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Abstract 21 

1. Host social structure is fundamental to how infections spread and persist and so the 22 

statistical modelling of static and dynamic social networks provides an invaluable tool to 23 

parameterise realistic epidemiological models.  24 

2. We present a practical guide to the application of network modelling frameworks for 25 

hypothesis testing related to social interactions and epidemiology, illustrating some 26 

approaches with worked examples using data from a population of wild European badgers 27 

Meles meles naturally infected with bovine tuberculosis.  28 

3. Different empirical network datasets generate particular statistical issues related to non-29 

independence and sampling constraints. We therefore discuss the strengths and weaknesses 30 

of modelling approaches for different types of network data and for answering different 31 

questions relating to disease transmission.  32 

4. We argue that statistical modelling frameworks designed specifically for network analysis 33 

offer great potential in directly relating network structure to infection. They have the 34 

potential to be powerful tools in analysing empirical contact data used in epidemiological 35 

studies, but remain untested for use in networks of spatio-temporal associations.  36 

5. As a result, we argue that developments in the statistical analysis of empirical contact data 37 

are critical given the ready availability of dynamic network data from bio-logging studies. 38 

Further, we encourage improved integration of statistical network approaches into 39 

epidemiological research to facilitate the generation of novel modelling frameworks and 40 

help extend our understanding of disease transmission in natural populations. 41 

 42 

Key words: contact network, epidemiology, temporal network autocorrelation model, exponential 43 

random graph model, network-based diffusion analysis, stochastic actor-oriented model, relational 44 

event model 45 

46 



Introduction 47 

Direct contact is critical to the transmission of many of the most important infectious 48 

diseases and so an understanding of contact networks is integral to the epidemiology of many 49 

parasites and pathogens (Keeling & Eames 2005; Read et al. 2008; Danon et al. 2011; Craft 2015). 50 

Populations are not completely mixed and significant population structure arises from spatial (Webb 51 

et al. 2007a,b) and social interactions. A growing number of empirical studies in humans (Rohani et 52 

al. 2010; Stehlé et al. 2011; Eames et al. 2012) and non-human animals (reviewed in Craft 2015; 53 

White et al. 2015) have found important effects of social network structure on epidemiology, both at 54 

an individual- and a population-level. As a result, many epidemiological models now incorporate 55 

some concept of non-random social structure that has important consequences for understanding 56 

the spread of infections (Keeling & Eames 2005; Lloyd-Smith et al. 2005; Craft 2015).  57 

It may also be important to consider networks as dynamic, rather than static, structures, 58 

with changes affecting transmission over longer timescales, particularly in endemic diseases (Funk et 59 

al. 2010, Ezenwa et al. 2016, Silk et al. 2017). Not only will the temporal structure of interactions 60 

have a direct influence on transmission opportunities, but social behaviour may change in response 61 

to infection, including both the behaviour of the infected or diseased individual and the response of 62 

other individuals towards it (Bansal et al. 2010; Croft et al. 2011a). Further, these changes in 63 

behaviour have been shown to alter contact network structure, with implications for transmission 64 

(Tunc & Shaw 2014; Lopes et al. 2016). Therefore, accounting for the dynamics of network structure 65 

and of infection is key to improving our understanding of disease spread and control in many 66 

systems (fig. 1; Bansal et al. 2010; Wang et al. 2010).  67 

An increasing number of theoretical studies have modelled disease on dynamic networks 68 

(e.g. Eames et al. 2012; Tunc & Shaw 2014), however there has been relatively little use of empirical 69 

data to explore this topic (but see Rohani et al. 2010; Reynolds et al. 2015; Lopes et al. 2016). Using 70 

empirical data to test hypotheses about the relationship between sociality and disease (e.g. Drewe 71 



2009; Weber et al. 2013) will substantially advance our understanding of the dynamics of infection 72 

transmission, and using the outputs of statistical models could help improve the parameterisation of 73 

predictive, analytical epidemiological models (Rohani et al. 2010; Hamede et al. 2012; Reynolds et al. 74 

2015). Nevertheless, there are unique problems associated with applying conventional statistical 75 

modelling approaches to network datasets (Croft et al. 2011b; Farine & Whitehead 2015). First, and 76 

perhaps most importantly, social networks recognise the influence of community members on each 77 

other, causing non-independence that must be accounted for statistically. Second, social networks 78 

are rarely described completely. The impact of sampling process on network parameters should be 79 

accounted for in statistical models. This is a particular problem if there is variation among individuals 80 

in the completeness of sampling. While this can be an issue for interaction-based networks (here 81 

defined as networks constructed from biologically-relevant interactions), it is especially problematic 82 

in association-based networks (here defined as networks constructed by connecting individuals that 83 

have shared particular groups or spatio-temporal colocations rather than directly to each other), 84 

where the extent of sampling is harder to directly assess. 85 

A range of modelling approaches (Table 1), developed within the field of social network 86 

analysis, could be applied to study infection in contact networks. These are split broadly into models 87 

that continue to use individual traits as a dependent variable while accounting for network 88 

structure, and models that use network topology as a dependent variable. The latter could be 89 

particularly valuable by directly relating network structure to infection and transmission. Several of 90 

these approaches model networks dynamically and offer great potential to improve our 91 

understanding of the dynamics of social behaviour and disease. Here we outline these statistical 92 

network approaches and provide a guide for how they can best be applied to test a variety of 93 

hypotheses related to infection in different types of network. For a selection of modelling 94 

frameworks, we use example data from a population of European badgers Meles meles naturally 95 

infected with bovine tuberculosis (bTB), to illustrate how the approaches can be applied.  96 



 97 

Models for static networks 98 

General and generalised linear models, and network autocorrelation models 99 

Traditional statistical modelling frameworks offer an appealing solution to understanding 100 

how infection status and social position co-vary with other individual traits. In particular, the use of 101 

generalised linear models (GLMs) and generalised linear mixed models (GLMMs) can help study the 102 

relationship between social network position and disease state in the context of other predictor 103 

traits (e.g. sex, age, physiological condition), either controlling for these traits or considering 104 

interactions with them. However, the non-independence of nodes and edges within a network 105 

complicates the use of GLMs and GLMMs (Croft et al. 2011b), which assume statistical independence 106 

of residuals. Also, association-based networks (especially frequent for animal networks) can lead to 107 

further biases introduced by the method of network construction (see Farine and Whitehead 2015 108 

for a simulated example of this).  109 

One approach to adapt these modelling techniques appropriately to network data is to use 110 

permutation approaches that rely on randomisations of the network (solving the problem of non-111 

independence) or original datastream (see Croft et al. 2011b; Farine & Whitehead 2015). A key 112 

difference here emerges between interaction networks and association-based networks. The latter 113 

requires permutation of the original datastream, due to additional sampling biases (Farine and 114 

Whitehead 2015). For these types of networks, other key considerations in implementing data 115 

permutations are likely to be the size of social groups, spatio-temporal constraints on interactions, 116 

differences in detectability of particular types of individuals, and differences in the probabilities of 117 

interactions within, versus outside, social groups (Croft et al. 2011b). While biases generated by 118 

incomplete sampling can still occur in interaction-based networks, there is greater potential to 119 

control this within a modelling framework. For example, if incomplete sampling results from 120 



differences in the length of time each individual is observed then this can be accounted for within 121 

any model used.  122 

The R package asnipe (Farine 2013) offers a range of algorithms that shuffle association-123 

based data to randomise such networks. However, it may be most appropriate to design system-124 

specific randomisations. One problem worth highlighting is that using a permutation-based 125 

approach to test hypotheses creates confidence intervals around the null hypothesis rather than the 126 

estimated parameter. The development of approaches that generate uncertainty around observed 127 

network data would be highly beneficial in this regard. One example of this idea is provided by 128 

Farine and Strandburg-Peshkin (2015), who created probability distributions of edge weights using 129 

Bayesian inference. If GLM or GLMM analyses are completed within a Bayesian framework then this 130 

sort of uncertainty can be incorporated into the final analysis 131 

An alternative approach that can be used for interaction- or contact-based networks is to 132 

incorporate network autocorrelation into the model within a GLM or GLMM framework to address 133 

the issue of covariance driven by network structure. This can be achieved using the package tnam 134 

incorporated within the xergm suite of packages (Leifeld et al. 2016), or the function lnam() 135 

in the package sna (Butts 2014) in R. The former is discussed here as it has more comprehensive 136 

provisions for dependency structures and can incorporate non-Gaussian error distributions. Models 137 

constructed using tnam() offer a variety of user-defined dependency terms that control for the 138 

expectation that individuals may influence other individuals they interact with within a network (see 139 

https://cran.r-project.org/web/packages/tnam/tnam.pdf). For example, the weightlag()  or 140 

netlag() terms can incorporate autocovariance related to network distance or the 141 

attribsim() can incorporate autocovariance related to shared attribute values such as group 142 

membership. These functions can incorporate additional arguments to make dependency functions 143 

more complex. For example, the netlag() term can include a number of network steps over 144 

which autocovariance may be expected and a mathematical description of the decay. A potential 145 

https://cran.r-project.org/web/packages/tnam/tnam.pdf


disadvantage here is that dependency structures are defined by the user, and it is necessary for 146 

them to argue that the dependencies incorporated are appropriate and sufficient for the data in 147 

question (there is no goodness of fit test that allows this to be tested within the model). As well as 148 

incorporating these autocorrelation terms, network autocorrelation models (NAMs) can fit effects of 149 

nodal covariates that are either individual-level network metrics (e.g. centrality metrics, clustering 150 

coefficient) or exogenous to the network (e.g. sex, age etc.), and the interactions between them (see 151 

https://cran.r-project.org/web/packages/tnam/tnam.pdf). There are some potential issues with 152 

negatively-biased parameter estimates for netlag() terms that should be considered when 153 

interpreting autocovariance terms in these models (Mizruchi and Neuman 2008, Neuman and 154 

Mizruchi 2010), although these are typically only problematic in high-density networks. 155 

 156 

Network autocorrelation model for bTB infection in badgers  157 

We provide an example of a NAM using our badger data in the supplementary material, in 158 

which we model bTB infection status as a function of sex, age and flow centrality while accounting 159 

for autocovariance among neighbouring individuals in the network. The results are presented in 160 

Table S1. This modelling approach finds a positive effect of between-group flow centrality on the 161 

probability of bTB infection, as expected from the results of Weber et al. (2013).  We also found a 162 

strong positive correlation between within-group eigenvector centrality and bTB infection, which is 163 

of interest as this was not a metric considered by Weber et al. (2013). The model also revealed a 164 

weak effect of increasing within-group degree on the probability of infection but we would 165 

encourage a tentative interpretation of this given the marginal effect and as no attempt has been 166 

made to control for the duration that individuals were monitored in our example analysis. These 167 

effects of centrality occur independently of differences associated with age class (adults being more 168 

likely to be infected than yearlings) and sex (males being more likely to be infected than females). 169 

Individuals were also less likely to be infected if their interactions were biased towards infected, not 170 

https://cran.r-project.org/web/packages/tnam/tnam.pdf


uninfected, individuals (the weightlag() term). Two phenomena are likely to contribute to this 171 

seemingly counter-intuitive finding. First, test positive individuals were considered to be infected 172 

(test positive by serology or Interferon Gamma Release Assay; see Weber et al. 2013) rather than 173 

necessarily infectious (test positive by bacterial culture) thus reducing the expectation of positive 174 

network covariance in infection. Second, infected individuals were distributed evenly among the 175 

badger social groups in the original study, which focussed on a sub-sample of the wider population 176 

with high bTB incidence (Fig. 1 in Weber et al. 2013).  177 

 178 

Partial matrix regressions using Quadratic assignment procedures 179 

Multiple regression quadratic assignment procedures (MRQAP) facilitate multivariate 180 

regressions between matrices with complex dependencies by using permutation-based estimates of 181 

statistical significance (Cranmer et al. 2016, Martin 1999, Dekker et al. 2007). Therefore they offer 182 

great utility as a tool to explain social network structure using a set of other dyadic relationships. For 183 

an ecologist, these are most likely to represent relatedness, some measure of spatial distance, or 184 

potentially some measure of difference in individual attributes (e.g. infection status). MRQAP is an 185 

accessible method already in use by ecologists. Its direct application to hypotheses related to 186 

infection is somewhat limited because it only models dyadic correlations; however, there are some 187 

situations where it may be useful. For example, VanderWaal et al. (2013) used MRQAP to compare 188 

social networks and transmission networks in giraffes Giraffa camelopardalis while controlling for a 189 

number of other variables such as spatial overlap. They showed that social network structure better 190 

explained transmission network structure than did networks of spatial overlap. 191 

Multiple options are available for calculating MRQAP regressions for network data. Two 192 

more familiar options for ecologists are the netlm() function in R package sna (Butts 2014), or 193 



the mrqap.dsp() and mrqap.custom.null() functions in asnipe (Farine 2013) that enable 194 

MRQAP to be used alongside randomisation-based approaches for networks of associations. 195 

 196 

Exponential random graph models 197 

 Exponential random graph models (ERGMs) form a class of statistical models specific to 198 

network analysis. They are edge-based models that model the probability (Robins et al. 2007; Lusher 199 

et al. 2013) or weight (Desmarais and Cranmer 2012, Krivitsky 2012, Wilson et al. 2017) of each edge 200 

as a function of network structure and the characteristics of individuals (nodes) within the network. 201 

Local structural configurations can be used alongside nodal or edge covariates to model the pattern 202 

of edges observed (see Table 2). ERGMs fit parameters that produce a distribution of networks 203 

centered on the observed network (for more details see Lusher et al. 2013). Goodness-of-fit of 204 

ERGMs can then be assessed by comparing (non-fitted) metrics from the simulated networks with 205 

those from the observed network (Lusher et al. 2013). The fitting of ERGMs can be complicated by 206 

the fact that many parameter combinations can result in model degeneracy (producing model fits 207 

that are either very dense or sparse networks), however, this does reduce the likelihood of 208 

misspecified models being used. ERGMs are best used with contact or interaction-based data 209 

because association- or group-based methods of network construction include uncertainty regarding 210 

the true nature of social associations and introduce sampling biases that need to be controlled for 211 

(Croft et al. 2011b). It may be possible to utilise two-mode exponential random graph models 212 

(modelling networks in which edges can only connect between two sets of nodes) for some 213 

association-based network data, especially when the links to specific locations are of interest (i.e. 214 

modelling what drives any individual’s connections to particular locations or groups rather than to 215 

each other). In general, however, a restriction to interaction-based networks will not be a major 216 

issue in epidemiological research, which typically employs interaction-based networks. 217 



 An advantage of ERGMs is the ability to simulate networks based on the parameters for the 218 

structural features, and node and edge characteristics included in the observed network with an 219 

appropriately fitted model. ERGMs can be a powerful tool for parameterising uncertainty in any 220 

epidemiological models constructed (see Welch et al. 2011), and this is likely to be especially useful 221 

in understanding disease epidemiology, as small differences in network structure have the potential 222 

to substantially alter transmission dynamics. This is especially true for studies that use simulation-223 

modelling of the spread of disease across a network (see Reynolds et al. 2015). ERGMs also facilitate 224 

modelling of social contacts or interactions in response to individual traits, or the properties of dyads 225 

(other relationships between individuals such as relatedness). Individual traits (e.g. sex, age, disease 226 

state) can be used to explain both the tendency to form connections, and the likelihood of 227 

interacting with similar individuals (assortativity). This offers great potential to test hypotheses 228 

about the relationship between individual traits, including disease state, and network topology. For 229 

example, infected individuals having more interactions than uninfected individuals or tending to 230 

interact more frequently with susceptible individuals will increase risk of exposure at a population 231 

level. By contrast, assortment among infected individuals would signify that they associate 232 

disproportionately and therefore that infection may be socially, and perhaps spatially, restricted in 233 

the population. The same argument applies to traits that make individuals more susceptible to 234 

infection. Using relatedness as a dyadic variable is a good illustration: related individuals may be 235 

more likely to share a genetic susceptibility to some pathogens, so the relationship between the 236 

genetic structure and social structure of the population could influence the spatio-temporal 237 

distribution of infection. 238 

 ERGMs can be constructed using the packages ergm (Hunter et al. 2008; Handcock et al. 239 

2015), ergm.count (Krivitsky 2015) and GERGM (Denny et al. 2016) in R. The package 240 

ergm.count extends ERGMs to Poisson and geometrically distributed edge weights and the 241 

package GERGM generalises ERGMs to all types of weighted network. The latter is a new tool and its 242 

use in the type of networks used for epidemiological research is untested. We provide the most 243 



relevant terms used in ergm and ergm.count in Table 2 and a full list of possible terms is included 244 

in the help pages for these packages. The range of possible terms is more limited for GERGM. The 245 

most important terms to include depend on the type of network being used, any structure implicit to 246 

it, and the questions being asked (Table 2). R code for an example ERGM is provided in the 247 

supplementary material. The simulate() function in these packages can then be used to 248 

generate new networks based on the modelled parameters to assess goodness of fit or for use in 249 

further analysis or network models. We demonstrate its use in the supplementary material. 250 

 251 

ERGM to relate bTB infection and network topology in badgers 252 

We provide an example of ERGM in the supplementary information that links bTB infection 253 

to increased number of contacts in a badger social network, and to reveal that males tended to 254 

interact with more individuals than females (Table S2). By using an ERGM we were able to control 255 

for the structure imposed by social groups, and for variation in group size and the number of 256 

individuals collared within groups, in the model structure. One might also control for other 257 

constraints in the dataset using nodal or dyadic covariates, for example detection biases caused by 258 

variation in signal strength in proximity loggers (Drewe et al. 2012). We also used our ERGM to 259 

simulate badger networks with the same parameters fitted in the model, and show that they are 260 

broadly similar to the observed network, albeit not fully capturing the observed network structure 261 

(Fig. S1).  262 

 263 

Latent space network models 264 

Latent space models offer an alternative method to ERGMs for the modelling of relational 265 

data, and effectively act as GLMs for edge values that control for network dependence by placing 266 

nodes in k-dimensional space according to their social network distance (Cranmer et al. 2016). 267 



Covariates can then include relational/dyadic properties (such as relatedness, or differences in a 268 

particular attribute) or an attribute of either node represented as a matrix with the same dimensions 269 

as the network, meaning the range of nodal and dyadic covariates is very similar to those for ERGMs 270 

(Cranmer  et al. 2016). The potential applications to hypothesis testing in epidemiological studies are 271 

therefore broadly similar to ERGMs, but hypotheses about local network dependencies cannot be 272 

tested. Further, interpretation of model coefficients can be complicated if the position of nodes in 273 

latent space covaries with values of nodal attributes (Cranmer et al. 2015). 274 

Latent space models can be fitted in R using the package latentnet (Krivitsky & Handcock 275 

2008, Krivitsky and Handcock 2015). Latent space models can model weighted edges with a number 276 

of pre-defined error distributions. It is possible to use terms from the ergm package as explanatory 277 

variables in latent space models. However, these are limited to the binary variants of model terms, 278 

and do not include terms that induce dyadic dependence (such as those incorporating transitivity) as 279 

latentnet only fits models with dyadic independence. The other possible terms that can be 280 

included in the model are provided in the latentnet manual (https://cran.r-281 

project.org/web/packages/ latentnet/latentnet.pdf). 282 

 283 

Network-based diffusion analysis 284 

Network-based diffusion analysis (NBDA) compares the likelihood of explaining the spread of 285 

a trait through a population for two individual-based models; one assuming purely asocial 286 

acquisition of a trait, the other purely social acquisition of a trait (Franz & Nunn 2009). This tests the 287 

extent to which social transmission is responsible for explaining the spread of that novel trait 288 

through a population. It requires that a single (static) social network and the specific timing of trait 289 

acquisition in each individual needs to be known, although this can be order-based or timing-based 290 

(Hoppitt et al. 2010). Subsequent developments in the models have enabled Bayesian inference 291 

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/


(Nightingale et al. 2014). This approach would be particularly valuable in determining the role of 292 

contact networks for the transmission of diseases that may have alternative hosts or be spread 293 

indirectly via the environment. This is because it tests the hypothesis that a trait spreads through a 294 

network, using asocial transmission as the null hypothesis. The use of NBDA in real world 295 

populations may be slightly limited, however, by the requirement to know at least the order in 296 

which individuals acquired infection.  297 

Lack of data on the order of infection precludes us from providing a badger case study, 298 

however R Code to complete NBDA is available in the relevant literature (e.g. Allen et al. 2013; Aplin 299 

et al. 2015) or online (available: http://lalandlab.st-andrews.ac.uk/freeware/). 300 

 301 

Models for dynamic networks 302 

Incorporating a dynamic view of population social structure will greatly enhance applications 303 

of social networks to epidemiology. Both social structure and infection are dynamic traits that 304 

interact at population and individual levels (Fig. 1; White et al. 2015). Two categories of approaches 305 

have been suggested: a) modelling the changes in a series of aggregated static networks using 306 

GLMMs, stochastic actor-oriented models (Snijders et al. 2010) and temporal ERGMs (Hanneke et al. 307 

2010), or b) using relational event models (Butts 2008) to model temporally-explicit contact data. 308 

Both of these approaches, especially the latter, require high resolution temporal data on social 309 

interactions (and to capture co-dynamics similar resolution data on infection), and so their use may 310 

be limited to exceptionally detailed datasets. 311 

 312 

http://lalandlab.st-andrews.ac.uk/freeware/


Generalised linear mixed models and temporal network autocorrelation models 313 

 Both randomisation-based GLMM and NAM approaches can be used to study a set of 314 

aggregated networks or network snapshots with, in the latter case, the models becoming temporal 315 

network autocorrelation models (TNAMs). Randomisation-based GLMM approaches can be 316 

extended to network snapshots by including individual as a random effect in a model that relates 317 

social network position and disease state (alongside other variables of interest). It is also possible to 318 

incorporate change in values of network metrics over time as an additional variable to improve the 319 

extent to which these models capture the importance of social dynamics. When GLMMs are used to 320 

model a temporal series of networks, the simplest way to design appropriate randomisations would 321 

be to permute or randomise the network or association data within the sampling period used to 322 

construct each network snapshot (Farine & Whitehead 2015). 323 

TNAMs can incorporate temporal autocorrelation by using the lag argument for each 324 

model term. This is equally applicable to the response variable re-fitted as a time-lagged covariate, 325 

e.g. an individual’s disease state being dependent on its disease state in preceding time-steps; other 326 

covariates, e.g. an individual’s disease state depending on body condition at a previous time-step as 327 

well as the current one; and network features, e.g. disease state could depend on the disease state 328 

of neighbouring individuals in the network at the current and preceding time-steps. For cases in 329 

which changes in disease state are regularly observed, this approach offers great potential to better 330 

appreciate the temporal scale over which social relationships influence acquisition of infection. The 331 

rate of change in observed bTB infection in badgers is too low relative to our one year sample of 332 

contact network data for it to be possible to provide a badger example, but the implementation of 333 

TNAMs in R (also using tnam/xergm) is very similar to that of NAMs. 334 

 335 



Stochastic actor-oriented models 336 

Stochastic actor-oriented models (SAOMs) use an individual-based approach to model how 337 

network structure changes through time, and can link these changes to structural features of the 338 

network, individual traits or dyadic covariates (Snijders et al 2010, Fisher et al. 2017). Model terms 339 

(structural terms, and individual or dyadic covariates) can be used to explain both the rate that an 340 

individual has an opportunity to change to its network position (the “rate” function) and the 341 

probability that it does so when the opportunity arises (the “objective” function) (Snijders et al. 342 

2010; Ripley et al. 2011). Both individual and dyadic covariates can remain fixed (e.g. sex in our 343 

example) or change over time, but act only as explanatory variables (e.g. bTB infection in our 344 

example). Individual traits can also coevolve with network structure and form part of the response.  345 

SAOMs are most appropriate for use with interaction- or contact-based networks, due to the 346 

similar constraints described for ERGMs (i.e. the uncertainty over the true nature of interactions and 347 

data structure in association-based networks). However, similarly to ERGMs, it is possible to control 348 

for structural features in interaction- or contact-based data using covariates e.g. distance effects or 349 

shared group effects (Fisher et al. 2017). SAOMs can currently model only binary or ordered 350 

networks, so are best used in cases where the presence/absence of an edge is more informative 351 

than its weight, or when network snapshots are constructed over relatively short time windows 352 

(Fisher et al. 2017). However, being able to incorporate ordered networks does at least enable 353 

relationships of different strengths to be modelled separately (see 354 

http://www.stats.ox.ac.uk/~snijders/siena/RscriptSiena Ordered.R), which may be important for 355 

particular diseases or social systems.  356 

 A major advantage of using SAOMs is the ability to model the “co-dynamics” of social 357 

strategy and infection status. This would enable better understanding of what drives the correlation 358 

between network position and infection status, especially important for research on endemic 359 

infections. For example, individuals with more contacts may be more at risk of infection, but it is 360 

http://www.stats.ox.ac.uk/~snijders/siena/RscriptSiena


equally possible that increases in social contacts are caused directly by infection or disease. 361 

Additionally, SAOMs enable the modelling of the influence of disease state and other variables (e.g. 362 

sex) on both the probability of individuals forming particular interactions and the rate at which they 363 

change these interactions. This helps disentangle how different social strategies influence 364 

susceptibility to disease. Finally, an extension of the SAOM framework enables a response variable, 365 

for example immunity, to be fixed once it is acquired i.e. no return is possible to the original state 366 

(Ripley et al. 2011; Greenan 2015), and this may facilitate the addition of immunity into hypothesis 367 

testing in real world contact networks. 368 

 SAOMs are implemented in R using the package RSiena (Ripley et al. 2013). Models are 369 

best constructed in a stepwise manner (see supplementary information), starting with basic 370 

structural terms and adding in more complex structural terms, and then behavioural terms, once the 371 

current model converges and fits the data at each step (Ilany et al. 2015; Fisher et al. 2017). The data 372 

requirements, as well as details on tests for model convergence, goodness of fit and significance, are 373 

provided elsewhere (Ripley et al. 2011; Ilany et al. 2015; Fisher et al. 2017). However, we highlight 374 

two important considerations of direct relevance to disease research. First, it is possible to include 375 

individuals that were not present at all time points by incorporating structural zeroes into the 376 

association matrices (Ripley et al. 2011), meaning that individuals that enter or leave a population 377 

during the study period can be included. Second, if a trait is intended to coevolve with network 378 

structure in the model, it must be a binary or ordinal variable. In disease modelling this is likely to be 379 

equivalent to classifying individuals as uninfected or infected, or to using numbers that reflect 380 

progressive disease states. For example, multiple classes used to describe bTB infection states in 381 

European badgers (e.g. Graham et al. 2013), could be coded ordinally. 382 

 383 

Using a SAOM to examine seasonal changes in badger interactions 384 



We use an SAOM to explore badger social network dynamics from summer through winter, 385 

showing that there is no evidence for bTB increasing either the probability of interactions or the rate 386 

at which interactions change for a binary network of all interactions (potentially as a result of using a 387 

binary contact network, and the reduced subset of individuals included; n=36, c.f. n=51 for the 388 

ERGM). However, there are interesting differences in the rate of network change between the sexes, 389 

with males changing their interactions faster than females between summer and winter. Differences 390 

such as this may provide a behavioural explanation for males being more likely to acquire infection 391 

than females in this system (Graham et al. 2013). Furthermore, the significant effects of distance 392 

between setts and shared group membership reveal the importance of spatial behaviour in 393 

structuring the badger social system, and highlight the importance of accounting for data structure 394 

when using statistical models in these ways. 395 

  396 

Temporal Exponential Random Graph Models 397 

 Temporal ERGMs (TERGMs) represent a generalisation of the ERGM framework to a 398 

temporal series of static networks (Hanneke et al. 2010, Leifeld et al. 2015). TERGMs assume that a 399 

network in one time-step is dependent on network structure in the preceding time-steps, with the 400 

number of previous time-steps used determined by a parameter within the model. 401 

The ability to simulate networks in longitudinal datasets is a particular advantage of using 402 

TERGMs. Studies that use network models of disease in animals often encompass change in network 403 

structure over time, for example in response to seasonal changes (Reynolds et al. 2015). Therefore 404 

TERGMs offer an ideal framework to simulate networks into the future, based on a set of network 405 

snapshots. In terms of hypothesis testing, the incorporation of temporal dependencies can enable i) 406 

the role of disease in network topology to be estimated while accounting for variation in interaction 407 



stability over time or ii) the role of disease state in influencing temporal changes in interactions to be 408 

estimated (if disease state of two individuals is included as a dyadic covariate).  409 

 TERGMs can be fitted using the package btergm, part of the xergm package suite (Leifeld 410 

et al. 2016) in R. The TERGM framework can handle changes in network size between time-steps if 411 

row or column labels are provided in the matrix. This can be achieved by removing these nodes or by 412 

incorporating them as structural zeroes. However, within a time-step, individuals must possess a full 413 

set of network information and covariate values. If this is problematic, it is possible to impute values 414 

either for covariates or network data (e.g. Koskinen et al. 2013). Basic imputation can be done within 415 

the xergm package.  416 

The btergm() function enables models containing time dependent covariates 417 

(timecov() argument) and effects of tie stability (memory() argument) and delayed reciprocity 418 

(delrecip() argument for directed networks) to be fitted alongside conventional ERGM terms 419 

(Table 2; Leifeld et al. 2015). The parameter k defines the number of preceding time-steps which 420 

affect the current time-step. It is possible for k to take values greater than 1 but as k increases the 421 

number of time-steps remaining to model reduces, placing a constraint upon the user. The 422 

timecov() argument enables interactions between dyadic covariates and temporal trends in edge 423 

formation (with the exact nature of the temporal trend provided as a function by the researcher) so 424 

is likely to be especially useful in understanding differences in interactions linked to infection status. 425 

The provision of a user defined temporal pattern of interactions requires some careful thought from 426 

the researcher when implementing the model, but provides a more flexible tool for defining 427 

temporal change in network structure than available in SAOMs. Further, other dyadic covariates can 428 

vary through time if they are provided as a list of matrices. This is likely to be particularly relevant to 429 

individual-level variables, such as disease and state, which also vary temporally. 430 

 431 



Example TERGMs for badger-TB epidemiology   432 

We provide some basic examples of the fitting of TERGMs to our dataset in the 433 

supplementary material using the same subset of data used for the SAOM example. While only using 434 

a temporal series of three networks restricted us to simplified model constructs, we show how the 435 

different terms can be used to test hypotheses about changes in network structure over time 436 

alongside using individual-level covariates. The first example model shows that there is greater 437 

stability in badger contact networks than expected by chance (Table S4), while the second shows 438 

that there is a decline in the probability of contacts between summer and winter (Table S5). There is 439 

no consistent pattern between models for the effects of bTB infection and sex, suggesting the use of 440 

binary network data might be limiting the power of detecting these effects. These example models 441 

are also used to show how to use goodness-of-fit tests for TERGMs (Fig. S3). For further information 442 

we refer readers to Leifeld & Cranmer (2015) and Leifeld et al. (2015). 443 

 444 

Relational Event Models 445 

 Relational event models (REMs) provide a modelling framework capable of analysing data on 446 

contacts, interactions or associations that haven’t been aggregated, remain temporally-explicit and 447 

are instantaneous events without measurable duration (Butts 2008; Tranmer et al. 2015). The 448 

concept is similar to event models used in survival analysis, and estimates a hazard function for the 449 

rate of interaction events conditional on covariates measured on either individuals or events, and 450 

also on patterns of these interactions in the past (Tranmer et al. 2015). Within a ‘relational’ 451 

framework it possible to additionally estimate coefficients for the influence of network effects on 452 

these events such as transitivity – a tendency to interact with ‘friends of friends’ (Butts 2008). It is 453 

now possible to incorporate a decay function so that events that have happened more recently have 454 

a greater effect (Lerner et al. 2013). In addition, another recent extension of the REM framework can 455 



be used to make them applicable to two-mode networks (Brandenberger 2016), in which edges can 456 

only connect between two independent sets of nodes. This could extend their use to association-457 

based networks in which individuals are connected to particular groups or locations rather than 458 

directly to each other.  459 

The potential applications of REMs to wildlife disease research are manifold, especially given 460 

the growing number of studies in this field that use temporally explicit data from proximity loggers 461 

(e.g. Hamede et al. 2009; Cross et al. 2012; Weber et al. 2013). This framework could be highly 462 

informative in understanding how the acquisition or progression of an infection influences the 463 

likelihood of repeat social contacts with uninfected individuals, or the persistence of an individual’s 464 

social associations (Fig. 1). Additionally, for populations in which social structure represents an 465 

important barrier to the spread of infection, REMs would facilitate the modelling of differences 466 

between the dynamics of intra-group and inter-group interactions. The temporal structure of inter-467 

group interactions would be expected to have a substantial effect on disease spread and previous 468 

interactions within a dyad, especially those in the recent past, could increase the likelihood of 469 

further interactions occurring. Finally, differences in these parameters between the sexes or for 470 

individuals of different ages might explain patterns of age- or sex-biased infection. 471 

REMs can be fitted in R using the package rem (Brandenberger 2016) or using the package 472 

relevent (Butts 2008), with prior data manipulation requiring the package informR (Marcum 473 

and Butts 2015). This includes the addition of support constraints (additional binary indicators within 474 

the model that restrict which actions or events are possible) that can help account for elements of 475 

the study design, and therefore are likely to be particularly beneficial in studies of animals (Tranmer 476 

et al. 2015). For example, support constraints could inform a model when individuals are collared in 477 

a contact network study, or to indicate whether two individuals are on different sides of a 478 

geographical barrier (e.g. a river) and therefore unable to interact. Extensions to incorporate 479 

weightings on temporal dependencies among events are incorporated in the rem package. 480 



 481 

Choosing a model 482 

With such a wealth of approaches, it may not be immediately clear which offers the most 483 

appropriate tool to test a particular hypothesis. In Table 1 we outline the advantages and 484 

disadvantages of using all of the modelling frameworks outlined here. In Figure 2 we provide a data- 485 

and question-driven approach to selecting the most suitable statistical tool. For further comparisons 486 

between statistical models of networks, and guidance to their usage, we refer readers to recent 487 

reviews in other subject areas (Hunter et al. 2012, Leifeld and Cranmer 2015, Cranmer et al. 2016). 488 

In addition to using statistical network models, it may also be possible to use statistical models of 489 

contact rates to test hypotheses relating disease and social behaviour, especially within social groups 490 

(Cross et al. 2012). 491 

There are a few important general rules to consider when selecting a modelling framework. 492 

The first of these is how the network data are obtained. Networks constructed using group-based (or 493 

association-based) approaches contain data structure and biases that on current knowledge require 494 

randomisation-based approaches that employ GLMs or GLMMs. For networks constructed from 495 

defined social contacts or interactions, then any approach could be useful depending on the 496 

question of interest. If data are temporally explicit (time-ordered) then the use of REMs offers the 497 

most powerful analytical approach by facilitating the use of temporal patterns of contacts in addition 498 

to their structure. However, these models are complex to construct and so for answering simpler 499 

questions it might be appropriate to aggregate data into a temporal series of networks and use 500 

simpler approaches. It may even be that for some questions aggregating all network data into a 501 

single static network still enables the relevant hypotheses to be tested.  502 

When selecting between network-focussed statistical models - (T)ERGMs, (T)NAMs and SAOMs - a 503 

fundamental first consideration is whether the hypotheses being tested are related to properties of 504 



relational data or the properties of nodes. For hypotheses related to network topology, (T)ERGMs 505 

and SAOMs are most appropriate, while for nodes (T)NAMs are best (or alternatively GLMMS with 506 

randomisations). Many hypotheses revolving around the topic of social behaviour and disease are in 507 

fact most suitable for testing using models of network topology . For example, any question asking 508 

whether diseased individuals show different patterns of social behaviour to non-diseased 509 

individuals, or asking how social behaviour changes as infection state changes are “network 510 

topology” questions. (T)NAMs are especially useful in testing hypotheses linking change in infection 511 

status to the network position of an individual and the infection status of individuals surrounding it 512 

in the network (alongside any other individual-level fixed effects). Thus modelling how network 513 

structure influences the probability of acquiring infection should be considered a “node-based” 514 

question. 515 

Missing information and hypothesis testing in networks 516 

 Many network studies of disease transmission are likely to contain missing information, 517 

either because they are based on a sub-sample of the total population or record only a subset of the 518 

interactions that occur amongst individuals. Few studies have investigated the impact of missing 519 

information on network analysis (but see e.g. Lee et al. 2006, Smith & Moody 2013, Silk et al. 2015, 520 

Smith et al. 2017), and  none has gone on to test how different types and levels of missing 521 

information affect hypothesis testing approaches. As a result, we would currently urge caution in 522 

applying these methods where networks are constructed using only a small proportion of individuals 523 

within a study population. An alternative option when there are high levels of missing information is 524 

to model contact rates independently of network structure, for example the methods outlined in 525 

Cross et al. (2012).  If statistical network methods are influenced in different ways by the sub-526 

sampling of network data then the choice of model might also depend on the level of sampling in 527 

the network of interest. For example, Shalizi and Rinaldo (2013) suggested that an ERGM based on a 528 

sampled network is unlikely to reflect population-level parameters, although how this might affect 529 



the testing of hypotheses is unclear. Conversely, Páez et al. (2008) found that the power of NAMs to 530 

detect network effects remained high until a majority of edge information was missing. Developing 531 

an improved understanding of how different modelling approaches are affected by sampling of a 532 

network will be a valuable area of future methodological research. 533 

 534 

Network approaches and epidemiological modelling 535 

 A natural end point of applying social network analytical methods to the study of disease is 536 

in helping to construct and parameterise epidemiological models and there are numerous 537 

advantages of this approach. First, uncertainty can be incorporated more easily – any estimates for 538 

structural effects or individual differences from ERGMs, SAOMs or REMs will include standard errors, 539 

which can be included to test the robustness of the conclusions drawn from the model. Second, 540 

statistical models (especially ERGMs) facilitate the easy simulation of large number of networks with 541 

equivalent expected properties to the observed network, useful for simulation-modelling of disease. 542 

Third, the use of dynamic statistical models (SAOMs, temporal ERGMs) makes it easier to 543 

incorporate information on network dynamics into any constructed models. For SAOMs in particular, 544 

the ability to estimate the co-dynamics of social strategy and disease could have major implications 545 

(e.g. the inclusion of avoidance behaviour in epidemiological models: Shaw & Schwartz 2008; Tunc & 546 

Shaw 2014). As a result, the incorporation of these statistical network models alongside 547 

epidemiological models offers great potential to develop stronger links between empirical data and 548 

disease modelling, especially in models of endemic diseases, for which the co-dynamics of social 549 

systems and infection are likely to be more important. 550 

 551 

Conclusions and future directions 552 



 There is considerable scope to extend current modelling frameworks and it would be highly 553 

beneficial for epidemiological researchers to become more involved in their continued development. 554 

For example, many of these methods are rather poor at dealing with missing data, and integrating 555 

elements from Bayesian population models (using state-space/multi-state models to address the 556 

issue of missing data and hidden states: Kéry & Schaub 2012) and models of network topology could 557 

make substantial advances in dealing with this issue. 558 

 Developments in hypothesis testing in networks will enable important progress in 559 

understanding the links between individuals, social structure and infection. This is especially true for 560 

endemic infections, such as with our worked examples of bTB in badgers, where the longer 561 

timescales involved will mean that understanding the dynamic interaction between social behaviour 562 

and disease is that much more important. Furthermore, implementing statistical approaches 563 

specifically designed to model networks can facilitate more detailed parameterisation of 564 

epidemiological models and provide an idea of uncertainty around key parameters. Together this 565 

means that statistical models of networks can offer a powerful tool in linking empirical data on 566 

population social structures with theoretical models of disease.  567 
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Table 1. The advantages and disadvantages of the main statistical modelling approaches to studying contact networks for disease.  813 

Model 
Dependent 

variable 
Network 

type 
When to use Advantages Disadvantages 

Mathematica
l details 

Software 

Generalised 
linear (mixed)  
model 
(GLM/GLMM) 

Individual 
traits 

Static/ 
Dynamic 

Can be used to test a whole range of 
hypotheses related to network position (with 
appropriate randomisations) 
E.g. Do network positions of individuals 
infected with PathogenX show distinct 
properties from those of uninfected 
individuals? 

-Familiarity of researchers 
-Well-developed methods in animal social 
networks 
-Can be used with group-based or 
association-based methods of network 
construction more easily 

-Not specifically designed to incorporate 
non-independence implicit to networks 
-System specific randomisations required 
that generate uncertainty around the null 
hypothesis rather than the observed 
parameter 

Croft et al. 
(2011) 

Farine and 
Whitehead 

(2015) 

lme4(modelling) 
igraph/asnipe 
(randomisations)  

Temporal 
network 
autocorrelation 
model  
(TNAM) 

Individual 
traits 

Static/ 
Dynamic 

For testing hypotheses about how individual 
traits change in the context of a network in a 
single network or series of network 
snapshots. 
E.g. How do network position, past network 
position and the infection status of 
neighbouring individuals best explain 
infection with pathogenX?   

-Can be used to explicitly account for non-
independence of network data 
-Enables the direct and indirect effects of 
other individuals in the network to be 
modelled. 
-Same modelling framework can be applied 
to static and dynamic (multiple network 
snapshots) networks 

-Network dependency must be defined by 
user and goodness of fit cannot be tested 
- Complex to include interactions between 
more than two variables. [It is possible if the 
model matrix is generated using the function 
tnamdata()] 
-Robustness when used in group-based or 
association-based networks or with 
randomisation-based hypothesis testing 
unknown. 

Doreian et al. 
(1989) 

Leenders (2002)  
Hays et al. (2010) 

xergm (tnam) 

Multiple 
regression 
quadratic 
assignment 
procedure 
(MRQAP) 

Edge values Static 

For testing hypotheses about how relational 
traits are affected by other dyadic variables 
(i.e. matrix correlations) 
E.g. Does there tend to be a difference in 
interaction strength between susceptible-
susceotible and susceptible-infected dyads 

-Familiar to ecologists 
-Accessible method to implement 
-Can be used to analyse association-based 
animal networks 

-No opportunity to model dependency 
structure of network 
-No standard errors estimated around model 
parameters 
-Problems in sparse networks and with 
collinear explanatory variables 

Martin (1999) 
Dekker, 

Krackhardt & 
Snijders. (2007) 

sna, asnipe 

Exponential 
random graph 
model 
(ERGM) 

Network 
topology 

Static 

For testing hypotheses about the properties 
of edges or local network topology in a single 
network. 
E.g. How does pathogenX infection affect an 
individual’s social relationships?  

-Modelling framework accounts for 
conditional dependence within the network 
-Models the edges themselves, which are 
often of most interest from an 
epidemiological pespective 
-Can include structural effects of biological 
interest or control for study design/social 
system e.g. distance, group membership  

-Lack of flexibility to have interaction terms 
within the model Nb. It is possible to set up 
use defined terms but this is will be 
challenging 
-Restricted to interaction- or contact-based 
network in which the researcher is confident 
of ties (use for group-based networks 
untested) 
 

Robins et al. 
(2007) 

Lusher et al. 
(2013) 

ergm, 
ergm.count, 
GERGM 

Latent space 
model 

Edge values 
Static/ 
Dynamic 

For testing hypotheses about the properties 
of dyads in a single network (no inclusion of 
network topology). 
E.g. How does pathogenX infection affect an 
individual’s social relationships? 

-Modelling framework accounts for 
conditional dependence within the network 
-Models the edges themselves, which are 
often of most interest from an 
epidemiological pespective 
-Generally simpler implementation and 
fitting than ERGMs as dependencies 
estimated automatically 

-Hypotheses related to network topology 
cannot be tested as network dependencies 
are included in the latent space component 
-Lack of flexibility to have interaction terms 
within the model  
-Use in association-based networks untested 
-Interpretation of coefficients can be 
complex if correlated with the positions of 
nodes in latent space 
-User-defined definitions of latent space 
need to completed with caution 
 

Hoff, Raftery, & 
Handcock (2002) 

Krivitsky et al. 
(2009) 

latentnet 
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Network-based 
diffusion 
analysis 
(NBDA) 

Transmission 
process 

Static 

For testing the hypothesis that the 
acquisition of trait on a static network is a 
social process. 
E.g. Does the spread of pathogenX depend on 
contact network structure 

-Simple to implement with a clear hypothesis 
test (whether the acquisition of a trait is best 
explained by social or non-social processes) 
that is highly relevant to disease research 

-Lack of flexibility 
-Only takes into account a single static 
network structure (cf. tnam) 

Franz and Nunn 
(2009) 

Nightingale et al. 
(2014) 

code available 
online (see main 
text) 
spatialnbda 

Stochastic 
actor-oriented 
model 
(SAOM) 

Network 
topology and 

individual 
traits 

Dynamic 

For testing hypotheses related to how a trait 
influences an individual’s dynamic network 
position or for testing hypotheses about how 
a trait and an individual’s social network 
position are inter-related 
E.g. How does infection with PathogenX 
covary with social behaviour? 

-Accounts for conditional dependence within 
the network 
-Can model both the probability of edges 
over time and differences in rates of network 
change depending on structural effects, and 
nodal and dyadic covariates 
 

-Restricted to interaction- or contact-based 
network in which the researcher is confident 
of ties. Use for association-based or group-
based networks untested. 
-Only possible to use for binary or ordinal 
networks 
-Excessive changes in network composition 
over time can lead to estimation problems 

Snijders et al. 
(2010) 

Rsiena 

Temporal 
exponential 
random graph 
model 
(TERGM) 

Network 
topology 

Dynamic 

For testing hypotheses about the properties 
of edges or local network topology in a series 
of network snapshots. 
E.g. How stable are social relationships and 
how does infection with PathogenX affect 
this? 

Modelling framework accounts for 
conditional dependence within the network 
-Models the edges themselves, which are 
often of most interest from an 
epidemiological pespective 
-Can include structural effects of biological 
interest or control for study design/social 
system e.g. distance, group membership -
Temporal covariates enable tests of 
interaction stability and can interact with 
covariates to test how this affected by dyadic 
covariates 
-Able to provide user-defined functions 
(which can be non-linear)for temporal 
change in network structure 

-Lack of flexibility to have interaction terms 
within the model Nb. It is possible to set up 
use defined terms but this is will be 
challenging 
-Restricted to interaction- or contact-based 
network in which the researcher is confident 
of ties (use for group-based networks 
untested) 
-Relative to SAOMs, less informative about 
rates of network change over time 
-Missing data has to be imputed or the 
individuals removed from the network 

Hanneke et al. 
(2010) 

Leifeld et al. 
(2014) 

xergm (btergm) 

Relational 
event model 
(REM) 

Interaction or 
contact events 

Temporally
-explicit  
Dynamic 

For testing hypotheses about the timing and 
patterns of interactions or contacts in 
temporally-explicit data. 
E.g. Is the temporal pattern of social contacts 
different for individuals infected with 
PathogenX? 

-Temporally-explicit 
-Support constraints make the framework 
very adaptive as to appropriate datasets 
-Does not require individuals to be present 
for the entire study period 

-More complex implementation and 
interpretation 
-Harder to test hypotheses directly related to 
network structure and position than other 
approaches; this often has intuitive appeal 
for disease research. 
- Computationally intensive for larger 
networks and/or more complex models  as a 
result of maintaining temporally-explicit 
data.  

Butts (2008) 
relevent 
(+informR), rem 



Table 2. Details of the type of model term, what type of network to use it in and guidance on how 815 

and when to use it for a selection of standard terms to consider when using ERGMs and TERGMs.  816 

ERGM term Network type Term type Use to… 

edges 
density 

Binary Structural 
Similar to an intercept in a GLM - gives the probability of edges in the 
network relative to a random network. Density is equivalent to edges 
divided by n(n-1)/2 

non-zero Weighted Structural 
Zero-inflation term in weighted networks (accounts for the fact that 
most networks are sparse and therefore distribution of edge weights is 
zero-inflated) 

sum Weighted Structural Similar to the intercept in a GLM for weighted networks 

kstar(x:y) Binary Structural 
A statistic for each kstar between x and y . kstar(1) is equivalent to 
edges  

triangle 
localtriangle(x) 

Binary Structural 
A statistic for the number of triangles in the network (i.e. a measuring 
of clustering/transitivity). localtriangle(x) calculates only triangles 
between neighbours which are given using an indicator matrix x. 

transitiveweights 
cyclicalweights 

Weighted Structural 
Both of these terms can be used to calculate triangles in weighted 
networks taking into account the weights of edges 

nodefactor(x) Both Node-based 
The effect of a categorical nodal variable on the probability/weight of 
edges 

nodecov(x) Both Node-based 
The effect of a continuous nodal variable on the probability/weight of 
edges 

nodematch(x) Both Node-based 
The probability/weight of edges between two individuals of the same 
versus different values of a categorical nodal variable. The argument 
diff=TRUE can provide separate estimates for each level of the factor 

absdiff(x)/ 
absdiffcat(x) 

Both Node-based 
The effect of the difference in values of a continuous nodal variable 
between nodes on the probability/weight of an edge formed between 
them. 

edgecov(x)/dyadcov(x) Both Dyad-based 
The effect of a dyadic covariate (e.g. relatedness) on the 
probability/weight of edges formed. Using dyadcov(x) applies directed 
covariates when the network itself is directed 

memory(type=””) Both Temporal 
The stability of edges over time. Additional arguments in type can be 
used to test different memory effects e.g. all potential edges 
(“stability”) or only complete edges (“autoregression”) 

timecov(x,transform= 
function(t)) 

Both Temporal 
Trends in edge formation over time (nature of trend given by transform 
argument). Can additionally include a dyadic covariate x to create an 
interaction effect 
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 823 

Figure 1. The dynamics of social interactions and disease across two time points (t=1 and t=2). 824 

Models of static networks can only explore correlations at one point in time; by incorporating 825 

dynamic modelling approaches it is possible to explore causation. Individual attributes in this graph 826 

refer to both fixed phenotypic traits such as sex, and conditional traits such as physiological stress, 827 

immunocompetence and condition. Social response represents the social behaviour of other 828 

individuals towards a focal individual. 829 
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 831 

Figure 2. A guide to statistical model use to test hypotheses about the relationship between social 832 

contacts/interactions and disease for the most appropriate models to test hypotheses about 833 

networks and disease. GLM is generalised linear model, GLMM is generalised linear mixed model, 834 

ERGM is exponential random graph model, NBDA is network-based diffusion analysis, SAOM is 835 

stochastic actor-oriented model, TERGM is temporal exponential random graph model and REM is 836 

relational events model. 837 


