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Abstract. A badly approximable system of a‰ne forms is determined by a matrix
and a vector. We show Kleinbock’s conjecture for badly approximable systems of a‰ne
forms: for any fixed vector, the set of badly approximable systems of a‰ne forms is win-
ning (in the sense of Schmidt games) even when restricted to a fractal (from a certain large
class of fractals). In addition, we consider fixing the matrix instead of the vector where an
analog statement holds.

1. Introduction

Let Mm;nðRÞ denote the set of m� n real matrices, and let ~MMm;nðRÞ denote
Mm;nðRÞ � Rm. The element in ~MMm;nðRÞ corresponding to A A Mm;nðRÞ and b A Rm

will be expressed as hA; bi. Consider the following well-known sets from the theory of
Diophantine approximation (or metric number theory); see for instance [10]:

Badðm; nÞ :¼
�
hA; bi A ~MMm;nðRÞ j there exists cðA; bÞ > 0

such that kAq� bkZ f
cðA; bÞ
kqkn=m

for all q A Znnf0g
�
;

where k � k is the sup norm on Rk and k � kZ is the function on Rk given by
kxkZ :¼ inf

p AZk
kx� pk. The set Badðm; nÞ is called the set of badly approximable systems

of m a‰ne forms in n variables. For any b A Rm, let

Badbðm; nÞ :¼ fA A Mm;nðRÞ j hA; bi A Badðm; nÞg;

and, for any A A Mm;nðRÞ, let BadAðm; nÞ :¼ fb A Rm j hA; bi A Badðm; nÞg.

The set Bad0ðm; nÞ is called the set of badly approximable systems of m linear forms

in n variables and is an important and classical object of study in metric number theory.
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Although Bad0ðm; nÞ is a Lebesgue null set (Khintchine, 1926), it has full Hausdor¤ dimen-
sion and, even stronger, is winning as shown by Schmidt [18] in 1969.1) Winning sets have
a few other properties besides having full Hausdor¤ dimension. An important example of
such is the countable intersection property, which allows countable intersections of winning
sets to remain winning. This puts the class of winning sets next to other important classes
of large sets with the same property such as the class of conull sets or the class of dense
Gd-sets. In contrast, the class of sets that are simply of full Hausdor¤ dimension does not
have the countable (or even finite) intersection property. See Section 2.1 for more details on
the properties of winning sets.

For general b, less has heretofore been known. Another result of Schmidt implies that
Badbðm; nÞ has zero Lebesgue measure for any b [16]. With regard to dimension, however,
D. Kleinbock has shown that Badbðm; nÞ has full Hausdor¤ dimension for b from a full
Hausdor¤ dimension subset of Rm [10]. Thus, a fundamental question in the theory of
badly approximable systems of a‰ne forms (and in metric number theory) is whether
Badbðm; nÞ has full Hausdor¤ dimension for every b. In fact, Kleinbock [10] conjectured
that Badbðm; nÞ is winning for every b. In this paper, we show that Kleinbock’s conjecture
is true and, moreover, that Badbðm; nÞ is winning even when restricted to certain fractals;
see Theorem 1.1.

Recently, interest in the size of related sets, namely the size of BadAðm; nÞ for fixed A,
has developed.2) The sets BadAðm; nÞ naturally arise as the complements of sets of toral
translation vectors that satisfy certain shrinking target properties (see [21] and [3] for de-
tails). For almost every A, these sets are Lebesgue null sets, but it is easy to see that these
sets can possibly have even full Lebesgue measure. However, regardless of Lebesgue mea-
sure, Y. Bugeaud, S. Harrap, S. Kristensen, and S. Velani have recently shown that, for
every A, BadAðm; nÞ has full Hausdor¤ dimension even when restricted to certain fractals
([3], Theorem 2). Two questions are inspired by their result: are the sets BadAðm; nÞ winning
for all A, and, if so, can this winning property be further generalized to fractals from a
larger class of fractals than those considered in [3]. In [20], the second-named author has
answered the first question in the a‰rmative for the special case of n ¼ m ¼ 1. In this
paper, we answer both questions in the a‰rmative for the general case; see Theorem 1.4.

Finally, as a corollary of the proof of Theorem 1.4, we also study the set of infinitely
badly approximable matrices

BadyA ðm; nÞ :¼
�
b A Rm

�� lim inf
q AZnnf0g

kqknkAq� bkm
Z ¼ y

�

for matrices A that are singular (in the sense of the theory of Diophantine approximation).
Here we say that A is singular if, for every e > 0 and large enough N, there are solutions

1) One can even intersect Bad0ðm; nÞ with certain fractals and still retain the winning property; see [8],

Theorem 1.

2) Problems in metric number theory in which the vector b is fixed are referred to as singly metric inhomo-

geneous problems. Problems in which nothing is fixed are referred to as doubly metric inhomogeneous problems.

Problems in which the matrix A is fixed first appeared in this generality, the authors believe, in [3] and are not,

as of yet, named.
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q A Zn to the system of inequalities

kAqkZ e
e

Nn=m
and 0 < kqk < N:

We note that BadyA ðm; nÞHBadAðm; nÞ. The set of singular matrices A, which we denote
by SMm;nðRÞ, is called the set of singular systems of m linear forms in n variables (or the

set of singular m� n matrices) and is another important and classical object of study in
metric number theory.

1.1. Statement of results. In this section, we state and discuss our results. Note that
dimð�Þ refers to Hausdor¤ dimension throughout this paper and dmðUÞ refers to lower
pointwise dimension.3) Our first result, Theorem 1.1, answers a‰rmatively the aforemen-
tioned fundamental question in the theory of badly approximable systems of a‰ne forms
and, moreover, subsumes both the classical theory concerning the size of Bad0ðm; nÞ, which
culminated in Schmidt’s proof of the winning property, and the more recent proofs of
L. Fishman ([8] and [9]) involving the intersection of Bad0ðm; nÞ with certain fractals.

Theorem 1.1. Let KHMm;nðRÞ be the support of an absolutely friendly measure m
(as an example, the Lebesgue measure restricted to ½0; 1�mn). Then, for any b A Rm,

KXBadbðm; nÞ

is a winning set on K.

The notions of winning and absolute friendly are defined in Section 2. Also, we show
that the winning parameter (see Section 2 for the definition) is independent of b. For its
value, see the proof of the result in Section 4.

Theorem 1.1 (and the fact that the winning parameter is independent of b), the prop-
erties of Schmidt games (Section 2.1), [12], Proposition 5.1,4) and [9], Theorem 3.1,
immediately imply the following corollary, which, in particular, gives Kleinbock’s main
conjecture from [10]. See Section 2.3 for details on the fitting property of the measure m.

Corollary 1.2. Let KHMm;nðRÞ be the support of an absolutely friendly measure m.
Then, for any countable sequence fbigHRm,

K X
�T

i

Badbiðm; nÞ
�

3) Recall that, for an open set U of a metric space with a locally finite Borel measure m, the lower pointwise

dimension is defined as

dmðUÞ :¼ inf
x AU

lim inf
r!0

log m
�
Bðx; rÞ

�
log r

:

4) Thanks to Barak Weiss for pointing out this proposition.
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is a winning set on K and has Hausdor¤ dimension greater than or equal to dmðKÞ. If, in ad-

dition, m is dimðKÞ-fitting, then

K X
�T

i

Badbiðm; nÞ
�

also has Hausdor¤ dimension equal to dimðKÞ.

Remark 1.3. In the corollary, if there exist constants c1; c2; r0 > 0 such that

c1r
dimðKÞ

e m
�
Bðx; rÞ

�
e c2r

dimðKÞ;

whenever re r0 and x A K , then dmðKÞ ¼ dimðKÞ.

Our second result is a generalization of the main result of [3] (i.e. [3], Theorem 2) to
winning sets and to a larger class of fractals. The result of [3], which shows full Hausdor¤
dimension, requires a high degree (related to m, see [3] for the precise formulation) of reg-
ularity of the fractal. This high degree of regularity precludes some common fractals (the
Cantor set, for example) that are included in Theorems 1.1 and 1.4. In addition, Theorem
1.4 also generalizes the main result of [20] to any dimension. See Section 2.3 for details on
the absolutely decaying property of the measure m.5)

Theorem 1.4. Let KHRm be the support of an absolutely decaying measure m. Then,
for any A A Mm;nðRÞ,

KXBadAðm; nÞ

is a winning set on K.

We again note that the winning parameter is a positive real number, independent of A.

The proof of Theorem 1.4 in Section 3, which uses the space of unimodular lattices, is
di¤erent from the second-named author’s proof in [20] of the special case n ¼ m ¼ 1 and
K ¼ R, which uses continued fractions. For general n and m A N and K ¼ Rm, N. Mosh-
chevitin has a second proof that BadAðm; nÞ is winning for any A which uses yet a third
technique involving lacunary sequences [14]. To our knowledge, Moshchevitin’s remark-
able proof, which is close to Schmidt’s original proof that Bad0ðm; nÞ is winning, does not
give Theorem 1.4. Also, just before the finishing of the writing of this paper, we received the
preprint [2], which gives an alternate proof of Theorem 1.4.

We would like to point out that U. Shapira recently obtained a theorem concerning
the set of multiplicative badly approximable systems; see [19]. In contrast to the results
here, there it is shown that, for certain (and also almost all) A A Mð1;2Þ (resp. A A Mð2;1Þ),
the set of multiplicative badly approximable numbers b A R (resp. vectors b A R2) can be
empty.

5) Note that an absolutely friendly measure is also absolutely decaying.
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Theorem 1.4, the properties of Schmidt games (Section 2.1), and [9], Theorem 3.1,
again immediately imply a corollary regarding intersections of BadAi

ðm; nÞ, just as in Co-
rollary 1.2.

Finally, for singular matrices A, we can strengthen Theorem 1.4 by only considering
the subset of infinitely badly approximable vectors BadyA ð;m; nÞ and obtain the following,
which is proven in Section 3.3.

Theorem 1.5. Let KHRm be the support of an absolutely decaying measure m. Then,
for any A A SMm;nðRÞ,

K XBadyA ðm; nÞ

is a winning set on K.

A corollary like Corollary 1.2 also follows immediately.

We introduce winning sets and the space of unimodular lattices in Section 2, where
we also introduce our method in the classical case of b ¼ 0 and the Lebesgue measure. In
Section 3, we turn to a proof of our second result, Theorem 1.4. In Section 4, we prove
Theorem 1.1 by showing how to extend the strategy in [18], resp. [8]. Our third result, The-
orem 1.5, is a corollary of the proof of our second result and is presented in Section 3.3.

2. Background

The proofs of our results require two tools: Schmidt games (see [17] for a reference)
and the basic concepts concerning flows on the space of unimodular lattices (see [6], Chap-
ter 9, or see [1] for a reference). In Section 2.1, we introduce the first tool, and, in Sec-
tion 2.2, we introduce the second. Finally, our results are for fractals supported on certain
measures, which we introduce in Section 2.3. (See, for example, [11], [8], and [15] for addi-
tional details on these fractals.)

2.1. Schmidt games and winning sets. W. Schmidt introduced the games which
now bear his name in [17]. Let S be a subset of a complete metric space M. For any
point x A M and any r A Rþ, we denote the closed ball in M around x of radius r by
Bðx; rÞ. Even though it is possible for there to exist another x 0 A M and r 0 A Rþ for which
Bðx; rÞ ¼ Bðx 0; r 0Þ as sets in M, there will not be any ambiguity for us, as we will always
assume that we have chosen (either explicitly or implicitly) a center and a radius for each
closed ball. Let rðAÞ denote the radius of the closed ball A. Schmidt games require two
parameters: 0 < a < 1 and 0 < b < 1. Once values for the two parameters are chosen, we
refer to the game as the ða; bÞ-game, which we now describe. Two players, Player B and
Player W, alternate choosing nested closed balls B1 IW1 IB2 IW2 � � � on M such that

rðWnÞ ¼ arðBnÞ and rðBnÞ ¼ brðWn�1Þ:ð2:1Þ

The second player, Player W, wins if the intersection of these balls lies in S.6) A set S is
called ða; bÞ-winning if Player W can always win for the given a and b. A set S is called

6) We have named the second player Player W in honor of W. Schmidt.
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a-winning if Player W can always win for the given a and any b; here a is called the winning

parameter. A set S is called winning if it is a-winning for some a. Schmidt games have three
important properties for us [17]:

� Countable intersections of a-winning sets are again a-winning.

� Let 0 < ae 1=2. If a set in a Banach space of positive dimension is a-winning, then
the set with a countable number of points removed is also a-winning.

� The sets in Rm which are a-winning have full Hausdor¤ dimension.

Note that the last property has been generalized in two (related) ways. Theorem 3.1
of [9] states that, for a closed set KHRm which is the support of an absolutely friendly and
dimðKÞ-fitting measure, the a-winning sets on K have the same Hausdor¤ dimension as K.
[12], Proposition 5.1, states that, for K the support of a Federer measure, the Hausdor¤
dimension of a winning set is greater than or equal to dmðKÞ. See Section 2.3 for definitions.

2.2. The space of unimodular lattices. Let us now discuss a flow on the space of uni-
modular lattices and its relationship to systems of a‰ne forms. Let hA; bi A ~MMm;nðRÞ and
k ¼ mþ n. The product Aq can be viewed as a collection of m linear forms in n variables
q1; . . . ; qn. For non-zero b, we call the expression Aq� b a system of m a‰ne forms in n

variables. We are interested in the size of kAq� bkZ and kqk for q A Zn. Let us combine
all this data by considering the ðk þ 1Þ � ðk þ 1Þ matrix

LAðbÞ :¼
Im A �b

0 In 0

0 0 1

0
B@

1
CA;

where Il denotes the l� l identity matrix. Moreover, we introduce the k-dimensional af-
fine lattice

LAðbÞðZk � f1gÞ :¼ LAðbÞ
p

q

1

0
@

1
A
������ p A Zm; q A Zn

8<
:

9=
;

inside the ambient space Rk � f1gGRk. We will always identify Rk with this a‰ne sub-
space of Rkþ1 and will write LAðbÞðZkÞ as shorthand for LAðbÞðZk � f1gÞ. Finally, we de-
fine, for any t A R, the matrix

gt :¼
et=mIm 0 0

0 e�t=nIn 0

0 0 1

0
B@

1
CA;

which acts naturally on Rkþ1 and also on Rk (i.e. by the identification with the invariant
a‰ne subspace of Rk � f1g). The space Wk;a¤ of a‰ne unimodular lattices in k dimensions
is the space of all translates Lþ cHRk of unimodular lattices L ¼ gZk for g A SLðk;RÞ
and c A Rk. All a‰ne lattices Lþ cHRk that we consider will be unimodular, and we
often will think of them as subsets of Rkþ1 in the way described above. In particular, the
matrix gt acts on Wk;a¤ .
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We call Rk the time-particle space. When we refer to the origin without further quali-
fications, we shall mean the origin of the time-particle space. We call f0gm � Rn the time

space and Rm � f0gn the particle space. The notions time component and particle compo-

nent of a vector in Rk are now clear. This terminology is explained by interpreting the ele-
ments Aqþ Zm A Rm=Zm as the elements of the orbit of a Zn-action by rotation on the
m-dimensional torus. We let fe1; . . . ; enþmg denote the standard basis.

We will refer to L as the associated lattice to the a‰ne lattice Lþ c. A subspace
V HRk is called L-rational if LXV spans V .

For an l-dimensional parallelotope P, let jPj denote its l-dimensional volume. If V is
a L-rational l-dimensional subspace, then we also write jV j for the l-dimensional volume
of the parallelotope PHV spanned by a Z-basis of V XL. A hyperplane V (always of di-
mension k � 1) is called small if it is L-rational and jV je x0 :¼

ffiffiffi
k

p
and is called big other-

wise.

All of the above notions are of course relative to an a‰ne lattice Lþ c. However, we
will apply various elements of the flow gt to the a‰ne lattice. In this case we will not always
indicate this clearly, but, if H is L-rational and we talk about the covolume jgtHj, then this
is meant with respect to gtL. Furthermore, we say that a (big or small) hyperplane H re-

mains small (with respect to Lþ c) if there exists some T0 A R such that, for all tfT0, gtH
is small with respect to gtðLþ cÞ.

Also, we will use the following modification of a well-known theorem ([5], Theorem
2.20) due to S. G. Dani:

Theorem 2.1. We have hA; bi A Badðm; nÞ if and only if all nonzero points in all a‰ne

lattices of the trajectory fgtLAðbÞZk j t A Rþg are uniformly bounded away from the origin of

the time-particle space.

Even if the flow is replaced with a discrete-time system by sampling times with
uniformly bounded consecutive di¤erences, the theorem still holds. We also note that,
unlike the classical case of b ¼ 0, the above theorem does not relate the property
hA; bi A Badðm; nÞ with the question of whether the trajectory is bounded (i.e. has compact
closure).

We now list a geometric lemma concerning the relationship between volume and
unimodular lattices, which is straightforward to check.

Lemma 2.2. Let LHRk be a unimodular lattice. Let H be a L-rational hyperplane.

The distance between any two nearest parallel cosets H þ v1 and H þ v2 with v1; v2 A L is

equal to 1=jHj. In particular, if the distance is 1=jHj < x�1
0 , then the hyperplane H is big.

In any set of k linearly independent vectors in L, there exists at least one lattice vector of

lengthf 1.

Finally, we explain why small hyperplanes exist. The precise value of x0 ¼
ffiffiffi
k

p
is ir-

relevant for the main result of the paper. We also remark that, for any unimodular lattice
LHRk, there exists only a finite number of small hyperplanes (but this number cannot be
bounded independent of the lattice). Both the corollary regarding the existence of small
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hyperplanes and the finiteness of the number of small hyperplanes follow from considering
the dual lattice. Here the dual of a lattice LHRk is defined by

L� ¼ fw A Rk j hv;wi A Z for all v A Lg;

and we note that there is a correspondence between a primitive vector w A L� and a hyper-
plane H ¼ w? for which jHj with respect to L equals kwk.

Remark 2.3. We also remark that the asymptotic volume of any hyperplane goes to
either zero or infinity in the following sense. Let H be a L-rational hyperplane; then either
jgtHj measured with respect to gtL goes to infinity or to 0 as t ! y.7) To see this, assume
first that H contains the time space f0gm � Rn. In this case, H is spanned by a hyperplane
of the particle space, which is invariant under gt, and the time space; and gt restricted to H

has determinant e�t=m. This shows clearly that jgtHj with respect to gtL goes to zero. In the
second case, H is spanned by m vectors that project to a basis of the particle space
Rm � f0gn and by n� 1 vectors that belong to the time space. In this case, it follows that
jgtHj measured with respect to gtL goes to infinity.

2.3. Fractals supported on measures. Let L denote an a‰ne ðn� 1Þ-dimensional
hyperplane of Rn. For � > 0, let Lð�Þ denote the �-thickening of L. A locally finite Borel
measure m on Rn is called absolutely decaying if there exist strictly positive constants C, h
and r0 such that, for any hyperplane L, any � > 0, any x A suppðmÞ, and any positive
r < r0,

m
�
Bðx; rÞXLð�Þ�

eC
�

r

� �h

m
�
Bðx; rÞ

�
:

A locally finite Borel measure m is called Federer (or doubling) if there exist strictly positive
constants D and r0 such that, for any x A suppðmÞ and any positive r < r0,

m

 
B x;

1

2
r

� �!
> Dm

�
Bðx; rÞ

�
:

An absolutely decaying, Federer measure m is called absolutely friendly.

For a metric space ðX ; dÞ, a given x A X , and real numbers r > 0, 0 < b < 1; let
NX ðb; x; rÞ denote (following [9]) the maximum number of disjoint balls (centered at a
point of X ) of radius br contained in Bðx; rÞ. A locally finite Borel measure m is d-fitting if
there exist constants 0 < r1 e 1;M, and d such that, for every 0 < re r1, 0 < b < 1, and
x A suppðmÞ,

NsuppðmÞðb; x; rÞfMb�d:

The Lebesgue measure on Rn is an example of an absolutely friendly, fitting measure.
Besides Rn, the support of an absolutely friendly, fitting measure includes the Cantor set,
the Koch curve, the Sierpinski gasket, or, in general, the attractor of an irreducible finite

7) This is precisely the behavior that is also explained by considering the eigenvalues of
Vk�1

gt acting onVk�1
Rk , which leads to a formal proof.

90 Einsiedler and Tseng, Badly approximable systems of a‰ne forms, fractals, and Schmidt games

Brought to you by | University of Bristol
Authenticated | 137.222.86.3

Download Date | 5/22/13 6:09 PM



family of contracting similarity maps of Rn satisfying the open set condition (see [9],
Corollary 5.3, and [11], Theorem 2.3, for more details).

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. An understanding of this proof will illuminate
the proofs of our other results. The proof consists in describing the strategy that Player W
should use and in proving that Player W indeed always wins by using this strategy.
Note that the matrix A and so the lattice L ¼ LAð0ÞZk are given by assumption while the
game takes place on the set of possible translations b which define the a‰ne lattices

L� b

0

� �
¼ LAðbÞZk.

Let 0 < b < 1 be fixed, and note that h and C are two constants coming from the defi-
nition of absolute decaying, which we assume for m. By our assumption, K ¼ supp m. Let

a <
�
4ð2x0CÞ1=h��1

;

T ¼ �m logðabÞ:

Our strategy will use the value of b implicitly by using the transformation gT on Rk. Also
note that a has been chosen independent of b (which is required for showing that the game
is a-winning).

Let us point out the crucial link between steps of the game and applications of gT . In
every complete cycle of the game, the radii of the balls BlIWl are multiplied by ab and
the game then continues with the shrinked balls. In the dynamical system, we instead re-
place the given a‰ne lattice Ll (representing a point in Wk;a¤ ) by the lattice gTLl ¼ Llþ1.
By definition, the map gT expands the particle space by ðabÞ�1 and the time space is con-
tracted (by ðabÞm=n). Roughly speaking, this allows one to relate statements about the lat-
tice gl

TLAðbÞZk with respect to the unit ball to statements about elements of the ðabÞl-ball

in the particle space and elements q A Zn of the time space of size less than ðabÞ�ðm=nÞl—this
is the basis of Theorem 2.1. Player W tries to restrict the choice of b by choosing the
new ball (in the game of radius arðBlÞ and in the dynamical picture of radius a) so that
glþ1
T LAðbÞZk has no elements in a ball around zero of some fixed radius independent

of how b is chosen from the new ball. There is one potential problem in this simple-
minded strategy: namely, it could happen that the a‰ne lattice gl

TLAðbÞZk contains an
m-dimensional subspace that is close to the particle space Rm � f0gn and on which the lat-
tice points of gl

TLAð0ÞZk are highly dense; and the center b at this stage is such that the
a‰ne lattice gl

TLAðbÞÞZk contains lattice elements in the unit ball. In this case, the lattice
glþ1
T LAðbÞZk will contain points close to zero independently of how b is chosen from Bl.

If A is badly approximable itself, then this problem does not appear (as the lattices
gl
TLAð0ÞZk for l ¼ 1; 2; . . . remain uniformly discrete) and the strategy is quite straight-

forward. In general, the strategy of Player W is to study the behavior of rational hyper-
planes and, by making correct moves earlier on in the game, the above bad scenario can
be avoided by moving away from a hyperplane before it becomes very short. The assump-
tion that K supports an absolutely decaying measure is precisely the condition that allows
Player W to move away from hyperplanes.
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Also useful will be the following identities which formalize some of the above dis-
cussions. First, the a‰ne lattice LAðbÞZk can be obtained from LAð0ÞZk by an application
of the translation operator L0ðbÞ since L0ðbÞLAð0Þ ¼ LAðbÞ. Second, an application of gt
to LAðbÞZk gives the same as an application of the translation operator L0ðet=mbÞ to
gtLAð0ÞZk because

gtL0ðbÞg�1
t ¼ L0ðet=mbÞ:

We continue with a formal description of the strategy. Depending on A, there are two
cases; we begin with an easy but atypical case.8)

3.1. Case 1: There is an LA(0)Z
k-rational hyperplane whose covolume goes to zero.

Suppose the ball B1 ¼ Bðb1; r1ÞHRm with center b1 A K and radius r1 > 0 has been
chosen by Player B. Let HHRk be the hyperplane for which jgtHj measured with respect
to gtLAð0ÞZk goes to zero as t ! y. As discussed in Remark 2.3, this means that H con-
tains f0gm � Rn and intersects the particle space Rm � f0gn in a hyperplane. We choose
t0 > 0 such that r1 ¼ e�t0=m. Moreover, we may assume that gt0H is short; in fact, with

covolume less than
1

3
with respect to the lattice gt0LAð0ÞZk. Otherwise, we let Player W

play a few steps without any particular goal other than making the balls smaller and the
corresponding parameter t0 larger. Assuming now that the covolume of gt0H w.r.t.

gt0LAð0ÞZk is less than
1

3
, we see that distinct cosets vþ gt0H for v A gt0LAð0ÞZk need to be

at least 3 apart. Player W wants to make sure that the element b constructed by the game
is such that LAðbÞZk þH does not contain the origin. (In the case considered below, we
will have to be more careful about the distance to such hyperplanes.) Assume that the
coset vþ gt0H for some v A gt0LAð0ÞZk indeed intersects et0=mBðb1; r1Þ—by the distance of
these cosets from one another there can be only one. Let LHRm � f0gn be the hyperplane
such that gt0L is the intersection of the coset vþ gt0H with Rm � f0gn. Applying the
definition of absolutely decaying to the �-neighborhood Lð�Þ with � ¼ 2ar1 and the ball
B
�
b1; r1ð1 � aÞ

�
, it follows from the choice of a that there is some

b 0
1 A KXB

�
b1; r1ð1 � aÞ

�
nLð�Þ.

The strategy of Player W is to choose one such point as the center of W1 (which is allowed
as W1 HB1 ¼ Bðb1; r1Þ). After this first step, Player W does not have to be careful—we
claim that Player W wins independently of the remaining steps of the game. The reason
for this is simply that the constructed b from the game must have b B Lðar1Þ. This im-

plies that
b

0

� �
together with a basis of HXLAð0ÞZk span a parallelepiped of positive

k-dimensional volume. As gt does not change the volume and the volume of the base of the
parallelepiped inside H goes to zero (as it equals the covolume of H), it follows that the

distance of gt
b

0

� �
to gtH goes to infinity. The same applies to any other cosets of H,

8) This case is actually trivial as the Zn-orbit defined by A on Tm is not even dense, but we give the sim-

plified version of the argument used in the general case to show concretely why hyperplanes can be helpful.
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which shows that gtLAðbÞZk can indeed not contain small vectors as t ! y. This con-
cludes the proof of this simple case by Theorem 2.1.

3.2. Case 2: No hyperplane of LA(0)Z
k remains small. Let B1 ¼ Bðb1; r1Þ be the

ball chosen by Player B. We define t1 such that et1=mr1 ¼ 1 and also the a‰ne lattice
x1 ¼ gt1LAðb1ÞZk. We use induction to describe the strategy and the proof. In the initial
step of the induction, we ignore any (probably ridiculously) small hyperplanes of
gt1LAð0ÞZk and let Player W play without any strategy. In later steps of the induc-
tion, Player W will make sure that any small hyperplanes gt1þðJ�1ÞTH have their cosets
vþ gt1þðJ�1ÞTH for v A xJ ¼ gt1þðJ�1ÞT

�
LAðbÞZk

�
at a significant distance from the origin.

To simplify notation, we define tJ ¼ t1 þ ðJ � 1ÞT .

Since a small hyperplane always exists and since, in this case, no hyperplane remains
small forever, at some future point, a big hyperplane must become small. Let Jf 1 be the
smallest such that there is a hyperplane H such that gtJ�1

H is big (w.r.t. gtJ�1TLAð0ÞZk) but
gtJH is small (w.r.t. gtJLAð0ÞZk). If there is more than one such hyperplane, we choose H

such that gtkH is small the longest (i.e. for the most k > J). Player W may play without
any particular goal up to stage J of the game. Suppose Player B has chosen his ball
BJ ¼ BðbJ ; rJÞ. Consequently, we note that rðetJ=mBJÞ ¼ 1. This means that Player W is
given the lattice xJ ¼ gtJLAðbJÞZk and the freedom to replace xJ by L0ðbÞxJ for any
b A Bð0; 1 � aÞ. More precisely, this corresponds to choosing the center bJ þ e�tJ=mb for
the ball WJ , and Player W also has to ensure that this center belongs to K .

Note that the hyperplane H cannot contain the particle space Rm � f0gn, as, other-
wise, the covolume of H would be monotonically increasing (contradicting our reasons
to look at H in the first place). Moreover, we claim that the angle between H and the
particle space Rm � f0gn is significant in the following sense: there exists some d > 0
(which depends on k and T) such that any vector v A Rm � f0gn which is distance d from
HX ðRm � f0gnÞ produces, together with the k � 1-dimensional parallelepiped in gTJ

H

corresponding to yJ , a k-dimensional parallelepiped of volume ddjgTJ
Hj, where jgTJ

Hj de-
notes the k � 1-dimensional volume of the parallelepiped in gTJ

H.

To see the existence of d, recall that jgTJ
Hj equals the norm of the vector

v15� � �5vk�1 where v1; . . . ; vk�1 is a basis of gTJ
HX yJ . Furthermore,

Vk�1
gT has eigen-

values e�T=m of multiplicity m (corresponding to those hyperplanes that contain the time
space) and eT=n of multiplicity n (corresponding to those hyperplanes that contain the par-
ticle space). As gJH is big but gJþ1H is small, the vector v15� � �5vk�1 splits into a sum
of eigenvectors w� with eigenvalue e�T=m and wþ with eigenvalue eT=n. A simple calculus
exercise now shows that, since the size of the vector decreases from J � 1 to J, the vector
w� must be significant and cannot be much smaller than wþ. Finally, when calculating the
volume jv15� � �5vk�15vj of the k-dimensional parallelepiped mentioned above, the com-
ponent wþ is irrelevant as wþ5v ¼ 0. This gives the claim.

The covolume of gtJH ise x0, and so the distance between any two cosets of elements
in xJ with respect to gtJ ðHÞ must befx�1

0 . This implies that, at most, 2x0-many of the co-
sets vþ gtJH with v A xJ can intersect the unit ball. Taking these intersections into account,
the strategy of Player W is to put his new ball B ¼ Bðc; aÞHBð0; 1Þ, in the dynamical
picture, with center c A Bð0; 1 � aÞ so that after the shift L0ðbÞ by any b A B the distance
of
�
L0ðbÞxJ þ gtJH

�
X ðRm � f0gnÞ to the origin is at least a. Note that this intersection
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consists of cosets of a hyperplane L of which there are, at most, 2x0-many which are in
danger of becoming, after the shift, close to the origin.

Of course, Player W is obliged to make his choice of c such that bJ þ e�tJ=mc, namely
the center of the ball of Player W in the game, also belongs to K. We have chosen a in such
a way that, after applying the condition of absolute decaying 2x0-many times for � ¼ 2arJ

and r ¼ rJð1 � aÞf 1

2
rJ , we are still ensured to find an element of K outside the

2arJ -neighborhoods of thee 2x0 cosets of the hyperplane L that are relevant.

The above strategy ensures that the volume of the k-dimensional pyramid that
is spanned by the k � 1-dimensional parallelepiped (with k � 1-dimensional volume
jgtJHjf x0e

�T=m) inside any of the cosets of vþ gtJH with v A L0ðbÞxJ and b A B has vol-
ume at least x0e

�T=mad (which we agree to call significant, as it does not depend on J).
Since gT does not change this volume, we see that the smallest vector of gkT

�
L0ðbÞxJ

�
has

norm at least

x0e
�T=madjgtkHj�1

f e�T=mad;ð3:1Þ

where the last inequality holds for any kf 0 with jgtJþk
Hje x0. For those times, Player W

is protected from getting short vectors in the corresponding a‰ne lattices.

If, for some J 0 > J, there is another hyperplane H 0 that just became small at time J 0,
then Player W has to repeat the above procedure, again playing to make the volumes of
certain pyramids significant. This may and eventually will add protection time. Repeating
the procedure infinitely often constructs some shift by. The construction (the protection
times cover in the end the interval ½J;yÞ) and Theorem 2.1 imply hA; byi A Badðm; nÞ.

3.3. Proof of Theorem 1.5. As mentioned in the Introduction, Theorem 1.5 is really
a corollary of the proof of Theorem 1.4 in the following sense. Assume now that A is sin-
gular, and let Player W use the same strategy as described above. Then after the game has
finished, one has constructed some by. Let x ¼ LAðbyÞZk be the corresponding a‰ne lat-
tice. Then, for large enough J, we will have by (3.1) that gkðxÞ has no vector that is shorter
than x0e

�T=madjgtkHj�1 where H is the hyperplane for which jgtkHj is smallest. However, if
A is singular, then applying the Mahler compactness criterion to the dual lattice, it follows
that minH jgtkHj goes to zero. Therefore, the norm of the smallest element of gtðxÞ goes to
infinity. This implies that by A BadyA ðm; nÞ by (a simple strengthening of) Theorem 2.1.

4. Proof of Theorem 1.1

We now show how to adapt the available strategies for Player W and Bad0ðm; nÞ in
[18] for the Lebesgue measure, resp. in [8] for absolutely friendly measures, to obtain a
strategy for Badbðm; nÞ. So let a0 be a value so that Bad0ðm; nÞ is ða0; b0Þ-winning for every

b0 > 0. We define a ¼
�
4ð2CÞ1=h��1

a0, and, for every b > 0, we define b0 ¼ b
�
4ð2CÞ1=h��1

so that ab ¼ a0b0. The strategy is, for every given ball Bl ¼ BðAl; rlÞ, to use the known
strategy of Player W for Bad0ðm; nÞ to choose B 0

l ¼ BðA 0
l; a0rlÞHBl with A 0

l A K and an
additional step below for Badbðm; nÞ to get a ball Wl HB 0

l of radius arl and center in K.
We then show that this modified strategy is winning for Badbðm; nÞ.
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We may and will assume b B Zm. Given B 0
l ¼ BðA 0

l; a0rlÞ, we define the a‰ne lat-
tice xl ¼ gtlLA 0

l
ðbÞZk. Here tl is chosen such that gtlLDð0Þ ¼ Lða0rlÞ�1D

ð0Þgtl for any

D A Mn;mðRÞ. As in the argument above, this makes the additional step of choosing the
subball Wl and replacing xl with the lattice corresponding to the new center equivalent to
choosing a subball of Bð0; 1Þ of radius

�
4ð2CÞ1=h��1

and applying the center to xl.

Let v A xl be a vector of smallest norm. We are choosing the new center in such a way
that the particle component vp is significant in relationship to the norm kvtk of the time
component.9) Indeed, there is a proper a‰ne subspace LHMm;n (which depends on v)
such that

�
LAð0Þv

�
p
¼ 0 if and only if A A L.10) Moreover, it is straightforward to check

that A B LðeÞ implies
		�LAð0Þv

�
p

		f ekvtk. By the definition of absolute decaying applied

to B A 0
l;

1

2
a0rl

� �
and e ¼ 2

�
4ð2CÞ1=h��1

a0rl, we are sure to find a new center A 00
l A KnLðeÞ

with BðA 00
l ; arlÞHBðA 0

l; a0rlÞ corresponding (in the sense described above and depending
on xl) to a subball B of Bð0; 1Þ such that		�LDð0Þv

�
p

		f �
4ð2CÞ1=h��1kvtkð4:1Þ

whenever D A B.

We now prove that the above strategy for Player W is winning. By the assumed strat-
egy, the matrix A that belongs to the intersection of all balls is badly approximable. So
let � > 0 be small enough so that gtLAð0ÞZk does not contain any nonzero element of
norme � for any tf 0. We may also choose d > 0 such that the a‰ne lattice LAðbÞZk

does not contain any element of Bð0; dÞ (as b B Zk). Finally, suppose c > 0 is such that
kDvtke ckvtk for all D A Bð0; 1Þ and v A Rk. Then we claim that gtlLAðbÞZk does not con-
tain any element of Bð0; rÞ for

r ¼ minðd; �Þð1 þ cÞ�2ðabÞ
n

mþn=2

and for any lf 0. By Theorem 2.1, this claim implies that A A Badbðm; nÞ.

The claim holds for l ¼ 0 by choice of d. Now suppose w0 A
�
gtlLAðbÞZk

�
XBð0; rÞ

exists and lf 1 is chosen minimally with respect to this property. Then the a‰ne lattice
xl ¼ gtlLA 0

l
ðbÞZk that was used in the strategy di¤ers from gtlLAðbÞZk by an application

of LDð0Þ with some D A Bð0; 1Þ—simply because A belongs to the ball that was chosen by
Player W at stage l. Therefore, there exists a vector w A xl XB

�
0; ð1 þ cÞr

�
. Going back

one step in the dynamical iteration corresponding to the game, we get xl ¼ gTLD 0 ð0Þxl�1

where D 0 A Bð0; 1Þ. Here T is such that LAð0ÞgT ¼ gTLðabÞ�1A
ð0Þ, i.e. gT has eigenvalues

ðabÞ�
n

mþn and ðabÞ
m

mþn. Therefore, xl�1 contains an element v 0 of

norme ð1 þ cÞ2ðabÞ�
n

mþnre �=2.

However, as gtl�1
LAð0ÞZk does not contain any nonzero element of norme �, this shows

that v 0 ¼ v is the element that was used in the additional step of the strategy at step

9) Henceforth, we use the subscript t on time-particle vectors to denote their time components and use p to

denote particle components.

10) Here vt 3 0. If vt ¼ 0, then the calculation in the rest of this paragraph is trivial since LDð0Þ fixes v ¼ vp
for any D.
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l� 1.11) Therefore, (4.1) holds for v. Moreover, as gtl�1

�
LAðbÞZk

�
does not contain an ele-

ment of norm less than r, we see that kvkf ð1 þ cÞ�1
r.12) Therefore, one can derive (e.g. by

considering the case ckvtke
1

2
kvpk and the case ckvtkf

1

2
kvpk separately) from (4.1) that�

LD 0 ð0Þv
�
p

is of sizef kr, where the constant k depends on C, h, k, c. As the particle space
gets uniformly expanded, this implies that, after applying gT , we have that w has norm
kwkf krðabÞ�

n

nþm. On the other hand, we already know that kwke ð1 þ cÞr, which gives
krðabÞ�

n

nþm e ð1 þ cÞr. This is a contradiction to the assumption that the claim does not
hold, if only b is su‰ciently small. Note that, for Schmidt games, one is allowed to assume
that b is su‰ciently small—if Player W decides to use his strategy only every p-th step of

the game, then this has the e¤ect of replacing b with the much smaller bðabÞp�1.

5. Conclusion

A badly approximable system of a‰ne forms is determined by a matrix and a vector.
Our two main results, Theorems 1.1 and 1.4, determine the size of the set of badly approxi-
mable systems of a‰ne forms for a fixed vector and a fixed matrix, respectively; and The-
orem 1.1, in particular, shows a fundamental conjecture in singly metric inhomogeneous
number theory on the Hausdor¤ dimension of these sets for fixed vectors. Moreover, our
two theorems lead to another conjecture. Instead of fixing either the vector or the matrix,
one fixes neither and considers the size of Badðm; nÞ, which, recall, is the full set of badly
approximable systems of a‰ne forms. A classical result, the doubly metric inhomogeneous
Khintchine–Groshev theorem (see [4], Chapter VII, Theorem II, for the statement), imme-
diately implies that this set has zero Lebesgue measure. With regard to dimension, Klein-
bock has shown, using mixing of flows on the space of unimodular lattices, that the set has
full Hausdor¤ dimension [10].13) Moreover, Kleinbock conjectured that the set is winning
[10] (or winning in the modified sense of [12], as mentioned in personal communication). It
seems interesting, although the authors have not yet undertaken this endeavor, to combine
our proofs of Theorems 1.1 and 1.4 to yield a proof of not only this conjecture, but also a
more general conjecture: if KH ~MMm;nðRÞ is a closed subset supporting an absolutely de-
caying measure m, then K XBadðm; nÞ is a winning set on K. However, the obstacle to this
could be the di¤erent ways in which b, resp. A, in LAðbÞ are a¤ected by conjugation with gt;
thus modified winning may be the better conjecture.

5.1. Strong winning. Finally, we remark that the notion of strong winning for sub-
sets of Rn has recently been defined in [13]. To define strong winning, we modify Schmidt
games as follows: replace the requirement on radii of balls as stated in (2.1) with

rðWnÞf arðBnÞ and rðBnÞf brðWn�1Þ:

Using this modification, the notions of ða; bÞ-strong winning, a-strong winning, and strong
winning for a subset S are defined in the analogous way. Strong winning implies winning

11) Since gtl�1
LAðbÞZk is just a translation along a direction in the particle space of gtl�1

LAð0ÞZk , an

�=2-ball can contain at most one lattice point; thus v 0 ¼ v, the smallest vector of xl�1.

12) Note that LD 0 ð0Þ fixes vt; moreover, its e¤ect on vp is small if vt is small.

13) It is interesting to note that, using the Marstrand slicing theorem ([7], Theorem 5.8), the main result in

[3], Theorem 1.4, the main result in [14], Theorem 1.1, and the main result in [2] give five additional, di¤erent

proofs of Kleinbock’s result. Also, this result of Kleinbock immediately implies his other result mentioned in Sec-

tion 1 (see [10]).
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and is preserved by quasisymmetric homeomorphisms [13]. It is not di‰cult to see that we
can also conclude strong winning in Theorems 1.1, 1.4, and 1.5 above.

Acknowledgments. The authors would like to thank the referee for helpful com-
ments.
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