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Abstract 
The age profile of populations fundamentally affects their conservation status. Yet 

age is frequently difficult to assess in wild animals. Here, we assessed the use of 

DNA methylation of homologous genes to establish the age structure of a rare and 

elusive wild mammal: the Bechstein’s bat (Myotis bechsteinii). We collected 62 wing 

punches from individuals whose ages were known as a result of a long-term banding 

study. DNA methylation was measured at seven CpG sites from three genes which 

have previously shown age-associated changes in humans and laboratory mice. All 

CpG sites from the tested genes showed a significant relationship between DNA 

methylation and age, both individually and in combination (multiple linear regression 

R2=0.58, p<0.001). Despite slight approximation around estimates, the approach is 

sufficiently precise to place animals into practically useful age cohorts. This method 

is of considerable practical benefit as it can reliably age individual bats. It is also 

much faster than traditional capture-mark-recapture techniques, with the potential to 

collect information on the age structure of an entire colony from a single sampling 

session to better inform conservation actions for Bechstein’s bats. By identifying 

three genes where DNA methylation correlates with age across distantly related 

species, this study also suggests that the technique can potentially be applied across 

a wide range of mammals. 
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Introduction 
Information on the age of individuals in wildlife populations is essential to establish 

the structure of populations (Dunshea et al., 2011; Oli & Dobson, 2003). Such 

information can help predict the impact of habitat, climate change or hunting 

pressure on population viability estimates (Botsford, Holland, Samhouri, White, & 

Hastings, 2011; Sand et al., 2012; Tella, Rojas, Carrete, & Hiraldo, 2013). However, 

estimating age through marking (e.g. using tags and rings) and recapture can be 

challenging and can have negative impacts on animal welfare (Nelson, 2002). In 

addition, recaptures throughout the lifetime of the animals are required to gather the 

necessary information, making the process time-consuming and difficult to execute 

for rare species (Brunet-Rossini, Wilkinson, Kunz, & Parsons, 2009). Non-invasive 

approaches to age wildlife, such as the unique identification of individuals via 

markings (e.g. cetaceans, tigers) (Mizroch, Beard, & Lynde, 1990; Speed, Meekan, 

& Bradshaw, 2007), are suitable only for a limited number of species. Molecular tools 

for producing reliable age estimates have, by contrast, received little attention. Most 

research has focused on understanding the biological process of ageing, for 

example through studies of telomere shortening (e.g.Turbill, Ruf, Smith, & Bieber, 

2013), rather than on the development of routinely applicable techniques to estimate 

chronological age. 

The biological process of ageing combines both programmed and environmental 

processes (Jung & Pfeifer, 2015; Petkovich et al., 2017). The presence or absence 

of methyl groups at the C5 position of cytosines followed by guanines (‘CpG sites’) 

has an important role in the control of gene expression; as changes in levels of 

methylation at CpG sites are associated with alterations in gene transcription rates 

(Hannum et al., 2013; Horvath, 2013). The availability of multiple loci where DNA 
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methylation is linearly associated with age and the possibility of using multiple 

tissues (e.g. blood, skin) means that DNA methylation assessment is now a powerful 

tool employed in human forensic science (e.g. Bekaert, Kamalandua, Zapico, Van de 

Voorde, & Decorte, 2015; Goel, Karir, & Garg, 2017; Horvath, 2013; Zbieć-Piekarska 

et al., 2015). The measure of DNA hypo- and hypermethylation of specific sites has 

been used as an age predictor on humans (Homo sapiens) (Christensen et al., 2009; 

Grönniger et al., 2010; Horvath, 2013) and mice (Mus musculus) (Maegawa et al., 

2010; Stubbs et al., 2017). However, this approach had not been attempted for the 

purpose of studying wild animals until Polanowski, Robbins, Chandler, and Jarman 

(2014) developed an age assay for humpback whales (Megaptera novaengliae) by 

measuring DNA methylation from three CpG sites from different genes. Their results 

were far more accurate than previously developed techniques using telomere length 

(Dennis, 2006; Olsen, Bérubé, Robbins, & Palsbøll, 2012; Olsen, Robbins, Bérubé, 

Rew, & Palsbøll, 2014). 

Bats live substantially longer than other mammals of similar size and metabolic rate 

(Wilkinson & South, 2002). Certain species, such as Brandt’s bat (Myotis brandtii), 

have been recorded surviving in the wild for over four decades (Gaisler, Hanák, 

Hanzal, & Jarský, 2003). The long lifespan of bats is thought to have evolved from a 

lower risk of extrinsic mortality due to the evolution of flight along with the use of 

roosting and hibernation sites (Munshi-South & Wilkinson, 2010). Age estimates of 

bat populations are particularly important for their conservation, because their long 

lifespan often results in a delayed response to recent changes in their habitat. Up 

until now, such estimates depended solely on long-term ringing studies (Gaisler et 

al., 2003; Wilkinson & South, 2002). Whilst a variety of additional methods give some 

indication of whether an animal is a juvenile, such as analysing linear growth of 
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bones (Kunz & Hood, 2000), epiphyseal-diaphyseal fusion (De Paz, 1986), chin 

spots (Richardson, 1994), body mass and pelage coloration (Cheng & Lee, 2002), 

these are helpful for only the first few months of life. For adult bats, tooth wear and 

incremental dentin may give an indication of age (Batulevicius, Pauziene, & Pauza, 

2001; Storz, Bhat, & Kunz, 2000) but examination is invasive and the results are 

imprecise, so the methods are not widely adopted. 

In this study, we examined the potential of measuring DNA methylation to age a rare 

woodland bat, M. bechsteinii. To test our method we used a population where the 

ages of all bats were known from a long-term banding study. Our finding of genes in 

which the level of methylation relates to age opens the possibility of using molecular 

approaches to deliver estimates of age in bats.  

Materials and methods 

Sample collection 

Wing tissue samples were collected from M. bechsteinii using 3 mm wing biopsy 

punches (Stiefel Laboratories, Wooburn Green, UK) and stored in absolute ethanol 

at -4°C. Genomic DNA was extracted from the biopsy punches with the DNeasy 

blood & tissue kit (Qiagen) and samples were eluted in 120 μl of buffer AE. We used 

60 female samples collected from Brackett’s Coppice (Dorset; 50.860456, -

2.6918909), a maternal colony monitored since 1999. We also included two juveniles 

which were found dead in bat boxes. Biopsy punches were stored in ethanol after 

being found and were included in the study as DNA methylation is chemically stable 

and can be measured on ancient DNA (Briggs et al., 2009; Llamas et al., 2012). No 

male samples were collected as they tend to lead solitary lives and are very rarely 

observed after they are weaned, while females maintain tight social bonds 
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throughout their lives (Kerth & König, 1999). The bats included in this study 

represent an even distribution of ages ranging from 0 to 14 years old. Eight 

droppings were also collected from individuals of known age from the same colony 

and DNA was extracted using a QIAmp DNA Stool Mini Kit (QIAGEN) following the 

protocol recommended by Puechmaille, Mathy, and Petit (2007). 

PCR and pyrosequencing 

Genes with age-related epigenetic changes in humans, mice and humpback whales 

were identified through literature searches (Supplementary 1). Candidate 5’ 

regulatory region sequences were taken from GenBank and used as queries for 

BLASTN (Altschul, Gish, Miller, Myers, & Lipman, 1990) searches of Chiroptera 

sequences in GenBank and BLAT searches of the Little brown bat (Myotis lucifugus) 

genome (Cunningham et al., 2014). Primer sequences were then matched to the 

Bechstein’s bat genome which was sequenced using 100 bp paired end sequencing 

on an Illumina HiSeq 2500 (EBI access N°: PRJEB23351). 

PCR and pyrosequencing assays were designed using the PyroMark Assay design 

software (Qiagen, Hilden, Germany). The target sequences analysed comprised 

CpG sites in genes known to undergo age-related epigenetic changes in other 

species (Koch et al., 2011; Polanowski et al., 2014; Weidner et al., 2014). Template 

preparation and pyrosequencing was carried out as described by Tost and Gut 

(2007). Genomic DNA was treated with sodium bisulfite using the EZ-96 DNA 

Methylation-Gold Kit (Zymo Research, CA, USA) according to the manufacturer’s 

standard protocol. Samples were then incubated twice for 5 minutes in 15 μl and 10 

μl of M-Elution buffer to form a final solution of 25 μl. Water negative controls were 

run to verify the absence of DNA contamination. Bisulfite-PCR amplification was 
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performed using the primers in Table 1. Water controls were included to confirm the 

absence of DNA contamination, and unmodified DNA samples from wing punches 

were included during primer optimisation to confirm primer specificity for bisulfite-

modified DNA. 

Amplification reactions consisted of 3 μl of 5x HOT FIREPol® Blend Master Mix, 0.75 

μl each (0.075 μM) of forward and reverse primers, 1 μl of bisulfite converted 

template DNA and 9.5 μl of RNase-free water. PCR conditions were 15 min at 95 °C 

followed by 40 cycles of 30 s at 95 °C, 30 s at 56 °C and 30 s at 72 °C and a final 

extension step of 10 min at 72 °C. Before pyrosequencing, all samples were diluted 

in 15 μl of water. Pyrosequencing was performed on a PYROMARK 24 

Pyrosequencing System (Qiagen). The PYROMARK Q24 software gave percentage 

methylation values for each CpG site and we used eight duplicates to test for 

pyrosequencing precision. 

Data analysis 
All statistical analysis was undertaken using R studio (RCoreTeam, 2016; RStudio, 

2012). All CpG sites reported in this study have previously been shown to undergo 

linear age-associated methylation changes (Supplementary 1). Therefore, we 

maintained a linear analysis throughout the study and assumed any non-linearity as 

an artefact of sample size. The differences in percentage methylation between bats 

of varying ages was initially explored using univariate linear regression in 

methylation percentages for each CpG site separately. All individuals with missing 

data were omitted from the analysis. All CpG sites showing a significant relationship 

with age were considered for developing the multiple linear regression and we 

included the interactions between sites from the same gene as neighbouring CpG 

sites tend to be highly correlated in terms of methylation. This model was then used 
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as an epigenetic age assay for M. bechsteinii. The predicted age of each bat was 

plotted against their known age to test the consistency of the model. In addition, we 

assessed the practical utility of the assay in classifying individuals into three 

meaningful age cohorts linked to the species reproductive status (Fleischer, Gampe, 

Scheuerlein, & Kerth, 2017); young bats with low fertility (0-3 years); mature bats 

with high fertility (4-8 years); and old bats with decreasing fertility (>=9 years) as 

these can provide valuable information on population viability (Mallet, Zouros, 

Gartner-Kepkay, Freeman, & Dickie, 1985). The predictive power in achieving the 

correct classification was assessed by calculating kappa values using CIA 2.0.0 

(Trevor Bryant, University of Southampton, Southampton, UK) where values close to 

1 indicate a good predictive power. 

We assessed the precision of the age estimate assay by performing a Leave One 

Out Cross Validation (LOOCV) analysis as performed by Polanowski et al. (2014) 

Here, the multiple linear regression was tested by using all wing samples but one (N-

1) to estimate the individuals age; the predicted age was then plotted against the 

known age of the individual. 

Results 
From the 13 sequences, each identified from different genes containing CpG sites 

known to undergo age-associated CpG methylation changes in other species 

(Supplementary 1), we successfully designed assays and amplified the regulatory 

region of three genes for M. bechsteinii (TET2, GRIA2, and ASPA; Table 1). Seven 

CpG sites from these genes were included in the final model to estimate age. Of the 

62 wing samples 58 successfully amplified for all three assays. The four individuals 
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with incomplete data were excluded from further analysis to avoid instability in the 

regression models due to missing data. 

All seven CpG sites tested in this study showed a significant relationship with the 

age of M. bechsteinii (Fig. 1). For sites from the TET2 and GRIA2 genes, increasing 

age was associated with increased methylation, whereas the reverse was true for 

ASPA (Fig. 1g). The average difference in percentage methylation between 

duplicates was 3.9 and did not affect the results of the multiple linear regression 

model (Supplementary 2). The multiple linear regression included all CpG sites, 

whilst taking into account interactions between sites from the same gene. This full 

model explained 58% of age variation (R2 = 0.576, p<0.001) and the overall 

precision of the predictions was 2.08 years by calculating the root mean-square error 

(Fig. 2). Our model slightly overestimated the age of young bats whilst 

underestimating the older individuals. However, the split of our data in three 

categorical age groups (Fig. 2b) showed that the developed age prediction model 

could effectively differentiate all age classes with very little overlap (one-way Anova: 

F = 39.6, p<0.001) and a kappa value of 0.646 (0.467-0.824) which indicates a good 

level of prediction for practical purposes. 

The leave-one-out cross validation analysis (LOOCV) was performed to provide an 

unbiased estimate of the accuracy of the Bechstein’s bat age estimates. The overall 

precision of the LOOCV was estimated at 1.52 years by calculating the standard 

deviation of the mean difference between known and estimated ages (Fig. 3). 

Methylation levels of the eight droppings tested fell outside the range of the 

epigenetics age assay which was designed for wing punches. Methylation values in 

droppings appeared to vary more between individuals than wing punches (TET2 (A) 

for droppings ranged from 1 to 96% compared to 29 to 71% for wing punches). 
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Discussion 
This is the first epigenetic age assay developed for monitoring bats, a taxon which 

forms a third of all mammalian species, and only the third designed for use on a wild 

species after humpback whales (Polanowski et al., 2014) and wolves (Canis lupus) 

(Thompson, vonHoldt, Horvath, & Pellegrini, 2017). The age prediction model 

developed explained 64% of variance and predicted age from wing punches with a 

standard deviation of 1.52 years. Although the accuracy of this assay is lower than 

human epigenetic age assays which have gradually tested a greater number of 

CpGs to improve model accuracy, this method is of considerable practical value in 

being able to precisely age M. bechsteinii and give indications on population trends. 

For example, populations lacking juveniles might indicate recent poor breeding 

success which could subsequently lead to a delayed population decline. This 

information could then be used to assess the impact of recent environmental 

changes in the environment (e.g. felling of large roosting trees, weather conditions) 

on breeding success or increased mortality (Fleischer et al., 2017). 

The Bechstein’s bat age assay provides a novel tool offering necessary insight on 

the age structure of bat colonies, but will require further development and validation 

prior to widespread use. The elusive nature of bats makes the collection of known 

age samples time-consuming and labour intensive. The oldest bat in this study was 

14 years. Yet evidence suggests that individual M. bechsteinii can live for more than 

20 years (Dietz, Nill, & von Helversen, 2009). It may therefore be possible to further 

improve this epigenetics age assay by including older bats. Additionally, the 

sampling of females from a single colony could also potentially bias results as 

females within a colony may have been subjected to similar environmental stresses 

which can sometimes impact levels of methylation (Teschendorff, West, & Beck, 
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2013). Therefore, other colonies or solitary males may show slight differences in 

DNA methylation. However, it is reasonable to assume that such differences would 

be minor and would have little effect on our results as males and females, for 

example, show very similar trends in DNA methylation in most studies (e.g. 

Polanowski et al., 2014; Zbieć-Piekarska et al., 2015).  

Although we only tested a few bat droppings, we detected important variations in 

methylation levels which would not allow us to accurately estimate the age of bats. A 

separate dropping age estimate assay is required as changes in DNA methylation 

are often tissue specific (Christensen et al., 2009). The development of such an 

assay would also need to consider all points mentioned above whilst using a larger 

sample size. Indeed, unlike tissue samples from wings, droppings may be more 

indicative of biological age and show high levels of instability, as these would 

comprise cells from the intestinal tract (Jones & Laird, 1999; Maegawa et al., 2010). 

Additionally, the quality and quantity of DNA along with a higher risk of contamination 

from droppings could also affect results, as these vary significantly more than wing 

punches (Puechmaille et al., 2007). 

This study demonstrates that useful and rapid age estimates can be derived from an 

epigenetic assay (Fig. 4). Our methods provide sufficient sensitivity to confidently 

estimate the age of Bechstein’s bats ranging from 0 to 14 years old at a cost of 

approximately 15 GBP per sample. Such techniques could be used to inform about 

the age structure of bat colonies and further improve their conservation. The use of 

three genes applicable for age assays across distantly related species, such as 

humans, whales, mice and bats, suggests the potential for a widespread use of 

these techniques for mammal conservation in the future. 
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Figures and tables 
 

Table 1: PCR and sequencing primers of the three analysed assays along with the 
GenBank reference sequences and previous studies analysing age associated 
changes in DNA methylation for each assay.  

Gene 
(Accession 
number) 

References Primer name Sequence (5' to 3') Tm 
(°C) 

TET2 
(MF322927) 

Polanowski et al. 
(2014), Grönniger et 
al. (2010) 

TET2_Koch_F1b Biotin-GAAATTTTGGTTTTTT 
TTATAATAGAGGTT 57 

TET2_Koch_R1 CCAAAAAAAATTTCTCAATA 
ACTCTACTT 59 

TET2_Koch_Seq1 TTCTCAATAACTCTACTTCT 44 

GRIA2 
(MF322926) 

Polanowski et al. 
(2014), Koch et al. 
(2011), Chakrabarti, 
Bandyopadhyay, 
and Poddar (2001) 

GRIA2_F1 GTGTATGGGAGGGTGTTGA 
ATATTTTAA 61 

GRIA2_R1b Biotin-AACAAAAAAATTCCTA 
TTTCCCAAATCC 61 

GRIA2_Seq1 GTTGAATATTTTAAGTTTTGG 
GATTAT 47 

ASPA 
(MF322925) 

Bekaert et al. 
(2015), Weidner et 
al. (2014) 

ASPA_F1 GAGTTAATAGGAGTATTTTTG 
GTTAAGTA 58 

ASPA_R1B Biotin-AAATAATTTTACCTCCA 
ATCCTATTCT 58 

ASPA_Seq1 GGAGTATTTTTGGTTAAGTAT 44 
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Figure 1: Percentage methylation versus age for seven markers validated in three 

different genes. TET2 (A): R2=0.263, p < 0.001; TET2 (B): R2=0.384, p < 0.001; 

TET2 (C): R2=0.221, p < 0.001; TET2 (D): R2=0.168, p < 0.001; GRIA2 (A): 

R2=0.419, p < 0.001; GRIA2 (B): R2=0.256, p < 0.001; ASPA: R2=0.0711, p = 

0.0241.  
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Figure 2: a) Multiple linear regression for the predicted age M. bechsteinii from 

measurement of CpG methylation at seven CpG sites with 95% confidence limits b) 

boxplots representing the known age of bats in three distinct categories of known 

age (0-3 years old, 4-8 years old, 9-14 years old).
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Figure 3: Results of ‘Leave One Out Cross Validation’ (LOOCV) analysis for the 
wing punches. The estimated ages of every bat when the predictive model is based 
on data for the other N = 57 bats are plotted with together with 95% confidence 
limits. 
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Figure 4: Summary of the key steps for estimating the age of bats by measuring 
DNA methylation. Methylated cytosines are represented by *.  


