combined into a single predictive distribution by calculating the
equally weighted average over the individual Normal distributions, thereby pro-
ducing a Normal mixture distribution (see appendix). The bootstrap forecast
distribution itself is therefore not a Normal distribution.

The predictive bootstrap is illustrated in Figure 2. The effect of averaging
over the bootstrapped Normal distribution is similar to the adjustment for pa-
rameter uncertainty in MOS: The variance of the distribution is increased, and
the tails are made heavier. Unlike MOS, the mode of the predictive distribu-
tion can be different after accounting for parameter uncertainty. By exploring
different values for the estimated slope parameter b̂, bootstrapping also inflates
the forecast variance when the forecast mean m∗ is far from the mean of the
training data m̄.

The assumptions underlying the predictive bootstrap are quite different from
those of the analytic method in Section 2.3. Both approaches assume that the
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training data represent independent and identically distributed samples (con-
ditional on the parameters) from some unknown distribution. However, the
bootstrap approximates the distribution of the parameters, without making
prior assumptions about the form of the distribution, e.g., Normal, Student t,
etc.. Therefore, bootstrapping is useful for frameworks such as NGR, where
parametric inference is difficult or impossible.

2.5 Forecast verification: CRPS, Ignorance, PIT histogram

This section outlines the forecast verification measures used in this paper to
assess the quality and improvements of probabilistic forecasts. Only the general
forms of the verification measures are provided here. Equations for specific
distributions can be found in the appendix.

The Ignorance score is a verification score to evaluate probability density
forecasts [Roulston and Smith, 2002]. If the forecast probability density func-
tion (pdf) is f(x), and the verifying observation is y, then the Ignorance score
is given by

ign(f, y) = − log2 f(y), (8)

i.e., the negative logarithm of the forecast density evaluated at the observation.
The Ignorance score is a local score, i.e. it only depends on the value of the
forecast assigned to the verifying observation. If the basis 2 is used, Ignorance
differences are measured in bits. An Ignorance difference of ∆ > 0 bits between
forecast A and forecast B implies that forecast B has assigned 2∆ times more
probability density to the verifying observation than forecast A. Forecast B,
having lower Ignorance score than forecast A, can thus be considered to be the
“better” forecast. Time-averaged Ignorance differences are used as summary
measures of relative forecast performance.

The Continuous Ranked Probability Score (CRPS) is designed to evalu-
ate a cumulative forecast distribution (cdf) F (x) for a scalar observation y
[Matheson and Winkler, 1976, Hersbach, 2000]. The general form of the CRPS
is

crps(F, y) =

∫ +∞

−∞

[F (x)−H(x− y)]
2
dx, (9)

whereH(x) is the Heaviside step-function, i.e., H(x) = 0 for x ≤ 0 andH(x) = 1
otherwise. Unlike the Ignorance score, the CRPS is a non-local score. The
CRPS depends not only on the value assigned to the observation, but also on
how much forecast probability is concentrated near the observation, i.e., the
CRPS is sensitive to the distance of the bulk of the forecast distribution from
the observation. For a deterministic forecast (i.e. where F (x) is itself a step
function), the CRPS is equal to the absolute difference between forecast and
observation, and the CRPS vanishes for a perfect deterministic forecast where
F (x) = H(x−y). Therefore, the CRPS can be interpreted as a distance measure
between forecast and observation, and a lower CRPS value can be taken as an
indication of a “better” forecast. Note that the notion of “better” depends on
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the score, e.g., forecast A can perform “better” than forecast B in terms of the
Ignorance score, but “worse” in terms of the CRPS.

The CRPS is measured on the scale of the forecast target x. The Continuous
Ranked Probability Skill Score (CRPSS) provides a dimensionless measure of
the difference in forecast performance. If the time-averaged CRPS of forecasts
A and B are CRPSA and CRPSB, the relative improvement of forecast B over
forecast A is given by

CRPSS =
CRPSA − CRPSB

CRPSA

. (10)

A positive (negative) CRPSS indicates an improvement (deterioration) of fore-
cast B compared to forecast A. CRPSS close to zero indicates that the forecasts
are equally good. The CRPSS is bounded above at unity for a perfect forecast
B, but has no lower bound.

Probabilistic forecasts should be issued such that the verifying observations
behave like random draws from the forecast distributions. Such forecasts are
referred to as being reliable or well-calibrated [Gneiting et al., 2007]. For reli-
able forecasts, the observations fall on average equally often between the 0 and
5 percentiles, between the 5 and 10 percentiles, etc., of the forecast distribution.
Therefore, counting how often each percentile interval is occupied by the obser-
vation provides a simple test of forecast reliability. In practice, the probability
integral transform (PIT) of each forecast pdf ft(x) is calculated, which is the
mass of forecast probability below its verifying observation:

pitt := PIT (ft, yt) =

∫ yt

−∞

ft(x)dx. (11)

For example, if the observation yt falls between the 5th and 10th percentiles
of the forecast density ft(x), then the value of pitt will be between 0.05 and
0.10. Since each percentile interval should be equally likely on average for a
reliable forecast, reliability can be checked by observing the shape of the PIT
histogram. Reliable forecasts have a flat PIT histogram, and a non-flat PIT his-
togram indicates unreliable forecasts. In general, ∪-shaped histograms indicate
underdispersed forecast distributions, i.e., overconfident forecasts. Conversely,
∩-shaped histograms suggest overdispersed forecast distributions (underconfi-
dent forecasts), while sloping histograms are indicative of a systematic bias of
the forecast mean [Hamill, 2001].

3 Results

3.1 CanCM4 gridded annual temperature forecasts

The effect of accounting for parameter uncertainty was evaluated in forecasts of
near-surface (2m) temperature generated by the fourth version of the Canadian
coupled ocean-atmosphere general circulation model [CanCM4; Merryfield et al.,
2011]. Forecast ensembles of 10 initial condition members were initialized on
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1 January every year between 1960 and 2010. The forecast target was the
mean temperature averaged over the first 12 months after initialization. Ver-
ifying observations were taken from the HadCRUT3v data set [Brohan et al.,
2006]. Only grid boxes with a complete observational record were included in
the analysis. The conclusions were not found to be sensitive to the choice of
verification data; comparable results were obtained when verifying against the
ERA-Interim reanalysis [Dee et al., 2011] and all grid boxes. MOS-recalibrated
probability forecasts were computed for each year in the period 1991–2010. It
was found that the ensemble variance was not a skilful predictor of forecast
errors, and so there was no advantage to using NGR recalibration. Forecasts
were recalibrated using only information available up to the time of the forecast
and evaluated out-of-sample. The recalibration parameters for each forecast
were estimated using the previous 25 years of forecasts and observations, after
linearly detrending both data sets.

Probability integral transform
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Figure 3: PIT histograms of recalibrated CanCM4 forecasts (a) before, and (b)
after accounting for parameter uncertainty. Before accounting for parameter
uncertainty, the observations fall into the tails of the forecast distribution too
often.

The PIT histogram of the recalibrated forecasts without parameter uncer-
tainty (Equation 5) appear ∪-shaped, indicating underdispersed probability
forecasts (Figure 3a). As a result of the underdispersion, the 90% prediction
intervals cover the verifying observations only 81% of the time. Therefore, the
forecasts without parameter uncertainty are not well calibrated. In contrast,
the PIT histogram of the recalibrated forecasts after accounting for parameter
uncertainty (Equation 6) is almost completely flat (Figure 3b). Each 5% inter-
val of the predictive distributions covers the verifying observation roughly 5% of
the time, and the 90% prediction intervals cover the verifying observations 89%
of the time. The recalibrated forecasts including parameter uncertainty appear
to be well calibrated.

The time-averaged difference in the Ignorance score between the recalibrated
forecasts before and after accounting for parameter uncertainty is positive at
most grid boxes (Figure 4a). Positive Ignorance differences indicate that the
forecasts that account for parameter uncertainty assign more probability density
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Figure 4: Improvement in overall skill of the recalibrated CanCM4 forecasts
after accounting for parameter uncertainty, measured by (a) the difference in
the Ignorance score, and (b) the CRPSS. Positive score differences / skill scores
indicate improved average scores after accounting for parameter uncertainty.

to the observations than those that do not, i.e., are more skilful.
The CRPSS is also positive in the majority of grid boxes, supporting the

conclusion that the forecasts that account for parameter uncertainty are on
average more skilful (Figure 4b).

3.2 Met Office seasonal NAO forecasts

This section presents a case study on seasonal climate forecasts using a more
complicated recalibration framework. The data consist of 20 years of historical
seasonal ensemble forecasts of the North Atlantic Oscillation (Figure 5). The
ensembles were produced by the UK Met Office Global Seasonal prediction sys-
tem GloSea5 [MacLachlan et al., 2014]. The forecasts were initialised using a
lagged initialisation around 1 November each year between 1992 and 2011. The
forecast target is the average North Atlantic Oscillation (NAO) index between
December and February (DJF), measured as a pressure difference between sta-
tions situated in the Azores and Iceland [Scaife et al., 2014].

The sample correlation coefficient between the ensemble means and the ob-
servations is 0.62. The correlation between the ensemble standard deviation and
absolute error of the ensemble mean is also high at 0.45 (or 0.3 when the very
influential year 2010 is excluded). Previous studies found that the skill of these
forecasts can be improved by linear transformations of both the ensemble mean
and spread [Eade et al., 2014]. Therefore, NGR recalibration was used to allow
for linear adjustment not only of the predictive mean, but also the predictive
variance. Due to the small sample size, forecasts were evaluated by leave-one-
out cross-validation, i.e., each forecast was recalibrated using the other 19 as
the training set. Due to the long time scale under consideration, each forecast
occasion can reasonably be assumed to be independent, and so the leave-one-out
approach is justifiable.

Figure 2 illustrates the predictive distributions for the year 1997, issued as
a Normal distribution with the maximum likelihood NGR parameter estimates,
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Figure 5: GloSea5 NAO ensemble forecasts (small circles), ensemble mean fore-
casts (large filled circles) and verifying observations (black diamonds) plotted
over the verification year.
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Figure 6: NAO observations (black markers) and their NGR predictive distri-
butions using the ensemble data shown in Figure 5. Distributions without pa-
rameter uncertainty (white boxes) and with parameter uncertainty (gray boxes)
are depicted by box-and-whiskers plots, where boxes indicate the inter-quartile
range and median, and whiskers extend from the 1 to the 99 percentile.
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Figure 7: Ignorance scores of the forecast distributions shown in Figure 6, with-
out accounting for parameter uncertainty (open circles) and after accounting
for parameter uncertainty (full circles).

and issued as a mixture of Normal distributions based on 500 bootstrap repli-
cates. The Normal distributions generated from the individual bootstrap resam-
ples vary considerably, indicating large parameter uncertainty. The variance of
the averaged bootstrap distribution is larger, and the tails are heavier than
for the Normal distribution that uses only the maximum-likelihood parameters.
Figure 6 shows the recalibrated predictive distributions for the years 1993-2012,
with and without parameter uncertainty, and their verifying observations. The
forecast distributions with parameter uncertainty have slightly heavier tails, and
their medians are on average slightly closer to the climatological mean.

Figure 7 shows the Ignorance scores of the individual forecasts. Whenever
the observation falls close to the bulk of the forecast distributions, the Ignorance
scores for the two distributions are very similar. There are three cases where
the observation falls well into the tail of the forecast distributions (1994, 2005
and 2010). For these tail events, the Ignorance score improves when parameter
uncertainty is taken into account. The predictive bootstrap leads to heavier
tails, and thus to higher probabilities being assigned to “unexpected events”.

The results of the case study presented in this Section suggest that the
predictive bootstrap increases the forecast skill of recalibrated GloSea5 NAO
forecasts. However, only 20 data points are considered, which does not allow
for a robust statistical analysis of the forecast skill. A larger dataset of numerical
weather predictions is analysed in the next Section.

3.3 NCEP short range temperature forecasts

Daily forecasts of near-surface (2m) temperature with a 48 hour lead time
were also analysed. The forecasts were taken from version 2 of the refore-
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cast project, hosted by the National Oceanic and Atmospheric Administration,
USA [Hamill et al., 2013]. The ensemble forecasts are approximately equiva-
lent to those issued by the operational global ensemble forecasting system of
the national centre for environmental prediction (NCEP). Ten member initial
condition forecasts were issued at 00 UTC each day for a grid point close to
New York City, USA (40N, 74W). The forecasts covered the period 26 May
1990 - 15 September 2014, giving a total of n = 8, 879 forecasts and verifying
observations. The analyses (i.e., the control forecast at 0 lead time) were used
as verifying observations.

Preliminary investigations showed that NGR recalibration yielded more skil-
ful forecasts than simple MOS recalibration. Therefore, the NGR recalibrated
forecasts were used throughout. Recalibration parameters were estimated sep-
arately for all n forecasts, using data from a rolling training window of pre-
specified size w. That is, for each forecast, the w previous pairs of forecasts and
observations were used as training data, such that all forecasts were evaluated
out-of-sample. The rolling training window allows the recalibration scheme to
adapt to non-stationarities in the hindcast data, such as the updating of the
data assimilation scheme in 2011, or the dependency of the forecast bias on the
time of the year [Hamill et al., 2013]. Parameter uncertainty was accounted for
using the bootstrap approach described in Section 2.4. 50 bootstrap replicates
were used for each forecast. Increasing the number of bootstrap replicates was
found to provide only very small improvements in forecast skill, at considerable
computational expense due to the large sample of forecasts to be evaluated.
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Figure 8: (a) Ignorance scores, and (b) CRPS as a function of training sample
size for the recalibrated NCEP forecasts before (open circles) and after (filled
circles) accounting for parameter uncertainty.

Figure 8a shows the Ignorance scores of the NGR-recalibrated forecasts as a
function of the size of the rolling training window, before and after accounting
for parameter uncertainty. The improvements in forecast skill produced by ac-
counting for parameter uncertainty are evident for both small and large training
samples. As expected, the scores converge for very large training datasets. It is
encouraging that the predictive bootstrap yields improved forecasts even in rel-
atively data-rich settings with hundreds of historical forecasts and observations,

14



where one might expect the effect of parameter uncertainty to be negligible.
The CRPS values shown in Figure 8b are qualitatively similar to those of the
Ignorance scores. The optimum training period after accounting for parameter
uncertainty is 50 days for both scores. Before accounting for parameter uncer-
tainty, the optimal training period for CRPS is similar (60 days). However, the
optimal training period for the Ignorance score is 400 days without account-
ing for parameter uncertainty. For CRPS, the effect of the training length is
large compared to the effect of parameter uncertainty, while the effects are of
comparable magnitude for the Ignorance score.
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Figure 9: PIT histograms of recalibrated NCEP forecasts (a) before, and (b)
after accounting for parameter uncertainty. Before accounting for parameter
uncertainty, the forecasts show evidence of underdispersion and bias. After ac-
counting for parameter uncertainty, the forecasts appear slightly overdispersed.

Figures 9a and b show PIT histograms after recalibration based on a rolling
training period of 50 days, before and after accounting for parameter uncer-
tainty. The overpopulation of the outer bins of the PIT histograms when pa-
rameter uncertainty was not accounted for is indicative of forecast distributions
whose tails are too light. Accounting for parameter uncertainty by bootstrap
resampling results in PIT histograms that are closer to being uniform. Fig-
ure 9b suggests that the resampling method has slightly overcompensated for
the light tails, thus leading to overdispersive forecasts. In both cases, the PIT
histograms of the bootstrap forecasts suggest remaining forecast biases, which
might be an indication of a poor fit of the NGR recalibration framework to the
data. Refinements of the underlying NGR framework are beyond the scope of
this paper.

4 Discussion and conclusions

Parameter estimates in forecast recalibration frameworks are subject to uncer-
tainty, particularly when estimated with small training samples. The effect of
parameter uncertainty on the reliability and skill of probability forecasts has
received little attention in the climate and meteorology literature. This study
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has presented two methods of accounting for parameter uncertainty in recali-
brated forecasts. Analytic results are available for MOS recalibration. Parame-
ter uncertainty in more complex recalibration frameworks can be estimated by
bootstrapping. The results presented here demonstrate that accounting for pa-
rameter uncertainty can improve the reliability and skill of recalibrated forecasts
across a range of time scales.

The examples demonstrated here are representative of findings across a num-
ber of forecast models, variables and time scales. In some cases, accounting
for parameter uncertainty does not improve forecast reliability and skill. For
example, accounting for parameter uncertainty did not improve seasonal aver-
age European temperature forecasts from the ECMWF System4 [Molteni et al.,
2011] at a lead time of 3 months. The PIT histogram did not change, and the
verification scores improved at only 50% of grid boxes, leaving the average fore-
cast skill unchanged. However, no cases were identified where accounting for
parameter uncertainty leads to forecasts that are less reliable or less skilful on
average.

The main effects of accounting for parameter uncertainty are the inflation of
the forecast variance, and an increase in the weight of the tails of the forecast
distribution. The wider, heavy tailed forecast distributions improve reliability
by generating forecast distributions that are less underdispersive. This can be
seen from the PIT histograms, which are less ∪-shaped after accounting for
parameter uncertainty. Overall forecast skill is also improved, but the size of
the improvement depends on the score. The Ignorance score is more sensitive to
low-probability events than the CRPS. Since the main effect of accounting for
parameter uncertainty is to improve the tails of the forecast distributions, the
relative improvement in the Ignorance score is larger than that of the CRPS.

The effect of accounting for parameter uncertainty is largest for small train-
ing samples. The amount of training data can be limited by the available obser-
vational record, by strong temporal and spatial correlations in the data, or by
the computational expense of generating long hindcast experiments. However,
small training samples are often deliberately chosen even in data-rich situations
such as weather forecasting. The use of a rolling training window allows the
recalibration to adapt to changes in background conditions, or changes to the
forecast model. Alternative methods might be considered so that all prior data
are included in the training sample but with decreasing weight given to older
data. Another possibility would be to use the idea of analogues, and only cal-
ibrate using prior data that are similar to conditions observed at the time the
forecast is initialized.

Analytic expressions for the forecast uncertainty are possible for some more
complex recalibration frameworks. The predictive bootstrap is easily applicable
to almost any recalibration framework. Bootstrapping can be modified to ac-
count for temporal dependence between the training data by block resampling
[Davison and Hinkley, 1997, Chp. 8]. Alternative methods of estimating the
parameter uncertainty include parametric bootstrapping, and asymptotic ap-
proximations of the parameter uncertainty. Bayesian methods lead to similar
analytic results in the case of MOS recalibration, and computational Bayesian
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techniques can be used for more complex frameworks.
This study has demonstrated that accounting for parameter uncertainty in

probability forecasts leads to measurable improvements in both reliability and
skill. Other researchers and practitioners are encouraged to investigate and
adopt the methods proposed here, and to develop alternative methods for more
complex recalibration frameworks.
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Appendices

The non-standardized t-distribution

The pdf of the non-standardized t-distribution with location µ, scale σ and
degrees-of-freedom ν is given by [West and Harrison, 1997]

p
(

x; ν, µ, σ2
)

=
Γ
(

ν+1

2

)

Γ
(

ν
2

)
√
πνσ2

[

1 +
1

ν

(x− µ)
2

σ2

]

−
ν+1

2

. (12)

Normal mixture distribution

Let ϕ(x) and Φ(x) denote the pdf and cdf of the standard Normal distribution
respectively. If the forecast pdf f(x) is a mixture ofK Normal distributions with
weights ω1, · · · , ωK (non-negative and summing to one), means µ1, · · · , µK and
variances σ2

1 , · · · , σ2
K , then the forecast pdf f(x) is given by

f(x) =

K
∑

k=1

ωk

1

σk

ϕ

(

x− µk

σk

)

, (13)

and the forecast cdf F (x) is

F (x) =

K
∑

k=1

ωkΦ

(

x− µk

σk

)

. (14)
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The Ignorance Score

If the forecast pdf f(x) is Normal with mean µ and variance σ2, then the
Ignorance score is given by

ign(f, y) =

[

1

2
log
(

2πσ2
)

+
(y − µ)

2

2σ2

]

/ log 2. (15)

For a mixture of Normals, simply take the negative logarithm of Equation 13
after substituting appropriate values for the forecast means and variances and
for the observation.

If the forecast pdf f(x) has the form of a non-standardized t-distribution,
then the Ignorance score is given by

ign(f, y) =

[

− log Γ

(

ν + 1

2

)

+ log Γ
(ν

2

)

+
1

2
log
(

πνσ2
)

+
ν + 1

2
log

(
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1
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(y − µ)
2

σ2

)]

/ log 2. (16)

The Continuous Ranked Probability Score

If the forecast cdf F (x) is Normal with mean µ and variance σ2, then the CRPS
is given by [Gneiting et al., 2005]

crps(F, y) = σ

{

y − µ

σ

[

2Φ

(

y − µ

σ

)

− 1

]

+ 2ϕ

(

y − µ

σ

)

− 1√
π

}

. (17)

Grimit et al. [2006] showed that the CRPS of a mixture of Normal distributions
is given by

crps(F, y) =
1

K

K
∑

k=1

ωkA
(

y − µk, σ
2
k

)

− 1

2

K
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(
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2
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, (18)

where
A
(

µ, σ2
)

= 2σϕ
(µ

σ

)

+ µ
(

2Φ
(µ

σ

)

− 1
)

(19)

Analytical results for the CRPS of other distributions are difficult to derive.
For example, no result has been published for the CRPS of the t-distribution,
which appears as a predictive distribution in Equation 6. Numerical integration
can be used where analytic results do not exist. The CRPS of forecasts issued
as t-distributions was calculated using the function integrate as implemented
in package stats of the R statistical computing software [R Core Team, 2015,
version 3.2.0].
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Probability Integral Transformations

If the forecast pdf ft(x) is Normal with mean µt and standard deviation σt,
then the PIT is given by

pit(ft, yt) = Φ

(

yt − µt

σt

)

. (20)

The PIT of a weighted sum of Normals is equal to the weighted sum of the PITs
of the individual Normals.

If the forecast pdf ft(x) is issued as a non-standardized t-distribution with
location µt, scale σt, and νt degrees-of-freedom, then the PIT is given by

pit (ft, yt) = Tνt

(

yt − µt

σt

)

, (21)

where Tν(x) is the cdf of the central t-distribution with ν degrees-of-freedom.
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