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Abstract Inspired by the use of fast singular limits in time-parallel numerical
methods for a single fast frequency, we consider the limiting, nonlinear dynamics
for a system of partial differential equations when two fast, distinct time scales are
present. First order slow equations are derived via the method of multiple time
scales when the two small parameters are related by a rational power. We find that
the resultant system depends only on the relationship of the two fast time-scales,
i.e. which fast time is fastest? Using the theory of cancellation of fast oscillations,
we show that with the appropriate assumptions on the nonlinear operator of the
full system, this reduced slow system is exactly that which the solution will con-
verge to if each asymptotic limit is considered sequentially. The same result is also
obtained via the method of renormalization. The specific example of the rotating,
stratified Boussinesq equations is explored in detail, indicating that the most com-
mon distinguished limit of this system – quasi-geostrophy, is not the only limiting
asymptotic system.

1 Introduction

The evolution of physical systems on disparate time scales is frequently observed
in many branches of the physical sciences including the dynamics of the atmo-
sphere and oceans that will serve as the main example in this paper [6,7]. Rapid
oscillatory components of these systems lead to significant numerical stiffness due
to severe restrictions on the time step required to maintain accuracy. This stiffness
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reduces the predictive capability of any mathematical model of the physical sys-
tem. One approach to overcoming these obstacles is the implementation of time
parallel numerical methods such as the parareal algorithm developed by Lions,
Maday and Turinici [25] (see [18,17] for a review of time-parallel methods). Quan-
tifying the numerical properties of time-parallel algorithms, especially when the
stiffness is due to oscillations, is a challenging task but recent numerical advances
motivated by the mathematics that underpin fast singular limits have successfully
designed time-parallel numerical schemes that have superlinear convergence in the
limit as the time-scale separation goes to infinity and when the linear operator
is skew-Hermitian [20]. This result relies on the fact that there is a single fast
frequency in the system even though many physical systems have more than one
(for example, rotation and buoyancy). Investigation of fast singular limits of PDEs
that have more than one fast frequency can then lead to more feasible numerical
implementations, particularly in terms of time-parallel methods.

The reason [20] could develop parallel speedup even for problems with oscil-
latory stiffness in the governing equations is because they made use of the math-
ematics underpinning separation of time scales from fast singular limits. That
is, rapid oscillations lead to a separation of temporal scales that yield asymptot-
ically derived reduced equations that govern the slow dynamics of the system.
These slow equations have the practical advantage of being more efficient to inte-
grate numerically. A geophysical example of this is the first successful numerical
weather forecast developed by Charney (see [7,8]). To remove the inherent stiffness
in weather prediction, [7] deduced the slow equations by comparing the magnitude
of terms in the full system via atmospheric weather data and omitting those terms
of significantly smaller relative magnitude. Since the remarkable success of Char-
ney’s quasi-geostrophic (QG) approximation, slow equations (sometimes QG, and
sometimes distinct from QG) have been derived in a variety of other ways (see
[30,4,9,13,14,21,32,37,22] for some examples). For more additional formal accu-
racy, corrections to the equations in the form of higher order expansions have been
proposed (see [26,42,29,39,40,32] for some examples as well as [22] where spatial
anisotropy is considered a factor as well).

Because the asymptotic reductions in this context are typically singular, the
path taken to the limiting system matters, i.e. taking two asymptotic limits con-
secutively is generically not commutative. Partially for this reason, we will focus
on asymptotically motivated reductions from a system that includes two fast time
scales (represented by two vanishing parameters δ and ε) but does not assume
equivalency of the fast scales (δ/ε ≈ O(1), as is done to derive QG). Although the
primary motivation for this derivation arises in fluid dynamics, it is presented in a
general formulation as the methodology is quite general. Other than adequate re-
strictions on the strength of the nonlinearity of the system, there are two primary
requirements: 1) the two fast time scales are dictated by skew-Hermitian linear
operators and 2) the spectrum of the fast operators is discrete, typically meaning
that the spatial domain of consideration is bounded. Such considerations are the
same as those relied on in [13,14] for geophysical applications.

We analyze the singular limit of two asymptotically limiting skew-Hermitian
operators which function on two distinct time scales. This is distinct from [12] and
[5] where two distinct fast time-scales are present, but the relation between the
scales is specified i.e. δ = ε2 below, effectively reducing the problem to a single
fast time scale. Further consideration of the low Mach number and compressible
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limits do consider multiple fast time scales [35]. [35] provides a clear overview of
the use of multi-scale asymptotics in such a setting, but also introduces additional
spatial scales which then provide a restriction on the domain of interest and/or
the initial conditions of the problem at hand. The current investigation considers
various scales in time only, eliminating restrictions/conditions on the domain but
also relying on the need to consider either the whole space or a periodic domain.
[16] looks into a limiting situation very similar to that presented here, but for
compressible fluids which requires a very different methodology based on relative
entropies rather than the use of energy estimates. From a fundamental perspective
the current result applies the method of multiple scales in a general setting to
situations where energy-type estimates are applicable and there are two fast scales
whose inter-relationship is unknown other than relative speed to each other.

The current investigation is of particular interest in a geophysical context when
considered in light of the result of [41] that indicates that QG dominates the solu-
tion for sufficiently long times for solutions of the hydrostatic primitive equations.
This relies on the fact that for this system (as in the case of the Boussinesq system
considered in [14,43]) and the corresponding asymptotic reduction, the influence
of the fast waves on the slow dynamics vanishes to O(1). We show that a simi-
lar condition holds for the reduced dynamics of the Boussinesq system when two
distinct fast time scales are considered.

Using the method of cancellation of oscillations (see [23,34]) we show that the
reduced systems obtained via multiple scales, are verifiably the limit of the full
system if the limits are taken sequentially. In other words, if δ � ε then the multiple
scales derivation leads to a reduced slow system that is rigorously given by taking
the limit δ → 0 first, and then letting ε → 0. In the context of the Boussinesq
system, the secondary limit (slower fast scale as given by ε in this example) only
affects spatially averaged quantities of the flow.

Though the PDE examples in this paper are from geophysical fluid dynamics,
the approach outlined in Section 2 is generally applicable to any system (ordinary
or partial differential equation) with two skew-Hermitian linear operators with a
discrete spectrum, and a quadratic nonlinear term (provided sufficient conditions
are placed on the strength of the nonlinearity, such as that discussed in [13]). As
mentioned previously, the asymptotic reductions performed here are of interest in
the context of time-parallel methods (see [15,2,20] and citations therein as well as
[1] where three distinct time scales motivate a particular time-stepping algorithm).

The next section contains the derivation of the limiting set of equations for a
generic system of differential equations (partial or ordinary) for which there are
two skew-Hermitian linear operators where the corresponding small parameters
are related as an integer power greater than 2. Section 3 extends this result to
include the more general case of all pairs of small parameters such that they
are related via a rational exponent. Section 4 considers this same problem in the
context of the methods of cancellation of oscillations (see [34] for the primary
motivation) and the renormalization group method, providing a brief summary of
the insights gained from each of the three approaches. Section 5 introduces the
rotating stratified Boussinesq equations and investigates the two possible limits of
rapid rotation dominating strong stratification and vice versa in the context of the
reduced dynamics derived in Section 2. We conclude with some brief discussion in
Section 6, and an Appendix detailing one of the more mundane calculations.
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2 Separation of three time-scales

We consider the system of equations governed by

∂u

∂t
+

1

δ
Lu +

1

ε
Ku + B(u,u) = Du (1)

where u = u(t,x) is a vector valued function of time (and possibly space), and the
linear operators L and K are skew-Hermitian. The nonlinearity of the equation is
contained in B(u,u), and is inherently quadratic (although extensions to higher
order polynomial nonlinearities are possible), and the dissipative operator D does
not directly affect the following, but is included for completeness. Boundary condi-
tions are important in all that follows, particularly in the sense that L and K must
have a discrete spectrum, but the precise specification of the boundary is omitted
for complete generality. The goal here is to consider the simultaneous singular
limits ε, δ → 0 in the case that δ � ε, i.e. both L and K create ‘fast’ oscillations,
but the motion induced by L is ‘faster’ than that induced by K. In this Section we
will assume that the small parameters ε and δ are related as δ = εp where p ∈ Z+

and p > 2. The extension of these results to the distinguishing cases of p = 2 and
for p rational are considered in the following Section.

We consider the formalism of multiple scale asymptotics in detail (see [13,14,
43]) and briefly discuss a similar derivation via the renormalization group method
(see [44,31]). The focus on the formalism of multiple scales is due to the simplicity
of the calculation that follows. Although the final result is the same via renor-
malization, the calculation is far more complicated, and only a specific example is
given in Section 4.

We consider the evolution of the solution u to (1) in a perturbative approach
in which three separate time scales, t, τ = t/ε, and α = t/δ are present. For ε� 1
(and correspondingly δ � 1) we enforce the ansatz

u(t,x) = u0 (t, τ, α,x) + εu1 (t, τ, α,x) +O
(
ε2
)
. (2)

This yields for the highest order O
(

1
εp
)

term:

∂u0

∂α
+ Lu0 = 0. (3)

which has solution

u0(t, τ, α,x) = e−αLû0(t, τ,x), (4)

where evaluation of e−αL is dependent on the boundary conditions and geometry
of the underlying problem and û0 is independent of α.

The next p− 2 terms (given by O
(

1
εq
)

for q = p− 1, p− 2, . . . 2) are

O
(

1
εp−1

)
: ∂u1

∂α + Lu1 = 0 ⇒ u1(t, τ, α,x) = e−αLû1(t, τ,x)

...
... (5)

O
(

1
ε2

)
:

∂up−2

∂α + Lup−2 = 0 ⇒ up−2(t, τ, α,x) = e−αLûp−2(t, τ,x)
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and the final two pertinent terms in the expansion are

O
(
1
ε

)
:

∂up−1

∂α
+ Lup−1 +

∂u0

∂τ
+Ku0 = 0 (6)

O (1) :
∂up
∂α

+ Lup +
∂u1

∂τ
+Ku1 +

∂u0

∂t
+ B(u0,u0)−Du0 = 0. (7)

Solving (6), and using (4) leads to

eαLup−1 = up−1|α=0 − α
∂û0

∂τ
−
(∫ α

0

esLKe−sLds
)
û0. (8)

Noting that the right hand side of the above (except the first term) clearly has
dependence on α, potentially leading to secular growth of up−1 we enforce the
following sufficient condition to eliminate secularity:

α
∂û0

∂τ
+

(∫ α

0

esLKe−sLds
)
û0 = 0, (9)

preferably for α as large as possible. With this in mind, we arrive at the following
statement to avoid secular growth of up−1:

∂û0

∂τ
= −

(
lim
α→∞

1

α

∫ α

0

esLKe−sLds
)
û0, (10)

which can be solved directly (where the details of these operators again depend
on the boundary conditions and geometry):

û0(t, τ,x) = e−τMu0(t,x) ⇒ u0(t, τ, α,x) = e−τLe−αMu0(t,x) (11)

where the linear operator M(α) is given by

M(α) =
1

α

∫ α

0

esLKe−sLds, (12)

and M = limα→∞M(α). Hence, returning to (8) we can write

up−1(t, τ, α,x) = e−αLûp−1(t, τ,x) + αe−αL
(
M−M(α)

)
e−τMu0(t,x). (13)

Although this appears to yield secular growth in α for up−1, in reality α
(
M−M(α)

)
=

O(1) and is bounded (as shown explicitly in Section 3.1). Hence in the limit of
complete separation of scales or ε → 0 this will not effect the slowly evolving
dynamics.

In a similar fashion we can solve for the α dependence of (7) as

eαLup = ûp − α
∂û1

∂τ
− αM(α)û1 −

(∫ α

0

esLe−τMe−sLds

)
∂u0

∂t
(14)

−
∫ α

0

esLB
(
e−τMe−sLu0, e

−τMe−sLu0

)
ds+

(∫ α

0

esLDe−τMe−sLds

)
u0,
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which, to avoid secularity in α (in the limit as α→∞), leads to the τ dependence
of u1 as

eτMû1 = u1 −N (τ)
∂u0

∂t

−
∫ τ

0

eβM
[

lim
α→∞

1

α

∫ α

0

eαLB
(
e−βMe−sLu0, e

−βMe−sLu0

)
ds

]
dβ(15)

+

(∫ τ

0

eβM
[

lim
α→∞

1

α

∫ α

0

esLDe−βMe−sLds

]
dβ

)
u0,

where

N (τ) = lim
α→∞

1

α

∫ τ

0

∫ α

0

(
eβMesLe−βMe−sL

)
dsdβ. (16)

Avoiding secular growth of û1 as τ →∞, and noting that since L andM commute
(when L and K both have a discrete spectrum, see Appendix A) then N (τ) = τ ,
leads to the slow O(1) evolution equation:

∂u0

∂t
= − lim

τ→∞
lim
α→∞

1

τα

∫ τ

0

∫ α

0

eβMesLB
(
e−βMe−sLu0, e

−βMe−sLu0

)
dsdβ+Du0,

(17)
where the linear dissipative operator D is defined

D = lim
τ→∞

lim
α→∞

1

τα

∫ τ

0

∫ α

0

eβMesLDe−βMe−sLdsdβ. (18)

The derivation of (17) does not rely on the exact value of p, only on which scale
is ‘fastest’ (which of δ and ε approaches zero the fastest), although as noted in the
next Section, the derivation is more complicated when p = 2, and for some rational
powers. This provides a generic result that yields a surprisingly simple formula for
the first order slow dynamics (see [14,43] for some other examples) that is more
widely applicable than the case δ = O(ε) (considered for the quasi-geostrophic
limit of the Boussinesq system [14]). Significantly, the ‘fast’ dynamics depends
more strongly on the fastest linear operator L, and only indirectly on the other
‘fast’ operator K. However, the O(1) dynamics as derived here are valid only up
to corrections whose magnitude is the order of the larger of the small parameters,
ε. In this sense, the ‘fastest’ operator dictates the behavior of the O(1) limiting
slow dynamics, but the slower of the fast operators dictates the accuracy of the
approximation.

3 Generic extensions from integer powers

The results of the previous Section yield a powerful description of the asymp-
totic behavior of the doubly singular limit described by (1). These results can be
extended further than assuming an integer power (greater than 2) relationship
between the small parameters ε and δ however. This derivation is depicted for ease
of presentation, and the next two subsections demonstrate some extensions of this
primary result to generalize the applicability of the reduced system in (17).
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3.1 Quadratically related small parameters

Suppose that p = 2 in the previous section. This indicates that the relevant equa-
tions in the expansion are (3) (here O

(
1
ε2

)
), and up−1 → u1 and up → u2 in

(6), (7). This indicates that the same secularity condition is applied to (6) (with
respect to α) to restrict secular growth of u1 in α, once again leading to (11). (13)
then holds for u1, and we can solve for the α dependence of u2 in (7) as (after
integrating by parts appropriately):

eαLu2 = û2 − α
∂û1

∂τ
− αM(α)û1 + α2

[
1

2
M2 −MM(α) +

1

2
M(α)2

]
e−τMu0

− αe−τM
∂u0

∂t
−
∫ α

0

esLB
(
e−τMe−sLu0, e

−τMe−sLu0

)
ds (19)

+

(∫ α

0

esLDe−sLds
)
e−τMu0.

In order to ensure there is no secular growth of u2 in α we force all of the terms
from the above involving u1 and u0 to vanish in the limit as α→∞. Conveniently
(and in concert with the ansatz used in this asymptotic expansion), all the terms
involving α2 above cancel as α→∞. To see this we rewrite the integral operator
M(α) as a truncated series about α =∞:

M(α) =M+
V(α)

α
(20)

where V(α) may oscillate very rapidly, but remains O(1) (bounded in fact) for all
α. With this substitution the nearly secular term in (19) is given by

α2

[
1

2
M2 −MM(α) +

1

2
M(α)2

]
=

1

2
V(α)2, (21)

which will be rapidly oscillatory for large α, but remains bounded.
Noting that this near secular term is in fact O(1) in α leads to the solution of u1

in terms of τ as given by (15), and eventually to the final solution of the O(1) ‘slow’
dynamics given by (17). Hence, as noted in the previous Section the O(1) slow
dynamics are not directly affected by this near secularity, but the following two
higher order terms in the expansion will have rapid oscillatory (non-convergent)
coupling with the O(1) slow dynamics.

3.2 Rationally related small parameters

Consider the case of δ = ε
p
q where p, q ∈ Z+, i.e. the two small parameters of (1)

are related by by a rational power. In this case we consider the transformation
ε→ εq so that (1) becomes

∂u

∂t
+

1

εp
Lu +

1

εq
Ku + B(u,u) = Du. (22)

Without loss of generality we assume that p > q+ 1 (the case of p = q+ 1 leads to
additional near secular terms akin to those discussed in the previous subsection,
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coupling the O(1) slow dynamics to the next q+ 1 terms in the expansion through
a rapidly non-convergent oscillatory function of α) so that once again L is the
dominant operator. We then consider the asymptotic expansion now with time
scales τ = t

εq and α = t
εp combined with

u(t,x) = u0(t, τ, α,x) + εquq(t, τ, α,x) +O
(
εq+1

)
. (23)

This leads to the same development as in the previous Section with the highest
order term indicating that (4) holds in this case, and (6) being replaced by

O

(
1

εq

)
:

∂up−q
∂α

+ Lup−q +
∂u0

∂τ
+Ku0 = 0, (24)

also implying that (11) is sufficient to avoid secular growth of up−q with α. (7) is
replaced by:

O (1) :
∂up
∂α

+ Lup +
∂uq
∂τ

+Kuq +
∂u0

∂t
+ B (u0,u0)−Du0 = 0, (25)

where avoidance of secular growth of up in α and uq in τ (the dependence of uq
on α is given by the O

(
1

εp−q

)
term) requires that (17) is satisfied.

This derivation is even more robust however, due to the density of rational
numbers on the real number line, we can extrapolate these results to include any
relation between the two small parameters. That is, as the two small parameters
vanish, if there is a functional relationship that holds as the limit is approached
then the slow O(1) equations are identical to those given in (17) where the only
important aspect of the functional relationship between ε and δ is that it is mono-
tonic.

4 Cancellation of oscillations and renormalization

The previous two Sections considered the effect of two rapid, ‘wave-generating’
linear operators using the formalism of multiple time scale asymptotics. In the
current Section we derive the same limiting system (with less attention paid to
detail), but here using the methods of cancellation of fast oscillation (see [3,23,34,
19]) and renormalization ([44,39,31,40]). Although the same result is achieved for
each of these approaches, the outline of each is included here to demonstrate the
insight gained via each method. We will first discuss the method of cancellation
of oscillations based primarily on the seminal paper by Schochet (see [34]), then
consider a particular case for the renormalization group method before briefly
highlighting the additional information each of these methods provides toward
understanding the underlying physical system.

4.1 Cancellation of rapid oscillations

As noted in [13], the method of multiple scales provides motivation for the theory
of cancellation of oscillations as established by [3,23,34,19]. Following [13] (see the
beginning of their Section 3), we assume the following for the system (1):
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– Let s > d
2 + 1 and Xs be a subset of Hs(T d) where T d is the d-dimensional

periodic space. Then solutions of (1) with initial data u0(x) ∈ Xs will also lie
in Xs for t ∈ [0, T ] for a T independent of ε and δ, and

max ‖u(x, t)‖s ≤ C(T, ‖u0(x)‖Hs) (26)

where the maximum is taken over the interval [0, T ] and for all ε and δ less
than unity.

– As already established, we are concerned with cases for which L and K are
skew-Hermitian with a discrete spectrum in which case their exponential is
norm preserving and has purely imaginary, discrete spectrum.

As noted in [13] these assumptions allow us to extend the theory of [34] to the
nonlinear system (1). We note here that as shown in [13] these assumptions hold
for the Boussinesq system considered in Section 5.

Of particular interest, we note that the first assumption is necessary to ad-
equately control terms arising as ‘small divisors’ or near resonances, i.e. for the
Boussinesq system explicitly considered in this work a spectral gap between the
slow and fast parts of the solution is violated for very high wave numbers. The first
assumption listed above indicates that such terms in a Galerkin type expansion
may be significant, but will always be bounded, i.e. infinitely small scales are not
possible, and hence the necessity of a spectral gap is lessened. The cost of this
assumption is that the coefficient in front of the higher order term may be quite
large (although remaining bounded) so that the error terms are no longer O(ε),
but o(ε) instead.

To see how the theory of cancellation of oscillations applies in this case, we
will briefly demonstrate how the methodology of [34] can be applied in this case.
In the current notation (and following that employed in [13]), and supposing that
δ � ε we consider first the change of variables

û(t, α,x) = e(α−
t
δ )Lu(t,x) (27)

where u(t,x) is the solution of (1) with appropriately prescribed initial data. Not

only are û and ∂û
∂t bounded, but as evidenced by [13] (and outlined carefully in

[34]), û satisfies

∂û

∂t
+

1

ε
Mû + lim

α→∞
1

α

∫ α

0

esLB
(
e−sLû, e−sLû

)
ds (28)

=

(
lim
α→∞

1

α

∫ α

0

esLDe−sLds
)
û,

in the limit δ → 0.
Now we recall from the previous derivation that M is also skew-Hermitian. If

the same assumptions described above hold for the nonlinearity in (28) (such is
verifiably the case for the Boussinesq system) then we can again apply the same
argument. Allowing the change of variables this time given by

u(t, τ, α,x) = e(τ−
t
ε )Mû(t, α,x), (29)

we see that u satisfies (17) in the limit ε→ 0, implying that the full solution can
rigorously be shown to satisfy

u(t, x) = e−
t
εMe−

t
δLu(t,x) + o(1), (30)

where o(1) is referring to corrective terms of both O(ε) and O(δ).
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4.2 Renormalization group method

We now derive the reduced system (17) from the renormalization method (cf. [10]
, [11], and [28]); our approach closely follows that in [44]. For simplicity, we neglect
the dissipative operator D and consider the case δ = ε1/2, so that

∂u

∂t
+

1

ε
Lu +

1√
ε
Ku + B (u,u) = 0. (31)

Although the derivation is significantly longer than that obtained via multiple
scales, no a priori assumption is needed on the form of time scale separation. We
include a sketch of the derivation as the final result is the same as that achieved
above via multiple scales.

We first put the system (31) into standard form with the change of variables,
u (t) = e−τLû (τ), where τ = t/ε. Then û satisfies the equation

∂û

∂τ
+ εF (û, τ) +

√
εM (τ) û = 0, (32)

where M (τ) = eτLKe−τL and

F (v, τ) = eτLB
(
e−τLv, e−τLv

)
.

Following [44], we first consider the ordinary perturbation expansion (i.e., no
multiple scales),

û (τ) = û0 (τ) +
√
εû1 (τ) + εû2 (τ) + . . .

Then by substituting the above expansion into (32), we match powers of ε and
solve for û0, û1, and û2. In particular, define the linear operators

M = lim
T→∞

1

T

∫ T

0

M (s) ds,

M (s) =M+ ∂sM (s),

and

M0 (τ) =
1

2

(
M (τ)2 −M (0)2

)
+
(
M (0)M (τ)−M (0)2

)
.

Also, define the nonlinear operators

F (û0 (τ)) = lim
T→∞

1

T

∫ T

0

F (û0 (τ) , s) ds, (33)

and
M1 (û0, τ) =M0 (τ) û0 +

(
F (û0, τ)−F (û0, 0)

)
v0.

Then a straightforward (but tedious) calculation shows that, neglecting terms of

order O
(
ε3/2

)
,

û (τ) = û0 −
√
ε
(
τMû0 +

(
M (τ)−M (0)

)
û0

)
−ε
(

1

2
τ2M2

û0 + τMM (τ)û0 − τMM (0)û0 + τF (û0) +M1 (û0, τ) û0

)
.
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Note that terms in the above asymptotic approximation grow in τ . In particular,
the ε1/2 terms are O (1) when τ ∼ ε−1/2 so that the approximation is no longer
valid.

In order to obtain an asymptotic approximation that is valid on a longer time

scale of 0 ≤ τ ≤ O
(
ε−1/2

)
, we remove the secular terms (i.e. those that grow in τ)

via renormalization. To do so, we assume that there is a slowly varying function
v (τ) such that v (0) = û0. We then rewrite (32) in terms of v, and choose v so
that the secular terms are removed. More specifically, we use the Taylor expansion
of v (τ) about τ = 0,

v0 = v (τ − τ) = v (τ)− τ dv
dτ

(τ) +
τ2

2

d2v

dτ2
(τ) + . . . (34)

Then assuming that v (τ) satisfies

dv

dτ
(τ) +

√
εW1 (v) + εW2 (v) = 0, (35)

we use (34) and (35) in equation (32) to obtain

û (τ) = v + τ
√
εW1 (v)− ε τ

2

2

δW1

δv
(v)W1 (v) + ετW2 (v)(36)

−
√
ε
(
τMv + τ2

√
εMW1 (v) +

(
M (τ)−M (0)

)
v +

(
M (τ)−M (0)

)
τ
√
εW1 (v)

)
−ε
(

1

2
τ2M2

v + τM
(
M (τ)−M (0)

)
v + τF (v) +M1 (v, τ) v

)
+ . . .

In order to eliminate the secular term at order
√
ε we require that

W1 (v) =Mv.

It then follows that the secular terms in (36) at order ε are

−τ
2

2
M2

v + τ2M2
v +

(
M (τ)−M (0)

)
τMv

−1

2
τ2M2

v − τM
(
M (τ)−M (0)

)
v − τF (v) + τW2 (v)

= −τF (v) + τW2 (v) .

We finally have that

W2 (v) = F (v).

In total,
dv

dτ
(τ) +

√
εMv + εF (v) = 0. (37)

The same renormalization procedure can again be applied to equation (37), in
order to obtain a reduced equation that is independent of ε. The result will be
the same averaged equation (17) obtained via multiple scales. In particular, let

α =
√
ετ and w (τ) = e−αMv (α), and rewrite (37) as

dw

dα
= ε1/2G (w, α) ,
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where

G (w, α) = eαMF
(
e−αMw

)
.

Going through the same procedure as above, we see that

w (α) = z (α) +O (ε) ,

where z satisfies

dz

dα
= ε1/2 lim

T2→∞

1

T2

∫ T2

0

G (z (α) , r) dr (38)

= ε1/2 lim
T2→∞

1

T2

∫ T1

0

(
lim

T1→∞

1

T1

∫ T1

0

erMesLB
(
e−sLe−rMz (α) , e−sLe−rMz (α)

)
dsdr

)
.

In the last equality, we used (33). Finally, defining u (t) = z (s), and using that

t = ετ =
√
εs and e−sLe−rM = e−rMe−sL, (from the commutativity of L and M

as shown in the Appendix) we find that

u (t) = e−τLv (τ) +O (ε) (39)

= e−τLe−αMw (α) +O (ε)

= e−(t/ε)Le−(t/
√
ε)Mu (t) +O (ε) ,

where u (t) satisfies the system (17).

4.3 Cautionary tales of asymptotic generalizations

While the method of cancellation of oscillations provides rigorous results for the
asymptotics, in this case it is less clear when that rigor can be applied. Explicitly,
as demonstrated above the limiting system for the slow dynamics in (17) is valid
if the two different limits can be taken independently. It is clear then that the
multiple scale calculation carried out in Sections 2 and 3 is equivalent to deriving
the asymptotic system for the fastest time scale first, and then performing a similar
asymptotic derivation on the next ‘fastest’ time scale. What is remarkable is that
as noted in Section 2 (and supported by the renormalization calculation above,
although such is demonstrated only for the quadratic relation), the multiple scales
calculation indicates that such a reduced system describes the evolution of the
flow on the O(1) ‘slow manifold’ even when the small parameters are related via a
power law. However, this result is not supported directly by the rigorous theory of
the cancellation of oscillations which demands that the two limits remain distinct.
The cancellation of oscillations as outlined here relies on the smallest parameter δ
completely vanishing before considering the limit ε → 0, while the derivation for
multiple scales assumes that δ, ε→ 0 simultaneously.

This sequential application of the asymptotic limits must be considered with
caution as it is not generically the case thatM is equivalent to the projection of K
onto the L slow manifold. On the contrary, if we consider the notation developed
in [14], and using the skew-Hermitian property of L, then we can write the O(1)
solution as

u0 = ûS0 + e−αLûF0 (40)
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where ûS0 lies in the null space of L. The projection of K onto the L slow manifold
would be achieved by restricting u0 to ûS0 and neglecting the influence of the α-fast
part of the solution. In contrast the linear operator M as defined above allows for
the interaction of the L-fast waves with the K-slow parts of the flow. Symbolically
if we let PL be the projection operator onto the null space of L then we may state
that Mu0 6= PLKPLu0 unless Pu0 = u0. In essence then, there is a distinctive
difference between projecting the solution onto the slow manifold defined by a
single fast variable, and one defined by multiple ones.

There is no clear extension of the theory developed by [34] to the case of two
fast, functionally related time scales. For example, if there is a quadratic relation
between δ and ε and the naive change of variables

u(t, τ, α,x) = e(τ−
t
ε )Me(α−

t
ε2

)Lu(t,x) (41)

is assumed, one cannot even establish that ∂u
∂t is bounded, let alone prove a double

averaging lemma akin to Lemma 2.2 in [34]. Hence, although the multiple scales
calculation indicates that the reduced system (17) is valid for all small parameters
related via a power relation, such an assertion should be taken with caution until
a more rigorous statement can be made.

The multiple scales calculation by itself indicates that the final result is not as
robust as would be desired. In the first place, as mentioned in Section 2 the error
to the O(1) system described by (17) and (11) is on the order of the larger of the
two small parameters, indicating that the accuracy of the asymptotics is dictated
by the slowest of the two fast time-scales. In addition, as noted particularly in
Section 3 and observed in the renormalization calculation above, even though the
small parameters are assumed to be functionally related via a power law, the
potentially secular terms are not removed from the calculation without assuming
complete separation of scales, i.e. ε→ 0 or δ → 0. In summary the slow dynamics
governed by (17) may not be as widely applicable as the single limit asymptotics.
Even so, the primary takeaway from the present derivation is that the dual limit
ε→ 0, ε

δ = O(1) is not the only possibility when two fast time scales are present.

5 The rotating, stratified Boussinesq system

5.1 Overview of the full system

As a specific example of the derivation provided above we will consider the non-
dimensional rotating, stratified Boussinesq equations (see [14,43]):

∂v

∂t
+ v · ∇v +

1

Ro
ẑ × v + ∇∆−1

(
1

Ro
ẑ · ω − 1

Fr

∂ρ

∂z
−∇ · (v · ∇v)

)
+

1

Fr
ẑρ(42)

=
1

Re
∆v

∇ · v = 0 (43)

∂ρ

∂t
+ v · ∇ρ =

1

RePr
∆ρ− 1

Fr
w. (44)
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In order to achieve the format of (1) the pressure was eliminated via the incom-
pressibility constraint. Thus, allowing u = (v, ρ)T , ε = Ro, δ = Fr and

Lu =

(
ẑρ−∇∆−1

(
∂ρ
∂z

)
−w

)
Ku =

(
ẑ × v +∇∆−1ω

0

)
(45)

B(u,u) =

(
v · ∇v −∇∆−1 (∇ · (v · ∇v))

v · ∇ρ

)
Du =

(
1

Re
∆v

1

RePr
∆ρ

)
, (46)

we see that the derivation provided in the earlier Sections can be applied directly
to this system. The velocity field v = (u, v, w)T and density variable ρ are the
prognostic variables, with ω = ∇ × v being the vorticity, and ẑ referring to the
vertical unit vector. The non-dimensional numbers of the system are the Rossby
number Ro measuring the strength of the effective rotation, the Froude number Fr
measuring the strength of the stratification, the Reynold’s number Re measuring
the relative strength of the flow to the viscous dissipation, and the Prandtl number
Pr that measures the relative strength of the viscous dissipation to the thermal
diffusivity.

Before considering the relative effects of taking Fr → 0 (strong stratification)
and Ro → 0 (rapid rotation) we note that the separate limits of these two cases

as well as the case of both parameters vanishing with Ro
Fr

= O(1) are considered

in detail in [14,43]. Following their lead, we will consider a triply periodic ge-
ometry on the unit cube [0, 1]3. For completeness and reference for the following
derivation, we first recall the Fourier representation (of value in this triply peri-
odic space) of each of the linear operators, and their eigen-decomposition. Details
for each case are given in [14,43]. In addition we include information relative to
the projection operator onto the null space of each of these linear operators. This
is used to determine an explicit set of equations for the slow limiting dynamics,
and represents the operator that takes the full solution to the O(1) effective slow
dynamics (ignoring the effect of the fast waves).

5.2 Decomposition of the rotation operator

In the limit of rapid rotation as discussed in [43], it is necessary to explicitly eval-
uate the null space of the ‘fast’ operator K. This leads to the projection operator
PK onto this space, given as eqn. (3.17) in [43] and repeated here for completeness:

PKu =

 〈vH〉z −∇H∆−1
H (∇H · 〈vH〉z)
〈w〉z
ρ

 (47)

where 〈·〉z denotes the vertical average over the domain, and the ·H indicates the
horizontal component only, i.e. ∆H = ∂xx + ∂yy and vH = (u, v)T . This indicates
that in the limit of rapid rotation (and weak stratification) that the slow dynamics
are governed by 2D Navier-Stokes coupled to a two-scalar interaction between
density and vertically averaged vertical velocity (see [43]).
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In terms of the Fourier modes uk(x) = eık·xrk the rotating linear operator
can be expressed as

K(k) =
1

|k|2


−kl −(l2 +m2) 0 0

k2 +m2 kl 0 0
−lm km 0 0

0 0 0 0

 , K(0) =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (48)

where k = (k, l,m)T is the three-dimensional wave-number and on a wave-number
by wave-number basis the action of K on uk(x) can be calculated as

Kuk(x) = eık·xK(k)rk. (49)

The eigen-decomposition of K provides insight into the effective nature of the
slow and fast components of the flow. There are four imaginary eigenvalues given
by λKk = ıωK,βk where ωK,±1

k = ± m
|k| corresponds to the fast inertial modes, and

ωK,0k = 0 corresponds to the slow modes of the system. For |kH | 6= 0 this leads to
the following eigenvectors

rK,±1
k =

1√
2|kH ||k|


∓l|k| ± ıkm
±k|k| ± ılm
−ı|kH |2

0

 , rK,0k =


0
0
0
1

 (50)

where the fourth eigenvector violates the incompressibility condition (vk · k = 0
in Fourier space). This eigenvector can be neglected, as incompressibility reduces
the dimension of the system by one (the presentation via a 4 × 4 system is for
pedagogical purposes). When |kH | = 0 we have

rK,±1
k =

1√
2


1
∓ı
0
0

 , rK,0k =


0
0
0
1

 , r̃K,0k =


0
0
1
0

 (51)

where r̃K,0k is valid only when |k| = 0, and the eigenvalues for the fast modes are

now dictated by ωK,±1
k = ±1.

5.3 Decomposition of the stratification operator

As outlined in [14] the projection onto the null space of L is given by

PLu =

 vH −∇H∆−1
H (∇H · vH)
0
〈ρ〉H

 (52)

where 〈·〉H here corresponds to the horizontal average. As indicated in [14] and
explored through numerical experiments (see [24,27,36,37,33]) this implies that in
the limit of strong stratification and weak rotation the flow qualitatively develops
into pancake-like structures with little to no influence from the vertical velocity,
but significant vertical shear in the horizontal components of momentum.
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In Fourier space, the linear stratification operator is

L(k) =


0 0 0 − km

|k|2

0 0 0 − lm
|k|2

0 0 0 1− m2

|k|2
0 0 −1 0

 , L(0) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 (53)

with purely imaginary eigenvalues for the fast waves with frequency ωL,±1
k =

∓ |kH ||k| , and slow ωL,0 = 0 which for |kH | 6= 0 has corresponding eigenvectors

rL,±1
k =

1√
2


∓ı km
|kH ||k|

∓ı lm
|kH ||k|

±ı |kH ||k|
1

 , rL,0k =
ı

|kH |


−l
k

0
0

 . (54)

When |kH | = 0 all of the eigenvalues are zero, and for m 6= 0 the corresponding
eigenvectors are

rL,±1
k =

1√
2


±ı
1
0
0

 , rL,0k =


0
0
0
1

 (55)

and when |k| = 0, ωL,±1
0 = ∓1 and

rL,±1
0 =

1√
2


0
0
∓ı
1

 , rL,00 =


1
0
0
0

 , r̃L,00 =


0
1
0
0

 . (56)

5.4 Rapid rotation dominating strong stratification in the Boussinesq system

We will first consider the situation when the rotation is asymptotically stronger
than the asymptotically strong stratification. The opposite situation is considered
in Section 5.5. First, we compute the rotationally averaged stratification operator
M for this case as well as the resultant slow system by projecting onto the null
space of both K and M. We then demonstrate that in this limit, just as in the
rapidly rotating weakly stratified (see [43]) limit, there is no fast-fast-slow wave
interaction.

5.4.1 The stratification operator averaged on a rapidly rotating time scale and the

resultant slow equations

We first explicitly compute M (here the roles of K and L as defined in (45) are
reversed). To illustrate how this is done, we expand the dependent variables in
terms of the eigenfunctions of the fastest operator K

u =
∑
γ,k

σK,γk (t)eık·xrK,γk , (57)
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where the rK,γk are given in Section 5.2. Following [13,14,43] we note that

esK
(
eık·xrK,γk

)
= eısω

K,γ
k eık·xrK,γk . (58)

Noting that any vector x can be written as

x =
∑
γ,k

〈x, rK,γk 〉rK,γk (59)

where 〈·, ·〉 is the appropriate inner product, we recognize that Mx can be deter-
mined by computing MrK,γk for each eigenvector rK,γk of K.

In order to proceed we compute the action of M on each of the eigenvectors
of K on a case by case basis.

1. |kH | 6= 0. In this case the eigenvectors are given by (50) and we have the
following

LrK,±1
k =

ı|kH |√
2|k|


0
0
0
1

 =
ı|kH |√

2|k|
rK,0k , (60)

⇒ esKLe−sK
(
eık·xrK,±1

k

)
=

ı|kH |√
2|k|

e
−ı m
|k|

s
eık·xrK,0k

⇒M
(
eık·xrK,±1

)
= 0.

LrK,0k =
1

|k|2


km

lm

|kH |2
0


=

ı|kH |√
2|k|

(
m2 − |kH |2

|k|2 rK,1k − rK,−1
k

)
⇒ esKLe−sK

(
eık·xrK,0k

)
=

ı|kH |√
2|k|

eık·x
(
m2 − |kH |2

|k|2 e
ı m
|k|

s
rK,1k − e

−ı m
|k|

s
rK,−1
k

)
⇒M

(
eık·xr0K,k

)
= 0,

indicating thatM will only affect the horizontally averaged components of the
flow.

2. |kH | = 0, but m 6= 0. Here we refer to (51) for the definition of the eigenvectors,
and note that

LrK,±1
k = 0 ⇒ MrK,±k = 0, (61)

LrK,0k = 0 ⇒ MrK,0k = 0, (62)

so thatM only acts on the complete spatial average of the dependent variables.
3. |k| = 0. Again, we refer to (51) to see that

LrK,±1
0 = 0 ⇒ MrK,±1

0 = 0, (63)

LrK,00 = r̃K,00 ⇒ M
(
eık·xrK,0k

)
= r̃K,00 , (64)

Lr̃K,00 = −rK,00 ⇒ M
(
eık·xr̃K.0k

)
= −rK,00 . (65)
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Putting this all together we see that we can write the linear operatorM in the
case that rotation is the faster operator, as

Mu = eık·x
∑
γ,k

〈u, rK,γk 〉MrK,γk = 〈u, rK,00 〉r̃K,00 − 〈u, r̃K,00 〉rK,00 (66)

which, in real space becomes

Mu =

 0
〈ρ〉
−〈w〉

 , (67)

where 〈·〉 refers to the global spatial average. We can also readily compute the
projection operator onto the null space of this operator as

PMu =

 vH
w − 〈w〉
ρ− 〈ρ〉

 . (68)

We observe that this indicates that M reduces to L in the mean, i.e. M acts as
the null operator for all |k| 6= 0, and as L when |k| = 0.

The separation of the two fast time scales indicates that the O(1) slow system
can be found by projecting the flow onto the null space of K and then onto the null
space of M. The evolution equation for this component of the flow is obtained by
projecting the nonlinear and dissipative operators sequentially onto the null spaces
of K and then M. The dissipation for the Boussinesq equations is trivial as D is
a diagonal, linear operator, and hence is not affected by either K or M. We note
that these projections are not equivalent to projecting the full evolution equation
onto the null space of K and then applying another separation of scales argument.
For rotation dominating stratification, the evolution of the flow is given by:

∂vSH
∂t

+ vSH · ∇v
S
H −∇H∆

−1
H

(
∇ ·
(
vSH · ∇v

S
H

))
=

1

Re
∆HvSH , (69)

∇H · vSH = 0, (70)

∂w

∂t
+ vSH · ∇Hw

S =
1

Re
∆Hw

S , (71)

∂ρS

∂t
+ vS · ∇ρS =

1

Re Pr
∆ρS , (72)

where vS = (vSH , w
S)T and

vSH = 〈v〉z , (73)

wS = 〈w〉z − 〈w〉, (74)

ρS = ρ− 〈ρ〉. (75)

Thus, on the slow manifold the system obeys the two-dimensional Navier-Stokes
equations with two semi-active scalars that depend on the full three-dimensional
fluid velocity. This is identical to the case of rapid rotation with weak stratification
(see [43]) except that the buoyancy and vertical velocity variables have mean zero,
and are nearly decoupled.



Two fast time scales in the Boussinesq equations 19

5.4.2 Interactions between the fast and slow components of the flow

Following the notation introduced in [14,43] we consider the decomposition of the
flow as given by (57) where again the eigenvector expansion is taken from the
fastest operator K. Inserting this into the slow O(1) equation (17) (again recalling
that in this case L and K have reversed roles) we can after averaging over the 2
fast times, determine the evolution of each of the Fourier modes.

This done by first considering the effect of the nonlinear term B on the eigen-
vector decomposition of the flow:

B
(
e−βMe−sKu, e−βMe−sKu

)
(76)

= B
(
e−βM

[∑
k 6=0,γ σ

K,γ
k (t)e−ısω

K,γ
k rK,γk +

∑
γ σ
K,γ
0 (t)e−ısω

K,γ
0 rK,γ0

]
,

e−βM
[∑

k 6=0,γ σ
K,γ
k (t)e−ısω

K,γ
k rK,γk +

∑
γ σ
K,γ
0 (t)e−ısω

K,γ
0 rK,γ0

])
.

In order to proceed we first note that as shown above, for all k 6= 0 then M = 0

and hence e−βM = I. In addition, as shown above, when k = 0 then M = L so
that we may compute the following:

rK,±1
0 =

1√
2

[
rL,00 ∓ ır̃L,00

]
⇒ e−βMrK,±1

0 =
1√
2

[
rL,00 ∓ ır̃L,00

]
= rK,±1

0 ,

rK,00 =
1√
2

[
rL,10 + rL,−1

0

]
⇒ e−βMrK,00 =

1√
2

[
e−ıβrL,10 + eıβrL,−1

0

]
=

1

2

[
e−ıβ

(
ır̃K,00 + rK,00

)
+ eıβ

(
−ır̃K,00 + rK,00

)]
= sin(β)r̃K,00 + cos(β)rK,00 ,

r̃K,00 =
1√
2

[
ırL,10 − ırL,−1

0

]
⇒ e−βMr̃K,00 =

ı√
2

[
e−ıβrL,10 − eıβrL,−1

0

]
= cos(β)r̃K,00 + sin(β)rK,00 .

It follows that we can simplify the expansion in B even more by noting that

e−βM

 ∑
k 6=0,γ

σK,γk (t)e−ısω
K,γ
k rK,γk +

∑
γ

σK,γ0 (t)e−ısω
K,γ
0 rK,γ0

 (77)

=
∑

{k 6=0}∪{γ 6=0}

σK,γk (t)e−ısω
K,γ
k rK,γk + σK,00 (t)

[
sin(β)r̃K,00 + cos(β)rK,00

]
+σ̃K,00 (t)

[
cos(β)r̃K,00 + sin(β)rK,00

]
,
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which implies that the fast components of the flow can not influence the slow,

i.e. since the operation e−βM does not affect any of the eigenvectors for γ 6= 0
then the impact of fast-fast waves onto slow reduces to that already computed in
[43] where it was already shown (see Appendix B of [43]) that these interaction
coefficients vanish identically. Thus, just as in the case of a single limit such as
those studied in [13,14,43], to O(1) the fast waves cannot effect the evolution of
the slow manifold.

5.5 Strong stratification dominating rapid rotation

Now we will investigate the limit of asymptotically strong stratification that is
asymptotically stronger than the asymptotically rapid rotation. In this case we
can directly apply the theory of Section 2 as the two linear operators have the
appropriate label. We will expand the solution u as in (57) except in this Section,

rL,γk are the eigenvectors of the fastest operator L as given in Section 5.3. The
details are omitted in this case, as the calculations, while tedious, are straightfor-
ward and similar to the case considered above. We see that the linear operatorM
can be interpreted as:

Mu = eık·x
∑
γ,k

〈u, rγk〉Mrγk (78)

= eımz
[
ı〈u, r1m〉r1m − ı〈u, r−1

m 〉r−1
m

]
+ 〈u, r00〉r̃00 + 〈u, r̃00〉r00,

which can be rewritten as

Mu =


−〈v〉 − 〈v〉H
〈u〉+ 〈u〉H

0
0

 , (79)

where as before 〈·〉 indicates the complete spatial average, and now 〈·〉H indicates
the horizontal spatial average. Thus, M reduces to K on the horizontal and total
mean (|k| = 0 or |kH | = 0) but vanishes otherwise (|kH | 6= 0) indicating that the
effect of asymptotically stronger stratification is to reduce the rotation to affect
only the horizontal and total spatial average of the horizontal velocity.

This leads to the projection onto the null space of M as

PMu =

 vH − 〈vH〉 − 〈vH〉H
0
0

 . (80)

Coupled with the action of L as the fastest linear operator, this leads to the
evolution of the O(1) slow dynamics:

∂vSH
∂t

+ vSH · ∇HvSH +∇H∆−1
H ∇H ·

(
vSH · ∇HvSH

)
=

1

Re
∆vSH (81)

∇H · vSH = 0 (82)

∂ρS

∂t
=

1

Re Pr

∂2ρS

∂z2
(83)
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where

vSH = vH − 〈vH〉 − 〈vH〉H . (84)

The computation of the fast wave-slow dynamics interaction coefficients is more
complicated in this case due to the action of M on the horizontal as well as the
total mean, but the final result is the same, there are no fast-fast-slow interactions
meaning once again that to first order the fast waves cannot influence the evolution
of the slow manifold.

6 Conclusions and Discussion

Using three different asymptotic methods, we have presented the derivation of a
limiting system when there are two distinct fast temporal scales driven by skew-
Hermitian linear operators with a discrete spectrum. The method of multiple scales
indicates that the resultant O(1) slow dynamics are dependent only on which scale
is dominant, not on the actual relationship between the two small parameters. The
specific example of the rotating, stratified Boussinesq equations indicates that the
effect of the second fastest time scale is only seen in an averaged sense (either
averaging across the entire domain or horizontally). As indicated by the theory
of fast wave averaging (see Section 4) we have also shown explicitly that for the
Boussinesq system there are no interactions between the two types of fast waves
and the slow dynamics in the limiting system (up to O(1) only).

The results presented in this paper have implications for designing the type
of multi-scale parallel-in-time extended algorithm addressed by [20] because the
current findings give mathematical insight for constructing a general parallel-in-
time coarse propagator where there is more than one frequency involved in creating
the low frequency dynamics. In particular, (17) shows that construction of the
frequency averaged nonlinear term, crucial for proving convergence of the parallel-
in-time algorithm in citeHaWi2013, includes two time averages, rather than one.
We also describe the construction of a generalized averaged linear propagator given
by (11) and (12) that is essential to the algorithm.

Finally, we discuss the limitations of our main results. That is, the applicabil-
ity of the mathematical results may be questioned with regard to the effect of the
next order terms in the asymptotic expansion, and as described in Section 4 the
application of the rigorous theory of cancellation of oscillations does not generalize
to the same level as the multiple scales calculation indicates. However, the absence
of a fast-fast-slow wave interaction for each of these limiting systems in the Boussi-
nesq equations does indicate some level of robustness to the result, regardless of
the restrictions on the methodology and potential relationship between the two
relevant small parameters. In essence, while it may be true that the reduced sys-
tem derived here is valid only in a limited parameter regime due to the restrictions
already described, it is almost certainly the case that the dynamics of the system
in the presence of two fast, but distinctively different time scales is different from
that when the two scales are equivalent. For the Boussinesq equations the rub of
the matter is that quasi-geostrophy is not the only possible reduced system when
the rotation and stratification are both strong, validating the computational in-
vestigations of [38] wherein it was observed that the concentration of energy is
fundamentally different for Burger numbers distinct from unity.
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A Commutation of the pertinent linear operators

To make the fast-wave averaging equation computable and useful, we demonstrate explic-
itly that the linear operators L and M commute, where M(α) is defined as (12) and M =
limα→∞M(α). First, suppose that the countable orthonormal eigenvectors of L are given by
rk with corresponding eigenvalues λk. Then for any vector x

x =
∑
k

〈x, rk〉rk ⇒ Lx =
∑
k

λk〈x, rk〉rk (85)

where as in the main body, 〈·, ·〉 denotes the appropriate inner product. Further, the matrix
exponential applied to x becomes

esLx =
∑
k

〈x, rk〉esλkrk ⇒ esLKe−sLx =
∑
k

〈x, rk〉
∑
j

〈Krk, rj〉rjes(λj−λk). (86)

Hence we see that

LM(α)x = L
(

1

α

∫ α

0
esLKe−sLds

)
x (87)

=
∑
k,j

λj〈x, rk〉〈Krk, rj〉rj
(

1

α

∫ α

0
es(λj−λk)ds

)
(88)

whereas

M(α)Lx =
∑
k

〈x, rk〉λkM(α)rk (89)

=
∑
k,j

λk〈x, rk〉〈Krk, rj〉rj
(

1

α

∫ α

0
es(λj−λk)ds

)
. (90)

Note the subtle difference between (88) and (90), the sum is over a different eigenvalue: λj for
(88) and λk for (90). This implies that L and M(α) do not commute, however if we consider
the limit of α → ∞ then note that because L is skew-Hermitian (implying all of the λk are
pure imaginary or vanishing) then

lim
α→∞

1

α

∫ α

0
es(λj−λk)ds =

{
1 if λk = λj
0 if λk 6= λj

. (91)

It follows directly that MLx = LMx, and hence the long time limiting linear operator M
does commute with L.
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