COUNTING HOPF-GALOIS STRUCTURES ON
CYCLIC FIELD EXTENSIONS OF SQUAREFREE
DEGREE

ALT A. ALABDALI AND NIGEL P. BYOTT

ABSTRACT. We investigate Hopf-Galois structures on a cyclic field
extension L/K of squarefree degree n. By a result of Greither and
Pareigis, each such Hopf-Galois structure corresponds to a group
of order n, whose isomorphism class we call the type of the Hopf-
Galois structure. We show that every group of order n can occur,
and we determine the number of Hopf-Galois structures of each
type. We then express the total number of Hopf-Galois structures
on L/K as a sum over factorisations of n into three parts. As
examples, we give closed expressions for the number of Hopf-Galois
structures on a cyclic extension whose degree is a product of three
distinct primes. (There are several cases, depending on congruence
conditions between the primes.) We also consider one case where
the degree is a product of four primes.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let L/K be a finite Galois extension of fields with Galois group I'.
Then the group algebra K[I'] is a K-Hopf algebra, and its action on
L endows L/K with a Hopf-Galois structure. In general, this is one
among many possible Hopf-Galois structures on L/K. Greither and
Pareigis [GP87] showed that these Hopf-Galois structures correspond
to certain regular subgroups G in the group Perm(I") of permutations
of the underlying set of I'. Finding all Hopf-Galois structures in any
particular case then becomes a combinatorial question in group theory.
The groups I' and G necessarily have the same order, but need not be
isomorphic. We refer to the isomorphism type of G as the type of the
corresponding Hopf-Galois structure.
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There is a substantial literature on Hopf-Galois structures on various
classes of field extension. We mention a few results now, and some
others in the final section of this paper. Let p be an odd prime. A
cyclic field extension of degree p™ admits precisely p™~! Hopf-Galois
structures, all of cyclic type [Koh98]. An elementary abelian extension
of degree p™ admits many more: there are at least p™m=)=1(p — 1)
Hopf-Galois structures of elementary abelian type if p > m [Chi05],
and there are also some of nonabelian type if m > 3 [BC12]. For a
Galois extension whose Galois group I' is abelian, the type G of any
Hopf-Galois structure must be soluble [Byol5], although for a soluble,
nonabelian Galois group I' there can be Hopf-Galois structures whose
type is not soluble. Recently, Crespo, Rio and Vela [CRV16] have
investigated those Hopf-Galois structures on an extension L/K which
arise by combining Hopf-Galois structures on L/F and on F/K for
some intermediate field F'.

In this paper, we investigate Hopf-Galois structures on cyclic ex-
tensions L/K of arbitrary squarefree degree. Thus we consider cyclic
extensions whose degree has a prime factorisation at the other extreme
to those treated in [Koh98]. We intend to discuss Hopf-Galois struc-
tures on arbitrary Galois extensions of squarefree degree in a future
paper.

The type of a Hopf-Galois structure on a cyclic extension of square-
free degree n could potentially be any group G of order n. There may
be many of these. Indeed, Holder [H6195] showed that the number of
isomorphism types of groups of squarefree order n is given by

pt®e) — 1

" XI5

de=n p|d

where the sum is over ordered pairs (d, e) of positive integers such that
de = n, the product is over primes p dividing d, and v(p,e) is the
number of distinct prime factors g of e with ¢ =1 (mod p). It is clear
that, as n varies over all squarefree integers, the expression (1) can
become arbitrarily large.

It is an immediate consequence of Theorem 1 below that, for each
group G of order n, the number of Hopf-Galois structures of type G on
a cyclic extension of degree n cannot be zero. Thus all possible types
do in fact occur. The cyclic extensions of squarefree degree therefore
form a class for which both the number of distinct types of Hopf-Galois
structures on a given extension, and the number of distinct prime fac-
tors of the degree of a given extension, may be arbitrarily large. To the
best of our knowledge, this is the first class of extensions with these
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properties for which it has been possible to enumerate all Hopf-Galois
structures. For comparison, we mention that, when the Galois group I"
is a nonabelian simple group, the number of prime factors of |I'| may be
arbitrarily large, but there are only two Hopf-Galois structures, both
of type I' [ByoO4a]. On the other hand, for Galois extensions of de-
gree pi1pap3, where py, po, ps are distinct odd primes satisfying certain
congruence conditions, Kohl [Koh16] has determined all Hopf-Galois
structures for each possible Galois group. In this case, the number
of distinct types may be arbitrarily large, but the number of primes
dividing the degree is of course fixed at three.

We will see in Proposition 3.5 that each group G of squarefree order
n gives rise to a factorisation n = dgz of n, in which g (respectively, z)
is the order of the commutator subgroup G’ (respectively, the centre
Z(G)) of G. We can now state the first of our two main results.

Theorem 1. Let L/K be a cyclic extension of fields of squarefree degree
n, and let G be any group of order n. Let z = |Z(G)|, g = |G|
and d = n/(gz). Then L/K admits precisely 2°9¢(d) Hopf-Galois
structures of type G, where @ is Euler’s totient function and w(g) is
the number of (distinct) prime factors of g.

Our second result gives the total number of Hopf-Galois structures.

Theorem 2. The number of Hopf-Galois structures on a cyclic field
extension of squarefree degree n is

@ > 2Oua) [T (7 - 1),

dgz=n pld

where the product is over ordered triples (d,g,z) of natural numbers
with dgz = n. Here u 1s the Méobius function.

We remark that (2) has a similar shape to Hélder’s formula (1),
although with a sum over factorisations into three parts rather than
two. In both cases, the term for each factorisation involves a product
over primes p dividing d, in which the contribution corresponding to p
does not depend on d and p alone. (In (1) it depends on e, and in (2)

ong.)
2. PRELIMINARIES ON HOPF-GALOIS STRUCTURES

Let L/K be a field extension of finite degree, and let H be a cocom-
mutative K-Hopf algebra acting on L . We write A: H - H Qg H
and e: H — K for the comultiplication and counit maps on H, and
use Sweedler’s notation A(h) =~y ha) ® h(z). We will say that the
action of H on L makes L into an H-module algebra if h - (zy) =
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> (hay )@ (hz)-y) and h-k = e(h)k forall h € H, allz, y € L and
all k € K. A Hopf-Galois structure on L consists of a Hopf algebra H
acting on L so that L is an H-module algebra and the K-linear map
0: Lok L — Homg(H, L) is bijective, where 8(x ® y)(h) = x(h-y) for
x,y€ Land h € H.

When L/K is separable, Greither and Pareigis [GP87] used descent
theory to show how all Hopf-Galois structures on L/K could be de-
scribed in group-theoretic terms. We consider here only the special
case where L/K is a Galois extension in the classical sense (that is,
L/K is normal as well as separable). Let I' = Gal(L/K) be the Galois
group of L/K. Then the Hopf-Galois structures on L/K correspond
bijectively to subgroups G of Perm(I") which are regular on I" and are
normalised by the group A\(I") of left translations by elements of I". Re-
call that a group G acting on a set X is regular if the action is transitive
on X and the stabiliser of any point is trivial.

The direct determination of all regular subgroups in Perm(I") nor-
malised by A(I") is often difficult as the group Perm(I") is large. How-
ever, the condition that A(I") normalises G means that I" is contained
in the holomorph Hol(G) = G x Aut(G) of G, where the latter group
is viewed as a subgroup of Perm(I') and is usually much smaller than
Perm(I"). We may then view I' as acting on G, and this action is again
regular. If the isomorphism types of groups G* of order |I'| admit a
manageable classification, the Hopf-Galois structures on L/K can be
determined by considering each G* in turn and finding the regular sub-
groups I'* of Hol(G*) which are isomorphic to I'. This leads to the
following result, cf. [Byo96, Cor. to Prop. 1] or [Chi00, §7]:

Lemma 2.1. Let L/K be a finite Galois extension of fields with Galois
group T, and, for any group G with |G| = |U'|, let € (G,T") be the number
of regular subgroups of Hol(G) isomorphic to I'. Then the number
e(G,T') of Hopf-Galois structures on L/ K of type G is given by
[Aut(l)]
G, I')=——"%-¢€(G,T).

Moreover, the total number of Hopf-Galois structures on L/K is given
by > . e(G,T), where the sum is over all isomorphism types G of groups
of order |T|.

3. PRELIMINARIES ON GROUPS OF SQUAREFREE ORDER

We will call a finite group a C-group if all its Sylow subgroups are
cyclic. In particular, any group of squarefree order is a C-group. All
C-groups are metabelian, so C-groups can in principle be classified
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[Rob96, 10.1.10]. This classification is given in a rather explicit form in
a paper of Murty and Murty [MM84], who investigated the asymptotic
behaviour of the number of C-groups of order up to a given bound.
We state their classification result, in the special case of groups of
squarefree order, as Lemma 3.2 below.

Notation 3.1. For an integer N > 1, we denote by Zy the ring Z/NZ
of integers modulo NV, and by U (V) the group of units in Zy. We write
ordy(a) for the order of an element a € U(N). Abusing notation, we
will often use the same symbol for an element of Z and its class in Zy.
We write 15 for the identity element of a group G.

Lemma 3.2. Let n be squarefree. Then any group of order n has the
form
G(d,e, k) = (0,7: 0° =74 = 1g, 7077 = o)

where n = de, ged(d,e) = 1 and ord.(k) = d. Conversely, any choice
of d, e and k satisfying these conditions gives a group G(d, e, k) of order
n. Moreover, two such groups G(d, e, k) and G(d', €', k") are isomorphic
if and only ifd =d', e = €, and k, k" generate the same cyclic subgroup
of Ule).

Proof. This follows from [MM84, Lemmas 3.5 & 3.6]. O

Remark 3.3. The existence of k with ord.(k) = d implies that d
divides ¢(e) = |U(e)|. Thus there may be many factorisations n = de
of n for which no groups G(d, e, k) occur.

Remark 3.4. We note in passing how Hélder’s formula (1) follows
from Lemma 3.2. For fixed d and e, the number of isomorphism types of
group G(d, e, k) is the number of (necessarily cyclic) subgroups of order
d in U(e). Each such group is the product of its Sylow p-subgroups for
the primes p dividing d. For each such p, the p-rank of Uf(e) is v(p, e),
so U(p) contains (p*®® —1)/(p — 1) subgroups of order p. Taking the
product over p gives the number of subgroups of order d. Summing
over d yields the formula (1) for the number of isomorphism types of
groups of order n.

Proposition 3.5. Let G = G(d, e, k) be a group of squarefree order n
as in Lemma 3.2. Let z = ged(e, k — 1) and g = e/z, so that we have
factorisations e = gz and n = de = dgz. Then the centre Z(G) of G
is the cyclic group (o9) of order z, and the commutator subgroup G' of
G is the the cyclic group (c®) of order g.

Proof. For v = 0°7" € G, we have 0~ 'yo = ¢* ¥ 70 Since ord,(k) =
d, it follows that v commutes with o if and only if d | b. But then
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v = 0% and 797! = 709771 = ¢%. Thus 797! = 7 precisely when

e | a(k — 1), that is, when g | a. Hence Z(G) = (09).

Turning to G’, we have 707 'o~! = ¢F~1. Thus G’ contains the
normal subgroup (o*~1) = (%) of G. Equality holds since G/(c*71) is
abelian. U

We next find the number of isomorphism classes of groups G corre-
sponding to the factorisation n = dgz.

Proposition 3.6. Let n = dgz be squarefree. Then the number of
isomorphism types of groups G of order n with |Z(G)| = z and |G'| = ¢
18

(3) S w (L) T —1).
EN

pld

Proof. We keep d and e = n/d fixed. For each factor g of e let m(g)
be the number of isomorphism types of groups G = G(d, e, k) (with k
varying) for which |G’| = g. We need to show that m(g) is given by
the formula (3).

Let m*(g) be the number of groups G(d, e, k) for which |G'| divides

g. Then
m*(g) =Y _m(f),

and so, by Mobius inversion,
* g
@ o) =S (%)
flg

The distinct isomorphism types of groups G correspond to distinct
subgroups D of order d in U(e) = [[,.Ul(q), where the product is
over primes ¢ dividing e. Let f | e. Then |G'| divides f precisely
when e/ f divides |Z(G)|, which occurs when D has trivial projection
in the factor U(q) for each prime ¢ dividing e/f. Hence m*(f) is the
number of subgroups of order d in U(f), and, arguing as in Remark
3.4, this is led(p”(p’f) —1)/(p — 1). Substituting into (4) and noting
that [T, ,(p — 1) = ¢(d), we obtain the expression (3) for m(g). O

4. AUTOMORPHISMS AND THE HOLOMORPH

For this section and the next, we fix a group G = G(d, e, k) of square-
free order n. We keep the preceding notation, so g = |G'|, z = |Z(G)|,
and n = de = dgz. Our goal is to find the number of cyclic subgroups
of Hol(G) which are regular on G. By Lemma 2.1, this will enable
us to find the number of Hopf-Galois structures of type GG on a cyclic
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extension of degree m. In this section, we will describe Aut(G) and
Hol(G). In §5, we determine all regular cyclic subgroups in Hol(G)
and complete the proof of Theorem 1. In §6, we sum over the different
isomorphism types G to prove Theorem 2.

Until the end of §6, we shall systematically use the notation p for
prime factors of d and ¢ for prime factors of e. Thus the primes g are
of two types: either ¢ | g or ¢q | z.

We begin by recording a formula which allows us to perform calcu-
lations in G itself. For integers h and j > 0, we define

j—1
(5) S(h,j) =) h"
i=0
In particular, S(h,0) = 0. A simple induction shows that, for any
a € 7,
(6) (o%T) = @Sk 73
The next result describes the automorphisms of G.

Lemma 4.1. We have |Aut(G)| = gp(e) and

Aut(G) = C, x Ule),

where a € U(e) acts on Cy by v — x*. (Note that in general this action
is not faithful.)

Ezplicitly, Aut(G) is generated by the automorphism 6 and automor-
phisms ¢ for each s € Ul(e), where

(7) 0(o) = o, 0(r) = o,

and

(8) ¢s(0) =0, () =T

These automorphisms satisfy the relations

(9) 00 =ide,  Gbr =0, SO =0".

Proof. We first verify the existence of the automorphisms 6 and ¢;.
Since (0°7)o(0*7)"! = o, (7) will determine an automorphism 6 pro-

vided that o*7 has order d. By (6), this will hold if e | 2S(k, d), that
is, if g | S(k,d). But for each prime ¢ | g, we have k% =1 # k (mod q),
so that

Kt —1
k-1
Thus ¢ | S(k, d), as required. This shows the existence of the automor-
phism 0. For s € U(e), the element o* has order e and 70771 = (o%)F.
It follows that there is an automorphism ¢, as given in (8).

S(k,d) = =0 (mod q).
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It is clear that # has order g. The remaining relations in (9) are
easily verified by checking them on the generators o, 7 of G.

We have now shown that 6 and the ¢ generate a subgroup of Aut(G)
isomorphic to C, x U(e). This subgroup has order gp(e). It remains
to show that there are no further automorphisms.

Let ¢ € Aut(G). As (o) is a characteristic subgroup of G, being the
unique subgroup of order e, we have ¢ (o) = o® for some s € U(e). Let
YP(1) = 0%7% with 0 < b < d. Since ¥ must satisfy (7)) (o)(r)! =
Y(o)k, we have o**" = 5% and hence b = 1. Thus, by (6) again,

w(T)d — O_aS(k,d)7
so that aS(k,d) = 0 (mod e). In particular, for each prime ¢ dividing
z, we have ¢ | aS(k,d). But S(k,d) = d # 0 (mod ¢) since k = 1
(mod ¢q). Thus ¢ | a. It follows that a = zc¢ for some ¢ € Z, so

Y =0%s;. O

We now consider the holomorph Hol(G) = G x Aut(G) of G. We
write an element of this group as [«, ¢], where o € G and ¥ € Aut(G).
The multiplication in Hol(G) is given by

(10) [ov, ][0, ¢'] = [ (), h¢].

(The subgroup G in Hol(G) is therefore identified with the left trans-
lations in Perm(G).) In view of Lemma 4.1, an arbitrary x € Hol(G)
can be written z = [0%7°, 0°¢,], where a € Z., s € U(e), b € Zq and
¢ € Zy. In Lemma 4.2 below, we will give a formula for powers of x in
the special case b = 1. We will then show in Proposition 4.3 why this
case is all we need. We first introduce some further notation.

Define

j—1
(11)  T(ks,5)=>_ S(s,Wk" " for j>1,  T(k,s,0) =0,
h=0

where S(s,h) is given by (5). Note that we then have T'(k,s,1) = 0
and

T(k,s,j+1)=T(k,s,j)+k"1S(s,j) for j > 0.
Lemma 4.2. Let © = [0°T,0°;|. Then, for j >0, we have
(12) gl = [oAW I g5 g ]
where A(j) = aS(sk,j) + czkT(k, s, j).

Proof. We argue by induction on j. When j = 0, we have S(s,0) =
T(k,s,0) =0 and A(0) = 0, so (12) holds in this case. Assuming (12)
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for j, we have from (10) that
i — [O-A(j)7-17 ch(s,j)(bS].] (097, 6°¢,]
(04D 73 (995D g 5 (097)), 09D ¢ ;0°9,).
Thus, using (9), the second component of 277! is
905(8,j)¢sj90¢8 _ ecS(s,j)ecsj¢sj¢s _ 905(5,j+1)¢sj+1’
as required for (12). As for the first component of 277!, since
HcS(s,j)(bsj (O_aT) _ O,asjo_czS(s,j)T7
we have
oA 7I (956 g s (097)) = oA oS 1
G AG) gaskT e2S(sj)ki j+1

A

. . / ;
We write this as ¢ 7771, and calculate

A = A() +as’k +czS(s, j)k
= a(S(sk,j) + (sk)?) + czk[T(k, s, j) + k' ~"S(s, )]
= aS(sk,j+ 1)+ czkT(k,s,j+ 1)
— A +1).
Thus (12) holds with j replaced by j+1. This completes the induction.
0

Proposition 4.3. Let C be a cyclic subgroup of Hol(G) which is reqular
on G. Then C' is generated by some element

x = |07, 0],

in which T occurs with exponent 1. In fact, C' contains precisely ¢(e)
generators of this type.

Proof. For any 1 € Aut(G) and arbitrary a = 0% € G, we have
Y(a) = 07 for some o’ € Z. This is clear from Lemma 4.1 as it
holds for v = ¢, and p = 6. It then follows from (10) that the
function Hol(G) — (7), given by [0%7, 1] — 7%, is a group homomor-
phism. (This is not automatic, since the function Hol(G)) — G given by
[097° )] = %7P, is not in general a homomorphism.) In particular, for
any = = [0%7%, 0°p,] € Hol(G) and any j > 1, we have 27 = [047% /]
for some A € Z. and some ¢ € Aut(G), both depending on j. The
permutation 27 of G takes 1¢ to o7% .

Now let C' be a regular cyclic subgroup of Hol(G), and let z =
[0%7%, 0] be a generator. Thus x has order n. Since C' is transi-
tive on G, the elements o47%, as j varies, must run through all el-
ements of G. In particular, b5 must run through all residue classes
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modulo d. Hence ged(b,d) = 1, and there exists f > 1 with bf = 1
(mod d). Since ged(d, e) = 1, we may further assume that ged(f,e) =
1. Then ged(f,n) = 1, so that z/ is also a generator of C, and
ol = [o4 7 Y] = [047,4'] for some A’ and v’. Replacing = by
x| we have found a generator of C' with b = 1, as required.

Now let  be any such generator. Then 27 will be another if and only
if ged(7,m) =1 and j =1 (mod d). The number of such generators is

therefore p(n)/p(d) = p(e). O

5. HoPF-GALOIS STRUCTURES OF TYPE (G

As a first step towards determining when the element x in Proposi-
tion 4.3 generates a regular subgroup, we give a condition for transi-
tivity.

Lemma 5.1. Let x = [0°T,0°] € Hol(G). Then the subgroup () of
Hol(GQ) acts transitively on G if and only if (x%) acts transitively on

(o).

Proof. Let (x) be transitive on G. Then, for each ¢ € Z, there is some j
such 27-1¢ = ¢®. Then d | j by (12). Thus (z?) acts transitively on (o).
Conversely, suppose that (z¢) acts transitively on (o). Let o't/ € G.
By Lemma 4.2, we have 277 - oi77 € (o). As (2% is transitive on (o),
there is some h € Z with 2% ~7 . o9 = 1. Thus the arbitrary element
o'77 lies in the same orbit under (z) as 1¢, so that (x) is transitive on
G. O

In order to study the orbits of (z¢) on (¢}, we examine the congruence
properties of the sums S(k,j) and T'(k,s,j) defined in (5) and (11)
when j is a multiple of d.

Proposition 5.2. Let g be a prime dividing e. In the following, all con-
gruences are modulo q. We will omit the modulus for brevity. Abusing
notation, we will write ¥ in such a congruence to denote uv* where

vv* = 1. (This notation will only be used when v Z 0.)
(i) For any s, i € Z with i > 0, we have

di if s =1,
S(s,di) =

Sdz

otherwise.

S —
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(ii) Recall that k* = 1. If also k # 1 then, for any s, i € 7 with
1> 0, we have

( di
- y = 1.
k(k — 1) ife=1
di .
T(k,s,di) = k;(sil) if sk =1;
<$di _ 1) .
| 50— 1)k = 1) otherwise.

Proof. (i) This is immediate.
(ii) The case i = 0 is clear, so assume ¢ > 1. First let s = 1. Then
S(s,j) =3, so

di—1
(k= DT(k,s,di) = > (k—1)jk"

7=0
di—1 di—1

DI
Jj=0 j=1
di—1 di—2

= D ik =D G+ 1K
j=0 j=0
di—1 di—1

= ) K = (G + DE +dik"!
j=0 j=0

di—1
= =) K+ dik"
=0

As k% =1 # k, we then have
(k —DT(k,s,di) = dik™ !,

giving the result for s = 1.
If s # 1 then

di-1 , i 4
T(k,s,di) = Z <i — ) Ei—1

Il
e
—~
V)
| =
—
~—
| ——|
&
L
—~
VA
7
~—
<.
|
N
<
|
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The second sum vanishes mod ¢. The first is congruent to di if sk = 1,
giving the result in this case. Finally if sk # 1 # s then

T(k,s,di) = k(31_1) > sk’
1 di
= k(s 1)(sk—1) ((sh)* —1)
1

0

Lemma 5.3. Let x = [0°7,0°%] € Hol(G), so a € Z., c € Z,, s €
U(e). Then z generates a reqular cyclic subgroup of Hol(G) if and only
if the triple (s, a,c) satisfies the following conditions:

(i) for each prime q | z, we have s =1 (mod ¢q) and q 1 a;

(i) for each prime q | g, either

s=1 (modgq) andc# 0 (mod q), or

s=k™' (mod q) and (s —1)a+cz#0 (mod q).

Proof. Suppose that (z) is regular, and hence transitive, on G. By
Lemma 5.1, (z9) is transitive on (o). It follows using Lemma 4.2 that
the expression

A(di) = aS(sk,di) + czkT'(k, s, di)

represents all residue classes mod e as i varies. In particular, A(di)
represents every residue class mod ¢ for each prime factor g of e. We
investigate this condition for each ¢ in turn. Again, we omit the mod-
ulus in congruences modulo q.

First, let ¢ | z, so k = 1. If s #£ 1, then sk # 1, so by Proposition
5.2(i) we have
a(s? —1)

s—1 7
which cannot represent all residue classes mod ¢ since there is no i such
that s% = 0. On the other hand, if s = 1 then

(13) A(di) = adi.

A(di) =

Since ¢ t d, this represents all residue classes mod ¢ precisely when
g1 a. Thus (i) holds.
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Now let ¢ | g, s0 k # 1 but k¥ =1. If s 2 1 and s #Z k=1, then, using
both parts of Proposition 5.2, we have

A(di) = (%) a+czk (k(s _Sj)zgzi — 1))

(s" - 1)
= —1 .
GoDh—1) (s —1)a+cz)
Again, this cannot represent all residue classes mod ¢ since s% # 0.
It remains to consider the two special cases s =1 # kand s = k™! £
1

If s =1 k then, as (sk)? = k% = 1, we have
di _cadi
kE(k—1))

k—1

As q f zd, this represents all residue classes mod ¢ precisely when ¢ 1 ¢,
giving the first case in (ii).
If s=k"' #£1 then

(14) A(di) = czk (

A(di) = adi+czk (ﬁ>

di
s—1
This represents all residue classes mod ¢ precisely when (s —1)a+cz #
0, giving the second case in (ii).

We have now shown that if = generates a regular cyclic subgroup,
then (i) and (ii) hold.

Conversely, suppose that (i) and (ii) hold. Then, by Proposition 5.2,
the congruences (13), (14) and (15) hold modulo all relevant ¢. For
each prime ¢ | e, we then have that A(di) represents all residue classes
mod ¢ as ¢ runs through any complete set of residues mod g. By the
Chinese Remainder Theorem, A(di) then ranges through all residue
classes mod e as i does. By Lemma 4.2, (x9) is then transitive on (o),
so (z) is transitive on G by Lemma 5.1. Finally, (13), (14) and (15)
show that A(de) = 0 (mod e), so that 2 = 1. Hence (x) is regular
on G. U

(15) =

((s—1a+cz).

Proof of Theorem 1. By Proposition 4.3, any regular cyclic subgroup
of Hol(G) is generated by an element z as in Lemma 5.3. We count
the number of triples (s, a, ¢) satisfying the conditions there. As there
is only one possibility for s mod ¢ when ¢ | z but two when ¢ | g,
there are 299 possibilities for s (mod €). Let us fix s and consider
the possibilities for a and c¢. For each prime ¢ | z, condition (i) in
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Lemma 5.3 excludes one possibility for a mod ¢q. For each ¢ | g, we
may choose a mod ¢ arbitrarily, and then, in either case of condition
(i), one possibility for ¢ mod ¢ is excluded. Thus we have ¢(z)g choices
for a mod e, and then ¢(g) choices for ¢ mod g. The number of ele-
ments x = [0%T, 0°,| which generate a regular subgroup is therefore
2« (2)gp(g). By Proposition 4.3, each regular cyclic subgroup con-
tains ¢(e) = (2)p(g) such generators, so there are 2“9 g of these
subgroups. Thus, using Lemma 2.1 and Lemma 4.1 (and writing C,
for the cyclic group of order n), we find that the number of Hopf-Galois
structures of type G is

At(C)] oy eln)
rAn/lgwl(g) g — ow(9) ; — gw(9) )
Aw(@) 2 9T gple)” IR

6. PROOF OF THEOREM 2

In this section, we obtain the total number of Hopf-Galois structures
on a cyclic field extension of squarefree degree n, thereby completing
the proof of Theorem 2.

For each factorisation n = dgz, we have seen in Proposition 3.6 that
the number of corresponding isomorphism types of group G is

oS (L) T - 1),
o (§)1I

We have also seen in Theorem 1 that there 2¢(9)(d) Hopf-Galois struc-
tures of each of these types. To obtain the total number of Hopf-Galois
structures, we simply multiply these two quantities and sum over fac-
torisations of n. This yields

> 20ed) (ot S (§) [T0r" - 1)
flg

dgz=n pld

Setting ¢t = ¢g/f and noting that w(g) = w(t) + w(f), we can rewrite
the previous sum as

Z pu(t)2¢®22() H(pv(p’f) —1).

dftz=n pld

Let m = tz, and observe that yu(t) = (—1)*®*). The sum then becomes

Z Z(_Q)w(t) 2w(f)H(pU(P7f)_1)'

dfm=n \ t|m pld
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Recall that a function F' on the natural numbers is said to be multi-
plicative if F(rs) = F(r)F(s) whenever ged(r,s) = 1. The function
t — (—2)“® is clearly multiplicative, and hence so is the function
m Zﬂm(—Z)“(t). However, evaluating this last function at a prime
q gives (—2)*W) 4+ (=2)*@ =14 (=2) = -1 = pu(q). As p is also
multiplicative, it follows that Zt|m(—2)°’(t) = p(m) for squarefree m.
(This is not true for arbitrary natural numbers m.) Hence the total
number of Hopf-Galois structures on a cyclic extension of squarefree

degree n is
Z p1(m)2+) H(p”(p’f) —1).
dfm=n pld

After a change of notation, this gives the formula (2), completing the
proof of Theorem 2.

7. EXAMPLES

In this section, we give some examples and show how several re-
sults in the literature can be obtained as special cases of our results.
Throughout, n is a squarefree integer and L/K is a cyclic Galois ex-
tension of degree n.

7.1. Cyclic Hopf-Galois Structures. The group G(d, e, k) in Lemma
3.2 is cyclic only when d = 1, e = n. Indeed, this is the only case where
G(d, e, k) is abelian, or even nilpotent. In this case z = n, g = 1, and
Theorem 1 shows that there is only one Hopf-Galois structure of cyclic
(or abelian, or nilpotent) type on L/K. This can also be seen from
[Byol3, Theorem 2]. The unique cyclic Hopf-Galois structure is of
course the classical one.

When ged(n, p(n)) = 1, there are no other groups G(d,e, k), and
hence there are no Hopf-Galois structures on L/K beyond the classical
one. This was shown, together with its converse, in [Byo96]. The case
that n is prime occurs in [Chi89].

7.2. Dihedral Hopf-Galois Structures. Let n = 2m where m is an
odd squarefree number. The group G(d, e, k) in Lemma 3.2 is dihedral
when d = 2 and k = —1 € U(e). Then e = g = m. It follows from
Theorem 1 that a cyclic extension of degree n admits 2*(™ Hopf-Galois
structures of dihedral type.

7.3. Two Primes. Let n = pg for primes p > ¢q. We assume that
q | (p— 1) (since otherwise the only group of order n is the cyclic
group C,,). Up to isomorphism, there are two groups of order n, the
cyclic group C), (with d =1, g = 1, e = z = pq) and the metabelian
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d| g | z | Termin (2)
1{pg| 1 4

1| p | g —2

1|1 q | p —2
111 |pg 1

gl p| 1] 2(¢—1)

TABLE 1. Nonzero terms in (2) for n = pq.

group M = C, x C, where C, acts nontrivially on C, (so d = ¢,
e=g¢g=p,z=1). As we have seen in §7.1, a cyclic extension of degree
n admits just one Hopf-Galois structure of cyclic type (namely the
classical one). By Theorem 1, it also admits 2" ¢(q) = 2(¢— 1) Hopf-
Galois structures of type M. This result was obtained in [Byo04b],
where we also considered Hopf-Galois structures on a Galois extension
with Galois group M. When g = 2, the result follows from §7.2.

Let us also verify that Proposition 3.6 correctly counts the isomor-
phism types corresponding to each factorisation n = dgz, and that
Theorem 2 correctly counts the total number of Hopf-Galois structures,
in this case.

In the sum (3) of Proposition 3.6, led(p”(p’f) — 1) vanishes unless

d=1ord=gq, f=p(sothat also g = p). When d = 1, (3) reduces to

5 <g> B {1 if g =1
a f/) 10 otherwise.
flg
Thus when d = 1, to get a group G(d, e, k) we must take g = 1 and
z = pq. We then have G(d,e, k) = C,. When d # 1, all terms in (3)
vanish unless d = ¢, g = p, when the term for f = p gives p(q)~(¢* —
1) = 1. Thus (3) tells us that there is just one isomorphism type of
nonabelian group of order n. Hence Proposition 3.6 does indeed give
the correct number of isomorphism types for each factorisation. By
similar reasoning (which we leave to the reader), Hélder’s formula (1)
correctly predicts two isomorphism classes of groups of order n.

We now turn to Theorem 2. The product over p | d vanishes unless
d =1ord=¢q g = p. The nonzero contributions to (2) for the
various factorisations n = gzd are shown in Table 1. Summing the
final column of Table 1 gives the correct count of 2(¢ — 1) + 1 Hopf-
Galois structures on a cyclic extension of degree n = pq. Table 1
also illustrates an important feature of the formula (2): factorisations
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n = dgz for which there are no corresponding groups G can nevertheless
contribute nonzero terms to (2).

7.4. Three Primes. Let n = p1pyp3 where p; < py < p3 are primes.
Both the number of isomorphism classes of groups of order n, and
the number of Hopf-Galois structures on a cyclic extension of degree
n, depend on congruence conditions relating the three primes. There
are two combinations of these conditions for which the Hopf-Galois
structures on all Galois extensions of degree pipsps (not just cyclic
extensions) have been enumerated.

The first of these is when p; = 2 and p3 = 2py + 1 (so ps is a Sophie
Germain prime and ps is a safeprime). Kohl [Koh13, Theorem 5.1]
treated this case as an application of his method for studying Hopf-
Galois structures on Galois extensions of degree mp (with p prime and
m < p). Those extensions with Galois group Hol(C,,) = C,, ¥ Cp,_4
had previously been considered in [Chi03].

The second situation where all Hopf-Galois structures have been de-
termined is when p; > 2 and py = p3 = 1 (mod p;) but p3 # 1
(mod ps). This case is treated in [Koh16, Theorem 2.4]. The same
techniques could be applied to other combinations of congruence con-
ditions, but separate calculations would be required for each case.

In the following, we will apply Theorem 1 to count the Hopf-Galois
structures only on a cyclic extension of degree n = pypaps, but under all
possible combinations of congruence conditions. In particular, this will
recover those parts of Kohl’s results in [Koh13, Koh16] which relate to
cyclic extensions.

In Table 2 we show the factorisations n = dgz for which groups exist,
the number of isomorphism types of these groups, and the number of
Hopf-Galois structures of each isomorphism type.

The first column of Table 2 numbers the factorisations for ease of
reference, and the factorisation is shown in the next 3 columns. The
5th column shows the congruence conditions which must be satisfied
for groups to exist. The 6th column shows the number of isomorphism
types of group corresponding to the given factorisation, as given by
Proposition 3.6. These can also be found directly, as explained below.
The final column shows the number of Hopf-Galois structures for each
isomorphism type. This is given by the formula 2“(9)@(d) of Theorem
1.

We now explain how to find the values in the 6th column of Table
2 directly. (This illustrates in simple cases the proof of Proposition
3.6.) Consider for example case 2, where d = py, ¢ = p2, 2 = ps,
S0 e = paps. The distinct isomorphism types of groups G(d, e, k) with
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Case| d g z Condition # groups | # HGS per group
1 1 L pipaps 1 1
2 P1 P2 D3 p2 =1 (mod p) 1 2(p1 — 1)
3 |'pm p3 pe ps =1 (mod py) 1 2(p1 — 1)
4 | 'pr pwps 1 |pp=p3=1(modp)| p1—1 4(pr — 1)
5 P2 D3 2 p3 =1 (mod ps) 1 2(p2 — 1)
6 |pip2 D3 1 p3 =1 (mod pps) 1 2(p1 — 1)(p2 — 1)

TABLE 2. Numbers of isomorphism types and Hopf-
Galois structures for n = pypaops.

these parameters correspond to subgroups (k) C U(psps) of order p; for
which z = ged(k—1, paps) = p3. Since k = 1 (mod p3), we can identify
(k) with a subgroup of order p; in U(ps). Such a subgroup exists since
pa = 1 (mod p;), and it is unique since U(pg) is cyclic. Thus there is
just one group G(d, e, k) in case 2. In case 4, however, where d = p;, g =
pops and z = 1, the isomorphism types of groups G(d, e, k) correspond
to subgroups (k) C U(peps) of order p; with ged(k — 1, paps) = 1. Now
U(paps) = U(pa) x U(ps) contains p; + 1 subgroups of order p;. For
one of these, ged(k — 1, pep3) = ps. This gives the group G just found
in case 2. Another of the subgroups has ged(k — 1, paps) = po, and
this is counted in case 3. The remaining p; — 1 subgroups of U(paps)
give groups G with g = pops and z = 1. Thus the number of groups
recorded in case 4 is p; — 1.

We now find the total number of Hopf-Galois structures on a cyclic
extension of degree n, treating each combination of relevant congruence
conditions on pi, po, p3 separately. The results are shown in Table 3.
For each combination of congruence conditions, we pick out the cases
from Table 2 where any groups G(d, e, k) exist. To obtain the total
number of isomorphism types of groups of order n, we add the numbers
of groups from the corresponding rows in Table 2, giving the entries in
the 5th column of Table 3. These agree with the values given by Kohl
[Koh16, p. 46]. To obtain the total number of Hopf-Galois structures,
we multiply the entries in the final two columns of Table 2 and add
these values for the appropriate rows. After simplification, this gives
the entries in the final column of Table 3.

We now specialise to the two situations considered in [Koh13, Theo-
rem 5.1] and [Koh16, Theorem 2.4] in order to confirm that we recover
those parts of Kohl’s results pertaining to cyclic extensions.

First let p; = 2 and let p3 = 2py, + 1 be a safeprime. Thus we
have p; = 1 (mod p;) whenever 1 < i < j < 3, corresponding to the
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pa| (ps—1) | p1|(ps—1) | p1|(p2—1) Cases # groups Total # HGS
no no no 1 1 1
no no yes 1,2 2 2p1 — 1
no yes no 1,3 2 2p; — 1
no yes yes 1,2, 3,4 p1+ 2 (2p; — 1)?
yes no no 1,5 2 2py — 1
yes no yes 1,2, 5 3 2p1 4+ 2ps — 3
yes yes no 1,3,5,6 4 2p1ps — 1
yes yes yes 1,2,3,4,5,6| pi+4 |4p?+2pips —6p1 +1

TABLE 3. Total numbers of Hopf-Galois structures for
n = p1pP2ps3-

final row (“yes—yes—yes”) in our Table 3. The first row of the table
in [Koh13, Theorem 5.1] shows that there are 6 isomorphism types of
groups of order n = p;paps, which Kohl denotes by C,,,,,, C,x Dy, F'xCs,
Cy X Dy, D,,, Hol(C,), where ¢ = po and p = p3. These contribute 1,
2, 2(pe — 1), 2, 4, 2(p2 — 1) Hopf-Galois structures respectively. The
total number of Hopf-Galois structures is therefore 4p, + 5. These
groups are respectively those of cases 1, 2, 5, 3, 4, 6 in our Table 2.
Putting p; = 2 in Table 2, we again get 4py + 5 for the total number
of Hopf-Galois structures, and the number of Hopf-Galois structures
of each type shown in Table 2 agrees with Kohl’s values. Thus our
results recover the part of Kohl’s result [Koh13, Theorem 5.1] relating
to cyclic extensions of degree 2pg = 2py(2py + 1).

Now let p; > 2 and py; = p3 = 1 (mod p;) but p3 Z 1 (mod py),
corresponding to the 4th row (“no—yes—yes”) of our Table 3. The first
row of the table in [Koh16, Theorem 2.4] shows that there are p; + 2
groups G. (Note that the final column, headed C,,,,, x;C,, , corresponds
to p; — 1 distinct isomorphism types, given by 1 < i < p; — 1.) Of
these groups, one contributes one Hopf-Galois structure, two contribute
2(p; — 1), and the rest 4(p; — 1). Thus there are in total of (2p; — 1)?
Hopf-Galois structures. This agrees with our count in Table 3 and the
relevant cases, 1-4, in Table 2. (The restriction p; > 2 turns out to be
irrelevant when the Galois group is cyclic.)

7.5. Four primes. As a final example, we consider the case when
n = p1pap3p4 is the product of 4 distinct primes, under the assumption

that
(16)

p; =1 (mod p;) whenever i < j.
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d g z # groups # HGS per group
1 1 pipapsps 1 1

D1 D2 D3P4 1 2(p1 — 1)

D1 D3 D2P4 1 2(p1 — 1)

D1 j2 D2p3 1 2(p1 — 1)

D1 D23 Pa pr—1 4(p1 — 1)

D1 P2P4 p3 pr—1 4(]71 - 1)

D1 P3Da P2 p1—1 4(p1 — 1)

PL PaP3Pa 1 (pr — 1) 8(p1 — 1)

D2 D3 P1P4 1 2(py — 1)

D2 D4 p1p3 1 2(p2 — 1)

P2 D3ps p1 p2—1 4(p2 — 1)

D3 j2 D1p2 1 2(ps — 1)
P1p2 D3 D4 1 2(p1 — 1)(p2 — 1)
P1D2 D4 P3 1 2(p1 = 1)(p2 — 1)
piP2 D3Da 1 (p1+1)(p2+1)—2 dpr = D(p2 — 1)
P1D3 j2 D2 1 2(p1 — 1)(ps — 1)
P2ps P4 y4! 1 2(172 — 1)(]93 - 1)

piP2P3s P4 1 1 2(p1 = D(p2 — D(ps — 1)

TABLE 4. Numbers of isomorphism types and Hopf-
Galois structures for n = pypapsps.

(Thus we have p; < py < p3 < py.)

We record in Table 4 the number of isomorphism classes of groups
G(d, e, k), and the number of Hopf-Galois structures of each type, cor-
responding to each relevant factorisation n = dgz.

It follows from this table that, under the assumption (16), there
are p3 + pip2 + 2p1 + 2pe + 8 isomorphism types of groups of order
n = p1pap3ps, and the total number of Hopf-Galois structures is

Ap2p3 4 8p + 2p1paps — 16p7 — 6p1py + 10p; — 1.

For example, if n = 2-3-7-43 = 1806, or more generally, if n = 42p, for
any prime py = 1 (mod 42), then a cyclic extension of degree n admits
precisely 211 Hopf-Galois structures of 28 different types.

When (16) does not hold, we can enumerate the Hopf-Galois struc-

tures by picking out the appropriate rows in Table 4, just as we did in
87.4.




[BC12]

[Byo96]
[ByoOdal
[Byo04b)]
[Byo13]
[Byol5]
[Chi89]

[Chi00]

[Chi03]
[Chi05)]
[CRV16]
[GPS7]

[H5195]

[Koh98]

[Koh13]
[Koh16]
[MM84]

[Rob96]
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