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Abstract  21 

Microbial cooperation drives ecological and epidemiological processes and is affected by the ecology 22 

and demography of populations. Population density influences the selection for cooperation, with 23 

spatial structure and the type of social dilemma, namely public-goods production or self-restraint, 24 

shaping the outcome. While existing theories predict that in spatially structured environments 25 

increasing population density can select either for or against cooperation, experimental studies with 26 

both public-goods production and self-restraint systems have only ever shown that increasing 27 

population density favours cheats. We suggest that the disparity between theory and empirical studies 28 

results from experimental procedures not capturing environmental conditions predicted by existing 29 

theories to influence the outcome. Our study resolves this issue and provides the first experimental 30 

evidence that high population density can favour cooperation in spatially structured environments for 31 

both self-restraint and public-goods production systems. Moreover, using a multi-trait mathematical 32 

model supported by laboratory experiments we extend this result to systems where the self-restraint 33 

and public-goods social dilemmas interact. We thus provide a systematic understanding of how the 34 

strength of interaction between the two social dilemmas and the degree of spatial structure within an 35 

environment affect selection for cooperation. These findings help to close the current gap between 36 

theory and experiments. 37 

Introduction 38 

Microorganisms engage in an impressive array of cooperative behaviours (Crespi 2001) that drive 39 

ecosystem and epidemiological processes including nutrient recycling (Kaiser et al 2015), antibiotic 40 

resistance (Lee et al 2010) and disease virulence (Crespi et al 2014, Griffin et al 2004, Lindsay et al 41 

2016). These social interactions are shaped by the ecology and demography of populations with 42 

population density known to affect selection for cooperation (Chen et al 2014, Datta et al 2013, 43 

Dobay et al 2014, Greig and Travisano 2004, MacLean and Gudelj 2006, Ross-Gillespie et al 2009).  44 

Whether high population density favours cooperation can depend on the spatial structure of the 45 

environment (Dobay et al 2014, MacLean and Gudelj 2006) and the type of social dilemma faced 46 
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(Dobay et al 2014, Greig and Travisano 2004, MacLean and Gudelj 2006, Ross-Gillespie et al 2009). 47 

In particular, two types of social dilemmas have been considered: public-good production and self-48 

restraint. Public-goods are extracellular factors used to perform a range of functions including nutrient 49 

acquisition, biofilm formation and quorum sensing (West et al 2007). They are costly to produce and 50 

benefit individuals in the locality. Therefore, public-goods are prone to exploitation by cheats who do 51 

not contribute to their production, but can still reap the rewards. Self-restraint cooperation arises from 52 

a metabolic trade-off between growth rate and efficiency, whereby fast growth is consequently less 53 

efficient than slow growth (Pfeiffer et al 2001). Efficient use of common resources conforms to the 54 

classical definition of a cooperative trait; it is beneficial to the group because more biomass is 55 

produced per unit of resource, but costly to individuals because they reproduce at a slower rate. This 56 

is prone to exploitation by cheats that use resources quickly but inefficiently for their own rapid 57 

multiplication, at the expense of the total population yield (MacLean and Gudelj 2006).  58 

The relationship between population density and cooperation is not yet fully understood with theory 59 

and empirical studies in disagreement. Theory suggests that high population density could favour 60 

either cooperators or cheats. For self-restraint cooperation it is argued that selection depends on the 61 

biological details of the system because density alters numerous factors including the resource 62 

availability per individual, the variation in resource concentrations as they are consumed, and how 63 

beneficial cooperation is (Ross-Gillespie et al 2009). For public-goods systems, it is postulated that 64 

high population density could favour cheats because in dense populations cheats are `physically 65 

closer’ to cooperators and can thus exploit them more effectively (Ross-Gillespie et al 2009). 66 

However it is also suggested that high cell density could favour cooperators if cells diffuse slower 67 

than the public-goods they produce (Dobay et al 2014), or the environment is sufficiently spatially 68 

structured (Lion and Gandon 2009, Lion 2010). 69 

Until now empirical studies have only been able to demonstrate that in structured environments high 70 

population density favours cheats both in self-restraint (MacLean and Gudelj 2006) and public-good 71 

(Celiker and Gore 2012, Chen et al 2014, Datta et al 2013, Greig and Travisano 2004, Kümmerli et al 72 

2009, Ross-Gillespie et al 2009) cooperative systems. Moreover, contrary to the predictions in (Dobay 73 
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et al 2014) experiments with motile (Ross-Gillespie et al 2009) and non-motile (Greig and Travisano 74 

2004) cell populations producing public-goods both report the same outcome that high density favours 75 

cheats, even when cells diffuse slower than the public-goods.  76 

Could the discrepancies between theoretical and empirical studies result from experimental 77 

procedures not capturing the extent of environmental variation that is predicted to affect the outcome 78 

(Dobay et al 2014, Ross-Gillespie et al 2009)? To address this, we conducted a series of microbial 79 

laboratory experiments using a model cooperative system with Saccharomyces cerevisiae which 80 

exhibits both public-good (Gore et al 2009) and self-restraint cooperation (MacLean and Gudelj 81 

2006). We manipulated factors suggested by theoretical models to underpin the relationship between 82 

population density and cooperation, these are: the relative cost and benefits of cooperation (Dobay et 83 

al 2014, Ross-Gillespie et al 2009), the physical proximity of cells to each other (Ross-Gillespie et al 84 

2009) and the diffusion of public-goods and cells (Dobay et al 2014). For the first time we provided 85 

experimental evidence supporting theoretical predictions that high population densities could favour 86 

cooperation in spatially structured environments in both self-restraint (Ross-Gillespie et al 2009) and 87 

public-goods cooperative systems (Dobay et al 2014).  88 

As cooperative traits frequently interact (Brown and Taylor 2009, Harrison and Buckling 2009, 89 

Lindsay et al 2016, MacLean et al 2010, Ross-Gillespie et al 2015) we next asked whether high 90 

population density can favour cooperation in systems where the self-restraint and public-goods social 91 

dilemmas interact. To this end we developed a multi-trait mathematical model, manipulated the 92 

strength of interactions between the two social traits and showed that high population density can still 93 

favour cooperation. Moreover, our model predicted that decreasing the influence of self-restraint over 94 

public-goods production will increase the range of environmental structures where high population 95 

density favours cooperation. We provided a mechanistic explanation for this outcome, suggesting that 96 

the cost of inefficient metabolism arising in the presence of the self-restraint dilemma outweighs the 97 

benefit of public-good cooperation in environments with low spatial structure where public-goods are 98 

more accessible to cheats. However, reducing the strength of the self-restraint dilemma will reverse 99 

the cost/benefit relationship in favour of cooperation. This was verified experimentally.  100 
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Our work provides the first empirical evidence that high population density can favour cooperation in 101 

spatially structured environments in both single and multi-trait cooperative systems and we provide an 102 

explanation as to why this result has so far been elusive. 103 

Materials and methods 104 

The experimental system 105 

To secure nutrients microbes can cooperatively secrete enzymes, termed public goods, that break 106 

down complex sugars into simple sugars that are easier to digest (Schweizer and Dickinson 2004, 107 

Talbot 2010). Public-good cooperation in S.cerevisiae arises from the production of invertase to 108 

externally hydrolyse sucrose into glucose and fructose, the preferential carbon sources (Schweizer and 109 

Dickinson 2004).  110 

Once simple sugars are available in the environment, microbes are constrained by a metabolic trade-111 

off between growth rate and efficiency (Pfeiffer et al 2001), which is at the core of the self-restraint 112 

social dilemma. In S.cerevisiae, the rate at which resources are taken up alters whether they are 113 

catabolised by rapid, low yielding fermentation or slower, more efficient respiration (Otterstedt et al 114 

2004, Postma et al 1989).  115 

There is an inevitable interaction between public-good and self-restraint cooperation during invertase-116 

mediated metabolism of sucrose by S. cerevisiae (MacLean et al 2010). This occurs because when 117 

invertase secreting cells externally hydrolyse sucrose, they form local spikes in monosaccharide 118 

concentrations. Cells exposed to high resources concentrations metabolise them relatively less 119 

efficiently than when exposed to lower concentrations (Postma et al 1989, Weusthuis et al 1994), such 120 

as in the regions of cells that do not produce invertase. This forms the basis of self-restraint 121 

cooperation. Therefore, varying resource supply can control the strength of interaction between self-122 

restraint and public-goods dilemmas. When resources are scarce, the rate-efficiency trade-off is weak 123 

(Weusthuis et al 1994, MacLean et al 2010) and public-good production is expected to be the 124 
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dominant constraint on growth. However, when resources are abundant, inefficient metabolism from 125 

high uptake rates will constrain growth (MacLean et al 2010). 126 

Mathematical model 127 

A mathematical model was developed to examine the relationship between population density and the 128 

interaction between self-restraint and public goods cooperation. The model was based on the 129 

established mathematical framework developed previously (MacLean et al 2010) with spatial 130 

interactions represented by a system of reaction-diffusion equations (For more details see 131 

Supplementary Text).  132 

Experimentally manipulating spatial structure of the environment  133 

We established the lowest level of structure in shaken liquid cultures (Figure 1a). Note that while for 134 

self-restraint systems shaken liquid cultures represent spatially unstructured environments (MacLean 135 

and Gudelj 2006), for public-goods systems spatial structure is not completely absent. This is because 136 

invertase producers get preferential access to the public-good (Gore et al 2009) and form small 137 

clumps when dividing (Koschwanez et al 2011). An intermediate level of structure was established 138 

with initially mixed subpopulations on agar plates, and a high level was established with segregated 139 

subpopulations on agar plates (Figure 1a).  140 

Strains 141 

Strains of S. cerevisiae were those used previously to test public-good cooperation (Celiker and Gore 142 

2012, Gore et al 2009) (from J. Gore, MIT). The invertase producing strain (cooperator, BY4741, 143 

SUC2) constitutively expresses yEYFP by the TEF1 promoter. The non-invertase producing strain 144 

(JG210C, cheat, Δsuc2::kanMX4) expresses tdTomato by the PGK1 promoter. 145 

Strains to test self-restraint cooperation were those used previously (MacLean and Gudelj 2006) (from 146 

P. Dahl, University of Gothenburg). CEN.PK2-1C has wild-type hexose transport capabilities and is a 147 
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self-restraint cheat. Whereas TM6*, a mutant that has a single synthetic hexose transporter, is a self-148 

restraint cooperator. The strains are distinguishable by fluorescence with CEN.PK2-1C constitutively 149 

expressing GFP and TM6* expressing mCherry, both by the TEF1 promoter, inserted into the URA3 150 

locus. TM6* was also used as a public-good cooperator with reduced hexose uptake ability (Figure 151 

3d), but with a GFP marker. 152 

To test the influence of interacting cooperative traits, in addition to competing BY4741 and JG210C 153 

(Figure 4b-c), a non-invertase producing mutant of TM6* (Δsuc2::kanMX4) (Supplementary Figure 154 

S2) was generated in the mCherry-expressing background to compete with TM6* (GFP) (Figure 4d-155 

f). 156 

Details of strains are summarised in Table 1. Strains used in each competition are also indicated on 157 

Figures.  158 

Competition experiments 159 

To experimentally test the influence of population density on the selection of cooperation in different 160 

environmental conditions, competition experiments were conducted in each environment with three 161 

different initial population densities. The nature of the relationship between cooperator fitness and 162 

density was assessed for each environment. The initial frequency of cooperators (f, given in figure 163 

legends) was equivalent for different spatial structures and resources concentrations tested, except 164 

when specifically testing the effect of changes in frequency on the relationship between density and 165 

cooperation (Supplementary Figure S5). 166 

Competition experiments were conducted in defined media (DM: 6.9 g/l Yeast Nitrogen Base w/o 167 

amino acids, 790 mg/l complete supplement mixture (Formedium, UK) with varying specified 168 

concentrations of  glucose (for self-restraint cooperation) or sucrose (for public-good and interacting 169 

cooperative traits) and 16 g/l agar where applicable.  170 
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Strains were initially grown in 5 ml YPD (10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose) shaken 171 

overnight at 30˚C. Cells were washed twice and resuspended in 5 ml DM lacking sugar. Spatially 172 

structured competitions (intermediate and high) were performed on 9 cm diameter Petri dishes 173 

containing 25 ml DM. Cells were inoculated onto agar plates in patches of 20 µl in a 4x5 array (Figure 174 

1a) as described previously (MacLean et al 2010). See Supplementary Figure S1 for details. Plates 175 

were sealed with parafilm to minimise evaporation and incubated at 30˚C for 7 d to allow resources to 176 

diffuse and be consumed. Cells were collected by flooding the plates with 5 ml PBS and colonies 177 

were gently scraped from the agar into suspension and appropriately diluted for flow cytometry to 178 

distinguish strain densities as detailed below. Each plate was considered a single replicate.  179 

Low structure competitions were performed in DM, omitting agar, within a 48-well suspension 180 

culture microplate (Bio-One Greiner) (640 µl per well). Cultures were incubated at 30 ˚C in a 181 

FLUOstar Omega microplate reader (BMG Labtech) with shaking at 700 r.p.m. for periods to allow 182 

population growth to reach approximately stationary phase based on OD620nm readings. This was for 183 

48 h for all competitions, except for those with low density and resources (96 h) and using TM6* (72 184 

h) where growth rate was low owing to the Allee effect (Dai et al 2012) and metabolic constraints 185 

(Otterstedt et al 2004).  186 

Rate-efficiency trade-off tests were performed the same way for 72 h, with an initial density of 2 x 105 187 

cells.well-1. Population density was calibrated to OD for this system according to (Dai et al 2012). For 188 

our spectrophotometer, ODb = 0.064, ODmax= 3.3. For liquid cultures, each well was considered a 189 

replicate. Flow cytometry was used to establish the initial and final densities of the strains. This was 190 

performed with a Guava easyCyte HT System using Guava InCyte software (Merck Millipore). 191 

Populations were diluted in PBS (pH 7.4) to a density of 104 – 5x105 cell.ml-1. Density was 192 

established by measuring events gated on FSC and SSC. Cooperator and cheat cells were gated based 193 

on fluorescence (Supplementary Figure S3). Relative fitness was calculated based on the ratio of 194 

Malthusian growth parameters (Lenski et al 1991), as done previously when assessing the density-195 

dependent nature of cooperator fitness (Greig and Travisano, 2004), with relative fitness = 1 denoting 196 

equal fitness (see Supplementary text for details).  197 
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Data analysis 198 

Statistical tests were performed using R version 3.1.1. We assess the nature and strength of the 199 

relationship between density (!) and cooperator fitness (!) using linear models.. Linear models were 200 

calculated and plotted using the “MASS” package (version 7.3-35) and plotted (black line) ± s.e. 201 

(shaded regions). Monotonic models were used to capture changes in selection across the range of 202 

initial densities tested. Monotonic models were fitted in the form ! = ! or ! = !! with the better 203 

model fit shown based on AIC values with coefficient estimates (β) reported. Though not optimal fits, 204 

these were used for simplicity to readily distinguish switches in the selection for cooperation. The 205 

initial density was log10 transformed for the assumptions of the parametric statistical test. 206 

Comparisons of the strength of association between density and fitness between levels of structuring 207 

and resource concentrations (Figure 1) were performed with a GLM with density and structure or 208 

resource concentration as explanatory variables with an interaction term between the two. Non-209 

monotonic relationships were examined with quadratic terms, and assessed for best fit based on AIC 210 

values, with linear models using density as factor to assess relative fitness differences.   211 

Results 212 

Self-restraint cooperation 213 

Previous experimental studies found that density-dependent selection for self-restraint cooperation is 214 

positive in spatially unstructured yet negative in structured environments (MacLean and Gudelj 2006). 215 

While our experiments agree for shaken liquid environments (Figure 1b), in structured environments 216 

we found the opposite (Figure 1c-d), namely that high population density favours cooperation. Why is 217 

our result different to that in (MacLean and Gudelj 2006)? The difference comes from the way spatial 218 

structure is represented experimentally. In (MacLean and Gudelj 2006), unshaken liquid cultures were 219 

used to represent a spatially structured environment while our experiments were conducted on agar 220 

plates (Figure 1a).  221 
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We found that the extent to which increasing density selects for cooperation reduces as spatial 222 

structuring increases (Figure 1c-d). This result arises, as suggested (Ross-Gillespie et al 2009), 223 

because spatial structuring alters the relative magnitude of benefits gained through cooperation. In our 224 

system, resources become heterogeneously distributed when the population is spatially structured 225 

because self-restraint cooperators and cheats have disparate resource consumption rates (Otterstedt et 226 

al 2004). These resource gradients alter the pay-offs of self-restraint cooperation through the rate-227 

efficiency trade-off and/or the antagonistic metabolic by-products generated by self-restraint cheats 228 

(MacLean and Gudelj 2006, Weusthuis et al 1994). To test this, we repeated competitions when 229 

spatial structuring was high, but we altered the cost-to-benefit ratio of self-restraint cooperation by 230 

reducing the resource concentration (Supplementary Figure S4). When glucose concentration 231 

lowered, from 111.01 to 13.88 mM, positive density-dependence of self-restraint cooperator fitness 232 

remained, however the strength of this relationship was lessened (Figure 1e). When reduced further 233 

(to 2.78 mM), self-restraint cooperator fitness was negatively density-dependent (Figure 1f).  234 

Therefore, as suggested by theory (Ross-Gillespie et al 2009), we found that the relationship between 235 

self-restraint cooperator fitness and population density depended on biological details of the system, 236 

such as the relative pay-offs of self-restraint cooperation. This can be altered through spatial 237 

structuring, which alters the available resource concentrations and hence the incentives to cheat. To 238 

demonstrate this, we conducted competitions with low and intermediate levels of spatial structure and 239 

low resources (2.78 mM). Unlike with high resource levels (111 mM), we found regions of both 240 

positive and negative density-dependence of self-restraint cooperator fitness (Figure 1g-h). This 241 

illustrates how the biological parameters dictate the way in which density influences the selection for 242 

self-restraint cooperation (Ross-Gillespie et al 2009) and how resource concentration and spatial 243 

structure interact to dictate cooperator success. 244 

Public-good cooperation 245 

In agreement with previous experimental studies with this S.cerevisiae system, we found that for 246 

intermediate resource concentrations (29.2 mM sucrose) public-good cooperator fitness was 247 



11 
 

negatively density-dependent when the level of spatial structuring was low (Figure 2a) (Chen et al 248 

2014, Datta et al 2013) and intermediate (Figure 2b) (Greig and Travisano 2004), a relationship that is 249 

predicted by our mathematical model (Figure 2c, Supplementary Information). These findings also 250 

agree with bacterial public-goods systems (Kümmerli et al 2009, Ross-Gillespie et al 2009).  251 

However, theory suggests that the relationship between density and public-good cooperator fitness 252 

depends on the degree of diffusion of public-goods and cells (Dobay et al 2014). To examine this, we 253 

introduced a higher degree of spatial structuring (Figure 1a, high structure), and hence altered the 254 

distances between strains over which public-goods diffuse. In that case, we found public-good 255 

cooperator fitness was positively density-dependent (Figure 2d), in agreement with previous theory 256 

(Dobay et al 2014) and predictions made by our mathematical model (Figure 2e). 257 

Why can high population densities favour public-good cooperation? We reason that the higher the 258 

density of public-good cooperators, the quicker they will consume the resources made available from 259 

public-good production. In our highly-structured environment the available hexose is sufficiently 260 

scarce and heterogeneously distributed. Therefore, at higher densities cooperators will consume a 261 

larger proportion of the resources before they diffuse away to become accessible to cheats, as 262 

suggested previously (Dobay et al 2014, Koschwanez et al 2011). Our model illustrated this effect 263 

where in a highly-structured environment with sufficiently low resources, the overall amount of 264 

hexose captured by public-good cheats was higher at low density (Figure 3a) than at high density 265 

(Figure 3b).  266 

To experimentally test this prediction we repeated competitions between public-good cooperators and 267 

cheats in the same highly spatially structured environment. However, this time we replaced the 268 

public-good cooperator (Wt S. cerevisiae possesses at least 20 hexose transporter genes (Wieczorke et 269 

al 1999)) with a public-good cooperator, TM6*, which has just a single hexose transporter and 270 

therefore its maximal hexose uptake rate is only about 10 % of the Wt (Otterstedt et al 2004). This 271 

meant that TM6* was less able to take advantage of the high-density conditions to capture the 272 

liberated hexose from sucrose before it diffuses away. Competitions with the TM6* public-good 273 
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cooperator and Wt public-good cheat (JG210C) were performed on 1.46 mM sucrose to reduce the 274 

influence of the rate-efficiency trade-off (Otterstedt et al 2004) because at sufficiently low sucrose 275 

concentrations the rate-efficiency trade-off is diminished (Weusthuis et al 1994) (Supplementary 276 

Figure S6a-b). Unlike with the wild-type hexose transporter strain (Figure 3c), the fitness of the TM6* 277 

public-good cooperator was negatively density-dependent (Figure 3d). This outcome was also 278 

captured by our model when we reduced the maximal hexose uptake rate of the public-good 279 

cooperator to 10 % of the wildtype (Figure 3e-f). This switch from positive to negative density-280 

dependence experimentally verifies that in structured environments as population density increases, 281 

public-goods cooperators have an increased capacity to capture hexose liberated from sucrose. 282 

Interacting effects between density, spatial structure, and the rate-efficiency trade-off 283 

on the evolution of public-good cooperation 284 

How is the relationship between population density and public-good cooperation influenced by a 285 

second social trait, namely self-restraint, given that these traits can interact (MacLean et al 2010)? To 286 

explore this we conducted numerical simulations of our multi-trait model (Supplementary 287 

Information) in environments with varying degree of spatial structure and resource concentration 288 

(Figure 4a). The latter alters the strength of self-restraint dilemma (MacLean et al 2010) whereby low 289 

resource enviroments reduce the strength of the rate-efficiency trade-off, which underpins self-290 

restraint cooperation.  291 

Our model predicted that whether density favours public-good cooperation depends both on the 292 

spatial structure and resource concentration of that environment (Figure 4a). We predicted that 293 

reducing the resource concentration could increase the range of spatial structures where increasing 294 

population density favours public-good cooperation (Figure 4a columns C-G versus H-K). At higher 295 

resource concentrations, public-good cooperators incur a cost of inefficient metabolism because of 296 

local spikes in hexose concentration that are formed as they hydrolyse sucrose (MacLean et al 2010). 297 

This cost outweighs the relative benefit of public-good cooperation when spatial structure is lower 298 

(Figure 4a, H1:K6), as in that scenario public-goods are more accessible to cheats. However, reducing 299 
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the strength of the self-restraint dilemma by reducing resources, will diminish the cost of inefficient 300 

metabolism incurred by public-good cooperators because the hexose concentration spikes formed will 301 

be less pronounced (MacLean et al 2010). Therefore, in these environments increasing density will 302 

favour public-good cooperators even when spatial structure is low (Figure 4a, C1:G6) because of an 303 

enhanced ability to capture resources before they diffuse away (Figure 3a-b).  304 

We tested this prediction by competing public-good cooperators and cheats with wild-type hexose 305 

uptake in environments with intermediate and low spatial structuring, where increasing density had 306 

earlier been found to favour public-good cheats (Figure 2a-b), however this time with reduced 307 

resources. As predicted by our model (Figure 4a columns C-G), reducing resources resulted in the 308 

fitness of public-good cooperators becoming positively density-dependent in both intermediate and 309 

low levels of spatial structure (Figure 4b-c).  310 

To verify that this direction of selection switch is caused by interactions between public-goods and 311 

self-restraint, instead of reducing the resource concentration we performed competitions between 312 

purely respiring, and hence metabolically efficient (Supplementary Figure S6a-b), invertase producers 313 

(TM6*) and non-producers (TM6* Δsuc2). Again in sufficiently structured environments, public-314 

good cooperator fitness was positively density-dependent (Figure 4d). However unlike with the wild-315 

type respiro-fermenting strains (Figure 2b), with intermediate levels of structure public-good 316 

cooperator fitness was positively density-dependent (Figure 4d), as predicted by our model 317 

(Supplementary Figure S7). With low structure, a non-monotonic relationship between density and 318 

public-good cooperator fitness was found (Figure 4f). This result was predicted by our model when 319 

the rate-efficiency trade-off is absent at low resource concentrations where no general statement could 320 

be made regarding density and selection for cooperation (Figure 4a). 321 

 322 
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Discussion  323 

In this article we provided the first experimental evidence that high population density can favour 324 

microbial cooperation in spatially structured environments in both public good production and self-325 

restraint cooperative systems as well as when the two social dilemmas interact. 326 

Past theories have predicted that in spatially structured environments increasing population density 327 

can either select for or against self-restraint cooperation depending on the details of the system, such 328 

as how beneficial cooperation is (Ross-Gillespie et al 2009). Yet empirical studies show that high 329 

population density favours self-restraint cheats (MacLean and Gudelj 2006). Similarly, for public-330 

goods systems theory predicts that high population density favours cheats when they are ‘physically 331 

closer’ to cooperators (Ross-Gillespie et al 2009) and favours cooperators if microbial cells diffuse 332 

slower than the public-goods (Dobay et al 2014) or the environment is sufficiently spatially structured 333 

(Lion and Gandon 2009, Lion 2010). However, empirical studies with public-good cooperative 334 

systems consistently show that high population density favours cheats (Chen et al 2014, Datta et al 335 

2013, Greig and Travisano 2004, Kümmerli et al 2009, Ross-Gillespie et al 2009, Sanchez and Gore 336 

2013). 337 

We postulated that the descrepancy between theory and experiments could be due to experimental 338 

procedures not capturing the extent of environmental variation predicted to affect the outcome (Dobay 339 

et al 2014, Ross-Gillespie et al 2009). Indeed, our theoretical model also showed that whether high 340 

population density promotes cooperation depends intricately on the degree of spatial structuring as 341 

well as resource concentration in the environment (Figure 4a). However, while some empirical studies 342 

systematically vary the degree of spatial structure (Boots and Mealor 2007, Kümmerli et al 2009), 343 

more frequently spatial structure is manipulated through an initial distribution of organisms within an 344 

environment. In such cases many ’spatially heterogeneous’ initial distributions all fall into the same 345 

category of ’structured’ environments. For instance, microbial communities can be fragmented into 346 

subpopulations that are linked only through migration. Such metapopulation structure can be imposed 347 

experimentally by embedding populations into microtitre plates and the initial spatial distribution and 348 
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migration is controlled (Dai et al 2013, Datta et al 2013). Another way of manipulating spatial 349 

structure is to inoculate agar media with numerous droplets containing microbes, forming patches of 350 

interacting subpopulations (Lindsay et al 2016, MacLean et al 2010, Ross-Gillespie et al 2009). In this 351 

scenario, the initial spatial distribution is controlled, but the subsequent interactions between 352 

subpopulations are not. Finally, homogeneous cultures can be inoculated: (a) onto agar media (Greig 353 

and Travisano 2004, Griffin et al 2004, Le Gac and Doebeli 2010, Ross-Gillespie et al 2009, van 354 

Gestel et al 2014); (b) into unshaken liquid cultures (Koschwanez et al 2011, MacLean and Gudelj 355 

2006, Rainey and Travisano 1998)) or (c) into shaken liquid cultures (Celiker and Gore 2012, Chen et 356 

al 2014), for certain public-goods systems where producers get preferential access to the public-good 357 

(Gore et al 2009). In all three cases (a-c) spatial structure self-emerges and both the initial spatial cell 358 

distribution and the subsequent interactions between the emergent subpopulations are not controlled. 359 

However, high population densities can impede the self-aggregation of cells (van Gestel et al 2014). 360 

We conducted laboratory experiments using a model cooperative system with S. cerevisiae which 361 

exhibits both public-good (Gore et al 2009) and self-restraint cooperation (MacLean and Gudelj 362 

2006). We considered three levels of spatial structure and demonstrated that the relationship between 363 

population density and cooperation depends on the degree of spatial structure as well resource 364 

concentration within an environment (Figures 1,2,4). Therefore, we argue that previous experimental 365 

studies with self-restraint (MacLean and Gudelj 2006) and public-goods (Greig and Travisano 2004, 366 

Ross-Gillespie et al 2009) cooperative systems found that high population density favours cheats 367 

because they were conducted in environments with either relatively low spatial structure or high 368 

resource concentration.  369 

Our data supports the mechanistic explanations put forward by theoretical models as to why high 370 

population densities can favour cooperation. For self-restraint cooperation, the magnitude of benefits 371 

gained through cooperation influences the extent to which increasing density selects for cooperation 372 

(Ross-Gillespie et al 2009). In our system, resources become heterogeneously distributed when the 373 

population is spatially structured because self-restraint cooperators and cheats have disparate resource 374 

consumption rates (Otterstedt et al 2004). These resource gradients mean that the pay-offs of self-375 
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restraint cooperation are altered through the rate-efficiency trade-off and/or the antagonistic metabolic 376 

by-products generated by self-restraint cheats (MacLean and Gudelj 2006, Weusthuis et al 1994). 377 

Similarly, we demonstrated that with increasing population density public-good cooperation can 378 

either be selected for or against depending on whether the environment is sufficiently structured and 379 

how this structure influences the amount of public-good benefit gained. Intuitively, increasing 380 

population density increases the incentives to cheat because it increases the proximity to, and absolute 381 

number of, public-good cooperators that can be exploited (Ross-Gillespie et al 2009). On the other 382 

hand, increasing density also increases the amount of the public-goods that are generated, which can 383 

be captured by cooperators before they diffuse to become available to cheats (Dobay et al 2014). The 384 

scale of population structuring will alter the relative extent of these opposing forces, which in turn 385 

will shape whether density selects for or against public-good cooperation. We experimentally verified 386 

this mechanism by limiting the ability of public-good producers to obtain the generated benefits of 387 

public-good cooperation. This predictably switched the direction of selection from increasing density 388 

favouring public-good cooperators (Figure 3c) to favouring cheats (Figure 3d).  389 

We also showed that high population density can favour cooperation even when the self-restraint and 390 

public-goods social dilemmas interact (Figure 2d). This is important as cooperative traits frequently 391 

interact (Brown and Taylor 2009, Harrison and Buckling 2009, Lindsay et al 2016, MacLean et al 392 

2010, Ross-Gillespie et al 2015). We developed a multi-trait mathematical model and predicted that 393 

decreasing the influence of self-restraint over public-goods production will increase the range of 394 

environmental structures where high population density favours cooperation (Figure 4a columns C-G 395 

versus H-K). This was verified experimentally. For example, when resources were sufficiently low, 396 

high population density favoured cooperators in environments with low (Figure 4c), intermediate 397 

(Figure 4b) and high (Figure 3c) spatial structure. However, for sufficiently high resource 398 

concentrations, high population density favoured cooperators only when spatial structure was high 399 

(Figure 2d). 400 
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We reason that at higher resource concentrations, public-goods cooperators incur a cost of inefficient 401 

metabolism. Therefore in environments with sufficiently low spatial structure where public-goods are 402 

more accessible to cheats, the cost of inefficient metabolism outweighs any personal benefit of public-403 

goods production. Reducing the resource concentration and therefore reducing the strength of the self-404 

restraint dilemma diminishes the cost of inefficient metabolism incurred by public-goods cooperators, 405 

tipping the balance in favour of cooperators even in environments with low spatial structure.  406 

For certain environmental conditions our model predicts that increasing population density may 407 

favour public-good cooperators or cheats depending on the details of the system (Figure 4a, yellow 408 

panels). This is in line with empirical observations of a non-monotone relationship between 409 

population density and cooperator relative fitness (Figure 4f).  410 

Our results are also of relevance to the study of cooperation in populations undergoing an increase in 411 

the geographical area they occupy, known as range expansion. Recent studies have found that the 412 

advantage public-good cooperators can gain at low density may enrich cooperation at the front of 413 

expanding populations (Datta et al 2013). Our results suggest that this may not be the case if the 414 

environment is sufficiently structured or has low resources. Microbes inherently exist in structured 415 

communities, whether as clonal patches such as colonies or hyphal networks (Koschwanez et al 2011, 416 

Nadell et al 2010), or they inhabit spatially structured substrates (Boddy 2000, Ettema and Wardle 417 

2002), which may frequently be nutrient depleted (Greig and Leu 2009). In these environments, rather 418 

than being promoted at the low-density expanding front of a population, cooperation may be more 419 

resistant against an invasion of cheats in the established bulk population where density is high as the 420 

community proliferates. Conversely, this means that if public-good cheats arise through mutation they 421 

may be more likely to gain a competitive advantage in the low-density advancing front of a 422 

population during range expansion. This “allele surfing” phenomenon may facilitate the maintenance 423 

of metabolic diversity within a population (Excoffier and Ray 2008), even for potentially deleterious 424 

mutations (Travis et al 2007), until environmental conditions become more preferential for public-425 

good cheats. This diversity could enable adaptability to environmental change, improve the outcome 426 
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of ecosystem processes (Kaiser et al 2015), and maximise population fitness (Lindsay et al 2016, 427 

MacLean et al 2010).  428 
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Figure Legends: 571 

Figure 1. The relationship between self-restraint cooperator fitness and population 572 
density depends on the degree of spatial structuring in the environment and the extent 573 
of the rate-efficiency trade-off. 574 

a Schematic of degrees of spatial structure used for experiments. Low is shaken liquid, intermediate is 575 

patches of mixed strains, and high is made up of patches of either cooperators or cheats (for details 576 

see Supplementary Figure S1). In a low level of spatial structuring we found a positive relationship 577 

between density and cooperator fitness (p < 1.06 x 10-12, F (1,16) = 395.1, Adj R2 = 0.9586, β = 0.08962 578 

± 0.00451 (s.e.), n = 6, f = 0.3) (b). When competed on agar plates, the relationship was also positive 579 

for both intermediate (c) (p < 2.66 x 10-7, F(1,7) = 365.7, Adj R2 = 0.9785, β = 1.07 ± 0.0560 x 10-5 580 

(s.e.), n = 3, f = 0.3) and high structure (d) (p < 8.56 x 10-8, F(1,7)= 508.2, Adj R2 = 0.9845, β = 3.84 ± 581 

0.170 x 10-5 (s.e.), n = 3, f = 0.3), but the strength of this association reduced (from intermediate to 582 

high, interaction term: p < 0.0002, F(1,14) = 25.11). With high structure, the relationship between 583 

density and cooperator fitness depended on the resource concentration. It was positive when glucose 584 

concentration was high (111.01 mM), and remained positive with intermediate glucose (13.88 mM) 585 

(e) (p < 0.0004, F(1,7)= 40.02, Adj R2 = 0.8299, β = 0.00803 ± 0.00127 (s.e.), n = 3, f = 0.3), but the 586 

strength of this association was reduced (interaction term : p < 0.00276, F(1,14) = 13.141). However, 587 

this relationship became negative when glucose concentrations were further reduced (2.78 mM) (f) (p 588 

< 3.34 x 10-5, F (1,7) = 87.34, Adj R2 = 0.9152, β = -0.0130 ± 0.00139 (s.e.), n = 3, f = 0.3). When 589 

resources were reduced (2.78 mM) with an intermediate level of structure, we found regions of 590 

positive and negative density-dependence (g) (quadratic fit: p < 5.83 x 10-3, F(2,6)= 13.68, Adj R2 = 591 

0.7601, n = 3, f = 0.2) with cooperator relative fitness lower at intermediate cell densities (approx. 106 592 

cells) compared to low (approx. 104, mean difference ± s.e.= 0.0871 ± 0.0173, p < 2.37 x 10-3) and 593 

high (approx. 108, mean difference ± s.e.= 0.0645 ± 0.0173, p < 9.70 x 10-3). With low structure, 594 

density-dependent fitness of cooperator fitness remained positive in 13.88 mM glucose (h) (p < 4.33 x 595 

10-8, F(1,13)= 127.5, Adj R2 = 0.9004, β = 6.70 ± 0.593 x 10-4 (s.e.), n = 5, f = 0.3) and regions of 596 

positive and negative density-dependence were found in 2.78 mM (i) (quadratic fit: p < 1.61x10-10, 597 

F(2,12)= 251.3, Adj R2 = 0.9728, n = 5, f = 0.3), cooperator relative fitness is lower at intermediate cell 598 



23 
 

densities (approx. 3 x 104 cells) compared to low (approx. 103, mean difference ± s.e.= 0.0196 ± 599 

0.00709, p < 0.0173) and high (approx. 2 x 106, mean difference ± s.e.= 0.146 ± 0.00709, p < 9.62 x 600 

10-11). 601 

Figure 2. The influence of population density and spatial structuring on the selection for 602 
public-good cooperation.  603 

The selection for public-good cooperation (BY4741 v JG210C) is negatively-density-dependent when 604 

the spatial structuring of the environment is low (a) (p < 0.00482, F (1,10) = 12.99, β (± s.e.) = -0.00793 605 

± 0.00220, Adj R2 = 0.5214, n = 4, f = 0.2) and intermediate (b) (p < 6.98 x 10-9, F(1, 7) = 1047, β (± 606 

s.e.) = -5.88 ± 0.182 x10-5, Adj. R2 = 0.992, n = 3, f = 0.2), as predicted by model simulations (Degree 607 

of Spatial Structuring (DSS) = 0, see Supplementary Information for definition) (c), and positively-608 

density-dependent when structure is high (d) (p < 7.93 x 10-7, F(1 , 7) = 266.1, β (± s.e.) = 1.60 ± 0.0981 609 

x 10-4, Adj. R2
 = 0.971, n = 3, f = 0.2) as predicted by model simulations (DSS = 0.8) (e). Labels 610 

indicate level of structuring and [sucrose]. Experimental repeats generated equivalent qualitative 611 

trends, which were also found to be robust to differing initial frequencies of public-good cooperators 612 

(Supplementary Figure S5). For simulations, initial density is g biomass.l-1, S0 = 50, f = 0.4. 613 

Figure 3. Positive density-dependence of public-good cooperator fitness in structured 614 
environments results from a higher capacity to capture public-goods.  615 

Average hexose uptake rates (over all spatial locations) of public-good (PG) cooperators and cheats in 616 

a spatially structured environment at low population density (N0 = 6 x 10-6 g biomass.l-1) (a) and high 617 

population density (N0 = 6 x 10-2 g biomass.l-1) (b), as predicted by model simulations (DSS = 0.7, n = 618 

5, p =1, S0 = 5.85). The amount of hexose captured by PG cheats is higher in low-density than high-619 

density populations. The selection for cooperation in 1.46 mM sucrose is positively-density-dependent 620 

in highly structured environments with wild-type hexose capture ability (BY4741) (p < 1.12 x 10-5, 621 

F(1,7) = 121.6, β (± s.e.) = 7.57 ± 0.686 x 10-4, Adj. R2
 = 0.9378, n = 3, f = 0.3) (c), but becomes 622 

negatively-density-dependent when the capacity for public-good producers to capture the generated 623 

hexoses is reduced (TM6*) (p < 1.29 x 10-5, F(1 , 7) = 116.6, β (± s.e.) = -6.40 ± 0.593 x 10-5, Adj. R2
 = 624 
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0.9353, n = 3, f = 0.3) (d). Labels indicate level of structuring and [sucrose]. Experimental repeat can 625 

be seen in Supplementary Figure S6. Based on growth rate data from this study, with calculations and 626 

invertase activity data from (Gore et al., 2009), we estimate that the glucose capture efficiency of 627 

TM6* is 69.6 ± 0.939% of wild-type capabilities in 1.46 mM sucrose (TM6* < wild-type: p < 0.001, t 628 

= 32.3, n = 3, Welch’s two-tailed t-test). Our model predicts the same outcome for PG cooperator 629 

relative fitness in structured environments (S0 = 1.46, DSS = 0.7, f = 0.2, initial density is g biomass.l-630 

1), with positive-density-dependence with wild-type hexose uptake (e) and negative density-631 

dependence when hexose uptake is reduced (!ℎ/10) (f).  632 

Figure 4. The effect of population density on public-good cooperation as a function of 633 
spatial structure and strength of rate-efficiency trade-off: simulations and empirical 634 
results.  635 

a Competitions were simulated between public-good cooperators and cheats in 88 environmental 636 

conditions (8 degrees of spatial structure in 11 resource concentrations) at three initial population 637 

densities. The outcomes of the competitions in relation to increasing population density are illustrated 638 

in the matrix (yellow panels: increasing density may favour co-operators or cheats depending on the 639 

details of the system). See Supplementary Information for details on how the outcome of numerical 640 

simulations were assessed. Labels within panels indicate the figure in this article that represents 641 

experimental support that replicates predictions from the mathematical model. Predictions of the 642 

simulation were tested experimentally (b-f; labels within plots indicate hexose uptake ability of both 643 

competitors, degree of structure and [sucrose]). b When the impact of the rate-efficiency trade-off is 644 

reduced by lowering resources (from 29.2 to 1.46 mM sucrose) we find public-good cooperator 645 

fitness becomes positively density-dependent with intermediate spatial structure (p < 0.0173, F(1,7)= 646 

9.613, β (± s.e.) = 0.0215 ± 0.00694, Adj R2 = 0.5185,  n = 3, f = 0.2). Test for non-monotonicity is 647 

not-significant (NS, p > 0.434) (c.f. Figure 2b). c With low structure at 1.46 mM, public-good 648 

cooperator fitness becomes positively density-dependent (p < 2.42 x 10-16, F(1,16)= 1154, β (± s.e.) = 649 

5.38 ± 0.158 x 10-4 , Adj R2 = 0.9855, n = 6, f = 0.2) (c.f. Figure 2a). d In competitions between 650 

exclusively respiring public-good cooperators (TM6*) and cheats (TM6* Δsuc2) with high structure, 651 
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public-good cooperator fitness was positively density-dependent (p< 1.50 x10-6 , F(1,7) = 221, Adj-R2 = 652 

0.9649, β = 0.0321 ± 0.00216, n = 3, f = 0.3) like wild-type hexose transporting strains (BY4741 v 653 

JG210C) (Figure 2d). e However, unlike wild-type hexose transporting strains with intermediate 654 

structure (Figure 2b) this relationship remained positive (p < 4.25 x 10-6, F(1,7) = 162.4, Adj-R2 = 655 

0.9528, β = 6.07 ± 0.476 x 10-5, n = 0.3, f = 0.3). These results were predicted by our model when 656 

hexose uptake rate is diminished (Supplementary Figure S7). f In low structure, we found that density 657 

has a non-monotonic relationship with public-good cooperator fitness (quadratic: p < 5.00 x 10-14, F(2, 658 

15)= 437.7, Adj-R2 = 0.9809, n = 6, f = 0.3). Public-good cooperator relative fitness was lower at 659 

intermediate densities (approx. 5 x 104) compared with low (approx. 103 cells, mean difference ± s.e. 660 

= 0.107 ± 0.00399, p < 4.64 x 10-14) and high density (approx. 2.5 x 106, mean difference ± s.e.= 661 

0.00923 ± 0.00399, p < 0.0356, linear model with density as factor). 662 
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