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Highlights

• An SDE model of entorhinal cortex (EC) stellate cells is proposed.

• Experimentally observed action potential clustering is investigated in the model.

• Clusters are generated by subcritical-Hopf/homoclinic type bursting.

• Potential mechanisms underlying changes in EC dynamics in dementia are presented.
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Abstract

The entorhinal cortex is a crucial component of our memory and spatial navigation systems and
is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer’s
disease and frontotemporal dementia. Electrophysiological recordings from principle cells of me-
dial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying
properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action
potential firing. These single cell properties are correlated with network activity such as grid
firing and coupling between theta and gamma rhythms, suggesting they are important for spa-
tial memory. As such, experimental models of dementia have revealed disruption of organised
dorsoventral gradients in clustered action potential firing.

To better understand the mechanisms underpinning these different dynamics, we study a
conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise,
can capture quantitative differences in clustered action potential firing patterns recorded from
experimental models of tau pathology and healthy animals. The differential equation formulation
of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic
mechanisms underlying these patterns. We show that clustered dynamics can be understood as
subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed
by activation of the persistent sodium current and inactivation of the slow A-type potassium
current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as
conductance parameters are varied. Our model analyses confirm the experimentally suggested
hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP
conductance.

Keywords: Dementia, bifurcation analysis, neuron model, bursting, subthreshold oscillations

1. Introduction1

The entorhinal cortex occupies a key role in the cortical-hippocampal circuit, acting as a2

gateway between the neocortex and hippocampus [1] and playing a pivotal role in working mem-3

ory processing and spatial navigation [2, 3]. Many different functional cell types involved in the4
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coding of spatial representation are found in the entorhinal cortex, including grid cells, border5

cells, head direction cells and speed cells [4, 5, 6, 7]. Spatial information from these cells is6

transferred from Layer II of the entorhinal cortex to place cells in the hippocampus, which in7

turn feed back into the entorhinal cortex [8, 9, 10].8

The principle neurons in layer II of the medial entorhinal cortex are reported to be pre-9

dominantly (60-70%) stellate cells (mEC-SCs) [11, 12]. Analysis of recordings of mEC-SCs in10

brain slices demonstrates a number of key identifying electrophysiological properties, including11

a large membrane potential sag mediated by a hyperpolarisation activated cation current (Ih),12

subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing [11].13

Dorsoventral gradients in these electrophysiological properties [13, 14, 15, 16, 17, 12] reflect14

similar dorsoventral gradients in grid cell spacing [4], implying a key role in spatial memory.15

The disruption of memory systems is one of the hallmarks of dementia [18]. The most16

common cause of dementia, Alzheimer’s disease, has been shown to affect the entorinhal cortex17

early in disease progression [19]. One of the two primary pathologies of Alzheimer’s disease is18

the presence of neurofibrillary tangles caused by mutant forms of tau proteins (the other being19

plaques formed by amyloid beta). Experimental models of tau pathology have revealed that20

neurofibrillary tangles cause spatial memory deficits [20] that may be underpinned by alterations21

in the intrinsic cellular dynamics described above [12, 20]. It is therefore crucial if we wish22

to develop treatments and therapries to build our understanding of the mechanisms underlying23

mEC-SC dynamics so that we can further elucidate the cellular and network bases of spatial24

memory, and ultimately the causes and consequences of Alzheimer’s disease.25

There are many potential dynamical frameworks within which to mathematically model clus-26

tered firing of neurons or the generation of subthreshold oscillations. Phenomenological models27

have used extrinsic rhythmic inputs to drive integrate-and-fire type neurons across bifurcations28

[21, 22], thus producing temporal periods of quiescence interspersed with bursts of action poten-29

tials, that may be reminiscent of clustered firing. Low dimensional neuronal models such as the30

Izhikevic neuron (which is a non-linear integrate-and-fire type neuron) have been used to model31

mEC-SC firing patterns [23, 24] but are also constructed from a phenomenological, dynamical32

systems perspective and do not offer mechanistic insight at the single neuron level. For example,33

they do not allow understanding of the relationship between properties of membrane channels34

and the aforementioned dynamic firing patterns.35

In order to develop a mechanistic, biophysical understanding, Fransén et al [25] developed36

a detailed, compartmental model of an mEC-SC, based on the Hodgkin-Huxley formulation.37

In addition to standard Hodgkin-Huxley ion channels, hyperpolarisation-activated, cation non-38

selective channels (Ih) were incorporated along with calcium-gated potassium channels including39

a potassium-mediated after-hyperpolarisation (AHP) current. It was demonstrated that this40

combination of channels was sufficient to describe limit cycle subthreshold oscillations in the41

theta (4-12 Hz) range and clustered action potential firing. A simulation study of the noise42

driven system demonstrated a dependence of clustered firing on the AHP conductance and the43

time scale of the slow Ih component [25]. To investigate the role that stochastic effects could44

play in generating stellate cell dynamics, Dudman and Nolan [26] formulated a high dimensional,45

Markov chain model of stochastic ion channel gating and demonstrated that this model could46

reproduce the aforementioned dynamics due to intrinsic ion channel noise. Clustered action47

potential firing was generated by a transient increase in probability of action potential firing48

during recovery from the AHP. This required the Ih current, since simulations and experimental49

investigation of an Ih knockout resulted in loss of clustering.50

These previous models have provided insight into the potential biophysical mechanisms under-51

pinning the clustered action potential firing and subthreshold oscillations of mEC-SC. However,52

the dynamic mechanisms underpinning clustered action potential firing were not elucidated,53
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which precludes a thorough understanding of the ways in which changes in parameters affect54

dynamics. Such understanding would help to build a more complete picture of the reasons why55

different firing patterns can emerge, for example due to diseases such as Alzheimer’s disease.56

Furthermore, previous models have been cumbersome, either due to their dependence on cal-57

cium gated-channels or stochastic simulations. A simpler model would allow us to extend more58

readily into neuronal networks in the future in order to better understand the spatial structures59

underpinning memory processing in health and disease.60

In order to advance such a framework, in this study, the model of Dudman and Nolan [26]61

is converted to the deterministic Hodgkin-Huxley formulation. This results in an ordinary dif-62

ferential equation (ODE) model that retains the key components of Ih and IAHP. As a single63

compartment model with only voltage-gated ion channels, this model is simpler than the multi-64

compartment model of [25] which includes both voltage- and calcium-gated ion channels. Upon65

introducing extrinsic noise to the membrane potential in a stochastic differential equation (SDE)66

framework, numerical simulations are used to demonstrate that this model is capable of gener-67

ating clustered action potential firing as well as subthreshold membrane potential fluctuations68

with peak power in the theta band, in line with experimental results. Numerical bifurcation69

analyses demonstrate that clustered firing in the model arises due to a flip bifurcation [27, 28].70

Clustered action potential firing can, in turn, be understood in terms of a fast-slow system, in71

which the activation of the persistent sodium (NaP) and inactivation of the slow A-type potas-72

sium (Kas) channels act as slow variables, driving the fast sub-system through a hysteresis loop73

via subcritical Hopf and homoclinic bifurcations. Thus, in terms of the underlying dynamics,74

this model can be classified as a subcritical Hopf/homoclinic burster [29]. This model allows75

for clustered action potential firing to be controlled, making it a suitable model to study the76

role of dorsoventral gradients in clustering. It is thereby proposed that alterations to AHP or77

Ih conductances could mediate the quantitative changes in clustering observed experimentally.78

In experimental models of dementia (rTg4510), loss of clustered firing is found to correlate with79

significant changes to AHP amplitude but no change in Ih mediated sag [12]. Hence our results80

suggest a possible path through parameter space that account for the differences in patterned81

firing in rTg4510.82

2. Materials and Methods83

2.1. Mathematical Model84

The stochastically gated Markov Chain model of layer II medial entorhinal cortex stellate85

cells (mEC-SCs) presented by Dudman and Nolan (2009) [26] was converted to a system of86

stochastic differential equations (SDEs) in the Hodgkin-Huxley formulation [30]. For a given87

ion channel, Markov Chain models calculate the voltage dependent probability of a closed gate88

opening, α(V ), and an open gate closing, β(V ) in order to estimate the fraction of gates open89

at a given time. Under the assumption that the number of ion channels is sufficiently high, we90

can make a density approximation; i.e. the fraction of gates open is equal to the probability of91

gates being open, and hence we can write92

dx

dt
= αx(V )(1− x)− βx(V )x, (1)

where x is the fraction of open gates for x in the set of ion channels. The presence of noisy93

fluctuations in the dynamics due to the intrinsic stochastic channel gating are not modelled94

explicitly, but approximated through the addition of extrinsic additive noise on the membrane95

potential.96
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The membrane potential is given by97

C
dV

dt
= Iapp − INaT − INaP − IKdr − IKaf − IKas − Ih − IAHP − IL + ση(t) (2)

where the term ση(t) is the extrinsic noise term, where σ is the noise variance and 〈η(t)〉 = 098

and 〈η(t), η(t′)〉 = δ(t− t′). Each ionic current is given by99

IX = gXψX(V − EX). (3)

Here, X labels the set of ionic currents, gX is the maximal conductance of current X, ψX is100

the fraction of channels in the conducting state (see Appendix A), and EX is the equilibrium101

potential of the current.102

The transient sodium (NaT) and potassium delay rectifier (Kdr) are those of the classic103

Hodgkin-Huxley model and mediate action potential initiation and recovery respectively. Also104

included in the model are a persistent sodium (NaP) current, fast and slow potassium A-type cur-105

rents (Kaf and Kas respectively), an Ohmic leak (L), and an inward hyperpolarisation activated106

(h) current.107

Furthermore, a phenomenological spike-dependent outward after hyperpolarisation (AHP)108

current is included in the model. This current is modelled with α(V ) = 1.5 exp(−(t− tspike)/τ)109

and β = 1.6. Here, tspike is the time of the last spike (defined as membrane potential rising110

through 0mV) and τ = 60 such that the AHP lasts approximately 100ms [12].111

Noise variance was selected as follows. Having fixed all parameters but those being studied112

(gh and gAHP), these remaining two free parameters of the deterministic system were chosen113

such that the inter-spike interval of the model reflected experimental results [12] (gh = 2.8,114

gAHP = 0.425). The system was simulated for a range of noise values to identify plausible values115

with realistic clustering dynamics as quantified by PC [31] (see Figs S1 and S2, and description116

below). This yielded a value of σ = 0.197µA · cm−2, or equivalently σ/C = 0.135 mV·ms−1.117

This value was used in all stochastic simulations unless stated otherwise.118

Simulations use the stochastic Heun method with a time step of 0.01ms. Parameters are119

those given in Table 1 unless stated otherwise. For spectral analyses, the multitapered power120

spectrum was calculated using the CHRONUX toolbox (http://chronux.org/)[32] with 9 tapers121

and time-bandwidth product of 5.122

Parameter Value Parameter Value
C 1.46 µF·cm−2 gNaT 24 mS·cm−2

Iapp 0.3 µA·cm−2 gNaP 0.075 mS·cm−2

ENa 55 mV gKdr 11 mS·cm−2

EK -85 mV gKaf 0.1 mS·cm−2

Eh -30 mV gKas 0.5 mS·cm−2

EL -88.5 mV gL 0.15 mS·cm−2

Table 1: Parameters used in the model

A cluster of action potentials is defined as two or more spikes with an inter-spike interval123

of < 250ms, preceeded and followed by a quiescent period of > 300ms. Clustering is quantified124

by PC , which is the ratio of spikes defined to be within a cluster to total number of spikes [31].125

Calculation of PC is demonstrated in Fig S1.126

2.2. Bifurcation Analysis127

In order to understand the underlying dynamics, the ordinary differential equation (ODE)128

formalism is given by the above system with σ = 0 in Eq 2. This ODE formalism allows for a129
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bifurcation analysis of the system. To conduct the bifurcation analysis, a number of methods130

were used. Equilibria were found using either XPPAUT [33] or Matlab’s fsolve [34] functions in131

a reduced system with no AHP current. This reduction is made since the AHP current is spike132

dependent and decays to zero in the absence of spikes.133

Periodic orbits in the full model with AHP could not be analysed in XPPAUT due to the non-134

smooth nature of the AHP current. Instead, the Poincaré return map on the Poincaré section135

at V = 0 (at which non-smoothness due to the AHP current arises) was identified using Matlab.136

For tonic spiking, high precision numerical solutions were found using a boundary value solver137

in Matlab. Due to the high dimensionality and complexity of the model, for doublets and other138

multiplets this could not be implemented. Instead solutions were found using Matlab’s ode45139

(with tolerances set to 10−12) with high precision event detection, and the return map identified140

using Picard iterations; i.e. for each crossing of the Poincaré section, the Euclidian distance to141

all past crossing of the Poincaré section was calculated and a periodic orbit identified as this142

distance being less than 10−12. The Jacobian of the map was constructed by calculating Fréchet143

derivatives, and eigenvalues of the Jacobian used to assess stability and identify bifurcations in144

the map. Lyapunov exponents of the Poincaré return map were calculated to identify chaotic145

regimes [35], where a negative maximum Lyapunov exponent (MLEmap) represents a steady state146

on the map (corresponding to a stable limit cycle in the flow) and a positive MLEmap represents147

a chaotic regime.148

3. Results149

3.1. Identifying parameter regimes of clustered firing150

A number of experimental and modelling studies implicate the after hyperpolarisation (AHP)151

and hyperpolarisation activated current (Ih) in playing a role in clustered action potential firing152

[12, 31, 26, 25]. Motivated by these studies, the effect of the AHP and h-current conductances153

(gAHP and gh respectively) on clustering was studied in our model.154

To do so, we simulated 10 model neurons for 20s over a range of values of gAHP and gh. PC ,155

which quantifies the proportion of clustered firing (see section 2 and Fig S1), was calculated for156

each parameter set. A summary of our results depicted as a heatmap of PC values and illustrated157

via exemplar membrane potential traces is shown in Fig 1A-B. For low values of gh, the model cells158

only fire sporadic action potentials due to noise occasionally bringing the membrane potential159

above threshold (dark blue regions in Fig 1A). For very low gAHP, as gh is increased the system160

moves into a regime of tonic firing (yellow region in Fig 1A). For intermediate values of gAHP, as161

gh is increased clustered parameter regimes occur (orange regions in Fig 1A) . For values of gAHP162

sufficiently high for clustering to occur, as gh is increased the system moves from very low PC163

towards a peak at PC ≈ 0.8, and then back down to lower PC (Fig 1A). Therefore, spontaneous164

activity in the model arises due to a combination of noise and the applied current. Time courses165

associated with these values can be seen in Fig 1B. For these simulations, noise variance was166

set to σ/C = 0.135 mV·ms−1 (see section 2). Fig S3 demonstrates that these results are robust167

to different values of noise, with noise values scaling PC in the clustered regimes. The effect of168

noise on PC for a single parameter regime is shown in Fig S2.169

In order to understand these dynamics, the deterministic system was also simulated over170

the same range of parameters. A heatmap representing the number of spikes per cluster and171

exemplar membrane potential traces are plotted in Fig 1C-D. To directly compare the dynamics172

of the determinstic system to the stochastic system, in Fig S4 we present the heatmap of the173

deterministic system juxtaposed with heatmaps for the stochastic system at three different levels174

of noise variance. It can be seen in Fig S4 that the heatmaps for the determinstic and stochastic175
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system appear qualitatively similar in terms of the number of spikes per cluster (similar positio-176

ing of coloured regions in the heatmaps). In order to quantify this similarity we calculated the177

Pearson’s correlation between the number of spikes per cluster in the simulations of the deter-178

minstic system with the average number of spikes per cluster in the stochastic system. These179

values, which are indicated in the left hand corner of panels B-D of Fig S4, were above 0.86,180

suggesting that an understanding of the deterministic clustering dynamics can be informative181

for understanding the clustering dynamics of the stochastic system.182

For gh > gSNh , only a stable periodic orbit exists, generated by the homoclinic bifurcation at183

gHC
h . Orbits with a range of number of spikes per period can be found beyond this bifurcation.184

Period 1 orbits correspond to tonic action potentials, whilst period > 1 orbits correspond to185

firing in multiplets, i.e. bursting. By comparing Figs 2A and B, one can observe that the186

regimes of period > 1 in the deterministic system correspond to clustered action potential firing187

in the stochastic system. The transitions between orbits of different periods (eg. from period 2188

doublets to period 3 triplets) occur via flip bifurcations [27, 28], drawn in Fig 2 by dotted red lines.189

The transition between period 1 oribits (tonic spiking) and orbits with period > 1 (bursting) is190

indicated by a solid red line in Fig 2. Seen in terms of decreasing values of gh, the bifurcation191

underlying this transition is a flip bifurcation of the period 1 orbit into period 2 regime. As gh192

is decreased further, the system undergoes a flip or spike adding cascade into chaotic dynamics,193

before a stable period 5 orbit is established. Poincaré return maps and Lyapunov exponents194

demonstrating an example of this transition are shown in Fig 3.195

Moving beyond this bifurcation to high values of gh and low values of gAHP yields PC ≈ 1 in196

the stochastic system. This observation could be explained by a highly stable periodic orbit and197

therefore diminished effects of noise. However, in this case a high value of clustering arises due198

to the way PC is calculated, essentially tonic firing with an ISI < 250ms is classified as a single199

cluster (Fig S1). As the flip bifurcation is approached from above and left, the orbit becomes less200

stable allowing noisy perturbations to cause deviations away from individual action potentials.201

This induces quiescent intervals that become large enough to fall in the range [250, 300]ms, thus202

causing the PC value to drop substantially in magnitude, giving rise to the light blue upper203

region of low PC in Fig 1A.204

Experimental observations have shown dorsal PC to be approximately 0.69 in healthy animals205

and approximately 0.37 in rTg4510 transgenic animals [12]. We used these values to define206

possible paths through parameter space that may account for differences observed in rTg4510207

(Fig 4). Given that experimental recordings found no differences in Ih but found differences208

in AHP amplitude [12], paths E and F in Fig 4C-D are the most likely changes in parameter209

space occuring in rTg4510. The dynamics of path F recreate firing patterns seen in data most210

realistically, since firing frequency in parameter sets in path E is much higher than in data [12].211

This could be explained by the fact that in path E, clustering arises due to noise cancelling212

action potentials in a tonic firing regime, as opposed to underlying dynamics causing clustered213

firing. Path F suggests that the underlying noise-free system is undergoing a flip bifurcation214

from period 3 bursts to period 2 bursts, resulting in the reduced clustering seen in rTg4510.215

3.2. Fast-slow analysis of deterministic clustering216

The analysis above suggests that clustered firing patterns may arise due to noise perturbations217

to a periodic bursting regime. In order to further understand these dynamics, a fast-slow analysis218

was performed on the deterministic system within this regime. We chose parameters to be219

gAHP = 0.425 and gh = 2.8, which results in periodic bursts of three action potentials. We first220

examined simulations, which revealed two variables operating with a slow time scale, namely221

mNaP and hKas (Fig 5A). Keeping the two slow variables fixed, the remaining (fast) subsystem222

was subjected to a numerical bifurcation analysis, which revealed two bifurcations of importance223
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for describing the bursting dynamics (see Fig 5B). For low values of mNaP, there exists a stable224

steady state which loses stability via a subcritical Hopf bifurcation (denoted SCH1) as mNaP225

is increased (marked by a dashed red line in Fig 5B). For high values of mNaP there exists a226

stable periodic orbit of period 1, which disappears via a homoclinic bifurcation (denoted HC1 and227

marked by a dotted red line in Fig 5B) asmNaP is decreased. Between these two bifurcations there228

is a region of bistability between the steady state and the periodic orbit. These bifurcations in229

mNaP are drawn over a range of values of hKas in Fig 5B. A full bifurcation diagram and example230

bistable region for mNaP for hKas = 0.19 is shown in Fig S5.231

Plotting the periodic solution of the full subsystem in the two variables (mNaP and hKas,232

Fig 5B) is sufficient to describe the bursting dynamics. The trajectory follows a hysteresis loop233

through the fast subsystem. Beginning in the quiescent period between bursts, the two slow234

variables will be at a position in phase space such that the fast subsystem is on the steady state235

branch. The periodic solution’s trajectory then moves along the steady state branch until SCH1236

is reached, at which point the fast subsystem moves to the periodic orbit branch. This initiates237

the burst, with action potentials firing while slow variables move along the periodic orbit branch238

towards HC1. Once HC1 is reached, the burst ends as the fast subsystem returns to the steady239

state branch.240

Fig 5B suggests that the slow system can be reduced to a single slow variable mslow with the241

approximation mNaP = mslow and hKas = −0.7657mslow + 0.6477. This linear approximation of242

the two slow variables is shown in Fig 5B. The full bifurcation diagram for the fast subsystem243

as mslow is varied is shown in Fig 5C. As before, the stable steady state is lost via subcritical244

Hopf bifurcation (SCH2), and the stable periodic orbit is lost via homoclinic bifurcation (HC2).245

Fig 5C shows the remaining bifurcations. The unstable periodic orbit generated by SCH2 is246

lost via a homoclinic (HC3). The unstable steady state following SCH2 becomes stable via247

another subcritical Hopf (SCH3). The unstable periodic orbit generated by SCH3 collides with248

the stable periodic orbit generated in HC2 and both periodic orbits disappear via a saddle node249

of periodics (SNP1). As in the case of the two dimensional slow subsystem, there is bistability250

between the stable equilibrium and the stable periodic orbit (Fig 5D) resulting in traditional251

fast-slow hysteresis loop bursting. The trajectory of a single burst is shown in Fig 5D.252

3.3. Subthreshold Dynamics253

In order to validate the model, we tested whether it reproduced experimental results that254

were not used in the development of the model; i.e. when choosing parameter regimes that allow255

for mEC-SC-like clustering dynamics. Subthreshold oscillations in the theta (4-12 Hz) range are256

another key electrophysiological feature of mEC-SCs, so in this section we explore whether theta257

band subthreshold activity appears in the model.258

The bottom trace of Fig 1B demonstrates the noise driven response of the model in its259

subthreshold regime. mEC-SCs have been shown to generate subthreshold membrane potential260

fluctuations with dominant frequencies in the theta band [11]. We therefore quantified the261

power spectrum of dynamics generated by our noise driven system. The stochastic system, with262

parameters chosen as in section 3.2, Iapp set below action potential threshold (0.25µA·cm−2),263

and white noise added to the membrane potential, was simulated for 20 seconds with low noise264

variance (σ/C = 0.005 mV·ms−1). Fig 6A shows an example spectrogram, demonstrating high265

power between 0-20 Hz with a peak in the theta (4-12 Hz) range. The mean power spectrum266

over an ensemble of simulations (Fig 6B) shows peak power to be in the theta band, with peak267

frequency found to be at 10.40 ± 1.09 Hz (mean ± standard error). Whilst low noise variance268

was used in these simulations in order to elucidate mechanisms, Fig S6 shows simulations using269

the same amount of noise as in previous sections (σ/C = 0.135 mV·ms−1) to demonstrate that270

theta range fluctuations still arise in system with more realistic noise levels.271
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To further understand the origin of this subthreshold preferential theta power, we analysed272

the deterministic system. Fig S7 shows a bifurcation diagram in Iapp. The deterministic system273

undergoes a saddle node bifurcation at ISNapp = 0.2738µA·cm−2; for Iapp < ISNapp a stable steady274

state exists. A supercritical Hopf bifurcation occurs at IHopf
app = 42.10µA·cm−2, generating a sta-275

ble periodic orbit that is lost via a homoclinic bifurcation at IHC
app = 0.2401µA·cm−2demonstrating276

bistability between spiking and steady state in the range IHC
app < Iapp < ISNapp. No other Hopf277

bifurcations occur in Iapp, hence the deterministic system does not exhibit stable subthresh-278

old oscillations within this parameter regime. We note that noise perturbations can drive the279

membrane potential above threshold even for Iapp < ISNapp (see Fig S8 for anlaysis of spike on-280

set in relation to injected current and differing noise variance). This justifies our choice of281

Iapp = 0.25µA·cm−2as this is sufficiently below threshold that no action potentials are observed.282

In the absence of noise, the system is in a steady state and therefore no deterministic theta283

band oscillations arise. A potential mechanism by which white noise on a steady state can result284

in power spectral peaks is if the steady state is a focus. The resonant frequency of a focus can be285

calculated as the imaginary part of the complex conjugate eigenvalues of the Jacobian normalised286

by a value of 2π. A pair of complex conjugate eigenvalues demonstrated that the steady state287

is a focus with a resonant frequency of 6.32 Hz. The effect of changing applied current was also288

tested (Fig 6C-D). In experimental recordings, theta power is seen to increase as Iapp approaches289

threshold for action potential generation [11]. Fig 6C shows time series traces for a range of290

values of Iapp, demonstrating theta power increasing as Iapp is increased. Theta band spectral291

ratio was calculated as the ratio of total power in the theta band to total power in the 1-300 Hz292

broad band, shown in Fig 6D. Total power in the delta (1-3 Hz), theta (4-12 Hz), beta (15-30293

Hz) and gamma (30-300 Hz), normalised by width of band, is shown in Fig S9. Each of these294

figures demonstrate the clear emergence of peak theta power as Iapp is increased and threshold295

is approached. A Kruskal-Wallis test confirms a significant effect of applied current on spectral296

ratio (χ2 = 44.97, p = 1.47× 10−8).297

4. Discussion298

In this study we analysed a conductance based model of a layer II medial entorhinal cortex299

stellate cell (mEC-SC), demonstrating that it is capable of generating clustered action potential300

firing with a range of quantitative PC values that are observed in experiments. We demonstrated301

that these dynamics arise due to a subcritical Hopf/homoclinic bursting mechanism, which causes302

multiple period limit cycles that when perturbed by extrinsic noise display action potential303

clustering. We further demonstrated that the same model can generate experimentally observed304

subthreshold membrane potential fluctuations with power spectral peak in the theta band.305

4.1. Derivation of the model, approximation of noise, and relationship to the Markov chain model306

Dudman and Nolan [26] presented a biophysically realistic Markov chain (MC) gated model307

of enthorhinal cortex stellate cells. MC models account for random fluctuations in the opening308

and closing of ion channels intrinsic to neurons [36, 37] by assigning them a voltage dependent309

probability of opening or closing. However, dynamic analysis of Markov chain models is challeng-310

ing. Furthermore, Markov chain models are computationally expensive. For these reasons, in311

this paper, the MC gated model was converted to the deterministic Hodgkin-Huxley formulation312

for ion channel gates (Eq (1); [30]) under the assumption that the number of ion channels is313

sufficiently high that a density approximation can be justified, resulting in a system of ordinary314

differential equations (ODEs). Channel noise in the neuron was not explicitly modelled, but315

approximated by extrinsic, Gaussian noise on the membrane potential. We demonstrated that316
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this was sufficient to produce clustered action potential dynamics and theta range subthreshold317

fluctuations in line with experiments [11].318

4.2. Action potential clustering319

Clustered action potential firing, in which two or more action potentials are fired in succession320

before a long quiescent period, is a feature of in vitro recordings of layer II medial entorhinal321

cortex stellate cells. Action potential clustering is hypothesised to depend on the AHP and Ih322

currents based on computational studies and correlated gradients in dynamics associated with323

these currents[12, 15, 31, 25, 38, 39, 14, 16]. Motivated by this, the dependence of these two324

parameters on clustering was tested in the model. A two parameter bifurcation analysis (Fig 1A)325

demonstrated that regions of quiescence, tonic firing, and clustered firing coexist. Furthermore,326

a range of values of PC were found, allowing for control over the amount of clustering in the327

model.328

Analysis of the deterministic model allowed for understanding of the mechanisms behind329

clustering (Fig 1C). Regions corresponding to tonic firing in the stochastic model correspond to330

regions of tonic firing in the deterministic model. As the regions of clustering are approached331

from the regions of tonic firing, a period doubling cascade occurs until stable multiplets (‘bursts’332

of action potentials) are reached. Flip bifurcations [27, 28] occur, changing the number of spikes333

per burst. Eventually, firing is lost althogether via a homoclinic bifurcation as gh is decreased.334

It is worth noting that a region of bistability exists before the homoclinic is reached in which335

the stable periodic orbit coexists with a stable steady state. In this region of bistability, it was336

found that simulations of the stochastic system starting on or near the periodic orbit are soon337

driven by noise towards the stable steady state, and hence sustained action potential firing in338

this region of the stochastic system is rare. Similar results occur for changes in Iapp if gh is held339

constant in certain parameter regimes (Fig S7), reflecting results in data that increasing applied340

current will increase number of spikes per cluster before moving the system into tonic firing [11].341

This suggests that the different dynamics due to alterations in gh may arise because of a change342

in resting membrane potential as gh is varied. No such change in resting membrane potential343

is observed as gAHP is altered. Analysis of a bursting regime demonstrated that bursting arises344

due to a fast-slow mechanism in which two slow variables drive the fast subsystem through a345

hysteresis loop. In terms of bifurcations in the fast sub-system, the bursting mechanism in this346

model can be classified as subcritical Hopf/homoclinic type [29].347

The generation of clustered action potential firing by deterministic, periodic bursting per-348

turbed by extrinsic noise differs from past interpretations of clustering. In the Markov chain349

formalism of the model, Dudman and Nolan [26] suggested clustering was the result of a tran-350

sient increase in probability of firing during recovery from the AHP due to the stochastic mecha-351

nisms, and they demonstrated that clustering was not possible in the deterministic version of the352

model. In our study, we systematically explored the consequences of changing gh and gAHP, and353

found different dynamic regimes in the deterministic system, including steady state and tonic354

firing regimes that do not correspond to clustered firing in the stochastic model. It is possible355

that further exploration of the dynamics of the model of Dudman and Nolan [26] would reveal356

similar bursting regimes to those reported herein. Although experimental verification of these357

interpretations is difficult, there are some agreements in mechanisms between these two models,358

however. The effect of changing gAHP in the MC model has not been studied, but within a clus-359

tered parameter regime the affect of reducing gh in the SDE model largely agrees with the results360

of reducing gh in the MC model - a reduced value of PC . The interpretation of increased prob-361

ability of firing during recovery from AHP also emphasises the importance of the AHP current362

in clustering in the MC model.363
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A number of other parameters are likely to play a role in clustering. AHP halfwidth and Ih364

time constants may be important, as dorsoventral gradients in these properties also correspond to365

gradients in clustering [12, 13, 15, 16, 38, 40], but these have not been studied here. Figs S2 and S3366

demonstrate that the variance of noise chosen will also dictate the amount of clustering; increasing367

noise variance increases the likelihood of sporadic spiking or action potential cancellation, thus368

affecting the patterned firing.369

4.3. Subthreshold theta resonance370

Stellate cells in Layer II of the medial Entorhinal Cortex are known to exhibit subthreshold371

oscillations in the theta (4-12 Hz) range that increase in power as action potential threshold372

is approached [11]. It is believed these subthreshold oscillations are noise driven [41]. In our373

deterministic (noise free) model, subthreshold oscillations do not exist, since we operated in a374

steady-state regime. However, the steady state is a focus with resonant frequency of 6.32 Hz,375

suggesting that with the addition of noise, a spectrum with preferential power in the theta band376

may arise. We found that a small amount of white noise on the membrane potential is sufficient377

to give rise to subthreshold dynamics with multiple peaks within the theta range and peak378

power at around 10 Hz. The difference in peak frequency found in simulations compared to the379

prediction from the linearisation of the focus may be due to noise in the simulated spectrum as380

well as noise induced frequency shifts [42]. Furthermore it was shown that the relative power in381

the theta band is significantly larger close to threshold than far below threshold.382

To model the dynamics of subthreshold activity of stellate cells, two classes of model have383

previously been proposed. The first class of model utilises noisy perturbations to deterministic384

limit cycle dynamics. In this case, the output of the deterministic model would be regular,385

periodic oscillations and the related stochastic model would exhibit strongly periodic dynamics386

contaminated by noise. Previous models of subthreshold oscillations in stellate cells that fall into387

this class include [25, 43, 44, 45]. In the second class of model, such as the one presented in this388

study and the Izhikevich model [23], theta band fluctuations arise due to noisy perturbations389

on a focus steady state, which results in a resonant response. In contrast to the aforementioned390

class of limit cycle models, fluctuations exist only in the presence of noise. Furthermore, in the391

noisy focus class of model, the dynamics appear less obviously periodic than in limit cycle models,392

resembling a stochastic process with peak power in the theta range. Experimental and modelling393

studies have suggested that removing channel noise results in loss of subthreshold oscillations394

[26, 41, 46] and that stellate cell subthreshold dynamics are more reflective of a stochastic process395

with theta peak than a periodic process with additive noise [17]. These results are consistent396

with the noisy focus class of model, which the model we present belongs to. However, we note397

that the mechanisms of the two classes of model are closely related, since in theory, one expects398

to find a focus steady state close to a Hopf bifurcation into a limit cycle [43] with resonant399

frequency close to that of the limit cycle.400

For biological insight into the currents involved in the generation of subthreshold limit cycles401

or resonance, reduced models, which remove currents that are predominantly active during action402

potential initiation or recovery, can be of interest. Ih + INaP + IL models have been shown to403

generate theta band limit cycle oscillations [25, 44, 45]. As discussed above, the alternative404

mechanisms of noise-perturbed focus and limit cycle dynamics are related, so it is of interest405

to test whether making similar reductions in our model maintains the theta band resonance.406

Setting all currents but Ih and INaP to their steady state value, we found that the corresponding407

steady state becomes a node and hence theta band resonance is lost. A detailed study of the408

mechanisms underlying the noise response of our model is an avenue for future work.409
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4.4. Implications for dementia410

The entorhinal cortex is one of the first areas to be affected in dementias featuring a tau411

pathology such as Alzheimer’s disease [19]. In the rTg4510 mouse model of tauopathy, dorsoven-412

tral gradients in action potential clustering in layer II entorhinal cortex stellate cells were abol-413

ished [12]. A motivating application for a mathematical model of mEC-SCs in which action414

potential clustering can be controlled is to understand the mechanisms behind the dysfunction415

in clustered firing in animal models of dementia. Future work will involve exploring this rela-416

tionship in more detail, but some key points can be stated from the work presented here. In417

the wild type animals, dorsal mEC-SCs fired highly clustered action potentials. This clustering418

was greatly reduced in the rTg4510 animals. Whilst Ih mediated sag amplitude was unaffected419

(suggesting no changes in gh), an increase in amplitude of the AHP was seen in rTg4510 dorsal420

cells. The AHP amplitude, which scales with AHP conductance, has been demonstrated to be421

mechanistically related to PC in this model and previous studies [25, 47]. A possible mechanism422

for the reduced PC in rTg4510 is an increase in gAHP, resulting in the system undergoing a423

flip bifurcation resulting in fewer spikes per cluster. An example of this is the path through424

parameter space marked F in Fig 4, which results in realistic mEC-SC like clustering dynamics,425

with a change in parameters that reflects those seen in rTg4510. Future work will involve fitting426

parameters to the data to explore this in more detail.427

Network activity was also seen to be disrupted in rTg4510 [12]. Dorsoventral gradients in428

phase-amplitude coupling (PAC) between theta and gamma rhythms in the local field poten-429

tial was found to be disrupted in rTg4510 animals. Similar to clustering patterns, dorsoventral430

gradients in PAC were disrupted. Networks of modelled stellate cells, spatially extended along431

the dorsoventral axis, may be used to explore whether disruption in patterned action poten-432

tial activity alone is sufficient to replicate deficiencies in PAC, or whether network properties433

such as dorsoventral gradients in inhibitory projections also come into play [48]. Past computa-434

tional studies of theta-gamma PAC have involved use of simple models that do not intrinsically435

fire in clusters such as the exponential integrate-and-fire [22] or Hodgkin-Huxley [49] models.436

Dorsoventral gradients in clustering intrinsic to cells cannot be studied using these models, and437

hence are not suitable to test whether intrinsic clustering is related to theta-gamma coupling.438

The model presented here is more suited to this type of study, as clustering can be controlled439

via biophysically realistic mechanisms.440

4.5. Conclusions441

In this work, we have presented a stochastic differential equation (SDE) model of Layer II me-442

dial entorhinal cortex stellate cells based on the Markov Chain formalism of the model presented443

by Dudman and Nolan [26], but driven by extrinsic white noise to the membrane potential. We444

demonstrated that this model captures the key dynamics of mEC-SCs seen in electrophysiological445

recordings including subthreshold oscillations in the theta range and clustered action potential446

firing [11]. To understand the mechanisms underpinning clustered action potential firing, a nu-447

merical bifurcation analysis was performed on the underlying system of ordinary differential448

equations. Clustering was shown to arise due to flip bifurcations in the AHP and h-current con-449

ductance parameters, and is driven by two slow variables (mNaP and hKas) driving the remaining450

fast subsystem through a subHopf/homoclinic type hysteresis loop. Furthermore, exploration451

of parameter space demonstrates that control of the AHP and h-current conductances allows452

for control of PC , which quantifies the amount of action potential clustering exhibited by the453

model. The model provides an important tool for further understanding alterations to mEC454

spatiotemporal dynamics that arise in dementias featuring a tau pathology [12].455
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Appendix A. Model equations456

The model contains a total of eight ionic currents. These are transient and persistent sodium457

currents (INaT and INaP respectively), a potassium delay rectifier (IKdr), fast and slow potassium458

A-type currents (IKaf and IKas respectively), a hyperpolarisation activated Ih current, an ohmic459

leak (IL) and finally a phenomenological afterhyperpolarisation current that is dependent on the460

time since last spike (IAHP).461

The current balance equation for our model is given in Eq. 2, with each current represented
as in Eq. 3. The fraction of open gates for each channel is given by

ψNaT = m3
NaThNaT (A.1)

ψNaP = mNaPhNaP (A.2)

ψKdr = n4Kdr (A.3)

ψKaf = mKafhKaf (A.4)

ψKas = mKashKas (A.5)

ψh = nh (A.6)

ψAHP = n3AHP (A.7)

ψL = 1 (A.8)

where gating variables are given by the system of ODEs in Eq. 1. Probabilities of gates opening
and closing are given by the functions

αmNaT
=

0.38(V + 33)

1− eV +33
9

, βmNaT
=
−2.3(V + 58)

1− eV +58
12

(A.9)

αhNaT
=
−0.03(V + 48)

1− eV +48
12

, βhNaT
=

0.05(V + 21)

1− eV +21
9

(A.10)

αmNaP
=

1.6 ∗ 10−4(0.38(V + 64.409)

1− e−0.38023(V+64.409)
, βhNaP

=
1.2 ∗ 10−4(−0.216(V + 17.014)

1− e0.21598(V+17.014)
(A.11)

αhNaP
=

1.5

1 + e
−42.1−V

3

, βmNaP
=

1

1 + e
42.1−V

3

(A.12)

αnKdr
=

0.02(V + 38)

1− eV +38
10

, βnKdr
=
−0.018(V + 47)

1− eV +47
35

(A.13)

αmKaf
=

0.01(V + 18.3)

1− e−0.067(V+18.3)
, βmKaf

=
−0.01(V + 18.3)

1− e0.067(V+18.3)
(A.14)

αhKaf
=
−0.01(V + 58)

1− e0.122(V+58)
, βhKaf

=
0.01(V + 58)

1− e−0.122(V+58)
(A.15)

αmKas =
0.001(V + 18.3)

1− e−0.067(V+18.3)
, βmKas =

−0.001(V + 18.3)

1− e0.067(V+18.3)
(A.16)

αhKas
=
−6.7 ∗ 10−5(V + 58)

1− e0.122(V+58)
, βhKas

=
−6.7 ∗ 10−5(V + 58)

1− e−0.122(V+58)
(A.17)

αnh
=

18.3 ∗ 10−3

1 + e
V +114.2

20.33

, βnh
=

3.3 ∗ 10−2

1 + e
V +51.5
10.94

(A.18)

αnAHP
= 1.5e

−(t−tspike)

25 , βnAHP
= 1.6 (A.19)

All equations are adapted from Dudman and Nolan (2009) [26].462
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Figure Captions595

Figure 1: Clustered parameter regimes in two parameter space. (A) Heatmap of PC over a range of values
of gAHP and gh. Points marked by red shapes correspond to the time series in B. (B) Time series demonstrating
exemplar simulated cells for the regimes marked in A. The red shapes to the right of the time series correspond to
the location in parameter space in A. (C) Heatmap of spikes per cluster in the underlying deterministic system.
In the colourbar, ‘SS’ refers to a steady state, ‘T’ refers to tonic firing, and ‘C’ refers to chaotic/irregular firing
and integers indicate number of spikes per cluster. (D) Time series demonstrating the deterministic dynamics
underlying the stochastic traces in B. The red shapes to the right of the time series correspond to the location in
parameter space in C.
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Figure 2: Bifurcations in two parameter space. (A) The heatmaps from Fig 1C is overlayed with lines
indicating locations of bifurcationsin the determinsitic system as gAHP and gh are varied. The dashed red line
represents the location of a saddle node bifurcation. Dotted red lines show flip bifurcations that move the system
from a period n to a period n+1 orbit, for n > 1. The solid red line shows a flip bifurcation that moves the system
from tonic firing to period 2 firing, before transitioning into a period adding cascade. (B) The same bifurcations
are overlayed on the PC heatmap of Fig 1A to enable a visualisation of the behaviour of the stochastic system
relative to the bifurcations in the deterministic system.
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Figure 3: Transition from tonic firing to period 5 bursting. Each column represents a different parameter
values as gh is decreased. For all simulations, gAHP = 1.2 and all other parameters are those in Table 1. Numbers
shown at the top of each column are value of gh and maximum Lyapunov exponent on the map (MLEmap).
MLEmap > 0 represents chaos. For each parameter value, the top row demonstrates the flow in the (V, nh, nAHP)
subspace about the Poincaré section V = 0 (shaded in grey) and the bottom row is the Poincaré return map for
nh. For the chaotic regimes, the system was simulated for 30 seconds to reach the attractor and then a further
30 seconds of simulations are shown. From a tonic regime, as gh is decreased the system undergoes a flip cascade
into chaos before transitioning into a period 5 (bursting) orbit.
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Figure 4: Paths through parameter space that can result in reduced clustering obsvered in the
rTg4510 model of dementia (A) Heatmap of |PC − PC,WT |, where PC,WT = 0.69 is the mean value of
clustering seen in dorsal mEC-SCs in wild type animals [12]. Red indicates regions in which PC of the model
is close to PC,WT , whereas blue indicates regions where the model is farthest from PC,WT . (B) Heatmap
of |PC − PC,TG|, where PC,TG = 0.37 is the mean value of clustering seen in dorsal mEC-SCs in rTg4510
transgenic (i.e. dementia) animals [12]. (C) The heatmap of Fig 1A is overlayed with arrows indicating potential
paths through the (gAHP, gh) parameter space that could lead to the changes in PC obsvered in the rTg4510
experimental model. (D) The heatmap of Fig 1C is overlayed with arrows indicating potential paths through the
(gAHP, gh) parameter space that could lead to the changes in PC obsvered in the rTg4510 experimental model.
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Figure 5: Fast-slow analysis of deterministic bursting (A) Membrane potential (top) and slow variables
(mNaP, middle and hKas, bottom) through four cycles of bursting in the deterministic system. (B) Bifurcations
in the fast subsystem overlayed on the model trajectory in the (mNaP, hKas) plane. The red dashed line indicates
a subcritical Hopf bifurcation (SCH1), whereas the dotted red line indicates a homoclinic bifurcation (HC1).
The black dashed line shows the linear model that combines hKas and mNaP into a single slow variable, mslow.
(C) Bifurcation analysis of the fast subsystem of the model using mslow as a bifurcation parameter. A stable
equilibrium (solid black line) is shown to lose stability (dashed black line) via a subcritical Hopf bifurcation
(SCH2). The stable periodic orbit (solid green line) disappears in a homoclinic bifurcation (HC2). A region of
bistability exists (shaded region, zoomed in panel D). See text for a description of the remaning bifurcations.
(D) A close up of the bifurcations occuring in the region of bistability shown in grey in panel C. The blue line
indicates a trajectory of the full system through a single period of bursting, with arrows indicating the direction
of time. Dashed and dotted red lines correspond to the bifurcations of the fast subsytem introduced in panel B.
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Figure 6: Analysis of subthreshold oscillations (A) Spectrogram of exemplar 20 second subthreshold simu-
lations. (B) Power spectrum of 20s simulations (averaged over 10 cells). The shaded region shows standard error.
(C-E) Exemplar simulations with Iapp = 0.05µA·cm−2(C), 0.15µA·cm−2(D), and 0.25µA·cm−2(E). (F) Theta
spectral ratio, defined as the ratio of total theta power to total broadband (1-300 Hz) power, plotted as a function
of Iapp.
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