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ABSTRACT

The skill of weather and climate forecast systems is often assessed by calculating the correlation coefficient

between past forecasts and their verifying observations. Improvements in forecast skill can thus be quantified

by correlation differences. The uncertainty in the correlation difference needs to be assessed to judge whether

the observed difference constitutes a genuine improvement, or is compatible with random sampling varia-

tions. A widely used statistical test for correlation difference is known to be unsuitable, because it assumes

that the competing forecasting systems are independent. In this paper, appropriate statistical methods are

reviewed to assess correlation differences when the competing forecasting systems are strongly correlated

with one another. The methods are used to compare correlation skill between seasonal temperature forecasts

that differ in initialization scheme and model resolution. A simple power analysis framework is proposed to

estimate the probability of correctly detecting skill improvements, and to determine the minimum number of

samples required to reliably detect improvements. The proposed statistical test has a higher power of

detecting improvements than the traditional test. The main examples suggest that sample sizes of climate

hindcasts should be increased to about 40 years to ensure sufficiently high power. It is found that seasonal

temperature forecasts are significantly improved by using realistic land surface initial conditions.

1. Introduction

Hindcast experiments are routinely generated to detect

systematic biases of forecast systems, and to assess fore-

cast quality. Hindcast data from a competing forecast

system are often available, from either a low-resolution

version of the same forecast system, the system of a

competing forecast institution, or a simple statistical

benchmark forecast. It is then of interest to address the

question whether the forecast system at hand offers an

improvement over the competitor. A very common

measure of forecast skill is the (Pearson product mo-

ment) correlation coefficient between forecast and

observations. To answer the question of whether the

new forecast offers an improvement over a competitor,

the difference in the correlation coefficient could be

considered. Furthermore, in order to assess the ro-

bustness of an observed difference in correlation, some

measure of uncertainty must be calculated.

As pointed out by Jolliffe (2007): ‘‘The value of a

verification measure on its own is of little use; it also

needs some quantification of the uncertainty associated
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with the observed value’’ (p. 637). Uncertainty quanti-

fication is important to distinguish genuine improve-

ments in forecast skill from random sampling variability

due to the finite hindcast samples. Jolliffe (2007) pres-

ents various statistical methods to quantify uncertainty

in forecast skill and differences in forecast skill. DelSole

and Tippett (2014) show that commonly used statistical

tests for comparing skill of climate forecasts make the

questionable assumption that the competing forecasts

are independent. They show that this assumption

can invalidate the test results, and suggest suitable

alternatives.

The present paper complements Jolliffe (2007) and

DelSole and Tippett (2014) by reviewing statistical

methods that are directly applicable to testing for dif-

ferences in correlation forecast skill, and by emphasizing

the power of statistical tests to detect skill improve-

ments. Section 2 briefly reviews the correlation co-

efficient, statistical hypothesis testing, and confidence

intervals. Section 3 describes the most currently used

hypothesis test for quantifying uncertainty of a corre-

lation difference. A hypothesis test by Steiger (1980),

and an approximate method to calculate confidence in-

tervals by Zou (2007) are suggested as more appropriate

methods for comparing correlation coefficients of two

forecasts for the same set of observations. In section 4,

the different statistical methods are applied to datasets

of seasonal near-surface air temperature forecasts. The

analyses provide detailed examples of how the different

test statistics are calculated in practice. It is shown that

the alternative tests indicate significant improvements

in forecast skill where the traditional test does not. In

section 5, the differences between the tests are assessedby

analyzing their type-I error rates (the probability of

falsely detecting an improvement) and their power (the

probability of correctly detecting an improvement). It is

shown that the traditional test can have a too low type-I

error rate, and that the alternative test has higher power

and thus increases the chance of detecting genuine im-

provements in forecast skill. Section 6 compares pre-

dictions of climate indices (ENSO and NAO) using

model versions with different resolutions. Section 7 con-

cludes the paperwith a discussion and additional remarks.

2. Basic concepts

Assume two forecast systems—system A and system

B—both of which make predictions about the same ob-

servable Y. A hindcast dataset generated by A and B for

the same observation Y consists of a series of triplets

fat, bt, ytg, where t5 1, . . . , n. The Pearson product-

moment correlation coefficient between the forecasts

generated by systemAand the observations is denoted by
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where a and y are the sample averages of a1, . . . , an and

of y1, . . . , yn, respectively (Wilks 2011, section 3.5.2).

There are at least 13 possible interpretations of corre-

lation (Rodgers and Nicewander 1988). For forecast

verification, one of the most relevant interpretations is

that the squared correlation is equal to the mean

squared skill score of the linearly recalibrated forecasts;

a derivation can be found in the appendix, and also in

Murphy and Epstein (1989). Because of the implicit

linear recalibration, the correlation coefficient is in-

sensitive to systematic biases. To also account for biases,

the uncentered anomaly correlation can be used (Wilks

2011, section 8.6.4.) instead of Eq. (1), but then the

statistical tests of section 3 do not apply.

To quantify uncertainty of the correlation coefficient, it is

often assumed that the hindcast dataset is a random sample

from an infinite population of forecasts and observations.

The sample correlations ray and rby are interpreted as im-

precise, noisy measurements of the unknown population

correlation coefficients ray and rby. When the population

correlations of two forecast systems are to be compared,

two questions are often of interest: ‘‘Is there any improve-

ment?’’ and ‘‘How big is the improvement?’’ The question

of whether or not there is an improvement is a testing

problem that can be addressed by significance testing. The

question of how big an improvement is, is an estimation

problem that can be addressed by confidence intervals.

Tests for improvements in correlation skill assume null

hypotheses such H0: ray 5 0 (no improvement over zero

skill) or H0: rby 5 ray (no improvement of system B over

systemA). To testH0, a test statistic T is calculated, which

is a function of the hindcast data, and whose sampling

distribution is known ifH0 is true. Based on the observed

value of T, say T̂, the p value is calculated (i.e., the chance

of observing a value ofT that ismore extreme than T̂ when

H0 is true). A low p value such as p, 0:05 implies that the

observed T̂ is a relatively unlikely value if H0 were true,

which is interpreted as evidence against H0. Confidence

intervals are used as an interval estimate of the magnitude

of the unknown population correlation ray, or correlation

difference rby 2 ray. A 95% confidence interval has a

nominal frequency of 95% of covering the unknown

population quantity (i.e., if confidence intervals were

calculated repeatedly for data drawn from the population,

the interval would cover the population value 95% of the

time). (The usual disclaimer applies: the p value is not the

probability that H0 is true, and the confidence coefficient
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of 95% is not the probability that the confidence interval

covers the population value.) Confidence intervals can

also be used for hypothesis testing. If a confidence in-

terval fails to overlap a value of interest such as 0, this

can be taken as sufficient evidence to reject the null

hypothesis H0: ray 5 0, say. If we decide to reject H0 if

the p value is smaller than 0.05, we accept a 5% chance

of mistakenly rejecting a true H0 (i.e., of committing a

type-I error). The same chance of a type-I error results if we

rejectedH0 whenever the 95% confidence interval does not

overlap zero. Failure to reject a falseH0 is known as a type-

II error, and the probability of correctly rejecting a false

H0 is called the power. In forecast verification, statistical

power of a test quantifies our ability to correctly detect

improvements in forecast skill. For deeper treatment of

the concepts outlined in this sectionwe refer the reader to

the statistical climatology literature, especially Von

Storch and Zwiers (2001) and Wilks (2011).

3. Methods

In this section we summarize statistical methods for hy-

pothesis testing and confidence intervals of correlation co-

efficients. In the atmospheric sciences literature, methods

to quantify uncertainty in a single correlation coefficient are

well known. However, statistical methods to calculate hy-

pothesis tests and confidence intervals for the difference

between correlation coefficients are less well known.

a. Hypothesis tests and confidence intervals for a
single correlation coefficient

Under the null hypothesis of zero correlation,

H0: ray 5 0, the test statistic

T
0
5 r

ay

 
n2 2

12 r2ay

!1/2

(2)

has a Student’s t distribution with n 2 2 degrees of free-

dom (Von Storch andZwiers 2001, section 8.2.3). The test

assumes that the hindcast data are independently and

identically normally distributed. The term T0 tends to fall

far into the upper or lower tail of the t distribution if ray is

close to 11 or 21, respectively. A two-sided test at sig-

nificance level a would thus reject the null hypothesis

H0: ray 5 0 if T0 is either smaller than the (a/2) quantile

or larger than the (12a/2) quantile of the t distribution.

Confidence intervals for a correlation coefficient can

be calculated based on the Fisher transformation of ray
(also called the z transform), defined by

z
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(Von Storch and Zwiers 2001, section 8.2.3). For data

that are identically and independently normally dis-

tributed, the Fisher transformation of ray is approxi-

mately normally distributed with mean atanh(ray) and

variance (n 2 3)21. A 95% confidence interval for ray is

thus given by [l, u], where

l5 tanh
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and where Zp denotes the p quantile of the standard

normal distribution (e.g., Z0:025 521:96).

The Fisher transformation can be used to assess the

difference between two independent correlation co-

efficients. Under the null hypothesis rby 5 ray, zay and

zby have the same normal distribution, with variance

(n2 3)21. Under the assumption that zay and zby are

statistically independent, their difference zby 2 zay has a

normal distribution with mean zero and variance

2(n2 3)21. This leads to a hypothesis test of the null

hypothesis rby 2 ray 5 0 where the test statistic

T
1
5 (z

by
2 z

ay
)

ffiffiffiffiffiffiffiffiffiffiffi
n2 3

2

r
(5)

has a standard normal distribution. This test is presented

in Jolliffe and Stephenson (2012, section 5.4.4) and has

been used in the climate literature to assess correlation

differences between forecasting systems; examples in-

clude Keenlyside et al. (2008), Du et al. (2012), Doblas-

Reyes et al. (2013b), and Pepler et al. (2015). We will

show in section 5 that the test based on T1 has a serious

shortcoming, namely, the assumption of independence

between zay and zby. If two forecasts are made for the

same observation, they are likely to be correlated with

one another, and therefore any statistics that depend on

the forecasts, such as correlations ray and rby (or their

Fisher transformations), are likely to be correlated as

well; see also DelSole and Tippett (2014). We will next

review alternative methods for uncertainty quantifica-

tion of correlation differences that improve the test

based on T1 by taking into account the correlation be-

tween forecasts.

b. Testing and estimating the difference of two
overlapping correlations

Two correlation coefficients that share a common

variable such as ray and rby are said to be overlapping

(Zou 2007). The following test presented by Steiger

(1980) [based on results from Williams (1959)]

tests equality of overlapping correlations (i.e.,
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H0: rby 2 ray 5 0), taking into account that the forecasts

generated by systems A and B can be correlated with

one another. We define the auxiliary quantity R as

R5 (12 r2ay 2 r2by 2 r2ab)1 (2r
ay
r
by
r
ab
) , (6)

where rab is the correlation between the forecasts

generated by systems A and B for the same observa-

tions. (Here R is the determinant of the 33 3 sample

correlation matrix of forecasts and observations.) The

test statistic
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has a Student’s t distribution with n 2 3 degrees of

freedom under the null hypothesis of zero correlation

difference. If rby 2 ray . 0 (i.e., if forecast B has higher

correlation than forecast A), the test statistic T2 be-

comes large, and will fall far into the upper tail of

the corresponding t distribution. A one-sided test at

significance level awould thus compareT2 to the (12a)

quantile of the t distribution with n 2 3 degrees of

freedom, and reject the null hypothesis of zero correla-

tion difference if T2 exceeds this critical value. Such a

one-sided test can be used to test whether forecast sys-

tem B offers improved forecasts compared to forecast

system A.

Zou (2007) provides an approximate method to cal-

culate confidence intervals for a difference between two

overlapping correlation coefficients. First calculate the

auxiliary quantity:
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which approximates the correlation between ray and

rby. Then calculate (12a)3 100% confidence in-

tervals (la, ua) for ray and (lb, ub) for rby, using Eq. (4).

An approximate (12a)3 100% confidence interval

(L, U) for the correlation difference rby 2 ray is then

given by
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Note that high values of cab lead to narrow confidence in-

tervals. The methods by Steiger (1980) and Zou (2007) are

approximations: they assume that the data are normally

distributed, and that the sample size is sufficiently large.

4. Application to seasonal near-surface air
temperature forecasts

a. Description of the data

A comparison of seasonal climate forecasts serves here

as a practical example. Forecasts of average summer

(JJA) near-surface air temperatures are initialized on

1 May for the n5 17 yr from 1993 to 2009. Such small

sample sizes are caused by computational constraints and

limited observation data, and lead to large uncertainties

in verification measures (Siegert et al. 2016).

The hindcast experiment addresses the effect of ini-

tializing the land surface conditions. A more realistic

initialization of the land surface conditions is expected

to have particular impact on prediction of summer

temperatures over landmasses. One forecast, denoted

forecast A, was generated by using the same climato-

logical land surface conditions to initialize the forecast

in each year. We computed the climatology of surface

parameters (soil moisture and temperature at all soil

levels, and the albedo, depth, density, and temperature

of the snow layer) by taking their 1993–2009 averages

in a window of 10 days centered around the initialization

date 1 May, using data from the ERA-Interim/Land

global reanalysis dataset (Balsamo et al. 2015). The

10-day window ensures a robust estimate of the clima-

tology. The other set of forecasts, denoted forecast B,

were initialized with the actual land surface parameters on

the initialization date in the respective year, taken from the

ERA-Interim/Land dataset. All model hindcasts were

carried out with the global climate system model EC-

Earth3 (Hazeleger et al. 2012), which has been widely

used for studying intraseasonal to multiannual pre-

dictability and climate projections (Doblas-Reyes

et al. 2013a). Hindcasts are initialized with reanalysis

data from Global Ocean Reanalysis and Simulations,

version 1 (GLORYS2v1) for the ocean (Ferry et al.

2012), ERA-Interim reanalysis data for the atmo-

sphere (Dee et al. 2011), ERA-Interim/Land data for

the land surface (Balsamo et al. 2015), and sea

ice initial conditions from Guemas et al. (2014). Each

prediction is calculated as the mean over 10 ensemble

members initialized by atmospheric singular vectors.
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Surface temperature data from the ERA-Interim re-

analysis were used as verifying observations.

We evaluate differences in correlation skill at each

land grid point individually, and also for area averages.

The area averages are calculated for four regions de-

fined in the SREX special report of the IPCC (IPCC

2012). The region specifications are given in Table 1.

These four regions are either in semiarid climates, where

the land surface–atmosphere interactions play an im-

portant role for the energy balance, or for which land

surface–atmosphere couplings were previously reported

in the literature (Koster et al. 2004; Zhang et al. 2011;

Bellprat et al. 2013). The time series plots of the area-

weighted temperature averages for the four regions are

shown in Fig. 1. It can be noted that forecasts and ob-

servations have negligible serial correlation.

b. Correlation analysis

Wefirst provide a detailed example of how the various

test statistics, p values, and confidence limits of section 3

are calculated. We use the time series of the central

European (CEU) region (Fig. 1a) for illustration. The

sample correlations of the forecasts with the observa-

tions are ray 5 0:56 and rby 5 0:80. The sample size is

n5 17, and sample correlation between the forecasts is

rab 5 0:62. The Fisher transformations of the correla-

tions ray and rby are zay 5 0:63 and zby 5 1:10, fromwhich

we calculate the central 95% confidence intervals

(la, ua)5 (0:11, 0:82) and (lb, ub)5 (0:52, 0:92). The

hypothesis test of the null hypothesis rby 2 ray 5 0,

without accounting for correlation between the fore-

casts, yields a test statistic of T1 5 1:23, which has a

p value of 0.11 under the standard normal distribu-

tion. That is, if the null hypothesis of zero correlation

difference were true (and if the forecasts were un-

correlated), 11% of all sample values of the test sta-

tistic T1 would be at least as large as the observed

value of 1.23. For the t test of Steiger (1980), which

accounts for the correlation between the forecasts, we

obtain a value of the test statistic of T2 5 1:69. The p

value under the t distribution with n2 35 14 degrees

of freedom is 0.06, that is, about 6% of all values of the

test statistic T2 would exceed the observed 1.69 if the

null hypothesis of zero correlation difference were

true. The confidence interval of the correlation

difference, based on the method by Zou (2007) is

equal to (L, U)5 (20:05, 0:65).

Table 2 summarizes the correlation analysis of the four

time series of Fig. 1. In all examples, the t test based on the

test statistic T2 [Eq. (7)], which accounts for correlation

between forecasts, yields lower p values than the test

based on T1, which ignores correlation between forecasts.

The effect of accounting for high correlation between

forecasts is best illustrated in the analysis of regionwestern

Africa (WAF). The correlation difference between the

forecasts is very small at 0.06. The test statisticT1 yields ap

value of 0.37, indicating that the observed value of T1 is

compatiblewith the null hypothesis of zero difference. But

the correlation between the forecasts is very large at 0.98.

For the test based on T2, which does account for corre-

lation between forecasts, the p value is very small, leading

to rejection of H0 at the 5% significance level. A given

correlation difference is deemed to be more significant,

the more strongly the forecasts are correlated with each

other. Note, however, that the two forecasts for WAF are

very similar to each other, so it is important to distinguish

between statistical and practical significance of the results.

It is further worthwhile to note that the correlation dif-

ferences in regions CEU and eastern Asia (EAS) are very

different, but the corresponding p values are very similar.

On the other hand, the correlation differences in regions

EAS and northeastern Brazil (NEB) are very similar, but

the p values are very different. Last, we note that as a

result of the soil moisture–temperature feedback (dry/wet

conditions lead to warmer/colder temperatures), the var-

iance of the forecast system B is slightly higher than the

variance of forecast A in all four regions.

Figure 2 shows correlation coefficients ray, rby, and rab
on individual grid points over land. Upon visual in-

spection, the correlations of forecast B with the obser-

vations seem to be higher than for forecast A. Further,

the plot of rab shows that the two forecasts are highly

positively correlated in most regions, which shows that

the underlying assumption of the test statistic T1 is not

justified most of the time. There are, however, some re-

gions where the correlation between forecasts is actually

close to zero, or even negative. Forecasts seem to be less

correlatedwith each other in the regionswhere they show

low correlation skill (e.g., northeast Asia). In regions

where there is high correlation skill in both forecasts

TABLE 1. Region specifications. The regions are also indicated in Fig. 2.

Region Label Coordinates of region corners

Central Europe CEU (458N, 108W) (488N, 108W) (61.328N, 408E) (458N, 408E)
Eastern Asia EAS (208N, 1008E) (508N, 1008E) (508N, 1458E) (208N, 1458E)
Northeastern Brazil NEB (208S, 348W) (208S, 508W) (08, 508W) (08, 348W)

Western Africa WAF (11.3658S, 208W) (158N, 208W) (158N, 258E) (11.3658S, 258E)

FEBRUARY 2017 S I EGERT ET AL . 441



(ray. 0 and rby . 0), the correlation between the fore-

casts rab also tends to be high (e.g., central Africa).

The correlation differences at individual grid points are

shown in the top panel of Fig. 3. Stippled points indicate

grid points where the one-sided test based on the test

statistic T2 yields a p value smaller than 0.05, and, there-

fore, rejects the null hypothesis at the 5% significance

level. As expected, these points appear mainly in regions

where the correlation difference rby 2 ray is large, or

where the correlation between forecasts rab is large. The

bottom panels of Fig. 3 show that the same correlation

difference can be deemed significant by the test based on

T2 but not significant when T1 is used, and vice versa. In

general, the test based on T2 leads to more rejections of

the null hypothesis. More than twice as many points are

marked as significant in the bottom-right panel of Fig. 3

than in the bottom-left panel.

We comment on field significance, following the pro-

cedure first proposed by Livezey and Chen (1983).

There is a total of n5 6964 land grid points in the top

FIG. 1. Time series plots of area-averaged temperature anomalies for the four regions: observations (circles),

forecast A initialized with climatological land surface conditions (dashed lines), and forecast B initialized with

realistic land surface conditions (solid lines).

TABLE 2. Table summarizing correlation coefficients, hypothesis tests, and confidence intervals for the data shown in Fig. 1.

Region CEU EAS NEB WAF

Sample correlations ray 0.56 0.17 0.41 0.69

rby 0.80 0.58 0.83 0.75

rab 0.62 0.41 0.72 0.98

rby 2 ray 0.24 0.42 0.41 0.06

One-sided test of H0: rby 2 ray 5 0 using T1 T̂1 1.23 1.30 1.99 0.33

p value 0.109 0.097 0.023 0.371

One-sided test of H0: rby 2 ray 5 0 using T2 T̂2 1.69 1.72 4.07 2.12

p value 0.057 0.053 , 0.001 0.026

95% confidence interval for rby 2 ray L 20.05 20.07 0.15 20.09

U 0.65 0.89 0.85 0.29
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panel of Fig. 3, and k5 443 grid points are significant

(i.e., a fraction of k/n5 0:0636). If the null hypothesis

were true on every single grid point, and if the tests on

the individual grid points were independent, k would

follow a binomial distribution with size n and success

probability 0.05. The chance of observing a value at least

as large as k5 443 under this binomial distribution is

’23 1027 (i.e., highly unlikely). But the individual tests

are not independent due to spatial correlation; the ef-

fective number of independent grid points is less than n.

In order for a fraction k/n5 0:0636 to have a larger than

5% chance of occurring under the null hypothesis, the

number of independent tests n would have to be smaller

than 725. A detailed estimation of the spatial degrees of

freedom is outside the scope of this study, but we can

provide a rough estimate based on visual inspection. The

decorrelation length of the data is about 10 grid cells,

which suggests that the map consists of independent

circular regions, each consisting of about 80 grid cells.

Our estimate of the effective degrees of freedom is thus

about n/80’ 90, which is much smaller than 725. A field

significance test thus would not reject the global null

hypothesis that the correlation difference is zero

everywhere.

According to Table 2, the p values of the two tests

based on T1 and T2 differ—the p value of T2 is always

smaller than that based on T1. Furthermore, similar

correlation differences in different regions do not imply

similar p values. It happens that the p value is smaller

than 0.05, but the 95% confidence interval overlaps zero.

There are thus situations where one test deems the dif-

ference in sample correlation to be statistically signifi-

cant, while another test does not. In the following

section we analyze inmore detail the difference between

the various statistical tests using simulated data.

5. Type-I error rate and power analysis

The present section addresses two important ques-

tions concerning statistical tests of correlation forecast

skill:

1) If forecasts A and B had equal skill (i.e., ray 5 rby),

how frequently does a given statistical test (falsely)

reject the null hypothesis of zero correlation

difference?

2) If forecast B were more skillful than forecast A (i.e.,

rby . ray), how often does a given statistical test

(correctly) reject the null hypothesis of zero correla-

tion difference?

In the first question, a rejection of H0 is clearly un-

desired, and constitutes a type-I error. If H0 is true, the

95% confidence interval should fail to include the value

of zero correlation difference on average 5%of the time.

Similarly, on average 5% of all one-sided p values

should be smaller than 0.05 if H0 is true. Statistical tests

based on p values and confidence intervals should, by

definition, have a type-I error rate equal to the nominal

significance level (e.g., 5%). But since the statistical

methods of section 3 involve approximations and para-

metric assumptions about the data, the actual rate of

FIG. 2. Correlation maps. (top) Correlation ray between forecast

A and observations. (middle) Correlation rby between forecast B

and observations. (bottom) Correlation rab between forecast A and

forecast B. Black dots in the (top) and (middle) indicate points

where the p value of a one-sided test based on the test statistic T0 is

less than 0.05. The white polygons indicate the four regions of

Table 1.
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rejecting H0 might be different from the nominal value.

Analyzing the type-I error rate will thus be useful to

learn about the reliability of different statistical tests.

In the second question, a rejection of H0 is clearly

desired, because rejection amounts to detecting a gen-

uine improvement in forecast quality. Statistical power

(i.e., the chance of correctly rejecting a false H0) de-

pends on the details of the statistical test, on the actual

difference between rby and ray (effect size), and on the

sample size n (Cohen 1992). Obviously, statistical tests

with high power are desirable. An estimate of the power

of the different tests will be useful because power

characterizes our ability to detect improvements in

forecast quality.

To analyze the power of a test, we have to know how

often a test rejects the null hypothesis, given that one

forecast is, in fact, more skillful than the other. For ac-

tual climate data, such as the data analyzed in section 4,

one never knows exactly whether one forecast system

has more skill than another. If one knew, there would be

no need for statistical testing. To analyze power and

type-I error rates, we thus have to use simulation studies,

where we can control whether H0 is true or false. For

all analyses of the present section, we simulate forecasts

of system A fa1, . . . , ang and of system B fb1, . . . , bng,
as well as their common verifying observations

fy1, . . . , yng, by sampling from a trivariate normal dis-

tribution with expectation vector m5 (0, 0, 0)T and

covariance:

S5

0
B@

1 r
ab

r
ay

r
ab

1 r
by

r
ay

r
by

1

1
CA . (10)

Such data can be interpreted as representing a climate

index that was normalized to mean zero and unit vari-

ance. The off-diagonal elements of S indicate the cor-

relations between forecasts and the observation. If we

simulate data using a covariance matrix which has

ray 5 rby, both forecasts are equally skillful at predicting

the observations, and the null hypothesis of zero corre-

lation difference is, therefore, true. If we set ray , rby in

FIG. 3. (top) Map of correlation difference rby 2 ray. Dots indicate differences that are

significant at the 5% significance level (one-sided test based on the test statistic T2). (bottom)

Correlation differences in the boxed region, marking correlation differences that are

deemed significantly larger than zero using (left) the test statistic T1 and (right) the test

statistic T2.
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the covariance matrix, forecast B is more skillful at

predicting the observations than forecast A, and the null

hypothesis of zero correlation difference is, therefore,

false. Note that ray, rby, and rab must be chosen such that

S is positive semidefinite, which is satisfied if all three rs

are in [21, 1], and if jSj5 12 r2ay 2 r2by 2 r2ab 1 2rayrbyrab
is nonnegative.

To calculate power and type-I error rate of a given

test, we use the following protocol:

1) Fix values for ray, rby, and rab, as well as the sample

size n.

2) Draw n triplets fat, bt, ytg, t5 1, . . . , n, from the

corresponding trivariate normal distribution and in-

terpret these data a hindcast dataset of size n of two

competing forecast systems A and B for the same

observation.

3) Perform the given hypothesis test of the null hypoth-

esis H0: ray 5 rby.

4) Record whether or not the test rejects H0.

5) Repeat steps 2–4 a large number of times, each time

with a different realization of artificial hindcast data.

6) Calculate the fraction of rejected null hypotheses.

If ray 5 rby the null hypothesis is true, and the fraction

of rejected null hypotheses is, therefore, an estimate of

the type-I error rate of the given test. If rby 6¼ ray, the

null hypothesis is false, and the fraction of rejected null

hypotheses is, therefore, an estimate of the power of the

given test.

We have analyzed type-I error rates of the hypothesis

tests and confidence intervals presented in section 3. We

simulate artificial hindcast datasets of sample size

n5 20, similar to the data analyzed in section 4. We use

ray 5 rby 5 0:4, which we consider reasonable values

achievable by state-of-the-art climate forecast systems.

Even though ray and rby are equal, sample correlations

ray and rby calculated from a finite sample of size n are

generally different from the population values, and dif-

ferent from each other. For a number of values of

rab 2 [0, 0:99] we calculate 105 artificial hindcast datasets.

We use hypothesis tests based on the test statistics T1 and

T2, as well as the confidence interval calculated according

to Eq. (9). Our statistical tests reject the null hypothesis if

the p value of the two-sided test is smaller than 0.05, and if

the central 95% confidence interval does not overlap the

value zero. Since we chose ray 5 rby, H0 is true and the

empirical type-I error rate should be equal to 5%.

Figure 4 shows that empirical type-I error rates are

not always equal to the nominal value of 5%. Type-I

error rates of the different tests are shown as a function

of the between-forecast-correlation rab of the simulated

hindcasts. If the forecasts are not or only weakly corre-

lated (rab , 0:1) all tests behave as expected: the null

hypothesis is rejected about 5% of the time, and the

confidence intervals fail to cover the value of zero about

5% of the time. The tests behave differently if the

forecasts are moderately or strongly correlated. The

hypothesis test based on the test statistic T1, which does

not account for correlation between forecasts, has type-I

error rates much smaller than 5%. The test is too con-

servative (i.e., it does not reject the null hypothesis often

enough). DelSole and Tippett (2014) showed this ana-

lytically. By contrast, the test based on the test statistic

T2, which accounts for correlation between forecasts,

rejects the null hypothesis 5% of the time, independent

of the strength of the correlation between forecasts. The

empirical and nominal type-I error rates agree (i.e., the

test based on T2 is reliable). The confidence intervals

have correct coverage frequencies for all rab , 0:8. For

strongly correlated forecasts, however, the confidence

intervals become overdispersed; they cover the true

value of zero correlation difference more often than

indicated by their confidence coefficient of 95%. As a

result, the empirical type-I error rate is smaller than the

nominal 5%. However, the coverage frequencies of the

confidence intervals at high values of rab improve for

larger sample sizes n (not shown).

We also compare statistical power of one-sided tests

for improvement based on the test statistics T1 and T2.

We simulate hindcast datasets of size n5 17 under the

assumption that the correlations ray, rby, and rab are

equal to the sample correlations ray, rby, and rab in the

four regions, as shown in Table 2. Using the correlation

structure of each region, we perform 105 one-sided tests

FIG. 4. Empirical type-I error rates of tests of correlation dif-

ference, based on simulated hindcast data with ray 5 rby 5 0:4 and

n5 20. Hypothesis test based on the Fisher transformation (small

circles; test statistic T1), which ignores correlation between fore-

casts. Hypothesis test based on Steiger (1980) (big circles; test

statistic T2), which accounts for correlation between forecasts.

(squares) Confidence intervals based on Zou (2007) (squares),

which account for correlation between forecasts. The nominal

type-I error rate used for the tests of 5% is indicated by the

gray line.
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that reject H0 if the p value is smaller than 0.05. Since

rby . ray in each setting, statistical tests should rejectH0

as often as possible; each nonrejection constitutes a

type-II error. Table 3 summarizes empirical rejection

rates of tests based on the test statistics T1 and T2. In

each setting the test based on T2 achieves higher power

than the often-used test that does not account for cor-

relation between forecasts. The increase in power is

substantial (between 16% and 54%). For the setting of

region WAF, where the correlation difference is very

small, but the correlation between forecasts is very high,

we did not get a single rejection ofH0 when using the test

based on T1, compared to 54% correct rejections if we

use T2. Use of an appropriate statistical test has con-

siderably improved our ability of detecting the (small)

improvement in forecast quality.

In medical research, for example, it is common prac-

tice to demand that statistical tests at a significance level

of 5% should achieve power of at least 80% (Cohen

1992). In three of the settings of Table 3, the power of

the test based on T2 is less than 80%. One way to in-

crease power is to increase the sample size, because

larger samples allow for more robust estimation of the

correlation difference, which increases the chance of

correctly detecting a genuine difference of the pop-

ulation correlations. In Fig. 5 the power in the four

correlation settings is shown as a function of the sample

size n. For the correlation structure of region NEB,

power greater than 80% is already achieved at sam-

ple sizes of n5 10. The correlation structure of the

other three regions requires sample sizes greater than

n5 40 in order to detect the improvement with

sufficient power.

The dependency between correlation structure and

power is not straightforward, and it is worth analyzing

this dependency further. Figure 6 shows how power of

the test based on T2 depends on ray, rby, and rab. Three

values of ray were considered (0.0, 0.3, and 0.6), and rby
was chosen greater or equal to ray. If ray 5 rby, there is

no improvement of forecast B over forecast A. The null

hypothesis is therefore true. A test at significance level

5% should therefore reject the null hypothesis on av-

erage 5% of the time. This is confirmed by the plots in

Fig. 6: the power curves meet at values of 0.05 at their

leftmost points, where ray 5 rby. If rby is increased, the

null hypothesis is false. The test rejects more often

the bigger the difference is between rby and ray (i.e., the

bigger the improvement in correlation skill of forecast B

compared to forecast A). If rby approaches 1, the power

converges to 1, independent of rab and ray. That is, a

perfect forecast with correlation close to 1 can always be

perfectly distinguished from an imperfect forecast.

Furthermore, the more correlated the two forecasts are,

the higher the power of detecting an improvement using

the statistical test based on the test statistic T2. Figure 6

shows that for each setting, small improvements in cor-

relation of less than 0.2 cannot be detected with

sufficient power, based on sample size of n5 17 and a

5% significance level. When ray is small, even an in-

crease of correlation of 0.4 cannot be detected with

sufficient power.

6. Improved predictions of climate indices by
increasing model resolution

In this section we present an additional application of

the statistical methodology of this paper. A standard

approach to evaluate the ability of forecast systems at

predicting regional climate variability is to check their

skill to forecast the main modes of climate variabil-

ity, such as El Niño–Southern Oscillation (ENSO;

Trenberth 1997) or the North Atlantic Oscillation

(NAO; Hurrell 1995). In this context, a rigorous appli-

cation of statistical tests is essential to compare different

forecast systems. The size of the sample of predictions

that is used to compare the skill of different forecast

systems should be chosen depending on the initial skill

of the forecast system. Additionally, the high similarities

between two versions of the same forecast system have

to be taken into account when evaluating skill im-

provement. As an illustration, the EC-Earth model

TABLE 3. Power of statistical tests based on test statistic T1 and

T2, assuming population correlations that are equal to the sample

correlations of the four regions shown in Table 2.

Region Power (T1) Power (T2)

CEU 0.30 0.50

EAS 0.34 0.51

NEB 0.74 0.98

WAF 0.00 0.54

FIG. 5. Power as function of the hindcast sample size n, assuming

population correlations that are equal to the sample correlations

calculated for the four regions in Table 2.
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initialized in May with a resolution of ’80 km in the

atmosphere (T255) and ’100 km in the ocean (18)
shows a relatively good skill to forecast ENSO for the

months June–July–August (JJA): the correlation with

the sea surface temperature observational dataset from

Merchant et al. (2014) is ray 5 0:78 over the period

1993–2009 (n5 17). Running the same forecast with a

higher resolution, reaching ’40 km in the atmosphere

(T511) and ’25 km in the ocean (0.258) leads to a

correlation of rby 5 0:85. The increase in correlation

due to the higher resolution is relatively small:

rby 2 ray 5 0:07. The increase is statistically significant

at the 5% level when using the statistical test for dif-

ferences between overlapping correlations; the p value

based on the test statistics T2 is 0.019. The same cor-

relation difference of 0.07 is not statistically significant

at the 5% level when the (high) correlation between

forecasts (rab 5 0.971) is neglected; the p value based on

T1 is 0.287.

Seasonal forecast of NAO is more challenging than

for ENSO. Seasonal forecast systems typically obtain

correlation skill between 0 and 0.3 at predicting the

winter NAO on seasonal time scales (Shi et al. 2015). At

commonly used sample sizes of around 20, these values

are not statistically significant at the 5% significance

level. Considering the low skill and the additional fact

that two forecast systems with low skill are typically not

highly correlated with each other, a large sample of

predictions has to be used to detect any increase of the

correlation from onemodel version to the next.We have

estimated that samples with a size of n5 120 should be

used to detect a correlation skill increase from 0.1 to 0.4

for winter NAO predictions with a power of 0.8. In ad-

dition, if we consider a sample of 17 winter NAO pre-

dictions with a correlation skill close to 0, a second set of

predictions with the same size could be differentiated

from the first one with power of 0.8 only if it had a

correlation skill of about 0.7, which would be an ex-

ceptional increase.

7. Conclusions

A commonly used statistical test for detecting im-

provement in correlation skill was shown to be too

conservative and underpowered, because it assumes

that the two competing forecasts are uncorrelated

with one another. Using an appropriate test that cor-

rectly accounts for the (high) correlation between

forecasts improves the power of detecting genuine

increases in forecast skill. We therefore strongly rec-

ommend using the test by Steiger (1980) based on the

test statistics T2 for comparative studies of correlation

skill. The method by Zou (2007) for construction of

confidence intervals for correlation differences is

generally reliable, but strongly correlated forecasts

and small sample sizes can lead to overdispersed

confidence intervals.

The importance of power analysis has been pointed out

in the climate literature by Jolliffe (2007) and Wilks

(2010). Power analysis is common practice in designing

medical studies, in order to determine the necessary

sample size to detect a hypothesized effect of a given

treatment. To our knowledge, power is not currently

considered when designing hindcast experiments for

comparing climate forecast systems. But with insufficient

sample sizes, it is unlikely to detect significant differences

in forecast skill, which limits the usefulness of the com-

putationally expensive hindcast simulation. Clearly, an-

alyzing differences in forecast skill is not the only purpose

why hindcast datasets are simulated; different applica-

tions include diagnosingmodel errors and calculating bias

corrections. But these applications are subject to

FIG. 6. Power as a function of the correlation skill improvement: (left) ray 5 0, (middle) ray 5 0:3, and (right)

ray 5 0:6. The line styles indicate the correlation between the forecasts: rab 5 0:4 (solid), rab 5 0:6 (dashed), and

rab 5 0:8 (dotted). The sample size is n5 17. The gray lines indicate the nominal type-I error rate of 0.05 used for

all tests.
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statistical uncertainties as well. There is always a chance

of falsely diagnosing a model error or failing to di-

agnose an existing forecast bias due to insufficient

sample size. Given the computational resources re-

quired to run hindcast experiments with state-of-the-

art global climate forecast systems, statistical power

should be taken more seriously if significance testing

and confidence intervals are used to diagnose im-

provements. The present study demonstrates a simple

simulation-based framework for investigating statisti-

cal power, and could be exploited for better design of

hindcast experiments. Using the framework for power

analysis presented here, more general settings can be

analyzed. The present study only focused on differ-

ences in correlation skill of univariate data. In actual

hindcast datasets, data are high dimensional, spatially

and temporally correlated, and possibly nonnormal.

These settings should be considered in future studies.

Comparative verification studies are often performed

between forecast systems that are not very different

from each other. It can be hypothesized that any im-

provement of one forecast over another is necessarily

small (i.e., rby is generally close to ray). We showed that

the power of detecting small improvements in correla-

tion skill tends to be low. Statistical tests rarely reject the

null hypothesis of zero skill difference, even though

there might be a difference. Therefore, uncertainty al-

ways remains about which forecast is the ‘‘better’’ one to

be used for operational forecasting. The lack of power at

picking the ‘‘best’’ forecast motivates a multimodel ap-

proach, where a multitude of available forecast systems

are run in parallel, and a consensus forecast is calculated

from all candidate forecasts.

As in the present study, forecasts are often calcu-

lated by averaging over a finite number of ensemble

forecasts to average out internal model variability, and

thus obtain a better estimate of the predictable signal

of the model. Depending on the ensemble size, and the

signal-to-noise ratio of the ensemble forecasts, there

might be an inherent upper bound on the achievable

correlation skill. Such an upper bound limits the pos-

sible magnitudes of improvement that, in turn, limits

the power of detecting any improvements of ensemble

forecasts.

Furthermore, power might be different for different

evaluation criteria than correlation skill. But for dif-

ferent evaluation criteria, the notion of which forecast

is better changes—we might find that forecast B has

higher correlation than forecast A, but a worse ROC

statistic or Brier score [for definitions, see Jolliffe and

Stephenson (2012)] than forecast A. Given that

different criteria yield different definitions of

‘‘improvement,’’ we do not generally recommend a

comparison of statistical power between different

evaluation criteria.

We have shown in the appendix that correlation is

closely related to the mean squared error (MSE), so

instead of analyzing differences in correlation onemight

analyze difference in the MSE of the recalibrated fore-

casts. The MSE has the benefit that it is a scoring rule;

that is, it assigns an individual value to each pair (at, yt)

of forecast and observation, which is not the case for the

correlation coefficient. If scoring rules are used for

forecast evaluation, the statistical test of Diebold and

Mariano (1995) can be used. This test is based on loss

differentials and therefore takes into account correla-

tion between forecasts. The test also includes a correc-

tion for serially correlated data.

This paper presented appropriate statistical tests for

analyzing skill improvements, and power analysis as a

method to evaluate such tests. The proposed tests were

used to analyze seasonal hindcast datasets as practical

examples, but can be applied to short-term weather

forecasting and climate projections as well. It was shown

that realistic land surface representation leads to signifi-

cantly higher correlation skill in temperature forecasts. It

was further shown that increased atmosphere and ocean

resolution leads to significantly improved correlation of

ENSO forecasts. For NAO predictions, for which most

current systems have low skill, it was shown that very

large hindcast datasets would be required to detect small

increases in skill with sufficiently high power.
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APPENDIX

Derivation: Correlation Squared is a Skill Score

Suppose a series of forecasts xt for observations

yt (t5 1, . . . , n). The forecast xt is recalibrated by linear

regression on the observation to remove systematic
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biases and scaling errors. The linearly recalibrated

forecast x̂t is given by

x̂
t
5 y1

cov(xy)

var(x)
(x

t
2 x) . (A1)

Themean squared skill score (MSSS) of the recalibrated

forecast with respect to the climatological forecast y is

given by

MSSS5 12
�
n

t51

(y
t
2 x̂

t
)2

�
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2 y)2

, (A2)
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�2

�
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t51

(y
t
2 y)2

, (A3)

512

var(y)1
cov(xy)2

var(x)2
var(x)22

cov(xy)

var(x)
cov(xy)

var(y)
,

(A4)

5
cov(xy)2

var(x)var(y)
5 cor(xy)2 . (A5)

The MSSS of the linearly recalibrated forecast x̂t is thus

equal to the squared correlation between the forecasts xt
and observations yt.
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