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We consider a model of bacterial growth with variable internal stores, extended with adaptive
resource allocation and investigate the behaviour of this model under conditions of starvation,
i.e. severe nutrient shortage, treating the behaviour under the starvation regime in terms of a
differential inclusion and derive Filippov solutions. This Filippov sliding mode representation
appears to be a simple but sound qualitative description of metabolic ‘shut down’ in response
to starvation. We discuss a natural connection between biologically motivated modelling
approaches to metabolic ‘shut down’ and numerical regularisation techniques to approximate
Filippov solutions.
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1. Introduction

Systems of ordinary differential equations (ODEs) with discontinuous right-hand sides
are called piecewise smooth (PWS) systems [1]. The state space of such systems is divided
into regions, in each of which the vector field is smooth. The boundaries between these
regions are called switching surfaces or surfaces of discontinuity.

Filippov and Utkin pioneered the mathematical treatment of PWS systems [2, 3], which
have subsequently proven to be invaluable in engineering and biological applications. In
particular, PWS systems arise in control theory [3, 4] and the study of complementary
and hybrid systems [5, 6], as well as in several other applications [7–9]. In biology, genetic
regulatory networks have profitably been treated as PWS systems [10–14]. In a recent
paper on the modelling of such networks, Gouze and Sari [15] applied the Filippov the-
ory [2] to investigate the behaviour of the system on its surfaces of discontinuity. This
approach, which is also widely used in control theory, involves an extension of the dis-
continuous system into a differential inclusion [2]. The solutions of this extended system
on the surfaces of discontinuity are called sliding modes [2].

Here, we analyse a PWS system that describes bacterial growth and growth cessation
under conditions of nutrient shortage (starvation). The model we study is a variable-
internal-stores (VIS) model [16–18] accounting for changes in cellular composition under
varying conditions of nutrient availability [19]. Our VIS-plus-reallocation model [20],
accounts explicitly for the regulation of the allocation of molecular building blocks among
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various types of catalytic machinery [21, 22]. The changes in the rates at which these
building blocks are incorporated into machinery proteins correspond to changes in gene
expression and allow the organism to respond to environmental variations [23].

We investigate the behaviour of the VIS-with-reallocation model when at least one of
the internal stores in the cell is approaching the point of complete depletion. To this
end, we apply the Filippov theory and derive the resulting dynamics in terms of sliding
modes. These constitute the mathematical counterpart to the biological phenomenon of
metabolic “shut down,” the organism’s response to nutrient shortage whereby the rate
of metabolism slows down or even comes to a complete stop [19, 24, 25]. We argue that
sliding modes provide a versatile and convenient formalism to represent such transitory
behaviours in metabolic systems, where this might otherwise require a more cumbersome
dynamical system representation, e.g. of higher dimension.

The paper is organised as follows. In Section 2 we discuss the Filippov theory, establish
notation, and review the results required for our application to the problem of metabolic
“shut down.” In Section 3 we review the VIS-with-reallocation model. In Section 4 we
formulate the model as a PWS system and apply the Filippov theory [2] to find the
solution of the discontinuous system on the surface of discontinuity. Finally, we consider
regularisations in Section 5.

2. Filippov solutions of differential equations with discontinuities

In this section we briefly review Filippov’s approach to defining a solution for PWS
systems [2]. We restrict ourselves to the simple case where the state space Rn is divided
into two regions, S+ and S−, in each of which the vector field is smooth, and which are
separated by a boundary Σ, so that Rn = S+ ∪ Σ ∪ S−. We consider a point in state
space X ∈ Rn with discontinuous dynamics:

Ẋ = f(X) =

{
f+(X), if X ∈ S+

f−(X), if X ∈ S− ,
X(0) = X0 ∈ Rn , (1)

where the dot indicates differentiation with respect to time and the dynamics f(·) is
defined and smooth on each of the subspaces S+ and S−, but is not defined on the
boundary Σ. In particular, f+(·) is assumed to be at least once continuously differen-
tiable on S+ ∪ Σ but not defined on S−, whereas f−(·) is assumed to be at least once
continuously differentiable on S− ∪ Σ but not defined on S+.

Since the right-hand side of system (1) is not defined on the boundary (surface of
discontinuity) Σ, an extension of the vector field is required. To this end, the Filippov
convex method [2] extends the discontinuous system to a convex differential inclusion:

Ẋ ∈ F (X) =


f+(X), if X ∈ S+

fF (X), if X ∈ Σ
f−(X), if X ∈ S− ,

(2)

where fF (X) ∈ Rn is a minimal closed convex set containing f+(X) and f−(X):

fF (X) = (1− λ)f−(X) + λf+(X) , (3)

where λ ∈ [0, 1] is a convex “mixing” coefficient.
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The differential inclusion can be regarded as a variable structure system [3, 4] with
control input u(X) ∈ [0, 1] by defining

f(X, u) = (1− u) f−(X) + uf+(X) (4)

where u ≡ u+ = 0 if X ∈ S−, u ≡ u− = 1 if X ∈ S+, and u = λ if X ∈ Σ. On this
approach, f is a regular smooth dynamics that acquires its sliding mode characteristics
through the choice of the control u, i.e., for suitable u, we have f ≡ F .

2.1. Construction and nature of Filippov solutions

Let us formally state what we mean by a solution in the sense of Filippov [2].

Definition 2.1 (solution in the sense of Filippov): An absolutely continuous func-
tion X(t) is said to be a solution of (1) in the sense of Filippov, or Filippov solution, if
for almost all t,

Ẋ ∈ F (X(t)) ,

where F (X(t)) is as described by the differential inclusion (2).

Such a solution is guaranteed to exist by the following theorem [26].

Theorem 2.2 (existence of Filippov solution): Provided that F (X) is upper semi-
continuous and has a compact, convex image, the solution of the Filippov differential
inclusion (2) always exists.

Remark 2.3: By construction, F (·) as stated in (2) satisfies the conditions of Theo-
rem 2.2.

Specification of the Filippov solution is facilitated by introducing a scalar switching
function h : Rn → R which is at least twice continuously differentiable, and is such that
h(X) has a nonzero gradient on the surface of discontinuity Σ, with

S+ = {X ∈ Rn : h(X) > 0} , Σ = {X ∈ Rn : h(X) = 0} ,
S− = {X ∈ Rn : h(X) < 0} .

Let us consider a solution of eqn (1) starting in S+ and reaching Σ in a finite time.
At this point, the trajectory may either immediately exit the boundary and enter one
of the subspaces, or stay on the boundary. This depends on the directional deriva-
tives (Oh(X))T f+(X) and (Oh(X))T f−(X). The trajectory may either cross Σ or enter
it in a sliding mode. A crossing occurs when

(Oh(X))T f+(X)(Oh(X))T f−(X) > 0 (5)

is satisfied for X ∈ Σ. In this case the trajectory leaves the surface of discontinuity
and enters S+ if and only if (Oh(X))T f−(X) > 0 (otherwise it enters S−). The system
enters Σ in a slide when

(Oh(X))T f+(X)(Oh(X))T f−(X) < 0
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for X ∈ Σ. This sliding mode can be either attracting or repulsive. The former requires

(Oh(X))T f+(X) < 0 and (Oh(X))T f−(X) > 0 . (6)

In this case the trajectory continues on the boundary with the vector field fF (X) defined
by eqn (3) with the following specification for λ:

λ =
(Oh(X))T f−(X)

(Oh(X))T f−(X)− (Oh(X))T f+(X)
. (7)

The attracting sliding mode solution thus defined exists and is unique [2]. On the other
hand, when

(Oh(X))T f+(X) > 0 and (Oh(X))T f−(X) < 0 ,

the sliding mode is said to be repulsive and several further subcases arise which we need
not discuss for the purposes of the present paper.

2.2. First-order exit conditions

As long as the attracting sliding mode conditions (6) are met, the system will remain
confined to the switching surface Σ, either stationarily or moving along a trajectory
contained in Σ. Either these conditions will remain satisfied as t → ∞, or there is
an earliest point in time after entering Σ when the conditions are no longer satisfied.
In the latter case, the system may exit Σ, but this is by no means a necessity; the
outcome depends on a set of criteria called the exit conditions, which have been studied
in detail by Dieci and Lopez [1], who provided first-order exit conditions and discussed
higher-order exit conditions which must be invoked when the first-order conditions are
inconclusive. We restrict our discussion to the first-order exit conditions as they suffice for
our purposes. Without loss of generality, we write t = 0 for the earliest point in time, after
entry of Σ, when conditions (6) are violated, and t = 0− for a point in time immediately
before t = 0. The first-order exit conditions state that the sliding trajectory leaves the
surface of discontinuity Σ and enters the subspace S+ along the vector field f+(X) if
at t = 0 the following conditions are satisfied:

(Oh(X))T f−(X) > 0

(Oh(X))T f+(X) = 0
∂

∂X
g (X) Ẋ|t=0− > 0 ,

(8)

where g (X) = (Oh(X))T f+(X) and X ∈ Σ. Exit from Σ to S− is, by symmetry, subject
to analogous conditions.

3. Variable internal store-with-reallocation model

In this section we present the VIS-with-reallocation model, which is a minor generalisa-
tion of the version in a companion paper [20]. Figure 1 shows a schematic diagram of the
model, which is based on the standard principles of chemical conservation, expressed by

4



February 20, 2017 Dynamical Systems: An International Journal NevVandenBerg

!&#!"#

!$#

!'#

%$#

%'#

Figure 1. Schematic representation of the model described by system (14) for the case n = 2. Two types of
nutrients are assimilated by dedicated pathways (m1 and m2) that feed into core metabolism from which building

blocks are taken to machinery synthesis (m0) and growth (mG). Core metabolism also exchanges molecular

building blocks with reserves (x1 and x2).

stoichiometric equations detailed in Section 3.1. In addition, the VIS-with-reallocation
model comprises so-called regulatory laws that govern the allocation of molecular build-
ing blocks among various types of catalytic molecular machinery; these are detailed in
Section 3.2. A novel extension, accounting for nutrient starvation, is presented in Sec-
tion 3.3.

3.1. Stoichiometric equations

The model is based on the partitioning of a bacterial cell into three kinds of components:
reserve polymers, machinery, and a structural component. The components each satisfy
elemental homeostasis and thus have a fixed empirical formula which in most cases is
normalised relative to carbon (C), giving C-molar quantities for each.

The reserve components serve as nutrient repositories and are mobilised by the cell
to replenish the central pools of core metabolites. Many reserves (e.g. lipids, poly-β-
hydroxybutyrate, polysaccharides, storage proteins) are expressible in terms of C-moles,
whereas others (e.g. sulphur globules and polyphosphate inclusions) contain no carbon
and have to be expressed in terms of their dominant element: if the primary element of
the reserve of type j is Xj , the Xj-molar amount is used to quantify reserve j and this
amount is denoted as Xj for j ∈ {1, . . . , n}.

Molecular machinery is divided into n + 2 components, where n is the number of
different chemical species of essential nutrients that are accounted for in the model.
Component 0 is the molecular machinery required to synthesise de novo machinery.
Components 1 through n are machinery dedicated to the assimilation of the correspond-
ing nutrients from the environment, and to the conversion of these nutrients into core
metabolites. The last component n + 1, given the special subscript G, is the machinery
devoted to growth, which includes the synthesis of the cell envelope and the duplication
of the genome. The C-molar amount of the molecular machinery of type i is denoted
by Mi for i ∈ {0, 1, . . . , n,G}.

The structural component, whose C-molar amount will be denoted as W , comprises
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everything not covered by the first two categories. It includes the cell envelope, genetic
material, and the small molecules of metabolism, which are maintained at nominal cel-
lular concentrations via mechanisms that are not explicitly represented in this model.

Since all types of molecular machinery are synthesised by the machinery of type 0, we
have:

Ṁi = αiM0φ̃i , i ∈ {0, 1, . . . , n,G} . (9)

The stoichiometric coefficient φ̃i in eqn (9) shows the rate of production of the machinery
of type i; the allocation coefficient αi, discussed further in Section 3.2, defines the portion
of zero-machinery that is dedicated for synthesis of the corresponding type i of machinery.
The parameters αi satisfy

∑
i∈{0,1,...,n,G} αi = 1. Each reserve component is subject to

uptake and expenditure fluxes:

Ẋj =
n∑
i=1

ψ̃jiMi − σ̃jW Ẇ −M0

∑
i∈{0,1,...,n,G}

σ̃jiαiφ̃i − c̃jW ,

i ∈ {0, 1, . . . , n,G} , j ∈ {1, . . . , n} , (10)

where the first term represents an aggregated gain of reserve j from the influx through 1
to n types of assimilatory machinery, and the three remaining terms represent expendi-
tures on, respectively, structural component growth, machinery production, and mainte-
nance [27, 28]. Accordingly, the stoichiometric parameters have the following biological
interpretation: ψ̃ji is the gain of reserve j per unit machinery of type i; σ̃jW is the loss of
reserve j per unit increase of W ; σ̃ji is the loss of reserve j per unit synthesis of machinery
of type i; c̃j is the loss of reserve j that is being catabolised per unit of structural biomass
to maintain cellular integrity (even in the absence of growth and synthesis of machinery).
The growth machinery is dedicated to the construction of the structural component:

Ẇ = ψ̃WMG , (11)

where ψ̃W is the rate of production of the structural component. The tilde over the stoi-
chiometric parameters signifies that they are dimensional. Choosing suitable parameters
as natural units, we can render the equations nondimensional and we will let the corre-
sponding symbols without tilde denote dimensionless (scaled) quantities. In particular,
adopting φ̃−1

0 as a unit of time, we define scaled state variables as follows:

mi =
Miφ̃0

Wm̂φ̃i
; xj =

Xj

Wσ̃jW
, (12)

where m̂ is a scaling parameter for M0/W . Scaled stoichiometric parameters are defined
as follows:

ψji =
ψ̃jiφ̃im̂

σ̃jW φ̃2
0

; ψW =
ψ̃W φ̃Gm̂

φ̃2
0

; σji =
σ̃jiφ̃im̂

σ̃jW φ̃0

; cj =
c̃j

σ̃jW φ̃0

. (13)

This scaling gives (Wφ̃0)−1Ẇ = ψWmG for the specific growth rate which microbial
physiologists usually denoted by µ [24, 29]. For the sake of simplicity, we assume that
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for every reserve j we have the same expenditure coefficient for each type of molecu-
lar machinery i: σji = σj , which is reasonable when different types of machinery are
biochemically similar, i.e. they require similar relative amounts of reserves for synthesis.

The final scaled system of differential equations takes on the following form:{
ẋj = ψjmj − µ (1 + xj)−m0σj − cj for j ∈ {1, . . . , n}
ṁi = αim0 − µmi for i ∈ {0, 1, . . . , n,G} ,

(14)

where the ψj denote stoichiometric coefficients whose derivation is detailed in a compan-
ion paper [20].

3.2. Constitutive relationships: regulatory laws

The allocation of molecular building blocks to the various types of catalytic machinery
is expressed by the coefficients α0, α1, . . . , αn, αG which can be interpreted, in somewhat
loose terms, as the fraction of time a ribosome will typically spend on each of these
destinations. To close the equations, we require expressions for these coefficients in terms
of the other model variables. Accordingly, we treat the allocation coefficients as functions
of the internal state variables and/or environmental parameters. In keeping with the idea
of “ribosome time” we use the following expression:

αi = r̃i/ (r̃0 + r̃1 + · · ·+ r̃n + r̃G) , (15)

where r̃i is proportional to the concentration of translationally active mRNA for ma-
chinery of type i. For the sake of simplicity, we assume that r̃0 is a constant and use the
scaling ri = r̃i/r̃0 giving

αi = ri (1 + r1 + · · ·+ rn + rG)−1 . (16)

We assume that the rj are decreasing sigmoid functions of corresponding reserve densi-
ties xj , as follows:

rj = r̂j (1 + exp {ϑj (xj − ξj)})−1 (17)

where r̂j , ϑj , and ξj are positive shape parameters. This arrangement creates a nega-
tive feedback loop in which the amount of machinery synthesised is “counterskewed” to
ambient nutrient availabilities and thus the reserve densities are regulated toward the
midpoint ξj of the sigmoid curve.

Finally, rG is an increasing function of m0, which creates another feedback loop that
adjusts the growth rate to overall resource availability:

rG[m0] =


0 , if m0 ≤ 1− δ
rG,max/2 +K(m0 − 1) , if 1− δ < m0 ≤ 1 + δ

rG,max , if m0 > 1 + δ ,

(18)

where K is a positive parameter which can be estimated from the observed relationship
between the cell’s RNA content and relative growth rate [29] and δ = rG,max/(2K).

The coefficients ψj are dependent on environmental conditions and should generally be
regarded as time-varying. Specifically, ψj is assumed to be a monotone increasing function
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of the ambient concentration of the jth essential nutrient. Under constant environmental
conditions, we have ψ̇j = 0 for all j and the system has an equilibrium point which is
unique and stable (the proof provided earlier assumed cj ≡ 0 ∀j, but all its steps go
through substantially unaltered under the notational change σj → σj + cj/m0).

3.3. Starvation and metabolic “shut down”

Starvation refers in general to a restricted environmental availability of one or more
essential nutrients, or even the complete absence of one or several of them. However, in
those cases where the cell has accumulated a substantial amount of reserves, it may be
able to bridge periods of low or zero ambient nutrient concentration by mobilising these
results. How long the cell is able to do this depends on the duration of the “famine” and
also on the levels of reserves it has built up; the latter depends in turn on the regulatory
laws.

If the “famine” endures for a sufficiently long period of time, one or more reserves
will be depleted (i.e. one or more xj will approach the value 0) and the cell will have to
respond in some manner. Here we will use the general term “shut down” to indicate a
slowing down or even complete cessation of metabolic rates; in reality microbial responses
to nutrient stress are extraordinarily diverse as well as species-dependent [19] and we
proffer the present treatment as a minimal general model of such responses.

The model as stated is not applicable to the shut-down situation, inasmuch as the ex-
penditure fluxes are not donor-controlled. At a microscopic level, the rate of a biochemical
reaction depends on the chemical activities of the reactants and the products and thus
it may appear that the model as stated in Section 3.1 is fundamentally flawed. However,
at the macro-chemical level, this model structure can be justified by appealing to the
homeostasis of the structural component. In particular, this homeostasis includes a pool
of small core metabolites which are the point of departure for all anabolic pathways [24].
As long as these metabolites are maintained at nominal levels, the expenditures behave
as if demand-driven. It is precisely this assumption that breaks down when xj ↓ 0 for
one or more reserve j.

Accordingly, we specify that the dynamics as stated in Section 3.1 is restricted to the
case where all reserve densities are non-negative, and we require an additional set of
equations to describe the dynamics when xj < 0 for one or more j. From a biological
perspective, negative reserve densities cannot exist, and they are to be interpreted as
violations of the compositional homeostasis of the structural component. More specifi-
cally, negative reserve densities express excursions of one or more core metabolites below
their nominal concentrations. We shall assume that the cell responds to this situation
by shrinking at a relative rate −ν (where ν is a positive constant) to provide the mate-
rials to restore structural homeostasis. At the same time, we assume that anabolic and
maintenance expenditures are stopped. These assumptions lead to the following ODEs
(in scaled form): {

ẋj = ψjmj + ν(1 + xj) for j ∈ {1, . . . , n}
ṁi = νmi for i ∈ {0, 1, . . . , n,G}

. (19)

This extension is valid only in the near vicinity of the boundary of the region where the
original model is valid. The pools of core metabolites, while crucial to the cell’s physiology,
are quantitatively minor. Therefore, only minute negative excursions of xj can plausibly
be interpreted as depletions of these pools. Moreover, the cell’s physical scope for de-
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growth (structural shrinkage) is likely to be severely limited, given the chemical structure
of the outer envelope [24, 30]. However, in anticipation of the Filippov solutions, we only
require valid dynamics in close vicinity to the boundary which is the locus of

∏n
j=1 xj = 0.

4. Sliding modes of the extended VIS-with-reallocation model

The previous section presented a PWS system of the following general form

Ẋ = f(X) , X = (xj ; mi)T for i ∈ {0, 1, . . . , n,G} , j ∈ {1, . . . , n} , (20)

where superscript T denotes transposition, the dynamics f(·) is specified by two sets of
ODEs, eqns (14) and (19), each with its own domain of validity. In this section we inves-
tigate the behaviour of this system under conditions of starvation that are sufficiently
severe to drive one or more reserve densities down to zero, and show that metabolic “shut
down” corresponds to a sliding mode of the PWS system on the boundary defined by

Σ =
{

X :
∏n
j=1 xj = 0

}
. (21)

4.1. Filippov solution for single reserve

The state space R4 is divided into two regions, S+ and S−, according to the sign of x1,
which are separated by Σ, the locus of x1 = 0. For X ∈ S+ we have f(X) = f+(X)
where f+ is defined on S+. Letting ξ+

1 denote the dynamics of the reserve density x1 and
let η+

i denote the dynamics of the molecular machineries mi for i ∈ {0, 1, G}, we have
the following dynamics for X ∈ S+:

Ẋ = f+(X) = (ξ+
1 ; η+

i )T , X = (x1 ; mi)T for i ∈ {0, 1, G} ,

where ξ+
1 and η+

i are defined in accordance with system (14), as follows:

ξ+
1 = ψ1m1 − ψWmG(1 + x1)− σ1m0 − c1 , η+

i = αim0 − ψWmGmi (22)

for i ∈ {0, 1, G}. Similarly, the dynamics for X ∈ S− is as follows:

Ẋ = f−(X) = (ξ−1 ; η−i )T , X = (x1 ; mi)T for i ∈ {0, 1, G} ,

where f− is defined on S−, with the following definitions for ξ−1 and η−i :

ξ−1 = ψ1m1 + ν(1 + x1) , η−i = νmi for i ∈ {0, 1, G} , (23)

in accordance with system (19). Combining the vector fields f+(X) and f−(X), we arrive
at the following PWS system:

Ẋ =

{
f+(X) = (ξ+

1 ; η+
i )T , if X ∈ S+

f−(X) = (ξ−1 ; η−i )T , if X ∈ S− .
(24)

Filippov’s approach requires that we characterise the surface of discontinuity Σ to-
gether with the subspaces S+ and S− by means of a suitably chosen scalar smooth
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function h(X), X ∈ R4, such that

S+ = {X : h(X) > 0} , S− = {X : h(X) < 0} , Σ = {X : h(X) = 0} .

These conditions are satisfied if we set h(X) = x1. The Filippov convex method leads us
to consider a differential inclusion as stated in eqn (2) with the vector field fF (X) on the
boundary Σ defined by eqn (3) with convex “mixing” coefficient λ as given by eqn (7).
In the case of system (24) we find

(Oh(X))T f−(X) = ξ−1 ; (Oh(X))T f+(X) = ξ+
1 ,

and thus, by eqn (7),

λ = ξ−1 /
(
ξ−1 − ξ

+
1

)
,

which allows us to calculate the boundary dynamics fF (·). In particular, we have

fF (x1) = (1− λ)ξ−1 + λξ+
1 =

−ξ+
1

ξ−1 − ξ
+
1

ξ−1 +
ξ−1

ξ−1 − ξ
+
1

ξ+
1 = 0 ,

which shows that a sliding mode with x1(t) ≡ 0 is feasible. We recall from Section 2
that there are two principal ways for the trajectory to continue. The first is a crossing,
subject to condition (5) which here takes on the form

(ψ1m1 − ψWmG(1 + x1)− σ1m0 − c1)(ψ1m1 + ν(1 + x1)) > 0 .

Since X ∈ Σ we have x1 = 0 , and thus this crossing condition becomes:

(ψ1m1 − ψWmG − σ1m0 − c1)(ψ1m1 + ν) > 0 .

Since ν is a positive constant and ψ1 and m1 are nonnegative, the expression in the second
pair of brackets is always positive, and the crossing condition can be further simplified
to

ψ1m1 > ψWmG + σ1m0 + c1 . (25)

Since ψ1 is a monotone increasing function of the ambient concentration of the essential
nutrient, this condition will be satisfied when the environmental level of this nutrient is
sufficiently high. By contrast, if the nutrient concentration lies below a critical threshold,
the crossing condition (25) is not met and the system is prevented from re-entering S+. To
establish that a sliding mode ensues, we turn to the attracting sliding mode conditions (6).
These take on the following form for X ∈ Σ:{

ψ1m1 + ν > 0
ψ1m1 < ψWmG + σ1m0 + c1 .

(26)

The first inequality is satisfied as ψ1 and m1 are nonnegative and ν is a positive constant.
The second inequality is just the opposite of the crossing condition. We may thus conclude
that there is a critical value of the nutrient concentration, above which the crossing
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condition is met, and below which the attracting sliding condition is met. To this critical
value of the nutrient concentration there corresponds a critical value of ψ1 since ψ1 is a
monotone increasing function of the nutrient concentration. We shall write this critical
value as ψ?1 = (ψWmG + σ1m0 + c1) /m1.

We anticipate that the system will exit the sliding mode when the ambient conditions
improve and ψ1 becomes equal to, or exceeds, the critical value ψ?1. To verify this, we
employ the first-order exit conditions (Section 2.2). The first condition from system (8)
becomes

(Oh(X))T f−(X) = ψ1m1 + ν > 0 ,

which is satisfied, and the second condition from (8) takes on the form

(Oh(X))T f+(X) = ψ1m1 − ψWmG − σ1m0 − c1 = 0

which is satisfied when ψ1 = ψ?1. The third condition requires a bit more care. According
to Dieci and Lopez [1], if the first two conditions from (8) are satisfied, we know that

∂

∂X
g (X) Ẋ|t=0− ≥ 0

(where t = 0− is the last point in time where attracting sliding mode conditions are
satisfied) and if equality can be ruled out, the third exit condition in (8) will be satisfied.
For this purpose, it suffices to establish strict inequality for at least one component which
we choose to be x1. We have

∂

∂x1
g (X) ẋ1|t=0− = −ψWmG(ψ1m1 − ψWmG(1 + x1)− σ1m0 − c1)|t=0− .

At t = 0− the trajectory is still on the surface of discontinuity and x1(0−) = 0. Hence

∂

∂x1
g (X) ẋ1|t=0− = ψWmG(−ψ1m1 + ψWmG + σ1m0 + c1) .

The factor ψWmG is positive because both ψW and mG are positive, as is the expression
in brackets since ψ1 < ψ?1 at t = 0−, which follows as t = 0 is by definition the first
instant in time when ψ1 ≥ ψ?1 becomes true. We conclude that

∂

∂x1
g (X) ẋ1|t=0− > 0

and thereby all first-order exit conditions are satisfied. We conclude that the dynamics
“unfreezes” as soon as ambient conditions become sufficiently favourable and the system
will re-enter S+. Whenever X attains the boundary Σ coming from S+, it will follow
sliding mode dynamics as long as ψ1 < ψ?1 and exit Σ to S+ as soon as ψ1 ≥ ψ?1. If
ψ1 is admitted as a state variable, this scenario can be classified as a grazing-sliding
bifurcation of codimension 1 [31, 32].

The behaviour of the PWS system to a piece-wise constant forcing function ψ1(t),
representing an alternation of “feast” and “famine” conditions, is shown in Fig. 2. During
the “famines” the reserve runs down and the system enters a sliding mode with x1 ≡ 0
from which it exits as soon as conditions improve.
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Figure 2. Numerical solutions of the PWS system (24) for n = 1. The imposed environmental conditions ψ1(t)

are shown in the top panel and the remaining panels show the resulting solutions of the PWS system, as indicated
by the labels. The function rG is as in eqn (18) with K = 104 and rG,max = 100; r1 = 10/(1+exp(x1−1)); ψW =

0.42; σ1 = 0.61; c1 = 0.01; and ν = 0.01.

The numerical solutions presented in Fig. 2 were obtained using Mathematica’s built-in
tools to detect points in time at which discontinuity occurs, verify that the numerical
value of the state at this time point lies within a pre-defined tolerance threshold, and
perform either the switch to the adjacent vector field or enter a sliding manifold. This
gives a reasonably accurate approximation to the system’s trajectory right up to this
point and employs these values as initial data for the next time segment. This is known
as an event-driven method in which the discontinuous system is solved by treating it as
a sequence of continuous systems [33].

4.2. Filippov solution for multiple reserves

Generalisation to systems with an arbitrary number of essential nutrients and corre-
sponding reserves is straightfoward. The PWS system has the same form as (24), but the
state variable X is extended to accommodate n reserves rather than just the one. This
means that the regions S+ and S− are part of a space of higher dimension and we have
to redefine the function h(X) accordingly. Recall that h equals zero if and only if X ∈ Σ
(eqn (21)). Let s(·) be defined as follows:

s(X) =

{
+1, if xj > 0 for all j
−1, otherwise .

12
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Then

Σ = {X ∈ R2n+2 : h(X) = 0}

with

h(X) = s(X) min(|x1|, . . . , |xn|) .

Without serious loss of generality, we may consider only the case where the trajectory
attains the boundary at a point where xj = 0 for exactly one value of j, all other cases
being non-generic (i.e. corresponding to a subset of initial conditions of measure zero).
In the vicinity of such a generic crossing, all xj but one (xk, say) remain positive and xk
attains the value zero. Thus, in the neighbourhood of a generic crossing, we have

h(X) = s(X) min(|x1|, . . . , |xn|) ≡ min(x1, . . . , xn) ≡ xk .

The regions S+ and S− correspond to the sign of the function h(X), as in Section 4.1:

S+ = {X ∈ R2n+2 : h(X) > 0} , S− = {X ∈ R2n+2 : h(X) < 0} .

The dynamic flows in the two domains are

f+(X) = (ξ+
j ; η+

i )T , f−(X) = (ξ−j ; η−i )T

for j ∈ {1, . . . , n} , i ∈ {0, 1, . . . , n,G} , where

ξ+
j = ψjmj − ψWmG(1 + xj)− σjm0 − cj , η+

i = αim0 − ψWmGmi

for j ∈ {1, . . . , n} and i ∈ {0, 1, . . . , n,G}. The vector field in the region S− is defined in
analogy to eqn (23):

ξ−j = ψjmj + ν(1 + xj) , η−i = νmi ,

where j ∈ {1, . . . , n} , i ∈ {0, 1, . . . , n,G} and ν is a positive constant. Calculations
entirely analogous to those in Section 4.1 now yield λ = ξ−k /(ξ

−
k − ξ

+
k ). As before we find

that the sliding mode is feasible, by virtue of stationarity on Σ:

fF (xk) = (1− λ)ξ−k + λξ+
k =

−ξ+
k

ξ−k − ξ
+
k

ξ−k +
ξ−k

ξ−k − ξ
+
k

ξ+
k = 0 , (27)

where k is the index of the “limiting” reserve (i.e. xk = 0). The arguments presented
for n = 1 in Section 4.1 go through virtually unchanged. The overall behaviour of the
solution of system (24) can be described as follows: it starts at an initial position X0

in the subspace S+ and continues its motion along the vector field f+(X) until the
trajectory reaches the surface of discontinuity Σ at some point in time, when one of the
reserve is depleted (xk = 0), whereas the other reserves can still furnish building blocks
(x` > 0 , ` 6= k). If the level of the corresponding nutrient k in the environment at this
moment in time is such that the corresponding coefficient ψk is greater than its critical
value ψ?k = (ψWmG + σkm0 + ck) /mk, the solution will exit the boundary and return

13
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to S+. Otherwise, the trajectory enters the sliding mode on the boundary until the level
of the nutrient k increases sufficiently to ensure that the inequality ψk ≥ ψ?k holds true.

5. Regularisation

The event-driven method used earlier to obtain numerical solution can be contrasted
to the regularisation approach which attempts to approximate the trajectory of the
PWS system with that of a system whose vector field is smooth over the entire domain
of interest, such that the behaviour of the approximating system can be expected to
converge to that of the PWS system as ε→ 0+ for some suitable parameter ε > 0.

In dynamic regularisation [34], an auxiliary state Z ∈ Rn is introduced to approximate
solutions to the problem as stated, i.e.

Ẋ = f(X) =

{
f+(X), if h(X) > 0
f−(X), if h(X) < 0 ,

X(0) = X0 ∈ Rn , (28)

by the solutions of the following system of delay-differential equations:

Ẋε = Z ; Ż = ε−1∇εf(Xε) ; Xε(0) = X0 ; Z(t) = ζ(t) , t ∈ [−ε, 0] , (29)

where ∇ε is the backward difference operator with lag ε; provided that the continuous
function ζ(·) satisfying certain regularity properties, the approximation Xε(t) converges
to the Filippov solution for X(t) as ε→ 0+ [34].

In flow field regularisation [35–37], the discontinuous vector field f(·) is replaced by a
smooth approximation which agrees with the original field except within distance O(ε)
of the surface of discontinuity:

Ẋε = fε(Xε) = (1− θε(h(Xε)))f−(Xε) + θε(h(Xε))f+(Xε) , (30)

where θε(·) is a regularisation function, defined as follows:

θε(h) =
1
ε

∫ h

−∞
ρ
(s
ε

)
ds , (31)

where ρ(·) is a distribution function with support [−1, 1]. It follows that θε(h) is non-
decreasing on the interval (−ε, ε) and agrees with the Heaviside function when |h| ≥ ε:

θε(h) = 0 if h ≤ −ε ; θε(h) = 1 if h ≥ ε . (32)

The approximation Xε(t) obtained by means of this regularisation converges uniformly
to the Filippov solution of system (28) for ε → 0 [37]. The concatenation of “height”
function h and regularisation θε is formally identical to the control input u in eqn (4).
Thus, the flow field regularisation approach can be viewed as a continuous approximation
to continuous control [3, 4].
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Figure 3. Numerical solutions of system (24) with its space regularisation with piecewise function θ defined by

eqn (35) with parameter ε = 0.1 for n = 1. The function rG is as in eqn (18) with K = 104 and rG,max =

100; r1 = 10/(1 + exp(x1 − 1)); ψW = 0.42; σ1 = 0.61; c1 = 0.1; and ν = 1. The top panel shows the imposed
environmental regime, whereas the bottom panel shows the reserve density for ε = 10 (dotted line); ε = 1 (dashed

line); and ε = 0.01 (solid line); the latter is indistinguishable from Mathematica’s built-in event-driven method.

5.1. Biological interpretation of the flow field regularisation

The regularisation, eqn (30), permits a natural interpretation in terms of the biological
system at hand. In particular, let us consider the approximate dynamics of the reserve
densities:

ẋj,ε = ψjmj,ε + (1− θε)ν(1 + xj,ε)− θε (ψWmG,ε(1 + xj,ε) + σjm0,ε + cj) (33)

and of the machinery densities:

ṁi,ε = (1− θε)νmi,ε + θε (αim0,ε − ψWmG,εmi,ε) . (34)

In order to relate these equations to a physiologically plausible interpretation, we recall
that the switching function h, the argument of θε, is just the density of the “limiting”
reserve, and we consider these equations assuming that (i) we have ν � 1 (in keeping
with our earlier discussion); and (ii) almost all of the distribution ρ’s probability mass
is centered on the interval [0, 1]. Under these assumptions, we may ignore the terms
with (1− θε)ν and think of θε as a dimensionless multiplicatory modification of the rates
of metabolic expenditure. That latter is made up of fluxes through the various anabolic
pathways, together with the endogeneous metabolism that generates the required Gibbs
enthalpic driving force. This “rate multiplier” θε has a physiologically sensible behaviour:
it remains at the value 1 as long as all reserve densities are bounded away from ε and no
metabolic “shut down” is required, and, furthermore, θε traverses the interval (0, 1] from
above as the limiting reserve density decreases through the value ε and lower. Intuitively,
expenditures are “pinched” as the limiting reserve density approaches complete depletion.
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5.2. Convergence and robustness of the flow field regularisation

Let us apply the flow field regularisation to system (24) for the case n = 1. Assuming
that

ρ(t) =

{
1/2, if t ∈ [−1, 1]
0, otherwise ,

and recalling that h(X) = x1, we define the regularisation function θε for system (24) as
the following piecewise function:

θ(x1) =


0, if x1 ≤ −ε
(x1/ε+ 1)/2, if x1 ∈ (−ε, ε)
1, if x1 ≥ ε .

(35)

Numerical solutions of the regularised system (24) by means of the piecewise regularisa-
tion function θ defined by eqn (35) are shown in Fig. 3. For sufficiently small values of ε,
the regularised numerical solution virtually coincides with the event-driven numerical
solution, which, in tandem with the convergence result due to Schiller and Arnold [37],
supports our confidence in both. Moreover, even if Mathematica’s built-in approximation
to Filippov sliding mode solutions is admirably sophisticated, failure to exit the sliding
mode occurs intermittently when ν is set to moderately small values (the intermittency
is unpredictable for all intents and purposes and presumably due to round-off error).
The regularisation does not suffer from this problem and thus appears to be a superior
numerical method for the system at hand.

6. Discussion

We have analysed a variable-internal-stores (VIS) model of microbial metabolism and
growth that accounts for changes in cellular composition in response to fluctuations in
nutrient availability in the environment. The model comprises stoichiometric balance
equations together with constitutive equations that describe the adaptive allocation of
molecular building blocks among various types of catalytic machinery; it has a unique,
stable equilibrium point. Although the model may appear somewhat more involved than
the classical models [25, 27, 28, 38–40], it reduces to these models under suitable assump-
tions [20] and is the simplest mathematical framework in which these classical models
can be made consistent with stoichiometric conservation principles and the principles of
building block allocation (which in the biological system is effected by the regulatory
interactions between transcription and translation); moreover, the formalism presented
here is consistent with a mechanism of growth regulation featured in the Scott-Hwa-
model [41–43].

We have considered the PWS system as consisting of the dynamics of the original model
that deals with intensive variables only, i.e., density variables that do not scale with the
overall size of the system (cell size, or, more generally, the size of a colony of cells described
by the present model). However, there is one additional extensive variable, W . In the
region S+, we have the identities µ = (Wφ̃0)−1Ẇ = ψWmG, whereas (Wφ̃0)−1Ẇ = −ν
in S−. The intensive dynamics allowed us to avoid the question of what happens to the
growth rate Ẇ on Σ, which we may not answer by noting that it is subject to the convex
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combination prescribed by Filippov:

Ẇ

Wφ̃0

=
−ξ+

k

ξ−k − ξ
+
k

(−ν) +
ξ−k

ξ−k − ξ
+
k

ψWmG (36)

(cf. eqn (27)) which evaluates to a much reduced relative rate of growth, vanishing in
the double limit ν → 0+, ψk → 0+ (where k is the index of the depleted reserve).

We studied the behaviour of the model under conditions of starvation, and considered,
in particular, what happens when at least one of the reserves in the cell approaches a
critical level of depletion, which forces the organism to switch to a “survival” mode in
which metabolic requirements are minimised. In the model, all reserve densities have
to be bounded away from zero for metabolism and growth to proceed at normal rates.
As long as this condition is satisfied, it is legitimate to treat the metabolic fluxes as
demand-driven, at least on a macrochemical level. The microchemical justification of this
assumption essentially resides in the homeostatic maintenance of an intracellular pool of
small core metabolites, which are continually being replenished from the reserves, and
which feed the anabolic pathways. It is precisely this assumption that breaks down under
starvation conditions. Such conditions arise when there is an insufficient supply from the
environment to keep the reserves bounded away from zero while they are being depleted
at normal rates. In such cases, a supply-side modulation of the rates must be included
explicitly in the equations.

Although we have argued here that sliding modes are the natural expression for such a
supply-side modification of the model, it is instructive to imagine a theoretical biologist
who adopts an approach that perhaps comes more naturally to mathematical modellers,
which is to modify the original model outright, along the following lines (we take n = 1
for the sake of simplicity):

ẋ1 = ψ1m1 − g(x1) (ψWmG(1 + x1) + σ1m0 + c1)
ṁi = g(x1) (αim0 − ψWmGmi) ,

where g(·) is a function with the properties g(0) = 0, g′(x) ≥ 0, and g(x) ≤ 1 ∀x; for
example

g(x1) = x1/ (κ + x1) (37)

with positive parameter κ. The theoretical biologist views g(·) as a “throttle,” reducing
metabolic expenditures when the reserve density runs low (cf. Section 5.1). Any such
model can be cast as a regularisation by choosing a switching function h(·) and distri-
bution ρ(·) so that the resulting function θε(·) provides a mock-up for the modeller’s
specification of g(·). Schiller and Arnold’s theorem [37] guarantees that there is a corre-
sponding Filippov dynamics that arises as a limiting case, (for eqn (37) this would be the
limit κ → 0). This strongly suggests that sliding mode Filippov solutions are a natural,
generic mathematical framework in which to express metabolic “shut down.”

We suggest that mathematical models of metabolism and biochemical pathways will
generically permit such a correspondence between smooth multiplier-type control mod-
els and regularisations of PWS systems. This could be exploited to furnish a systematic
procedure to derive self-consistent PWS representations of biological processes, which is
a non-trivial challenge in general. From the PWS point of view, starting with more com-
plicated smooth dynamics may appear to be an unnecessary detour, but this approach
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is more intuitive and avoids the pitfalls associated with writing down PWS equations
directly.

If the flow field regularisation has a counterpart in smooth models with natural biolog-
ical interpretations, one may wonder if the same can be said for dynamic regularisation.
At first blush this might seem a less promising avenue, not only because the required
increase in state space dimension, but also because of the lack of an obvious biological
counterpart for the backward difference operator ∇ε that appears in eqn (29). The latter
objection is somewhat alleviated by appealing to the “linear chain trick” which can be
regarded as a soft version of the hard nonlinear delay, and which can be justified as a
model of a multi-component signalling cascade [44].

A hybrid of the field and dynamic regularisations was proposed previously to model
metabolic “shut down,” involving an auxiliary variable, as in the dynamic regularisation,
but letting it act as a modulatory multiplier, as in flow field regularisation [25]. By way
of definite example, let us replace θε by a new state variable variable z(t) that obeys the
following ODE:

ż = ςz
(
(1 + ε/h)−1 − z

)
, (38)

where ς > 0 sets the time scale of z’s dynamics and ε > 0 is, as before, a small pa-
rameter that governs the width of the transition layer near Σ. This approach can be
extended considerably by having a dedicated dynamic modulatory multiplier for every
individual metabolic flux or process, rather than a single one that controls the overall
rate of metabolic “shut down.” An extension of this form has been proposed as a generic
approach to organismal homeostasis [45].
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