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Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic
technology, including diagnostics and drug delivery. In this paper, we realize a macroscopic single particle

is comprised of a hard ferromagnetic head attached to a flexible tail. We i

ferromagnetic swimmer experimentally and investigate its swimming prol?xies. The flagella-based swimmer

stigate the dynamic performance
of the swimmer on the air-liquid interface as a function of the external m %ld parameters (frequency
e swi

and amplitude of an applied magnetic field). We show that the spee
manipulating the strength and frequency of the external magnetic fiel

demonstrate a fluid pump and investigate the induced flow fThis inv

of‘? mer can be controlled by
< 3.5 mT) and that the propagation
The experimental results are

igation paves the way to the fabrication

of such swimmers and fluid pump systems on a micro-sca promiSing a variety of microfluidic applications.

I. INTRODUCTION

-

ther approaches take advantage of the elastic proper-
ies of the'tail, while applying the torque only to a single

[. aJcentimeter-scale system of elastically linked spheres

h
. 97 7 .
Externally controlled micro-robots have recently beco“xlcl‘efe 37 For example, in a recent study by F. Box et
a
0

contribute to a large range of applications. However, the

an area of intense research because of their potentia\

experimental realization of such devices faces cha
due to the nature of their environments, name,
sion at a low Reynolds number (Re < 1). The
has been succinctly summarized by the soztalled

theorem,! stating a biological swimmer o / TO-
scaled robot must have more than one degree om
to propel itself in a low Reynolds numbex etwizonment.

In the past, many elegant models have,been pro-
posed showing methods of propulsien at low Reynolds
numbers.* ¥ Experimentally, the challenge remains in
providing the micro device with Significant energy and
set of interactions to genefate the required swimming
motion. Thus, a rangé of\differert strategies have
been proposed and empleyed, t va/lwing levels of suc-
cess, including ultr souIMctric,11 and magnetic
fields,'219 as well ds %mical actions,?0 24 and light

driven systems.2%?
As has bee

al Anicroscopic swimmers, such as
sperm cell§ or bacteria: These systems would normally
etic b&ads for actuating and driving the
iquid with an external magnetic field.
i of motion in this case relies on the col-
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investigated, comprising of three spheres connected

Ny unequal length elastic struts.>® One of the spheres

contained a fixed magnetic moment and the field was
applied perpendicular to the moment. The propulsion
mechanism was compared to the far-field description of
a puller (a negative Stokes dipole).

Previously, we described theoretically and experimen-
tally a highly efficient low Reynolds number swimmer
based on the dipolar magnetic interaction between two
magnetic particles of different anisotropy and size, elasti-
cally coupled together and actuated by an external mag-
netic field.39-44

In this study, we discuss the properties and external
responses of a self-propelled macro-scaled ferromagnetic
swimmer based on only one magnetic particle. Experi-
mentally this is implemented by using a high anisotropy
magnetic bead - the head - attached to a flexible elastic
filament - the tail - to mimic the structure of a beating
flagellum. In order to describe this system, theoretically
we use a simplified model based on multiple beads, in
which the effect of the tail is represented by non-magnetic
beads linked with massless elastic links. We show that
even with the minimum of three particles (one magnetic
and two non-magnetic, see Figure 1a) the system is able
to self-propel and achieve the velocities comparable to
those demonstrated experimentally.

In all cases the devices are activated and controlled by
oscillating uniform magnetic field, in which the frequency
and amplitude are varied to achieve different regimes of
performance. A key variable which we have investigated
is the effect of the tail length on the swimming perfor-
mance. We also propose that such a swimmer can be
converted into an efficient fluid pump.
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FIG. 1. (a) Geometrical configuration of the theoretical swim-
mer model, (b) schematic representation of the single ferro-
magnetic particle swimmer.

1. METHODOLOGY

The main feature of our experimental device is the mag-
netic 'head’, which is made of a magnetically hard Nd-
FeB cubic particle (0.5 mm X 0.5 mm X 0.5 mm, Super
Magnet Man, US). The NdFeB particle exhibits a hi
coercive field, due to its tetragonal crystal structure. The
‘tails” were constructed using a 3D printed mold t,
duce the desired overall swimmer geometry (see
1b). The mold was designed using Autodesk
and 3D printed using a Formlabs Form 2, with
(GPCLO02) and cleaned by placing in isopropy! alc
20 minutes. The magnetically hard ferrom
cle was fixed with its anisotropy axis
of the swimmer, then the mold was fille
silicone rubber and fast cure catalyst (GP-
with a weight ratio of 1:10 (catal

pro-

1-F) mixed

depth was kept at 0.224‘1\, ens }g the complete en-
e 4

capsulation of the ma, %“
The swimming b a@ of the macroscopic devices was

studied by examihin eir mobility on a air-fluid inter-
face of a largedirea Petritdish (148 mm diameter). The
con?rised a Helmholtz coil system,

oidal signal, providing a uniform

magnetic tuate and control the swimming de-
vices. The 3 of the external field ranged between
30 an i% Hz with magnetic fields up to 3.5 mT. The

motion,of the?evices were observed using a video cam-

o a computer. Particle tracking software
5) was used to determine the average speed and
of propagation. A range of Reynolds numbers
—6 - 90 have been investigated. The upper limit
of the Reynolds number is due to a few factors, e.g. the
high speeds which we observe at small tail lengths and
the large characteristic length of the device at large tail
lengths.
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FIG. 2. dimensionless speed (by Lw) as a function of tail
length for (a) different frequencies - 80 Hz (black circle), 100
Hz (red square) and 120 Hz (blue diamond) - with an external
magnetic field strength of 1.5 mT, (b) different magnetic field
strengths - 1.7 mT (black circle), 2.4 mT (red square) and 3.2
mT (blue diamond) - with a fixed frequency of 50 Hz.

I1l. RESULTS AND DISCUSSION
A. Optimizing the single ferromagnetic particle swimmer

In previous investigations, the swimming behavior of
flagella-like devices have been shown to have a depen-
dence on the length of the flagellum, frequency of the
applied field, the bending stiffness of the filament and
the tail’s fluid dynamic interactions.?44® We investigated
how external parameters of the magnetic field - frequency
w and field strength B - affect the swimmers, as well as
tail length L. To find the optimum length of the swim-
mers tail, we created swimmers of different tail lengths
and investigated the change in swimming performance
for different field strengths and frequencies.

Figure 2a shows the range in performance of the swim-
ming speed (scaled by Lw) as a function of tail length
for different frequencies. The magnetic field strength is
fixed at 1.5 mT. There is a clear peak for all frequencies
at L = 4 mm. When the tail length is increased past the
peak, the swimming speeds start to decrease for all fre-
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‘ s Ig ies. We observe a maximum dimensionless speed of
"18 corresponding to a real speed of 57.8 mm s~!, with

PublishiRg nal field of 1.5 mT and 80 Hz and a tail length

of 4 mm.

Figure 2b shows a similar trend, but in this case for
different field strengths, with a fixed frequency of 50 Hz.
As the field strength is increased the overall speed of the
swimming increases - due to the increased torque effects -
as well as a peak at L = 5 mm manifesting at the higher
field strengths. The maximum dimensionless speed in
this case is 0.3 corresponding to a speed of 74.6 mm s~ !,
with an external field of 3.2 mT and 50 Hz and a tail
length of 5 mm.

Figure 2 shows that as the length of the tail becomes
shorter (L < 3 mm), the swimming performance begins
to reduce; this is expected, due to the tail becoming ef-
fectively more rigid. For such conditions, the device be-
comes similar to a single degree of freedom reciprocal
system and the scallop theorem will apply.! On the other
hand, as the tail length is increased (L > 10 mm), the
elastic deformation or beating patterns become irregular,
resulting in another reduction of swimming speed.

An important observation is that there is an obvious
optimum length at which the swimming speed is maxi
mized. This behavior can be linked to previous work,?%33
which shows a rapid decrease in swimming performanc
and irregular beading trajectories at large tail leng
also appears that there is also a second peak at L =
mm (Figure 2). It may be due to the second harmgnic

beating pattern, as the tail is twice the length of for«

the first peak.

N\

B. Directional control of the single ferromagnetic particle
swimmer

tion of motion of the swi ent tail lengths
and frequencies. The 1?9 dr is given in the last

panel. We show the grajectoriesyfor four frequencies,
30 Hz (black circle) INriangle), 130 Hz (blue
square) and 170 (gréen diamond). If the trace for
a given frequenc, t'present, this is due to unstable

creased forlall tail lengths, the swimmer can be controlled
ropz§ation angles. The maximum angle of

~ 90°, c e observed in the L = 12 mm panel.
'ectori% also visualize the variations of swimming
tail length, as the distance between the two

point the trajectories increases (the time between two
points is kept constant at 0.2 seconds). For the swimmer
with tail length less than 6 mm, the trajectories tend to

be parallel to the applied magnetic field.

Typically, as the length of the tail is increased (L >
6 mm), at low frequencies, the trajectories become per-
pendicular to the applied field. This mix of parallel and

H'
.‘I‘\\ -10 L=6mm 5 L=12mm

(=}

L=2mm

(=]

10

-10 -5 0 5 10 S50 5 10
X [mm] X [mm]
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FIG. 3. Trajectory plots for tail lengths, 12 mm, 10 mm, 8
mm, 6 mm, 4 mm and 2 mm. The field has a strength of 1.5
mT and frequencies shown are 30 Hz (black circle), 80 Hz (red
triangle), 130 Hz (blue square) and 170 Hz (green diamond).
The swimmer is recorded for 20 seconds and the time between
two points on a trajectory is 0.2 second.

perpendicular behavior is unexpected, one would expect
the trajectories to be perpendicular to the applied field.
[3 and 26] This could be due to irregular beating patterns
created at large tail lengths, but could also be caused by
additional degrees of freedom. These extra degrees of
freedom could be caused in fabrication; there may be a
small out-of-plane magnetic component, resulting in a
rocking in the z-plane when the external field is applied.
As the devices are placed on the surface of the fluid, this
could also cause extra asymmetries in the motion, due
to boundary effects. At the air-liquid interface, the force
arising from the surface tension confines the swimmer to
the liquid surface as it acts against swimmers motion in
the z-direction (i.e. in the direction normal to the lig-
uid surface). This behavior could also be explained by
the increased Reynolds number for the larger values of
L, resulting in inertia effects being present.
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FIG. 4. Swimming speed as a function of dynamic viscosity.
The solid red line indicates the predicted values from the the-
ory (equation 10). The external magnetic field has strength

3.0 mT and frequency 50 Hz. The Reynolds numbers shown
here are: 90 (for n = 1 x 107 Pa s), 0.53 (for n = 1 x 10

Pas).

Pas), 1.6 x 107 (for n = 0.1 Pa s) and 2.5 x 107 (for n \

pelling itself through the fluid, the swimmer now induces
a fluid flow.

In this configuration, the pinned swimmer rests gently
on the surface of the fluid (supported by surface tension
forces) and the fluid flow it generates can conveniently be
investigated. As an example of this application we attach
the pinned swimmer (tail length of 7 mm) within a 3D
printed straight channel with width of 5 mm and depth
of 10 mm. The flow spegd is determined by placing small
(~ 0.2 mm) particles of graphite on the air-fluid interface
and following them u irésﬁrevious tracking software.

app

he external magnetic field

)

> chiannel.

t
ow speed. If we investigate the stable range of the sys-
tguxo szo Hz, we find x7mm = 0.31 & 0.07, where the
ncertainty is half a standard deviation. This system
; a stable flow speed over the operating regime of
vice. A possible way to improve the effectiveness
would be to restrict the translational motion with less

_ . effects on the beating pattern. The only concern with

particle swimmer

.

Figure 4 shows the swimming speed single pacticle
swimmer with L = 3 mm for fluids of di a\nh‘i.sgosities.
The dynamic viscosity ranges from 1 x 107%Ra s (100%
water) to 1.4 Pa s (100% glycerdl)=<The external mag-
netic field has a frequency of 50, Hz andystrength of 3.0

mT. The predicted velocities dre shown with the solid red
line - using the experiment@l pafameters with no fitted
ce below). The experi-

parameters and equation’ 10

ment and theory sho d agreement, expect for the
most viscous data whe egNriment is out preform-
ing the theoretical re%tion. he differences between
the theory and iment may arise from the simpli-
fications made/in the theory. Figure 4 shows that the
swimmer can suegesstullypropel at both low and moder-
ate Reynoldsmumber, - g{ven the Reynolds number range
of ~3x1 *67903

-

D. Fluid pumbing with the single ferromagnetic particle
swimme

A swi nmﬁg device can easily be converted into a pump-
ing device by a change of reference frame. This can be
done by restricting the translational motion of the swim-
mer when actuated. In the case of the single ferromag-
netic particle swimmer, it is possible to attach one end to
the top of an elastic pin (Figure 5 inset). Instead of pro-

C. Viscosity dependency of the single ferromagn 1;5\

such a system is that as the channel width is reduced,
the pump could obstruct too much of the channel and
the viscous friction will be increases, this may result in
a reduced flow rate. The concern could be addressed by
scaling the pump with the channel, or incorporating the
system into the walls of the channel.

12

—_
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FIG. 5. Measured flow speed along the channel as a function
of frequency. The inset shows a schematic representation of
the single ferromagnetic particle swimmer as a fluid pump.
The base of the pin is attached to the base of the channel.
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l s I\P‘I’H REE PARTICLE THEORETICAL MODEL

Pu b“’itléﬂl& late the swimmer mechanism, we have developed
a minimal theoretical model in which three spherical par-
ticles labeled by j = 1,2, 3, are connected via elastic fila-
ments, as depicted in Figure la. The particles have radii
R; and are centered at 7;(t) = (z;(t),y;(t)); the center
of reaction*” is X = (X,Y) given by

XZR] = ZR]"I"]'.
J J

. -1
We set r, = 7 — 75, Tjk = |’I"]:k‘, Tk = Tk Tk, E.ind
let ¢, be the angle r;; makes with the z-axis. Particle
motion is governed by

= Fspring,j + Fbend,j + Fext,j + Fﬂuid,ja (1)
with masses p; taken to be sufficiently small that the
motion is in an inertia-free Stokes regime (the results are
insensitive to the values of y; in the limit p; — 0). The
following forces are derived from potentials, first elastic
forces

HiT 5

‘/spring - %k("@l - ZO)2 + %k(’/’gg - l0)2a

where [ is each filament’s natural length and k is a gpring
constant. Second, we impose a force resisting be
motion of the three particle configuration, degived fro
the potential

=

Vbend = —£ cos(pa1 — ¢32).

Since cose = 1 —¢2/2 + ---, this is q X‘“all

angle, but being periodic in the angle not' result
in numerical problems if an angle jumps by 27 in our
simulations.
The external magnetic fiel oxt. drivés the swimmer
directly through a potentia, temyw on“magnet j =1,

Vist = —m - Box =& mBosb(1)dos( 21 — (1)),

i@%tb(t) and angle ¥ (t) to
>consta t and b(t) and (t) are

is taken to be purely back-and-

where the field has
the z-axis. Here B
dimensionless.
forth along th y—a;;j;s,

(2)

1c radii 7; < g, the length of the connect-
ay write the force on each bead from

10undi¥ fluid as expansions that include Stokes
he léading order fluid interaction term?748

Provided
ing filaments,

ni; Ry,
Tjk

\ . I . .

—6mnR;7; JrZ? (Pt +1I) -7k, (3)
k

where I is the identity matrix. Here and below we ex-

clude the term when j = k without comment. These are

N. Livanoviés et al.3?

e = R/lp < 1 where R = %(Rl + Ry + R3) is the aver-
age bead radius, say. At this level of approximation the
motion of the center of reaction is given by

67‘("[7 (Z RJ> X = Z Finteract,j
j J

ITnR; R
=3 g+ 1) -

(4)

2 .
j "k
The parametergs i 1‘N are {uj, R, k,lo,l,m,
Bext,w,n} and itds ci)benient o define length, time and

U %w 2 =M,

2
- w=¢ %— 6mn = WZERGWU,
( 2
‘) AGXt = mBext L - mBeXt

ML? 4
tm the quantity Aey¢ is sometimes called the mag-
netoglastic number, and w is closely linked to the ratio of
mer length to the elastic penetration length, e.g. in

We use the following experimental
parameter values for simulations,

R=125x10"%m, k=167x10"2Nm!,
lo=5x10"3m, (=ki2=42x10""1],
m=12x10"*Am? Bey =3x1073T,
w=100x2rs"t, n=10"2Pas,

yielding

L=5x103m, T=16x10"3s, M =4.2x10"% kg,
£=0.25, w=0.89, Ao =0.86,

but should note that our idealized model is only expected
to allow qualitative comparison with the experiments.
The theory developed below gives an approximation to
the swimming speed as

21A2

ext

— et ~94x10?ms L.
16 (o2 + 36) <107 ms

X = elow (5)

The value for the swimming speed shown in equation
(5) can be compared with the typical value of speed
shown experimentally. Comparing to the experimental
data, the velocities range ~ 5 mm s~! - 70 mm s~'. This
comparison gives good order of magnitude agreement and
provides support for the model, despite its idealized na-
ture - simplified geometry and elastic properties.

Differences between the model could also arise from
the swimmer being modeled within the bulk of the fluid.
In the experiment the simmer is mainly confined to the
interface, with only part of the body submerged into the
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FIG. 6. (a) The motion of the swimmer without fluid inter-
actions, to visualize how time-reversibility is broken. (b) The
overall motion of the modeled swimmer with fluid interac-

tions.
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FIG. 7. A series of snap-shots showing the motion of the
modeled three-particle swimmer, with each pangl separated
by 2% cycles of the external field. quence reads left to
right.

liquid. With contact anglé b /clos to 90 degrees, the
translational motion o@é swimmef is still governed by
the same principles ast Ne model.

Figure 6a shows £he mption ofithe swimmer using the
above parameter/ valugs’ with no fluid interactions be-

when Ay takes the above value (top solid
) and when it is reduced to 80%, 60%, etc
lid curves). For all values of Aeyt the simulated
velocities show a peak for low frequencies (w < 1). This
can be compared to the suppression of the maximum in
experimental speed shown in Figure 2, as the frequency
is increased - and fixed tail length. The agreement be-

0.016 T T T T

wX /lgw

FIG. Scaled{ non-dimensional speed as a function of fre-
quency different values of Aexi. The solid line indicates
(@mulat »the dotted indicates the theory.

simulated swimming velocities (solid curves) and

eory - shown later - (dotted curves) is not partic-
vy good; we note however that the theory is based
on linearized internal motion and on weak fluid interac-
tions, requiring that Aext and e are both small and w is
of order unity. Further simulations (not reported here)
confirm that the theory does in fact becomes accurate
in the limit of small Agy and € with w = O(1). While
it cannot be used for quantitative information at these
parameter values, we argue that it does capture the un-
derlying mechanism and give correct order-of-magnitude
estimates; a more accurate theory would require a com-
putational fluid dynamics (CFD) approach. Note that for
clarity we have plotted the quantity wX /low for which
the frequency w of the field is scaled out (by virtue of the
definition of @). Thus this figure gives a quantity propor-
tional to the observed swimming speed in the laboratory
(that is, not divided by the field frequency).

Figure 9 shows the frequency dependence of the swim-
ming speed for different numbers of linked particles. The
investigation ranges from the standard n = 3 particle sys-
tem increasing to n = 8, with € now reduced to € = 0.1.
Note that in our formulation the total swimmer length is
(n — 1)lp and we have scaled the swimming speed by Iy
not by the total length. For all particle systems a peak
in swimming performance is observed.

Two noteworthy observations are that for low fre-
quency (w < 1) the propulsion speed is lowest for the
3 particle system, then increases to a peak at the 4 par-
ticle system, then decreases with increasing numbers of
particles (Figure 9). We also note that for large frequen-
cies (w > 2) the propulsion speed is highest for the 3
particle system and decreases with increasing number of
particles.

Figure 10 shows the dependency of the number of

twi
the
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FIG. 9. Scaled non-dimensional speed as a function of fre-
quency for different numbers of linked particles, with € = 0.1.
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FIG. 10. Scaled non- ensional speed as a function of num-
ber of linked pa 1cles/ for different frequencies, with € = 0.1.
- 4

linked particles on{the swimming speed. The investi-
rom/n = 2 to n = 8, for different values
~““For all cases, we observe a rise to a
n :?) then a steady decrease in speed. This

ent with results for flexible-tailed swimmers,

Figure¥ of R. Livanovi¢s et al.,3? which shows similar
peaks, in ﬁocity as a function of swimmer length. As
the frequency increases, the peak speed is reduced - sim-

ilar to that seen in the experiment (Figure 2). For fre-
quencies where w < 0.4 we observe a peak at n = 4, as
the frequencies increases (@ > 0.6), the maximum shifts
towards n = 3.

We now give the theory leading to (5). In our approxi-
mate model we start with the swimmer beads located at
(lo,0), (0,0) and (—lo,0) for j = 1,2,3, respectively and
linearize the equations of motion for small displacements,
neglecting any fluid interaction forces. We take the driv-
ing magnetic field to be given in (2), zero inertia p; = 0
and beads of equal radius R; = R for simplicity; the
framework is easily generalized to any number of beads
and any radii. The linearized equations only involve the
transverse displacemezd?s y; and take the form

mDBg lalsinwtw,

—1 1 yl
M= 2 w=|-1], y=|up
2 0 Y3

We now ex Dé“h&nnonic by setting y = loge™* +c.c..
The fdctor [y es the vector ¢4 dimensionless and the
governing equStions then become

iwy =My — Lidex w (6)

This ca;))e inverted to give g and the internal motion

iving, but excluding fluid interactions in (3)

\OTThe actual swimming speed is then given at leading

der by substituting the internal motion into the equa-
tion (4) for the center of reaction. At leading order in
perturbation theory this is given by quadratic terms and
the average speed in the z-direction is then

X =1Ri;?(y"Ny), N=|-1 0

-1

(1)

O R

1
1
where the angled brackets denote a time average. This
becomes

X = Liclowy* Ny, (8)

noting that low = L£/T are the units of speed in our
non-dimensionalisation, that is, motion of the swimmer
is measured in units of link length per cycle, multiplied by
e reflecting the fact that it is the weak fluid interactions
that are key to motion of the center of reaction.

Although a similar system is easily written down for
any number of beads, the advantage of dealing with just
three is that the problem may be solved analytically.
The matrix M has eigenvectors v; = (1,1,1)7 eigenvalue
A1 = 0 (a translation mode), vy = (1,0,—1)7, A2 =0 (a
rotation mode) and vz = (1, -2,1)7, A\3 = —6 (a bending
mode). The magnetic driving excites the latter two since
w = 2vy + Sv; and then we can express the solution to
(6) as

’g = 7%Acxt[w71’l)2 + (’(D - 67;)71’03] (9)

We drive two modes and this is crucial for swimming.
Now vd Nvs = —vi Nvy = —7/2 and thus after a short
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low  * 16w(w? + 36)

The velocity here is normalized in terms of body length
per (radian of the) magnetic field cycle. The right-hand
side diverges as w — 0, which is unphysical, but in reality
the linearization would break down in this limit and the
model is not applicable.

Note that we need to drive two distinct modes to
‘break’ the scallop theorem and that the translation mode
v1 cannot be excited externally as there is no net force
on the swimmer; thus the three-particle swimmer here is
a minimal model. For a three-particle model of a biologi-
cal swimmer (without any external torques or forces), the
second mode v also could not be generated and only vg
could be, leading to precisely a scallop type motion and
no swimming. A key point is that the external field pro-
vides torques on the swimmer and allows a three-particle
swimmer to work. A four-particle model would allow
for a biological swimmer; translation and rotation modes
could not be excited, but this would still leave two bend-

translational mode is not excited. The model shows a
quantitative agreement with experiment, even with its
simplified geometry and elastic properties.

In addition to the investigation of the free swimmer,
we also present a way to use such a device as a fluid
pump. The system was shown to induce a flow which
was stable over the operating range of the device, with
an effectiveness x7mm =40.31£0.07. Such a system holds
promise to be used as ( microfluidic pump embedded into
a lab-on-a-chip syste nicrofluidic manipulation.

3

SUPPLEMEN Y TERIAL

See supplémentary material for real time videos show-
ing the_ tran ionalmotion of the single ferromagnetic
particle swimm
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