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Abstract 

Myriad tiny insect species take to the air to engage in windborne migration, but entomology 

also has its “charismatic megafauna” of butterflies, large moths, dragonflies and locusts. The 

spectacular migrations of large day-flying insects have long fascinated humankind, and since 

the advent of radar entomology much has been revealed about high-altitude night-time 

insect migrations. Over the last decade there have been significant advances in insect 

migration research, which we review here. In particular, we highlight: (i) notable 

improvements in our understanding of lepidopteran navigation strategies including the 

hitherto unsuspected capabilities of high-altitude migrants to select favourable winds and 

orientate adaptively; (ii) progress in unravelling the neuronal mechanisms underlying sun 

compass orientation and in identifying the genetic complex underpinning key traits 

associated with migration behaviour and performance in the monarch butterfly; and (iii) 

improvements in our knowledge of the multifaceted interactions between disease agents and 

insect migrants, in terms of direct effects on migration success and pathogen spread, and 

indirect effects on the evolution of migratory systems. We conclude by highlighting the 

progress that can be made through inter-phyla comparisons, and identify future research 

areas that will enhance our understanding of insect migration strategies within an eco-

evolutionary perspective. 

 

Keywords 

Autographa gamma, flight orientation, insect diseases, locusts, monarch butterfly, Pantala 

flavescens, radar entomology, Spodoptera exempta, trade-offs, Vanessa cardui. 
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INTRODUCTION 

 

Migratory species comprise a significant proportion of all major lineages of the animal 

kingdom, with species undertaking journeys ranging from a few metres to thousands of 

kilometres, over land, through air or water (Dingle 2014). Recent advances in tracking 

technologies for vertebrates (Rutz & Hays 2009) have facilitated the acquisition of high-

resolution trajectories of large fish, sea turtles, birds and mammals, and brought about new 

discoveries related to migration routes, navigational mechanisms, energetic costs and 

mortality rates during migration (Wikelski et al. 2003; Cochran et al. 2004; Hays et al. 2014; 

Klaassen et al. 2014). Insects are the most speciose, abundant and economically-important 

group of terrestrial migrants, but in contrast to vertebrates, most species are too small for 

individual tracking. Knowledge of insect migration thus lags behind that of vertebrates, but 

nevertheless insects are an interesting group to study, because they are amenable to 

experimental manipulation and large-scale population studies in ways that vertebrates are 

not. Furthermore, insects lie at one end of the continuum of self-powered movement 

capacity versus strength of the flows within which they move. The problem of being drifted 

off-course by water or air currents applies to all flying and swimming animals, including those 

capable of much stronger self-powered movements relative to flow speeds (Chapman et al. 

2011b). How migrating insects are able to deal with the challenge of unfavourable flows lies 

at the heart of the group’s success in achieving long distance population relocations, and the 

answers to this question will prove insightful for advances in the field of movement ecology 

(Nathan et al. 2008). 

A universally-accepted definition of migration applicable to all animal groups has proved 

difficult to generate (Dingle 2014), but one popular approach has been to focus on the 

consequences of the movements (spatial population dynamics), which has given rise to the 

huge field of ‘dispersal ecology’ (Clobert et al. 2009; Stevens et al. 2012, 2014). Some 

dispersal ecologists delineate migration rather narrowly – as round-trip animal movements 
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between regular breeding and non-breeding grounds (Clobert et al. 2009). Taking this 

approach, most long-range insect movements would be classed as ‘dispersive’ rather than 

‘migratory’, because few insect species complete closed-circuit journeys between discrete 

but regular breeding and non-breeding ranges. In this review we follow Dingle and 

colleagues, and use a broader definition based on behavioural traits, whereby migration is 

characterized by persistent, straightened-out movements that are undistracted by the cues 

which would arrest other types of movements (Dingle & Drake 2007; Dingle 2014). 

Focussing on the behavioural mechanisms underlying the movement pathways, rather than 

solely on the ecological outcomes of the movements (the population consequences), is a 

key strength of this approach (Nathan et al. 2008), because natural selection acts on the 

behaviour/physiology of individuals rather than populations. Use of this broader definition 

allows a wider variety of long-range insect movements to be classified as migratory, thus 

enabling commonalties in the evolution and orchestration of migration to be identified across 

a wide taxonomic spectrum.  

In this review, we restrict discussion of migration to large insects (>40 mg) in the 

Odonata, Orthoptera and Lepidoptera that undertake seasonal movements, involving 

journeys of hundreds of kilometres. The migrations have some degree of return, and thus 

these species would be recognised as ‘migratory’ under both behavioural and ecological 

definitions of migration. Insect migrations may take place close to the ground within the ‘flight 

boundary layer’ (FBL), the lowermost layer of the atmosphere within which the insects’ self-

powered flight speed exceeds the wind speed, allowing control of migration direction 

(Srygley & Dudley 2008; Table 1). More commonly, however, migrations take place at high 

altitude (often hundreds of metres above ground), where migration directions are largely 

determined by the wind. Migratory movements in the species discussed typically take the 

form of either: (i) regular northwards and southwards movements within the temperate zone, 

allowing migrants to track the seasonal advance and retreat of plant productivity in response 

to temperature changes; or (ii) less predictable movements in response to variable rainfall 
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patterns in arid/semi-arid sub-tropical and tropical zones (Drake & Reynolds 2012). As most 

insects are relatively short-lived as adults, an individual will normally complete only part of 

each circuit (i.e. migratory circuits are multi-generational).  

The ultimate function of these movements is to allow the rapid exploitation of alternative 

habitat regions in response to seasonal environmental changes. Climatic differences 

between regions (temperature and rainfall conditions suitable for development) are often 

assumed to be the fundamental selection pressures favouring migration, but other 

evolutionary drivers are likely to be important too (as we discuss below). The vagaries of 

migration-influencing winds, and spatio-temporal unpredictability of habitats, mean that 

insect migrations have a semi-nomadic element to them, and multiple generations may 

elapse before descendants return to particular vicinities. Nonetheless, recent studies of the 

behaviour of migrant insects, while these movements are in progress, have led to a 

significant shift in our perception of the abilities of insects to control their migrations – they 

are less ‘at the mercy of the wind’ than was previously assumed. We then consider 

advances in the elucidation of the annual migration routes of long-range insect migrants, 

which largely remain poorly characterised. These developments have practical implications 

because the insect migrants include charismatic species of butterflies and dragonflies (May 

2013), some of which, e.g. Danaus plexippus (monarch butterfly), are of increasing 

conservation concern (Brower et al. 2012); conversely, other species (locusts, various 

noctuid moths) are important agricultural pests. 

We also highlight advances in our understanding of the evolutionary drivers, ecological 

strategies, and consequences for the population dynamics of these migrants. We discuss 

newly-documented examples of the benefits of ‘continuous’ movement, including: increased 

reproductive potential and survival; and lower rates of predation, parasitism and pathogen 

infection (the ‘enemy release hypothesis’; Coalutti et al. 2004). Despite these potential 

benefits, long-range insect migration will always represent a gamble with large potential 

rewards or penalties (e.g. Ward et al. 1998), and so we discuss recent contributions 
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exploring the trade-offs associated with migration, and mechanisms that insects have 

evolved to reduce detrimental impacts. Finally, we draw attention to comparisons of 

migration in insects and vertebrates, and suggest experimental and modelling approaches 

that may address significant knowledge gaps. Such comparative approaches allow the 

identification of suites of common traits that are associated with increased movement 

capacity, and which have been identified in a wide range of species across the animal 

kingdom, and termed ‘migration syndromes’ (Dingle & Drake 2007) or ‘dispersal syndromes’ 

(Clobert et al. 2009; Stevens et al. 2012, 2014). 

 

 

MECHANISMS FOR CONTROLLING MIGRATORY DIRECTION 

 

Decision rules for initiating migration 

 

In common with many birds, mammals and fish, seasonal migrations of large insects occur 

on an enormous scale, frequently involving millions of individuals moving simultaneously in 

the same direction, typically over a large spatial extent (Holland et al. 2006; May 2013; 

Stefanescu et al. 2013). The majority of such species do not migrate collectively, but even so 

mass departures on the same day (or night) must be synchronized in some way. Animal 

migrants are characterised by specialised pre-departure physiologies, often coordinated by 

juvenile hormone titres in insects, which in conjunction with environmental cues such as 

photoperiod, regulate the interaction between migration and sexual maturation. These 

physiological mechanisms have been extensively studied in, for example, the noctuid moth 

Mythimna unipuncta (McNeil 2011), but this topic falls outside the remit of the current review, 

where we focus on ecological and behavioural factors orchestrating migration. In obligate 

migrants (in which all individuals migrate), the cues that stimulate take-off in physiologically-

primed individuals are particular light-intensity thresholds and meteorological factors (air 
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temperature, wind speed and atmospheric pressure; Drake & Reynolds 2012). Flight 

boundary layer (FBL) migrants (see Table 1) are not bound by the prevailing wind direction 

and can thus take-off and maintain movement in their preferred direction whenever 

environmental conditions allow, typically when ambient temperatures exceed their flight 

threshold.  

Species migrating above their FBL will, by definition, have their movement direction 

strongly influenced by the wind, and one might expect departures to be restricted to 

occasions when high-altitude winds facilitate movement in seasonally-appropriate directions. 

In some cases relatively simple decision rules seem to be employed to maximise the 

probability of favourable transport. For example, falling temperatures during autumn promote 

the initiation of migratory flights in Vanessa atalanta (red admiral butterfly; Mikkola 2003) and 

Anax junius (green darner dragonfly; Wikelski et al. 2006), thus increasing the probability of 

windborne transport on cool northerlies towards lower-latitude winter-breeding regions. In 

other situations, the suitability of high-altitude tailwinds cannot be assessed from simple 

meteorological cues such as temperature, humidity or atmospheric pressure, and migrants 

must somehow directly assess the direction of downwind transport during or immediately 

after take-off. This scenario is exemplified by Autographa gamma (silver Y moth), in which 

mass-migration events are restricted to nights with seasonally-favourable high-altitude 

winds; A. gamma seemingly uses an internal compass sense to assess the direction of its 

windborne displacement during ascent, and terminates migration if the direction is 

unfavourable (Chapman et al. 2008a, b). Whatever decision rules insects employ to 

maximise the probability of migrating on favourable tailwinds, behaviours in-transit (such as 

selection of favourable headings and flight altitudes) are still hugely important. We now 

discuss these behaviours for (i) daytime migrants flying within their FBL, and (ii) day- and (iii) 

night-time migrants which ascend above their FBL. 
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Flight behaviour in daytime FBL migrants: cues and mechanisms 

 

The long-distance migrations of day-flying insects such as butterflies and dragonflies are 

typically thought to take place within the flight boundary layer (FBL). Migrating near the 

ground in winds that are slower than self-powered airspeeds allows migrants to move in their 

preferred direction, even in headwinds (Srygley & Dudley 2008; Chapman et al. 2011b). 

There are numerous observations in the literature of day-flying butterflies and dragonflies 

engaging in mass migration in a seasonally-advantageous direction close to the ground 

(Srygley & Dudley 2008; May 2013; Stefanescu et al. 2013). Maintaining a consistent flight 

heading requires the use of a compass mechanism; the sun’s position in the sky is the 

principal cue used by daytime migrants, including the monarch (Mouritsen & Frost 2002; 

Froy et al. 2003), the neotropical pierid butterflies Aphrissa statira and Phoebis argante 

(Srygley & Dudley 2008), and the painted lady butterfly Vanessa cardui (Nesbit et al. 2009). 

In this way, insects parallel a wide range of other day-migrating taxa that rely on a sun 

compass to maintain a constant heading, including crustaceans, fish, amphibians, reptiles, 

birds and mammals (Milner-Gulland et al. 2011; Dingle 2014; Hansson & Åkesson 2014). 

The control of migratory direction has been most intensively studied in the eastern North 

American population of the monarch butterfly. By late-August, monarchs in north-eastern 

USA and south-eastern Canada enter reproductive diapause and begin their southward 

autumn migration to overwintering sites in the mountains of central Mexico, a distance of 

>3000 km. Autumn migrants use a time-compensated solar compass to fly towards the 

southwest (Mouritsen & Frost 2002; Froy et al. 2003) – the constant compass course 

towards their overwintering site. In early spring, the overwintered monarchs migrate 

northwards out of Mexico to recolonize Texas. Spring re-migrants show a seasonal reversal 

of their migration direction, and now use their solar compass to fly towards the northeast. A 

period of cold exposure typical of conditions at the overwintering site is, however, necessary 

to switch the migration direction; if monarchs are kept at constant autumn conditions 
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throughout the winter, they continue to orientate towards the south the following spring 

(Guerra & Reppert 2013). 

Recently there have been considerable advances in understanding the molecular and 

neuronal mechanisms underlying sun compass orientation in monarch butterflies. To 

maintain a constant bearing (northeast in spring, southwest in autumn), monarchs must 

compensate for the azimuthal movement of the sun across the sky, and this requires a 

circadian clock to provide a timing mechanism (Froy et al. 2003). Important elements of this 

photic-entrainable clock are located in the antennae (Merlin et al. 2009; Guerra et al. 2012, 

2014; Guerra & Reppert 2013). In addition to the well-documented solar compass, there is 

new evidence that monarchs may also use a back-up magnetic inclination compass when 

the sun is not visible (Guerra et al. 2014). Migratory birds and bats are known to use multiple 

compass mechanisms in a hierarchical manner, often using a magnetic compass when 

celestial cues are not available, but using celestial cues to recalibrate their magnetic 

compass on a daily basis (Cochran et al. 2004; Muheim et al. 2006; Holland et al. 2010). If 

monarchs do indeed prove to have two (solar and magnetic) compass mechanisms, the 

nature of the interactions between them will need to be elucidated. Be that as it may, the 

latest indications are that monarchs reach their Mexican wintering areas by means of a 

straightforward vector-navigation strategy, i.e. they are not able to determine their 

geographic position along the route using an internal ‘map’ (Mouritsen et al. 2013; but see 

Oberhauser et al. 2013). Large-scale topographic features probably also help to funnel the 

migrants towards the overwintering sites, and at closer range the locations of the winter 

refuges (oyamel fir groves) may be pinpointed by olfactory cues – all these aspects require 

further study however. 

Even FBL migrants will experience lateral displacement by crosswinds (‘drift’), and to 

maintain preferred (seasonally-beneficial) movement directions they must compensate for 

this effect (Chapman et al. 2011b). The varying abilities of neotropical day-flying butterfly 

and dragonfly migrants to deal with drift have been studied by Srygley and Dudley (2008) in 
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Panama. The various species show considerable variation in their ability to perceive and 

compensate for crosswind drift (from ‘complete compensation’ to ‘full drift’). Where 

compensation occurs, an optomotor response to the apparent motion of the ground is 

presumably the primary mechanism, although other means of compensation may be 

involved when butterflies travel over water bodies (such as the use of two landmarks on the 

shore that are held in parallax). Rather surprisingly, perhaps, some butterflies can still 

compensate partially for wind drift when flying over the sea, out of sight of land, and without 

terrestrial cues other than the sea surface itself (Srygley & Dudley, 2008). In addition, one of 

the butterflies showed tailwind compensation too: female (but not male) Phoebis sennae 

adjust their airspeed according to the degree of tailwind assistance (i.e. they slow their 

airspeed in tailwinds and increase it in headwinds), an adaptation that optimizes energy 

consumption during flight, thus conserving lipids for egg production (Srygley & Dudley, 

2008). The mechanisms that temperate zone migrant butterflies (e.g. monarchs and painted 

ladies) use to deal with winds from a variety of directions remain to be elucidated. 

 

Day-flying migration above the FBL 

 

As discussed in the previous section, butterfly migration has typically been assumed to occur 

exclusively within the FBL, apart from the monarch and Camberwell beauty (Nymphalis 

antiopa) where soaring and gliding behaviour is well documented (see Table 1). Recently, 

however, evidence has accumulated that butterfly migrations can occur at altitude (up to 1 

km above ground) under certain circumstances – presumably the crucial factor being that 

high-altitude winds are blowing in seasonally beneficial directions (Mikkola 2003; Stefanescu 

et al. 2007, 2013; Chapman et al. 2010). For example, Stefanescu et al. (2007) found a 

strong association between spring arrivals of V. cardui into northeastern Spain and high-

altitude winds from probable source areas in North Africa. Flying at altitude has also been 

proposed as the reason for the long-standing difficulty in detecting the return migration of V. 
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cardui from northern Europe in autumn (Stefanescu et al. 2013). Trajectory analysis of V. 

cardui movements indicates that migration may be continued into the night (Stefanescu et al. 

2007); this definitely occurred during high-altitude migrations of Pantala flavescens 

(wandering glider dragonfly) over the Bohai Sea in China (Feng et al. 2006) and would also 

apply to the very long migrations postulated for this species over the Indian Ocean 

(Anderson 2009; Fig. 1). It is well known that cues causing the normal termination of 

nocturnal migrations are over-ridden if the migrants find themselves over the sea at dawn 

(Drake & Reynolds 2012), and something equivalent presumably occurs at nightfall in day-

active taxa. Many questions remain regarding the high-altitude daytime migrations – in 

particular, we need better documentation of the circumstances in which migrants ascend to 

altitude, and the mechanisms underlying flight-height selection. 

 

Flight behaviour during high-altitude nocturnal migration 

 

Behavioural traits such as flight orientation, tailwind selection and flight-altitude selection in 

large insect migrants would seem, self-evidently, to be important elements in optimizing 

rapid movement in favourable directions, and thus to have major impacts on migration 

success. Systematic observation of the flight behaviour of insects when they are high in the 

air, well above their FBL, is highly problematic though. Nonetheless there have been 

significant advances in our knowledge due to the use of specialized vertical-beam 

entomological radars (Chapman et al. 2011a) (Table S1). The bare fact that high-flying 

nocturnally-migrating insects often show a degree of common alignment has been known for 

decades, since radar was first deployed for entomological purposes, but there has been 

uncertainty over the extent to which the observed orientations are ecologically adaptive, i.e. 

whether effects on flight trajectories would materially enhance migration success (Reynolds 

et al. 2010). 
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Until recently, the extent to which the progeny of windborne insect migrants reaching high 

latitude summer-breeding grounds actually achieve mass return migrations to their winter-

breeding regions was unknown. This led to suggestions that these seasonal journeys 

represent a population sink from which there is no return, an idea that was dubbed the “Pied 

Piper” effect (Stinner et al. 1983). While this hypothesis made little evolutionary sense, it 

held sway because of an apparent lack of return migrations in many species. The advent of 

specialised entomological radars however has recently demonstrated the existence of mass 

return migrations in a number of species that invade the North Temperate Zone from further 

south, effectively refuting this notion (Chapman et al. 2012). Some cases elsewhere remain 

unclear: biogeographical studies of Spodoptera exempta (African armyworm) provide little 

evidence that the offspring of moths which reach the extremes of the migratory range 

(Yemen and South Africa) ever return to the putative core areas in Kenya and Tanzania 

(Rose et al. 2000; Fig. 2). 

The radar-based behavioural studies have particularly concerned the noctuid moth A. 

gamma, which invades northern Europe in variable numbers each year in late spring and 

early summer from winter breeding areas around the Mediterranean Basin. The spring 

immigrants (first generation) arrive in northern temperate areas on spells of warm southerly 

winds and breed immediately; their progeny (second generation) typically emerge in late-

summer/early-autumn. The migration of the autumn generation is interesting, because they 

must move south (and somehow avoid being taken further northward) if they are not to be 

killed off by frosts, as this species cannot enter diapause. The suite of behaviours that result 

in beneficial migration directions include: (a) initiation of migration only on nights with 

seasonally-favourable high-altitude tailwinds; (b) flying at the altitude of the fastest winds 

(typically 400 – 800 m above ground); (c) adopting a flight heading that partially counteracts 

crosswind drift from the preferred migration direction; and (d) seasonal reversal of the 

preferred direction between spring and autumn (Chapman et al. 2008a,b, 2010). Migrating A. 

gamma typically achieve ground speeds between 30–100 km per hour, completely 
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overlapping with the speeds of migrating passerines (Alerstam et al. 2011). When the wind 

blows more than 20° away from their preferred direction of travel, the migrants also adjust 

their headings so that they partially correct for wind-induced drift (Chapman et al. 2010). 

Complete compensation is not observed, and the moths’ orientation strategy (‘compass-

biased downstream orientation’; Chapman et al. 2011b) is a trade-off between moving 

rapidly and in a preferred direction. The reversal of the preferred direction between the 

spring and autumn generations appears to be controlled by seasonal (probably 

photoperiodic) cues; in the absence of the correct cues, these consistent migration patterns 

break down. For example, in a year when the second generation of A. gamma emerged 

unusually early in the UK (July rather than August/September), moth flight behaviour was 

observed to be highly atypical. Movements were significantly more ‘dispersive’ and 

randomly-oriented, occurring on tailwinds from all directions (Chapman et al. 2013). In 

normal years, the observed flight behaviours make a considerable difference to the migration 

trajectories, as shown by atmospheric dispersion model simulations of passively-transported 

inert particles compared with particles with A. gamma-like flight behaviour. Simulated moths 

travel significantly further (an extra 100 km per night) and drift a smaller amount (~20°) from 

the seasonally optimal direction than the passively-advected particles (Chapman et al. 

2010). Further simulations indicate that most autumn-generation A. gamma emigrating south 

from northern Europe would reach Mediterranean areas suitable for winter breeding within 3 

nights of migration (Chapman et al. 2012). 

 

CHARACTERIZING MIGRATION ROUTES AND POPULATION TRAJECTORIES 

 

One major objective of determining parts of the flight-paths of insect migrants is, ultimately, 

to reveal the full population trajectory through space and time (Dingle & Drake 2007), but 

progress with non-locust long-range migrants (e.g. Lepidoptera and Odonata) has been 

slow. The culmination of research on the monarch butterfly has recently allowed the 
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mapping of migration and colonisation patterns across eastern North America over the 

annual cycle of five generations (Miller et al. 2012; Flockhart et al. 2013). Among other 

techniques, these studies modelled ‘citizen science’ distribution data, examined wing wear to 

estimate age, and used stable-isotope analysis of wing chitin to estimate natal origin (Table 

S1). Establishing the importance of the various breeding areas along the monarch’s 

migration circuit will assist the development of conservation strategies; for example, the 

importance of the ‘corn belt’ in the US Midwest for monarch breeding has highlighted the 

issue of the loss of milkweed plants due to new agricultural practices in this region 

(Pleasants & Oberhauser 2012). Another area of progress is the delineation of the multi-

generational migration circuit of the painted lady in the Western Palaearctic (Stefanescu et 

al. 2013) by the collation of numerous citizen-science reports with data from insect-detecting 

radars. The strategy was shown to be one of continuous breeding with six generations per 

year, with lengthy movements between each generation, so that the migration circuit may 

encompass an annual round-trip of 15,000 km between North African and northern 

European breeding grounds. 

Butterflies are unusual in that much of the migration occurs as obvious high-density flights 

close to the ground and during daylight hours, and so they are particularly well-suited to 

citizen science observations of migration in action. However, the majority of insects migrate 

at high altitude (up to 2 km above ground) and often at night, and consequently their 

migration routes and population trajectories have to be inferred by indirect means, such as 

trap catches at ground level, population genetics (Fig. 3), radar observations and movement 

trajectory simulations (Table S1). Population trajectories of most insect migrants are thus 

incomplete – overwintering areas are usually ill-defined, and the locations where the bulk of 

the population is to be found during winters (or dry seasons) of varying severity is still 

unclear for most species. In the most extreme example, it has been postulated that the 

world’s longest insect migration comprises a multi-generational annual migration of Pantala 

flavescens dragonflies from India to East Africa and back again (Anderson 2009; Hobson et 
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al. 2012; Fig 1); but the return movement, particularly, needs confirmation. Moreover, apart 

from a few well-studied species such as the monarch butterfly (Brower et al. 2012) and A. 

gamma (Chapman et al. 2012), the precise contribution of long-range ‘return’ migrants to 

winter or dry-season populations under a range of representative conditions is virtually 

unknown. Thus much work is required to document migration pathways, and until this is 

done, the migration biology of insects will continue to lag behind that of birds and turtles, 

where bio-logging studies have resulted in the detailed characterisation of migration routes 

for numerous species (Rutz and Hays 2009). 

 

EVOLUTIONARY DRIVERS AND ECOLOGICAL CONSEQUENCES 

 

Increased levels of mobility in animals (‘migration’ or ‘dispersal’) are typically assumed to 

impose costs, in terms of lower survival and/or reduced lifetime reproductive success, which 

may be imposed via several mechanisms. Investment of resources into the development of 

flight machinery, storage of fuel reserves, and energy expenditure during flapping flight may 

result in compromised immune systems, and/or reduced fecundity, in birds and insects 

(Milner-Gulland et al. 2011; Bonte et al. 2012; Hansson & Åkesson 2014). Additionally, the 

act of migration itself can be risky – migrating individuals may experience higher mortality 

rates than non-migrants, due to transport to unsuitable habitats or greater exposure to 

predators during flight. However, most research on the costs associated with flight activity in 

insects has focused on relatively short-range dispersive movements, typically in species with 

wing-length or other flight polymorphisms (Bonte et al. 2012). The costs of long-range 

migration are well known in birds and sea turtles (Sillett & Holmes 2002; Milner-Gulland et al. 

2011; Hays & Scott 2013; Klaassen et al. 2014), but in comparison have been little studied in 

long-range insect migrants. Apart from increased risk of mortality, migrations encompassing 

hundreds of kilometres are clearly energetically costly. Equally, migrant species will have 

evolved mechanisms to offset these costs, but these urgently require further quantification in 
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insects, and this is a research area ripe for exploitation. More progress has been made in 

quantifying the benefits associated with long-range seasonal migration, and we discuss this 

next. 

 

Exploitation of seasonal breeding resources 

 

The primary driver of the evolution of long-range insect migration is typically assumed to be 

escape from environmental conditions incompatible with development. The great majority of 

insects survive through unfavourable periods in some form of diapause or quiescence. There 

must therefore be additional benefits that can accrue to migrants beyond escaping 

deteriorating conditions. Most migrant species breed continuously year-round; consequently, 

they are capable of more generations per year than phylogenetically-similar non-migrants, 

and by continuously moving they can potentially exploit a succession of favourable breeding 

grounds. As long as migrants do not suffer substantially elevated mortality in each 

generation, or have significantly lower fecundity, migrant lineages thus have the potential for 

considerably greater reproductive productivity over the course of a year compared with non-

migrants. 

Supporting evidence for this comes from a recent study of the reproductive benefits of 

migration in A. gamma (Chapman et al. 2012). Population monitoring in the UK indicates that 

summer breeding by spring immigrants results in a four-fold increase in the subsequent 

generation of adults. This generation embarks upon a southward return to lower latitudes, 

and simulated migration trajectories suggest that ~80% of immigrants successfully reach 

destinations where production of the next generation is possible; mortality related to 

migration is seemingly relatively low, and the reproductive benefits of seasonal migration are 

transferred to the next generation (Chapman et al. 2012). In addition, A. gamma has higher 

fecundity and population growth rates than similar sized non-migrant noctuids (Spitzer et al. 

1984). Migrant insects invest more in reproductive output than non-migrants, presumably to 
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counterbalance mortality associated with migration, similar to migrant birds (Sibly et al. 

2012) and a wide range of dispersive taxa including spiders, birds and mammals (Stevens et 

al. 2014). The population data for A. gamma therefore indicates that poleward insect 

migration to exploit temporary breeding resources may confer substantial reproductive 

benefits, as long as mortality costs associated with migration are not too high. Only a 

relatively small minority of insects (compared with birds) have evolved long-range migration 

strategies (e.g. only 3% of the ~500 species of noctuid moths in northern Europe are regular 

long-range migrants, compared with 44% of songbirds; Alerstam et al. 2011) and thus the 

potential reproductive benefits associated with migration in insects are presumably difficult to 

realise compared with some other groups.  

 

Movement into enemy-free space 

 

Migration is often assumed to confer additional benefits through successive colonisation of 

new habitats which temporarily provide an ‘enemy-free space’, or at least a significant 

reduction in predation, parasitism and/or pathogen infection, compared with remaining 

permanently in the same location (Altizer et al. 2011). For example, Folstad et al. (1991) 

have argued that post-calving migration in Norwegian reindeer is driven by the threat of 

parasitism by the warble fly Hypoderma tarandi; a consequence of which is that the intensity 

of infection by fly larvae declines with increasing distance migrated. In the case of predation 

and parasitism rates, the evidence in the entomological literature to support this hypothesis 

is largely anecdotal, as it is difficult to carry out detailed ‘life-table’ population studies on 

highly-mobile species. Nonetheless, the older literature on desert locusts clearly suggests 

that natural enemies have limited effects on gregarious populations, partly because of their 

general inability to follow the migrating swarms, and partly because the sheer magnitude of 

large swarms and hopper bands usually exceeds the killing capacity of local predators 

(Uvarov 1977). Much the same applies to the gregarious caterpillars of Spodoptera exempta, 
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an important migratory pest in sub-Saharan Africa. Due to moth migration in each 

generation, there is little opportunity for parasitoids to build up and kill a significant proportion 

of the population before it has completed its life-cycle and moved on. If, however, migrants 

land back in the original breeding area, due to a chance effect of the wind, high levels of 

parasitism can occur in subsequent larval outbreaks (Rose et al. 2000).  

A similar increase in the seasonal incidence of parasitism is observed in painted lady 

butterflies. Data from a large emergence site in the Souss Valley of Morocco revealed that 

~10% of caterpillars were killed by the braconid wasp parasitoid Cotesia vanessae; but given 

that each parasitized caterpillar produced an average of 40 wasps, parasitism rates in the 

next generation of butterflies would be catastrophic if they had remained to breed in the 

same place (Stefanescu et al. 2011). Seasonal comparisons of populations within the winter-

breeding range (Morocco) and summer-breeding range (north-east Spain) demonstrated that 

parasitoid populations built up when successive generations of butterflies bred in the same 

general area: parasitism rates increased from 13% to 66% (Morocco) and from 18% to 77% 

(Spain) between the first generation colonising the area and the last generation departing 

(Stefanescu et al. 2012). Thus mortality from parasitoids clearly plays an important role in 

driving the evolution of migration.  

Migrants may not completely escape their specialized parasitoids however, as long-range 

migration can also evolve amongst parasitoids too: for example, Scelio fulgidus (a 

hymenopteran egg parasitoid of the Australian plague locust Chortoicetes terminifera) uses 

the same high-altitude airstreams for windborne displacement as its host (Farrow 1981). The 

unpredictable nature of windborne movements may benefit potential hosts by reducing the 

chance of encountering specialised migratory parasitoids, and this may explain why the 

strategy of migration to communal diapause sites (as found in the monarch butterfly) is 

comparatively rare. Agrotis infusa (bogong moth) also employs this strategy, migrating to 

mass aestivation sites in the Australian Alps of Victoria to survive the hot and dry summer. 

During the six months they remain in their aestivation caves, bogong moths experience 
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significant mortality from a parasitic nematode that has become adapted to this regular food 

source (Common 1954). 

Rates of predation experienced by colonising immigrants compared with resident species 

have not been quantified as far as we know, and so this remains at best a plausible but 

untested hypothesis. However, there is good evidence that migration to high latitudes 

significantly reduces predation rates in migratory shorebirds (McKinnon et al. 2010), and so 

it is a topic ripe for exploration in insect systems. Migrants may experience a greater risk of 

predation during the migratory flight itself, which will counteract any benefits of reduced 

predation rates post-arrival. The spatial distribution of vertebrate aerial insectivores may 

even be shaped by the availability of large concentrations of migrating insects. For example, 

>100 million Tadarida braziliensis (Brazilian free-tailed bats) migrate from Mexico to Texas 

each spring, where they form huge colonies and feed on migrating noctuid moth pests at 

high altitudes (McCracken et al. 2008), providing an economically important pest 

suppression service (Boyles et al. 2011). In the case of aerial insectivorous birds such as 

Falco amurensis (Amur falcon), which migrate from southern India to East Africa across the 

Indian Ocean, it is thought that concurrently migrating P. flavescens dragonflies provide in-

flight fuelling, and that the dragonfly migration route may have actually shaped the route 

taken by these birds (Anderson 2009; Fig. 1). Thus, large-scale insect migrations may 

provide an important driver for the mass aggregations and migration routes of organisms at 

higher tropic levels. 

Migrants may escape predators and parasites when they move into new habitats, but 

they may also be a source of parasites that could infect local resident populations (Bauer & 

Hoye 2014). Few examples of this have been documented, but there are a number of 

instances where invasive species have outcompeted residents by bringing with them 

infectious disease agents that they themselves are better able to tolerate; a form of 

‘apparent competition’ (Strauss et al. 2012). A recent possible example is the introduction 

into Europe of Harmonia axyridis (Asian harlequin ladybird). This species hosts a Nosema-
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like microsporidian that is tolerated by H. axyridis due to its production of an antimicrobial 

alkaloid called harmonine; however, the pathogen is lethal to native European Coccinella 

ladybirds when injected (Vilcinskas et al. 2013a). Whether or not microsporidia-induced 

mortality is a cause of decline in several native ladybirds remains to be confirmed, however, 

since infection via the gut during intra-guild predation in the field has yet to be established, 

and other mechanisms for the declines are possible (Vilcinskas et al. 2013b). Nonetheless, 

the potential for migrating insects to carry pathogens into new areas is a very real possibility, 

especially with current climate-change influences on insect species’ distributions (Bebbe et 

al. 2013). 

 

Microbial pathogens and migration 

 

The multifarious effects that microbial pathogens have on animal migration have only begun 

to be elucidated within the last decade or so, and much remains to be discovered. 

Movement of infected hosts will of course influence the geographical spread of pathogenic 

organisms, while on the other hand the physiological and behavioural impacts of (sub-lethal) 

infections may have important ramifications for migratory performance and population 

dynamics (Altizer et al. 2011; Hall et al. 2014). This may lead to complex relationships 

between pathogens and migration (Box 1, Fig. 2, Fig. 4), and for insects the best studied 

system is, once again, the North American populations of the monarch butterfly. Monarchs 

are highly susceptible to infection from a debilitating protozoan, Ophryocystis elektroscirrha, 

which can be lethal to individuals carrying high pathogen burdens. The prevalence of 

heavily-infected adults is highest in the resident population of monarchs found in Florida, 

intermediate in the short-range migratory population in the west, and lowest in the long-

range migratory population in the east (Altizer et al. 2000). The differences in pathogen 

prevalence between these populations with different migratory tendencies are thought to 

arise from two non-exclusive mechanisms, and the resulting fitness benefit of lower 
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pathogen prevalence is likely to be a significant driver for the evolution of migration (Altizer 

et al. 2011). In the first mechanism (“migratory escape”), migration allows individuals to 

escape from environments where pathogens have or will accumulate. Within the eastern 

population, pathogen prevalence was lowest at the start of the breeding season and peaked 

at the end of the breeding season, indicating that infection rates do increase with longer 

residency times (Bartel et al. 2011), consistent with the migratory escape hypothesis.  

In the second mechanism (“migratory culling”), the physical act of migration reduces 

the incidence of pathogens in the population because heavily-infected individuals are unable 

to complete long migrations, due to the combined physiological demands of fighting infection 

and undertaking a challenging journey (Altizer et al. 2011). Eastern monarchs provide 

evidence for this hypothesis, as heavily-infected butterflies have lower flight performance 

than healthy individuals (Bradley and Altizer 2005), and pathogen prevalence tends to be 

lower in individuals that reach the Mexican over-wintering grounds than the average 

pathogen load in butterflies commencing autumn migration (Bartel et al. 2011). In addition, 

O. elektroscirrha isolates from the less migratory Western population of monarchs are more 

virulent than strains from the eastern population, consistent with the notion that the most 

virulent strains are removed by migratory culling during the longest migratory flights (de 

Roode and Altizer 2010). This body of work provides a compelling argument that migration 

delivers significant fitness benefits by reducing pathogen infection rates, and thus it is likely 

that avoidance of infectious diseases has been a significant driver of the evolution of long-

range migration in monarchs, and probably other migrant species (Hall et al. 2014).  

In contrast, levels of the endemic baculovirus, Spodoptera exempta 

nucleopolyhedrovirus (SpexNPV), accumulate during the migratory outbreak season of the 

African armyworm (Fig. 2), in part due to the propensity for the virus to be vertically-

transmitted from parents to offspring, so allowing the pathogen to ‘migrate’ along with its 

host (Vilaplana et al. 2010; Graham et al. 2012). Whilst this might at first appear to be at 

odds with the enemy-release hypothesis, it is clear that failure to migrate at each generation 
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would result in mass mortality due to enhanced horizontal-transmission of virus at the natal 

breeding site. Indeed, even with migration partially ‘resetting the clock’ of virus population 

levels at each generation, larval mortality may still reach 98% in late-season larval outbreaks 

(Rose et al. 2000), suggesting that avoidance of baculovirus infections is a significant 

selection pressure favouring migration. More studies of this kind are required to establish 

how widespread this evolutionary process is in other insect migrants. 

There is also a pressing need to establish the exact nature of the interactions between 

migration and pathogens, and how these vary across host and pathogen species and 

genotypes. For example, we know little about the shapes of the norms of reaction between 

pathogen load and migratory capacity, or between migratory effort and susceptibility to 

infection (Box 1, Fig. 4). Given that migratory flight and immune function are both known to 

be physiologically costly (Rankin & Burchsted 1992; Schmid-Hempel 2011), it seems 

inevitable that these two processes are intimately linked. Quantifying the shapes of these 

cost functions (Fig. 4), via laboratory infection trials and tethered flight mills (Fig. 5; Table 

S1), for example, will allow us to make more specific predictions about the likely evolutionary 

trajectories of these two traits. 

An additional mechanism by which individuals can reduce their risk of infection from 

pathogenic microbes during population build-ups is to invest more resources into their 

immune system. In the case of migratory insects, this is particularly evident in those species 

that invest relatively more in pathogen resistance mechanisms when occurring in high-

density populations (where horizontal transmission rates will be higher) – a phenomenon 

known as density-dependent prophylaxis (DDP) (Wilson et al. 2001). Immune defences are 

costly, and so complex trade-offs will presumably exist between migratory capacity, 

pathogen load and immune responses; these trade-offs have proven difficult to quantify 

however. Spodoptera exempta exhibits DDP, investing relatively more in pathogen 

resistance under the high-density conditions that prevail during outbreaks (Wilson et al. 

2001), reducing their susceptibility to the SpexNPV baculovirus. It may be predicted 
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therefore that crowded larvae (which invest more in immunity) will have lower migratory 

performance as adults, but in fact the converse appears to be true (Woodrow et al. 1987). 

This may be because the same (density-related) cues that trigger DDP also stimulate 

elevated flight and that the costs of both are subsumed elsewhere (Fig. 4a), but the precise 

relationships between migratory propensity, flight performance, immune responses and 

pathogen load remain to be quantified. A study of a plant and its fungal pathogen suggests 

that interactions between dispersal, immunity and disease are likely to be complex (Jousimo 

et al. 2014). Modelling studies suggest that even in the absence of this complexity, the 

optimal migration strategy is critically dependent on the prevalence of pathogens in the 

population and that the vulnerability of populations to emerging infections can depend on 

their current migratory habits. Moreover, factors which affect the distance or timing of 

migration (land-use change, climate change, etc.) could increase pathogen prevalence; an 

effect that has already been documented in some vertebrate species subject to 

anthropogenically-induced migratory shifts, including the emergence of Hendra virus in fruit 

bats, ectoparasitic sea lice in wild salmon, and brucellosis infection in elk (Hall et al. 2014). It 

seems likely that similar effects will be seen in insect systems too. 

 

 

FUTURE PERSPECTIVES 

 

This is an exciting time to be engaged in insect migration research, as many of the questions 

requiring answers are now tractable due to advances in telemetry (Kissling et al. 2013), 

remote sensing (Drake & Reynolds 2012), stable isotopic analysis (Hobson et al. 2012) and 

genomic (Liedvogel et al. 2011) technologies (Table S1). As the genomes of migratory 

insects, such as the monarch butterfly (Zhan et al. 2011) and Locusta migratoria (migratory 

locust) (Wang et al. 2014), are published, they will offer new insights into the evolution and 

organisation of migration. For example, the sequencing of multiple genomes of monarchs 
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from migratory North American populations and non-migratory populations from across the 

globe have produced fascinating revelations about the evolutionary history of monarch 

migration and the genes underlying the syndrome (Zhan et al. 2014). The results of this 

comparative sequencing indicate that the ancestral monarch population inhabited temperate 

North America and was migratory, and that all three sub-tropical/tropical resident populations 

(Central/South America; Pacific; and Atlantic lineages) were independently derived from 

migrants originating in North America (Zhan et al. 2014). More surprisingly, all three 

transitions from migratory to non-migratory behaviour were associated with reversion to an 

ancient (non-migratory) haplotype containing a version of the collagen IV gene that is 

associated with a reduction in muscle efficiency and flight performance (Zhan et al. 2014). 

These results indicate that migration may evolve and regress frequently and rapidly, and the 

physical act is reliant on efficient muscle function, but there is still much to learn about the 

genetic and epigenetic mechanisms which regulate migration (ffrench-Constant 2014; 

Hansson & Åkesson 2014). 

One promising approach for gaining fundamental insights into the ecology and evolution 

of insect migration is comparative studies of movement patterns in distantly-related taxa, 

whether they are walking, swimming, floating or flying migrants (Alerstam et al. 2011; 

Chapman et al. 2011b; Reynolds et al. 2014). Recent meta-analyses of animal migrations 

demonstrated that maximum distances are predicted by a model incorporating mass-

dependent costs of movement for each mode of locomotion, in animals as diverse as 

dragonflies, sea turtles, wildebeest and blue whales (Hein et al. 2011; Hays & Scott 2013). 

As predicted by the model, maximum migration distance is positively correlated with body 

size, and thus among flying animals, insects have relatively short absolute migration 

distances. However, when migration distance is scaled to body size, the longest insect 

migrations (Lepidoptera and Odonata) are approximately 25 times longer than migration 

distances of the largest birds (Hein et al. 2011). One of the reasons that insects can 

seemingly outperform the largest and strongest flying birds in terms of relative migration 
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distance is the highly efficient strategies they have for acquiring the maximum degree of 

wind assistance (Alerstam et al. 2011). Comparative studies such as these have shown that, 

contrary to widely-held perceptions that insect migration represents a risky and wasteful 

process, some insects are in fact amongst the most efficient, successful and longest (scaled 

to body size) migrators. 

One of the least well studied aspects of insect migration is the effect that mass arrivals of 

immigrants have on the ecosystems they periodically invade (Bauer & Hoye 2014). The 

consequences of a sudden influx of millions or even billions of migrant insects to temperate 

zones each spring, followed by the departure of sometimes even greater numbers to lower 

latitudes each autumn (Chapman et al. 2012), have hardly been investigated. These 

seasonal transfers involve enormous quantities of biomass, nutrients and a multitude of 

associated pathogenic and endosymbiotic microbes. The effects may be positive (e.g. 

delivery of ecosystem services such as pollination, biological control of pests and provision 

of food to higher trophic levels) or negative (e.g. spreading infectious plant and animal 

diseases and reducing agricultural crop yields), to both resident biodiversity and human 

society (Bauer & Hoye 2014). Elucidating the diverse impacts of a mass arrival of insect 

migrants on ecosystem function remains a challenging prospect, but the first stage is to 

accurately quantify the numbers of insects involved in these movements. To the best of our 

knowledge, this has been achieved for only one species (A. gamma) invading one country 

(the UK), where invasions of up to 250 million moths can arrive during spring (Chapman et 

al. 2012); more studies of this kind are urgently needed. Quantifying insect migration over 

large spatial scales remains problematic, but new opportunities to study the long-range 

movements of comparatively small animals through the aerosphere, using continental-scale 

networks of radars (Chilson et al. 2012; Shamoun-Baranes et al. 2014) and the ICARUS 

initiative for a global small-animal satellite tracking system (Wikelski et al. 2007), hold 

considerable promise that this may become feasible in the near future. Given the effect that 

anthropogenic climate change and land-use change may have on the migration strategies of 
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economically important pest species (Bebbe et al. 2013), such continental-scale monitoring 

programs will become increasingly important. 
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Figure Legends 

 

Figure 1.  A schematic indication of the proposed migration route of Pantala flavescens 

(wandering glider dragonfly). The thin light-blue arrow shows the autumn migration from 

India across the Indian Ocean via the Maldives, Chagos, Seychelles and Aldabra to east 

Africa. Months indicate arrival dates of large numbers of P. flavescens at locations across 

the Indian Ocean. The broad light-blue arrow indicates the north-easterly winds at altitudes 

above 1000 m behind the (southward-moving) Inter-tropical Convergence Zone, which the 

dragonflies use for transport. It is suggested that there is a reciprocal migration to India in 

May on the winds of the Somali Low-Level Jet (broad dark-blue arrow). Predatory Amur 

falcons (Falco amurensis) and other aerial insectivorous birds follow the same migratory 

route, and may prey on the dragonflies during the journey. (Modified from Anderson, 2009; 

photo of P. flavescens copyright 2011 dragonflywoman.wordpress.com; photo of F. 

amurensis copyright 2011 M. Putze birdsmongolia.blogspot.co.uk). 

 

Figure 2.  Migration and viral disease intensity in Spodoptera exempta (African armyworm) 

in eastern Africa. (a) Known primary outbreak areas and typical movements during a major 

outbreak season (figure and photo from Rose et al. 2000). Dark shading shows the locations 

of reported high-density, early-season larval outbreaks; dappled shading is areas where 

unreported outbreaks are suspected; dotted shading is large water bodies; and solid arrows 

are the migratory movements of moths initiating new outbreaks. Migration direction is 

determined by seasonal wind patterns and movement of the Inter-tropical Convergence 

Zone, and the location of outbreaks is governed by the seasonal patterns of rains, typically 

occurring in areas of low and erratic rainfall. (b) As the rainy season progresses and the 

number of larval outbreaks increases, the larval viral loads and the prevalence of virus-

induced mortality increases, even though moths migrate at each generation (data from 

Graham et al. 2012).  
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Figure 3.  An example of long-distance insect migration routes inferred from genetic 

methods, namely the geographical distribution of haplotype ratios in the ‘corn strain’ of 

Spodoptera frugiperda (fall armyworm moth). The open light blue oval and dark blue circle 

estimate the extent of the overwintering range in Texas and Florida, respectively. Fall 

armyworm can also overwinter in the Caribbean but whether these populations contribute to 

those in Florida is still a matter of speculation. Light blue arrows indicate putative direction of 

the migration from the Texas–Mexico overwintering areas. Dark blue arrows depict 

movement from Florida populations. Lined circles show approximate locations of “hybrid 

zones” where the two migratory pathways appear to overlap. The diagonal green line follows 

the major elevations of the Appalachian Mountain range, which appears to have a role in 

segregating the migration pathways. (From Nagoshi et al. 2012; photo copyright 

Wikipedia.org). 

 

Figure 4. The interaction between migration and disease. (a) As pathogen loads increase, 

we might expect there to be a cost in terms of migratory capacity. This cost may be linear 

(blue line), non-linear (green), a step-function (red) or negligible (purple), depending on 

specific circumstances (see Box 1); low-level infections may also act as a cue triggering 

enhanced migratory capacity (orange). (b) Likewise, as migratory effort increases, so we 

expect a physiological cost, in terms of enhanced susceptibility to disease, and the shape of 

this cost function may also take a range of forms, with consequences for the evolution of 

migration and disease resistance. When costs exceed some threshold, then we can expect 

migration-induced susceptibility to infection to result in ‘migratory culling’ (shaded area), 

sensu Altizer et al. (2011); again, the point at which this threshold is reached will depend on 

the shape of the cost function. 
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Figure 5. An example of a tethered flight mill for studying migratory flight duration under 

controlled conditions. (a) Schematic diagram of an individual rotational (‘roundabout’) flight 

mill, showing the low-friction magnetic suspension which enables comparatively small and 

weak-flying insects to engage in sustained flight. Multiple flight mills can be run 

simultaneously, so that highly-replicated samples of flight data can be collected under 

identical controlled environmental conditions, enabling study of (for example) the effect of 

sub-lethal infections on flight capacity. This Rothamsted flight mill design is patent pending 

(UK Patent Application No. 1314415.9). (b) Experimental moths, such as this Helicoverpa 

armigera (cotton bollworm), have a short ‘handle’ attached to the dorsal surface of the thorax 

some hours before nocturnal flight measurement. They can be fed with sucrose solution 

(lower panel) before being attached to the flight mill arm (upper panel). Figure and photos 

courtesy of Rothamsted Research Visual Communications Unit. 
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Box 1. The interaction between migration and disease 

 

There is a two-way interaction between migration and infectious disease, mediated in part by 

the physiological costs associated with flight and pathogen resistance/tolerance 

mechanisms. As pathogen loads increase (due to increased exposure and/or lowered 

resistance), so we might expect the capacity for migration to decline, due to the physiological 

costs associated with parasitism, possibly resulting in death during migration (“migratory 

culling”, sensu Altizer et al. 2011). This cost function may be linear, non-linear, a step 

function, or negligible (Fig. 4a), depending on the host species, the virulence of the 

pathogen and/or the type of migration (e.g. flight boundary layer or windborne migration). As 

an example, in monarch butterflies, flight capacity measured using a tethered flight mill 

apparatus (Fig. 5), was lower in individuals parasitized by the protozoan Ophryocystis 

elektroscirrha than in uninfected individuals, indicative of a parasitism cost. But, amongst 

parasitized butterflies, there was no significant relationship between parasite burden (spore 

load) and either total distance flown or flight speed, suggesting that the relationship may be 

a step function (Bradley & Altizer 2005). There is a further possibility, which is that low-level 

exposure to a pathogen could act as a cue triggering an increase in migratory capacity 

(orange line) as a prophylactic response to avoid further exposure to the pathogen by the 

individual or their offspring (Wilson et al. 2001). There is a reciprocal relationship between 

migration and disease: as migratory effort increases (e.g. flight speed/duration, investment in 

flight muscle mass, etc.), so we might expect susceptibility to the effects of infection to 

increase and/or for disease tolerance to decline, as resources that might otherwise be 

directed at combating the infection are re-allocated to fuel migratory flight. When combined 

and interactive costs of migration and infection exceed some critical threshold, then we can 

expect there to be ‘migratory culling’. Again, the shape of this relationship will vary across 

host-pathogen systems (Fig. 4b) and so the point at which this threshold is reached will 

depend on the shape of the cost function. To characterise these migration-induced cost 
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functions requires an experimental approach in which migratory effort and pathogen loads 

are manipulated, to take account of differences in host condition, immune competence and 

innate capacity to migrate. We know of no such studies to have yet taken this experimental 

approach. 


