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Abstract. Fenichel’s geometric singular perturbation theory and the
blowup method have been very successful in describing and explaining
global non-linear phenomena in systems with multiple time-scales, such
as relaxation oscillations and canards. Recently, the blowup method has
been extended to systems with flat, unbounded slow manifolds that
lose normal hyperbolicity at infinity. Here, we show that transition
between discrete and periodic movement captured by the Jirsa-Kelso
excitator is a new example of such phenomena. We, first, derive equa-
tions of the Jirsa-Kelso excitator with explicit time scale separation
and demonstrate existence of canards in the systems. Then, we com-
bine the slow-fast analysis, blowup method and projection onto the the
Poincaré sphere to understand the return mechanism of the periodic
orbits in the singular case, ε = 0.

1 Introduction

The Jirsa-Kelso excitator model is a class of excitable planar systems proposed as a
minimal model to describe generation of rhythmic and discrete human movement [7].
The model predictions concerning mechanism of discrete movement generation have
been tested in a number of empirical studies [3, 6].

The model of a single oscillator is given as a system of two ODEs (Eq. (12) in [7]):

du

dt
= v(t),

dv

dt
= (1− u(t)2)Tv(t)− u(t)− b(v(t)

T
− u(t) +

1

3
u(t)3) + a+ I(t)).

(1)
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Model (1) has mixed time-scales. To separate them we, first, rearrange the second
ODE, factor out −Tv(t) and substitute the time constant T = 1/

√
ε, obtaining,

du

dt
= v(t),

dv

dt
=− b

3
u(t)3 + (b− 1)u(t) + a+ I(t)−

(
u(t)2 − 1 + bε

) v(t)√
ε
.

(2)

In (1) and (2), u(t) is interpreted as a position and v(t) as a velocity of the movement,
a and b are intrinsic model parameters, T and ε are a time scale constants and I(t)
is an external stimulus input (in the rest of the paper we consider the autonomous
systems, i.e. I = 0). Then, the mixed time-scales of the system (2) can be separated
by rescaling the time t and the variable v, respectively:

(t/
√
ε, u, v/

√
ε)→ (τ, x, y). (3)

The resulting system, with explicitly separated time-scales,

x′ = εy,

y′ =− b

3
x3 + (b− 1)x+ a−

(
x2 − 1 + εb

)
y,

(4)

has the classical fast representation, x′ = εf(x, y, ε), y′ = g(x, y, ε), where (·)′ = d
dτ

denotes differentiation with respect to the fast time τ [9, 10]. In the rest of the paper
we refer to (4) as the Jirsa-Kelso excitator (JKE).

The modelling approach introduced in [7] is motivated by excitable systems with
time scale separation. In fact, transformation given in [7],

x =x,

y =

(
z + x− x3

3

)/
ε,

(5)

allows to transform the JKE (4) into the seminal example of such a system, the
FitzHugh-Nagumo model (FHN) (with I = 0, z → −z and a→ −a)[4, 14, 15],

x′ =x− x3

3
+ z,

z′ = ε (a− x− bz) .
(6)

Figure 1 illustrates the transformation (5) between the FHN (6) and the JKE (4)

models. Figure 1(a) shows the hypersurfaceH = {(x, y, z) ∈ R3 : y =
(
z + x− x3

3

)/
ε}

together with projection of the common x-nullcline of the JKE (4) and the FHN (6)
(blue curve) and y-nullcline of the JKE (4) (red curve). Additionally, it shows two
representative periodic orbits (dark, a ≈ 0.78978455, and light, a ≈ 0.78978433, grey
curves). Figure 1(b)-(d) demonstrates the invariance of the x variable, and the dif-
ference in time-courses of variables y and z; the time-series correspond to the two
periodic orbits in Fig.1(a). Although, the variable x is invariant under the transfor-
mation (5), it has different physical interpretations in the two models. In the JKE
(4) x describes position and hence allows to interpret the variable y as velocity, while
in the FHN (6) x has been commonly interpreted as a the membrane potential of a
neuronal cell, while y represents a recovery variable associated with a slow dynamics
(usually attributed to ion channels’ gating) that controls the generation of action
potentials [4].
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(a) (b)

The Jirsa-Kelso excitator(c) (d)

The FitzHugh-Nagumo model

Fig. 1: Shared dynamics of the JKE and the FHN models. a) hypersurface H with
periodic orbits and nullclines; blue, x-nullcline of the JKE and FHN; red y-nullcline
of the JKE. b),c) and d) time series of the variables z,x and y, respectively. In
all panels: light grey, big periodic orbit (a ≈ 0.78978433); dark grey, small periodic
orbit (a ≈ 0.78978455); dashed black asymptotes of the y-nullcline; red dot unstable
equilibrium.

Since the transformation (5) is homeomorphism (for ε > 0) the intrinsic dynamics
of the JKE (4) and FHN (6) systems are equivalent for ε > 0 [7]. The equivalence
between the FHN (6) and the JKE (4) means that the existing results related to the
dynamics of the FHN model, e.g. existence of canard orbits or relaxation oscillations
[14, 15], can be extended to the JKE model. However, the singularity in (5) for
ε = 0 implies that global mechanism responsible for the canard cycles and relaxation
oscillations in the JKE is different than the one in the FHN; i.e. the two systems have
different critical manifolds. In the rest of the paper we present a detailed study of the
critical manifold C0 of the uncoupled JKE model.

2 Critical manifold C0 of the Jirsa-Kelso excitator model

As in the case of the FHN model the relaxation oscillations in the JKE appear through
canard explosion, a rapid growth of periodic orbits’ amplitude that happens in an
exponentially small range of the control parameter [10]. However, in contrast to the
FHN model, in the JKE the canard explosion is organised by a non-generic branching
point at the y-nullcline [12], rather than by a fold point [5, 10]. Figure 2 depicts canard
explosion in JKE model. Figure 2(a) shows the bifurcation diagram in the parameter
a and Fig. 2(b) shows the (x, y)-phase portrait, in both panels b = 0.3 and ε = 0.05.
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(a) (b)

Fig. 2: Bifurcation diagram and corresponding phase portrait with periodic orbits for
a ∈ (aH , 0.795) of the JKE model. a) black solid indicates stable branch of equilibria;
black dashed indicates unstable branch of equilibria; black star indicates the Hopf
point; grey indicates the max and min values of the variable y along the periodic
orbits. b) thin grey periodic orbits for a ∈ (aH , 0.795); blue x-nullcline and red y-
nullcline of the JKE model (4).

The periodic solutions appear at a Hopf bifurcation for,

aH =
√

1− εb
(

1− 2

3
b− εb

2

3

)
,

for which the x-coordinate is given as xH =
√

1− εb; the methodology of computa-
tions of aH and xH can be found for example in [1]. The bifurcation diagram and the
phase portrait in Fig. 2 have been computed using AUTO continuation software [2].

We, now, focus on analysing the dynamics of the JKE system (4) in the singular
limit ε = 0, to this end we follow [1, 10]. Setting ε = 0 in the fast system (4) defines
the layer problem of the JKE system:

x′ =0,

y′ =

(
− b

3
x3 + (b− 1)x+ a

)
−
(
x2 − 1

)
.

(7)

Since x′ = 0, we consider (7) as a one dimensional system with flow in the y-direction
parametrised by the values of x. In other words, each value of x defines flow (7) along
1D invariant manifold (layer) in the xy-plane. The critical manifold of the JKE is
given by the set of equilibria of the layer problem (7),

C0 =

{
(x, y) ∈ R2 : y =

(
− b

3x
3 + (b− 1)x+ a

)
(x2 − 1)

}
. (8)

The curve C0 has three branches separated by two vertical asymptotes at x = ±1.
Note that, the critical manifold C0 is the ε→ 0 limit of the y-nullcline of JKE system
(4), which has asymptotes at x = ∓

√
1− εb. The stability of the equilibria that form

C0 can be determined from the sign of the eigenvalue λ = 1−x2 of the layer problem
(7). For x ∈ (−∞,−1)∪ (1,∞) the equilibria are stable, and for x ∈ (−1, 1) they are
unstable, for x = ±1 λ = 0 and C0 is non-hyperbolic. Similarly to the FHN model
the fast subsystem of (7) is tangent to the to the C0 at x = ±1, however, in the case
of JKE the tangency occurs at the infinity.
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At the singular Hopf bifurcation, aH0
= aH(ε = 0) = 1 − 2b/3, the middle and

right parts of the critical manifold connect via a non-generic branching point [12] at
(x, y) = (1,−1/2) and the critical manifold takes the form:

C0 =

{
(x, y) ∈ R2 : y = −b x

3
− aH0

(x+ 1)
or x = 1

}
. (9)

Note that, for x = ±1 the stationary solutions of (7) are given as y(t;x) = (∓(1 −
2b/3) + a)t+ const., meaning that, for a = aH0 , there is no vertical flow on the x = 1
layer.

To analyse the flow on the critical manifold C0, we rescale (4) by changing the
fast time τ to the slow time ts = ετ ,

ẋ =y,

εẏ =− b

3
x3 + (b− 1)x+ a−

(
x2 − 1 + εb

)
y.

(10)

In this way we obtain the so-called slow or reduced system: ẋ = f(x, y, ε), εẏ =

g(x, y, ε), where ˙(·) = d
dts

denotes differentiation with respect to the slow time ts.

Setting ε = 0 and eliminating y from the differential equation (10), results in a one
dimensional system

ẋ = C0. (11)

For 0 < b < 1 and −1 < a < 1, equation (10) has only one equilibrium, which
corresponds to the equilibrium of the JKE. The equilibrium is stable for a > aH0 and
unstable for a < aH0

; b ∈ (0, 1). The layer problem and flow on the critical manifold
are illustrated in Fig. 3. For a = aH0

, at the singular Hopf bifurcation, there is no
flow along, x = 1, branch of the critical manifold. On the other branch of the critical
manifold, the flow is from x = ∞ to x = −1. The two branches intersect at the
non-generic branching point, C0(x = 1) = −1/2. The flow through this point can be
studied formally by blowing up the y-axis to the cylinder x̄2 + ε̄2 = 1 using cylindrical
blow-up transformation [9].

3 Global flow of the Jirsa-Keslo excitator model

In this section, we investigate the global behaviour of the layer and reduced problems
of the JKE model (4). To this end, we represent the JKE (4) on the Poincaré sphere
using the following transformation of variables,

X =
x√

1 + x2 + y2
, Y =

y√
1 + x2 + y2

, Z =
1√

1 + x2 + y2
. (12)

Transformation (12) defines a one-to-one correspondence between the points (x, y) in
the plane and the points (X,Y, Z) on one of the hemisphere (we consider Z ≥ 0); it
follows that x = X/Z and y = Y/Z. The advantage of using the Poincaré sphere is
that the critical points at infinity are spread out along its equator, Z = 0, X2+Y 2 = 1.

Following [13] (Theorem 1 in Chapter 3.10), the equilibria and flow of the projected
system on the equator, Z = 0, can be determined using following equation,

G(X,Y ) = X Q∗(X,Y, 0)− Y P∗(X,Y, 0) = −X3

(
b

3
X + Y

)
, (13)



6 Will be inserted by the editor

(a) (c)(b)

Fig. 3: The layer problem and flow on the critical manifold of the JKE model; ε = 0,
b = 0.3 and: a) a = 0.81, b) a = aH0 = 0.8 and c) a = 0.79. Red the critical manifold
C0 (thick attractive branch, thin repelling branch and dotted zero vertical flow); blue
the x-nullcline; black the layers of the fast subsystem; single arrow indicates slow flow
and double arrow indicates the fast flow; red dot unstable node; blue dot stable node.
Critical manifold has asymptotes at x = ±1. In b) the two branches of the critical
manifold intersect at the non-generic branching point (red cross) at (x, y) = (1,−1/2).

where,

P∗(X,Y, Z) = Z3 P (X/Z, Y/Z) = εY Z2

Q∗(X,Y, Z) = Z3Q(X/Z, Y/Z)

= −X2

(
b

3
X + Y

)
+ Z2 [(b− 1)X + (1− εb)Y ] + aZ3,

(14)

and,
P (x, y) = εy,

Q(x, y) =

(
− b

3
x3 + (b− 1)x+ a

)
−
(
x2 − 1 + εb

)
y,

(15)

is the JKE system (4); see [13] for details of derivation.
Solving Eq. (13) on the equator, G(X,Y ) = 0, X2+Y 2 = 1, yields the four critical

points
X = 0, Y = ±1;

X = ± 3√
9 + b2

, Y = ∓ b√
9 + b2

,

where the flow between these critical points is determined by the sign of (13). For
a < aH0

the two points X = 0 are unstable nodes, and the two for X 6= 0 are
saddles. In the singular case for a = aH0

and ε = 0 the two points at X = 0 change
from unstable nodes to non-hyperbolic nodes; the two nodes (0,±1) provide return
mechanism for the unbounded segments of the singular canards. The flow of the JKE
system on the Poincaré hemisphere for Z ≥ 0 (projected orthogonally on (X,Y )-
plane) is shown in Fig. 4.

To understand the return mechanism at the points (0,±1, 0) for ε = 0, we project
the flow on a plane tangent to the sphere at these points (X,±1, Z), and then we blow-
up the non-hyperbolic nodes. We first observe that in the tangent plane, the flow in
the neighbourhood of the non-hyperbolic nodes (0,±1, 0) is radial. Specifically, from
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(b)

(d)(c)

(a)

Fig. 4: The global phase portraits of the JKE system (4). a) phase space for ε > 0;
b) phase flow of the layer and reduced problems for ε = 0. c) and d) projections of
the phase space shown in a, and b, respectively, onto the upper Poincré hemisphere
(Z ≥ 0). Red indicates y-nullcline in a, and c and the critical manifold C0 in b, and d
(thick attracting branch, thin repelling branch and dotted for zero vertical flow); blue
the x-nullcline; light gray big and dark gray small canard cycles for ε > 0 or a singular
canard orbits for ε = 0; thin black layers of the layer problem; single arrow slow flow
on the critical manifold C0 and double arrow fast flow; black dashed asymptotes of
the critical manifold C0; thick black the equator of the Poincaré sphere; red dot
unstable node; black dot saddle; black and white dot non-hyperbolic node; red cross
non-generic branching point.

[13] (Theorem 2 in chapter 3.10) we can deduce that in the neighbourhood of (0,±1, 0)
the behaviour of the JKE model is equivalent to the behaviour of a system given by,

±X ′ = −XQ∗(X,±1, Z) + P∗(X,±1, Z),

±Z ′ = −ZQ∗(X,±1, Z)
(16)

with respective sign determined by the flow on the equator. Since ε = 0 P∗ = 0,
hence the system (16) is a separable equation dZ/dX = Z/X with solution Z = CX
for C ∈ R, meaning that in the neighbourhood of (0,±1, 0) the flow has only radial
direction.

To further investigate the dynamics near the projected nodes (0,±1, 0), and to
understand how they can be attracting and repelling at the same time we use polar
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blow-up transformation [11].

Φ : (X,Z)→ (r cos(θ), r sin(θ)) (17)

for (θ, r) ∈ [0, 2π)× [0, r0] for r0 > 0. Transformation (17) replaces the non-hyperbolic
equilibrium (X,Z) = (0, 0) with a unit circle S1 × {r = 0}.

Changing X ′, Z ′, (16), to radial variables and solving for r′ and θ′ gives the set
of the differential equations of the blown-up system,

r′ = cos(θ)X ′ + sin(θ)Z ′

rθ′ = − sin(θ)X ′ + cos(θ)Z ′
(18)

Using (16), with ε = 0, we obtain,

r′ = cos(θ) [−XQ∗(X, 1, Z)] + sin(θ) [−ZQ∗(X, 1, Z)] ,

r θ′ = − sin(θ) [−XQ∗(X, 1, Z)] + cos(θ) [−ZQ∗(X, 1, Z)] ,
(19)

which simplifies to,
r′ = σ(θ)r3 − µ(θ)r4,

θ′ = 0,
(20)

with,
σ(θ) = cos2(θ)− sin2(θ),

µ(θ) =− b

3
cos3(θ) + (b− 1) cos(θ) sin2(θ) + aH0

sin3(θ).

Finally, by rescaling time ts 7→ r2 ts we obtain a set of equations that describes the
dynamics of the layer problem in the neighbourhood of the (X,Z) = (0, 0),

r′ = r(σ(θ)− µ(θ)r),

θ′ = 0.
(21)

Figure 5 illustrates the extended critical manifold near infinity. Figure 5(a)-(b) shows
qualitative phase portraits of the layer problem of the JKE model projected on the
XZ-plane near the equilibrium (X,Y, Z) = (0, 1, 0) and Fig. 5(c)-(d) illustrates the
dynamic near the blown-up circle in X̄Z̄-plane.

The layer problem at infinity (21) is parametrised by θ, and has three branches
of equilibria: B1 = {(θ, r) : θ ∈ [0, π), r = 0}, B2 = {(θ, r) : θ = π/4, r ≥ 0} and B3 =
{(θ, r) : θ ∈ [3π/4, π), r = σ(θ)/µ(θ)}, given by the solutions of σ(θ)/µ(θ) ≥ 0; see
Fig. 5(c). The branch B1 is the blown-up node at infinity (black and white circle in
Fig. 5(a)) and can be interpreted as an additional part of the critical manifold C0.
Branch B2 corresponds to the line of no vertical flow (dotted line in Figs. 3-5) and
branch B3 corresponds to the projected critical manifold C0. Branch B1 intersects
with branch B2 at θ = π/4 (red cross in Fig. 5(c)) and with branch B3 at θ = 3π/4
(red square in Fig. 5(c)).

Stability of the equilibria along the branch B1 is determined by the eigenvalue
λ = σ(θ), they are radially attracting for θ ∈ (π/4, 3π/4), and radially repelling for
θ ∈ (0, π/4)∪ (3π/4, π). Stability of the equilibria along the branch B3 is determined
by the eigenvalue λ = σ(θ)− 2µ(θ)(σ(θ)/µ(θ)) = −σ(θ), they are radially attracting
for θ ∈ (3π/4, π). There is no radial flow along the B2 branch.

Branch B1 changes stability at the points of intersection with branches B2 and
B3. Orthogonal intersection with the branch B2, (r, θ) = (0, π/4) (red cross in
Fig. 5(c)), is a non-generic branching point that is of the same nature as the point
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(a) (b)

(d)

B1

B2

B3

(c)

B1

B2B3

Fig. 5: The projection and blowup of dynamics of the JKE system near the equilibrium
at infinity for a = aH0

, b = 0.3 and ε = 0. a) and b) the flow projected on (X, 1, Z)
and (X,−1, Z), respectively. c) and d) dynamics near the blown-up circle for (0, 1, 0)
and (0,−1, 0), respectively. Color coding as in Fig. 4.

(x, y) = (1,−1/2). Branches B1 and B3 intersect and exchange stability in a tran-
scritical bifurcation at (r, θ) = (0, 3π/4) (red square in Fig. 5(c)). The intersection
of branches B1 and B2 can be analysed formally by means of the cylindrical blowup
transformation [8], while the intersection of branches B1 and B3 can be analysed
formally by the classical techniques described in [9].

To complete the analysis of the critical manifold, we determine the direction of the
flow of the reduced problem along the branch B1. To this end we again use Theorem
2 from chapter 3.10 of [13] and blowup method. Since, for the singular case ε = 0, the
flow is defined only on the critical manifold, equations (15) for the reduced problem
of the JKE model simplify to P (x, y) = y and Q(x, y) = 0. Hence, the system (16)
for the reduced problem is given by,

Ẋ = P∗(X, 1, Z) = Z3 P (X/Z, 1/Z) = Z2,

Ż = 0.
(22)

After polar blow-up Φ (17), and rescaling time t 7→ rt, the flow along the branch B1

can be determined from the system,

ṙ = cos(θ) sin2(θ)r,

θ̇ = − sin3(θ).
(23)
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Therefore, the reduced problem at infinity has two non-hyperbolic nodes on the blown-
up circle, the branch B1, (r, θ) = (0, 0) and (r, θ) = (0, π) and the flow between the
two nodes is clockwise.

The behaviour near the node (0,−1, 0) can be analysed in the same way as the
node (0, 1, 0), compare Fig. 5(b) and (d). After projection on the tangent plane and
polar blow-up. The layer problem is given as,

r′ = r(σ(θ) + µ(θ)r),

θ′ = 0,
(24)

while the dynamics on the blown-up circle is described by,

ṙ = − cos(θ) sin2(θ)r,

θ̇ = sin3(θ).
(25)

The layer problem at infinity (24) has again three branches of equilibria.
B1 = {(θ, r) : θ ∈ [0, π), r = 0}, B2 = {(θ, r) : θ = π/4, r ≥ 0} and B3 = {(θ, r) :
θ ∈ [0, 3π/4), r = −σ(θ)/µ(θ)}, given by solutions of −σ(θ)/µ(θ) ≥ 0, see Fig. 5(d).
Branches B1 and B2, have the same stability and interpretation as the equivalent
branches near the (0, 1, 0) node. Branch B3 again corresponds to the projected critical
manifold and has the same eigenvalue λ = −σ(θ), but near the node (0,−1, 0) it is
defined over θ ∈ [0, 3π/4] rather than θ ∈ [3π/4, π) and hence is radially repelling.
Branches B1 and B3 exchange stability at point (r, θ) = (0, 3π/4) in a transcritical
bifurcation (red square in Fig. 5(d)). The reduced problem at infinity (25) has two
non-hyperbolic nodes on the blown-up circle, (r, θ) = (0, 0) and (r, θ) = (0, π). The
flow of the slow subsystem between the two nodes is counterclockwise.

4 Conclusion

In the paper we presented a detailed analysis of the mechanism that leads to appear-
ance of relaxation oscillations in the Jirsa-Kelso excitator. We, first, demonstrated ex-
istence of canards in the the Jirsa-Kelso excitator and showed that they are organised
by a non-generic branching point at the y-nullcline of the system. We, then, combined
projection onto the the Poincaré sphere, the slow-fast analysis and blowup method
to investigate the return mechanism of the periodic orbits in the singular case, ε = 0.
The analysis revealed that the return mechanism is organised by two non-hyperbolic
nodes at infinity, for which hyperbolicity can be recovered with a polar blowup trans-
formation. The blown-up flow at infinity showed the the singular canard cycles can
indeed be represented as concatenation of orbits, respecting the direction of time,
of the layer and reduced problems. Overall, presented analysis shows that although
the Jirsa-Kelso excitator can be transformed into the FitzHugh-Nagumo model via
a homeomorphic transformation (for ε > 0), the two models have different critical
manifolds (for ε = 0) and different mechanisms of the global transitions.

From the point of view applications, presented analysis shows that the slow-fast
nature of the transition between discrete and rhythmic movements described by the
JKE can be analysed and understood, not only in the abstract phase space of the
FHN, but also in the experimentally relevant phase-space of position and velocity.
Our study, further, describes an additional scenario, besides changes in parameters a
and b, for the transition between discrete and rhythmic movements. In this scenario,
the transition is controlled by the time scale parameter ε. For small values of ε � 1
the relaxation oscillations have a very long period and can be viewed as two almost
steady states connected by fast transitions between them; note that the results of
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stimulus applied to such oscillations would be very similar to the perturbations of the
bi-stable regime of the JKE, for frequency of the stimulus higher than the frequency
of the oscillations. As the ε increases the oscillations become more sinusoidal and can
be viewed as a rhythmic movement. Transformation between equations (2) and (4)
suggest that experimentally the time scale parameter ε could be related to changes in
range of admitted velocities v. Further empirical studies would be required to validate
these observations in relevant movement tasks.
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