
Annals of Operations Research manuscript No.
(will be inserted by the editor)

The Incorporation of fixed cost and multilevel
capacities into the discrete and continuous single
source capacitated facility location problem

Chandra Ade Irawan · Martino Luis · Said
Salhi · Arif Imran

Received: date / Accepted: date

Abstract In this study we investigate the single source location problem with
the presence of several possible capacities and the opening (fixed) cost of a fa-
cility that is depended on the capacity used and the area where the facility is
located. Mathematical models of the problem for both the discrete and the con-
tinuous cases using the Rectilinear and Euclidean distances are produced. Our
aim is to find the optimal number of open facilities, their corresponding locations,
and their respective capacities alongside the assignment of the customers to the
open facilities in order to minimise the total fixed and transportation costs. For
relatively large problems, two solution methods are proposed namely an iterative
matheuristic approach and VNS-based matheuristic technique. Dataset from the
literature is adapted to assess our proposed methods. To assess the performance
of the proposed solution methods, the exact method is first applied to small size
instances where optimal solutions can be identified or lower and upper bounds can
be recorded. Results obtained by the proposed solution methods are also reported
for the larger instances.
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1 Introduction

Facility location problems arise whenever there is the question of locating one or
more new facilities with respect to a set of existing facilities (discrete case) or on
the plane (continuous case) with the aim to optimise one or more criteria (Drezner
and Hamacher, 2002; Hale and Moberg, 2003; Drezner et al, 2006; Daskin, 2008;
Brimberg et al, 2008; Farahani et al, 2014). The location problems may be clas-
sified based on topography, capacity restrictions, or sourcing types. Based on the
topography of the site selection, location problems can be divided into continu-
ous and discrete models. In the continuous location models, the facilities can be
located anywhere on the plane (i.e. there is an infinite number of possible sites)
whereas in the discrete case, there is a finite number of potential sites from which
to select the new facilities. In terms of supplying abilities of the facilities, the
problem may be classified as uncapacitated or capacitated. In the uncapacitated
case, the demand at each customer location is supplied by the nearest facility at
a minimum cost (see Gamal and Salhi 2001 and 2003).This is not true when the
facilities have capacity restrictions as some customers may need to be served by
farther facilities given their nearest facilities may not be large enough to accom-
modate all their entire demands. The allocation problem in this situation is found
by solving a transportation or an assignment problem instead.

The location problems may further be categorised by sourcing type which
considers multiple or single sourcing. The former is known as the multi-source-
type problem where customer demands can be served by more than one facility
whereas in the latter, the problem is referred to as a single-source-type problem
when a customer demand is satisfied only from one facility. The single-source
constraint is known to be much harder to tackle compared to its counterpart
(Klose and Drexl, 2005) due to solving the assignment problem instead of the
transportation problem. In this paper, we investigate both continuous and discrete
location problems with single sourcing. In the discrete case, this study focuses on
a variant of facility location problem by including capacity restrictions known as
the Capacitated Facility Location Problem (CFLP). Here, we are given a set of
potential facility locations with their fixed costs as well as a set of customers with
known demands. The aim is to find the number of facilities to open their locations,
their respective capacities and to find the assignment of these customers to these
open facilities without violating the capacity of any of the open facilities. The
objective is to minimise the sum of the total fixed and the transportation costs.

In the continuous case, this study relates to the well-known Capacitated Multi-
facility Weber problem (CMFWP) where the problem entails to find the locations
of M facilities in the plane and their customer allocations without violating the
capacity of any of the facilities to minimise the sum of opening and transportation
costs. The CMFWP is considered NP-hard as shown by Megiddo and Supowit
(1984) and Sherali and Nordai (1988). Most of the research in the CMFWP uses a
constant capacity while incorporating the iterative Alternate Location-Allocation
(ALA) heuristic of Cooper into the search (see for instance, Zainuddin and Salhi
2007; Luis et al 2009 and 2011, Manzour-al Ajdad et al 2012; Manzour et al 2013;
Öncan 2013).

In practice, it is also worth considering the presence of facility fixed/opening
costs. Fixed cost can be defined as the set up or opening cost of a facility. It may be
dependent on geographical (location) areas and/or a throughput rate (capacity)
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of the facility. For instance, governments apply different tax policies for urban,
suburban, and remote regions or regional restrictions as some areas are under
government protections such as forests etc. In other words, some areas may have
cheaper costs of establishing a facility whereas others may have very high costs. In
this paper we incorporate the fixed cost that is based on several possible capacities.
We refer to this problem as the Single Source Facility Location Problem with fixed
costs (SSFLPFC).

The contributions of this study are as follows:

i. to propose mathematical models of the SSFLPFC problem for both the dis-
crete and the continuous cases using the Rectilinear and Euclidean distances.

ii. to produce a linearisation scheme for the continuous case.
iii. to design two solution methods based on matheuristic approach for tackling

relatively large SSFLPFC instances.
iv. to report new best solutions for benchmarking purposes.

The paper is structured as follows. A review of the relevant literature is given
in the next section. The mathematical models of the SSFLPFC for both the dis-
crete and the continuous cases are presented in Section 3 which also includes the
linearisation scheme for the continuous case. Section 4 presents a detailed descrip-
tion of the proposed matheuristic to tackle both cases and Section 5 is devoted
to the computational results. Finally, in Section 6, conclusions and some research
avenues are highlighted.

2 Literature Review

This section presents works which are closely relevant to our problems for both
the discrete case and the continuous case.

2.1 Discrete capacitated facility location problem

The capacitated facility location problem (CFLP) has received much attention
in the literature. Here, we concentrate our review on the class of single source,
known as the Single Source Capacitated Facility Location Problem (SSCFLP) by
focussing on the last decade only. The interested reader may refer to Eiselt and
Marianov (2011), Rahmani and MirHassani (2014), and Farahani et al (2014) for
a comprehensive review.

Arostegui Jr. et al (2008) compare the performances of tabu search, simulated
annealing, and genetic algorithm to solve facility location problems. The authors
implement the three metaheuristics to solve the CFLP, the multi-period FLP, and
the multi-commodity FLP. Their findings show that tabu search is the best per-
former in most cases. Contreras and Dı́az (2008) present a scatter search heuristic
method by embedding GRASP and tabu search to construct the improvement
phase. Chen and Ting (2008) tackle the SSCFLP by designing a hybrid heuristic
based on Lagrangian heuristic and ant colony system. Yang et al (2012) put for-
ward an exact method based on a cut-and-solve scheme to deal with the SSCFLP.
Guastaroba and Speranza (2014) enhance the Kernel Search heuristic to general
Binary Integer Linear Programming problems to solve the SSCFLP. Ho (2015)
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studies the SSCFLP by proposing an iterated tabu search which uses randomised
neighbourhood sampling and random perturbation mechanisms to diversify the
search. For an overview and critical analysis on heuristic search, see Salhi (2017).

Several extensions on the CFLP are the work of Lin (2009) who investigates
an extension of the single-source capacitated facility location problem by consid-
ering uncertain demand while requiring a specific service level. A hybrid heuristic
based on lagrangean relaxation with a multi-exchange heuristic within a branch-
and-bound framework is put forward to deal with the problem. Aydin and Murat
(2013) address the CFLP by considering the unreliability of facilities. A hybrid
algorithm that uses particle swarm optimization and the sample average approx-
imation technique is developed to tackle the problem. Gadegaard et al (2016)
study bi-objective discrete facility location problems with a cost objective and a
bottleneck objective where the model is applied to solve the CFLP.

The multi-type capacitated facility location problem

This section focuses on a variant of the capacitated facility location problems
with several possible capacities which has close similarities to our problem. This
problem is referred to the multi-type or modular capacitated facility location prob-
lem. Among the recent works include the work by Correia and Captivo (2003) who
extended the problem to the case of single sourcing problem. Here, a Lagrangean
heuristic is used to generate feasible solutions and then a two-phase heuristic pro-
cedure based on a greedy algorithm and tabu search is put forward to improve the
solutions. Correia et al (2010a) design a discretization reformulation technique to
tackle the CFLP with modular capacity levels and distribution costs. Two models
are developed and solved as a simple knapsack problem. On the other hand, Cor-
reia et al (2010b) address the single-allocation hub location problems with multiple
capacity levels. The problems are formulated as mixed-integer linear programming
formulations.

2.2 Continuous capacitated facility location problem

Our literature review on the continuous case is divided into three parts. First, we
look at the capacitated multi-facility Weber problem without fixed costs and then
at the MFWP with the presence of fixed costs. Lastly, we discuss several works
on the single-source capacitated multi-facility Weber Problem. We do not look at
the MFWP, but the reader can refer to the recent papers of Brimberg et al (2008)
and Brimberg et al (2014) for a comprehensive review.

(i) The capacitated MFWP (CMFWP)

The earliest work of CMFWP was proposed by Cooper (1972) who designed
exact and heuristic methods. In the heuristic approach, the well-known alternat-
ing transportation-location (ATL for short) heuristic is put forward. ATL is ba-
sically a revision of the heuristic (ALA) originally developed by Cooper (1964)
for the uncapacitated case. The idea behind this approach is to solve alternately
the location-allocation problem and the Transportation Problem (TP) until there
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is no significant improvement found in the total cost. Among the recent works
include Zainuddin and Salhi (2007) who investigate the Euclidean CMFWP by
proposing a perturbation-based heuristic which considers borderline customers
whose locations lie approximately half-way between their nearest and their sec-
ond nearest facilities. Aras et al (2007a) propose three heuristic methods which
include Lagrangean heuristic, the discrete p-capacitated facility location heuristic
which is adopted from the p-median method of Hansen et al (1998), and the cel-
lular heuristic of Gamal and Salhi (2003) to tackle the CMFWP with Euclidean,
squared Euclidean, and `p distances. Aras et al (2007b) solve the same problem
but with rectilinear, Euclidean, squared Euclidean, and `p distances by using simu-
lated annealing, threshold accepting and genetic algorithms. In a subsequent study,
Aras et al (2008) implement their earlier methods to deal with the problem with
rectilinear distance. Luis et al (2009) design the concept of region-rejection into
their constructive heuristic whereas Mohammadi et al (2010) propose two genetic
algorithms (GAs); one for the location problem and the other for the allocation
of customers to those open facilities. Luis et al (2011) introduce a novel guided
reactive greedy randomised adaptive search procedure (GRASP) by embedding a
framework that combines adaptive learning with the concept of restricted regions.
Akyüs et al (2014) put forward two types of branch and bound algorithms where
the first is based on the allocation space whereas the second on the partition of
the location space.

(ii) The SSCMFWP

The investigation on the SSCMFWP lacks attention in the literature. Gong
et al (1997) is one of the pioneers to study this problem by developing a hybrid
evolutionary method based on a genetic algorithm to search the locatable area and
hence find the global or near global locations. In the allocation stage, a Lagrangean
relaxation approach is then applied. Fifteen years later, Manzour-al Ajdad et al
(2012) tackle the SSCMFWP using an interesting iterative two phase heuristic
algorithm. In the first phase, the location problem is solved by the ALA method
of Cooper (1964) using two assignment rules namely the simplified and parallel
assignments respectively. The second is the allocation stage where customers are
allocated to facilities by solving the generalised assignment problem optimally.
A heuristic approach based on simulated annealing is proposed as an alternative
method to the first phase. Manzour et al (2013) also design a simpler version to
the one proposed by Manzour-al Ajdad et al (2012) but with only slightly inferior
results.

Öncan (2013) put forward three schemes to deal with the problem with Eu-
clidean and Rectilinear distances. The first one is the Single-Source ALA method
which is an enhanced version of Coopers ALA method (Cooper, 1964) when the
allocation phase is solved optimally. The second one is a very large neighbourhood
search heuristic which is embedded in the first method to allocate customers ef-
ficiently. In the third approach, a discrete approximation technique that uses a
Lagrangean Relaxation procedure is put forward to find lower and upper bound-
ing procedures. Competitive results were obtained when compared to the recent
published work though these are found to be relatively inferior in some instances
to those given by Manzour-al Ajdad et al (2012).
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(iii) the Weber problem with the presence of fixed cost

The literature on the facility location problems with fixed costs mainly con-
centrates on discrete location cases, see for instance, the works of Rahmani and
MirHassani (2014), Guastaroba and Speranza (2014), Farahani et al (2014), and
Ho (2015), whereas in the continuous location problem there is a lack of refer-
ences. Brimberg et al (2004) design a multiphase heuristic to tackle the MFWP
with constant fixed costs. Initially, the problem is discretised by solving the sim-
ple plant location problem to get a good approximation of the number of facilities
needed. Coopers location-allocation method is then applied to find the new im-
proved locations of the facilities. A local search is carried out to observe whether
having a few more or a few less facilities may give a better solution, as the fixed
cost of adding/removing a few facilities is balanced by the decreased/increased
transportation cost. Brimberg and Salhi (2005) study the Weber problem with
single facility by proposing fixed costs that are zone-dependent, where zones are
non-overlapping convex polygons. A simple but powerful approach is put forward
to optimally solve the problem. In the case of the multi facility problem, a discreti-
sation approach is also proposed. Both studies assume that there is no capacity
restriction.

Luis et al (2015) apply the concept of restricted regions and a GRASP meta-
heuristic to solve the CMFWP with facility fixed costs. The authors present three
types of fixed costs namely constant, zone-based, and continuous fixed cost func-
tions. The four well-known data sets for the uncapacitated case from the literature
are adapted to assess the performance of the proposed method with promising re-
sults. Hosseininezhad et al (2015) put forward a cross entropy heuristic to deal with
CMFWP with zone-based fixed cost which considers production and installation
costs. The experiments show that the proposed heuristic produces reasonably good
results when compared to a GAMS optimiser. Very recently, Irawan et al (2017)
propose a new model of the CMFWP in the presence of facility fixed cost which
is defined as capacity-based and zone-dependent where the number of facilities to
be located is known in advance. A heuristic solution framework based on the con-
cept of restricted regions, a new priority-based assignment, and Cooper’s alternate
location-allocation method is designed to tackle the problem. A metaheuristic ap-
proach that uses Variable Neighbourhood Search is also put forward. In addition,
the authors construct a new dataset based on convex polygons using diamond and
hexagonal shapes, some of these will be used in our study.

3 The location models considering opening facility costs

In this section, we present mathematical models of the location problem taking
into account the cost of opening a facility. The opening cost comprises two types
of cost which are based on the capacity and the location. The capacity-related cost
is linked to the capacity used by the opening facility where higher capacity size
may have a higher opening facility cost. The location cost depends on the area
where the facility is established as some areas (especially in the big cities) could
be more expensive than others. Mathematical models for the discrete case are first
presented which are then followed by the ones for the continuous case. For both
cases, two mathematical models are presented where the first one considers the
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capacity cost only while the second one also caters for the effect of the site in the
selection of the facilities. For the discrete case, the location cost is based on the
location of the potential facilities while for the continuous case, the cost is defined
according to the area/zone where the open facility is sited. For the case of the
continuous space, the proposed models could be considered as an enhancement of
those given by Irawan et al (2017) where the number of open facilities is known
in advance whereas here this number is a decision variable.

3.1 Discrete location problems

Two models are proposed namely the Discrete Location Problem with Capac-
ity Cost (DLC-CC), and the Discrete Location Problem with both Capacity and
Location Costs (DLP-CLC).

A. The DLP-CC model

In this the discrete location problem, the capacity cost is considered. The fol-
lowing notations are used to describe the sets, parameters, and decision variables.

Sets and Parameters

I: set of customers with i as its index and n = |I|.
J : set of potential facilities with j as its index and m = |J |.
pmax: the maximum number of open facilities.
wi: the demand of customer i (i ∈ I)
ai = (a1i , a

2
i ): location of customer i where ai ∈ R2, i ∈ I

âj = (â1j , â
2
j ): location of facility j where âj ∈ R2, j ∈ J

K: the number of potential capacity levels
F : the basic fixed cost for opening a facility
λk: the correction factor for opening a facility with capacity k(k = 1, . . . ,K)
Fk = λk · F : the fixed cost of opening a facility with capacity k(k = 1, . . . ,K)
bk: the kth capacity (k = 1, . . . ,K)

We define the discrete metrics as follow:

dij =
(∣∣â1j − a1i ∣∣+

∣∣â2j − a2i ∣∣) for Rectilinear distance

dij =
((
â1j − a1i

)2
+
(
â2j − a2i

)2)1/2
for Euclidean distance

Decision Variables

Xij =

{
1 if customer i (i ∈ I) is served by facility j (j ∈ J),

0 otherwise

Yjk =

{
1 if facility j uses design k,

0 otherwise

The problem can be modelled as an integer linear problem as follows.
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Minimise
n∑

i=1

wi

m∑
j=1

Xij · dij +
K∑

k=1

Fk

m∑
j=1

Yjk (1)

subject to
m∑

j=1

Xij = 1, ∀i ∈ I (2)

m∑
j=1

K∑
k=1

Yjk ≤ pmax (3)

n∑
i=1

wi ·Xij ≤
K∑

k=1

bk · Yjk, ∀j ∈ J (4)

K∑
k=1

Yjk ≤ 1, ∀j ∈ J (5)

Xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (6)

Yjk ∈ {0, 1}, ∀j ∈ J, k = 1, . . . ,K (7)

The objective function (1) is to minimise the sum of the total cost consisting
of the opening facilities and the transportation costs. Constraints (2) ensure that
each demand point is served by one facility. Constraints (3) make sure that the
number of open facilities does not exceed the maximum number of open facilities.
Constraints (4) guarantee that capacity constraints of the facilities are satisfied.
Constraints (5) indicate that each opening facility only use one level of capacity.
Constraints (6) and (7) refer to the binary nature of the decision variables.

B. The DLP-CLC

In the DLP-CLC, both capacity and location costs are taken into account.
As the location of potential facilities is fixed, the area of the potential facility is
known resulting in the location cost for each potential facility site being known.
In the literature, this refers to as site-dependent fixed cost. The formulation of the
mathematical model of this problem is similar to the DPL-CC model except the
objective function and the following parameters are added:

θ̂j : the correction factor of opening facility in site j(j = 1, . . . ,m)

F̂kj = θ̂j · λk · F : fixed cost of facility with capacity k in site j(k = 1, . . . ,K; j =
1, . . . ,m)

The problem can be modelled as an integer linear problem as follows

Minimise
n∑

i=1

wi

m∑
j=1

Xij · dij +
m∑

j=1

K∑
k=1

F̂jk · Yjk (8)

with decision variables and constraints being the same as in the previous model
(i.e., Equations 1–7).
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3.2 Continuous Location Problems

Similar to the discrete problem, we also propose two models namely the Continuous
Location Problem with Capacity Cost (CLC-CC), and the Continuous Location
Problem with Capacity and Location Costs (CLP-CLC).

A. The CLP-CC

The CLP-CC is the continuous version of its counterpart the DLP-CC. Sets
and parameters are similar to the ones used in the discrete model except that
the set of potential facilities is not needed here and the following new decision
variables are used:

Decision Variables

Xij =

{
1 if customer i (i ∈ I) is served by facility j (j = 1, . . . , pmax),

0 otherwise

Yjk =

{
1 if facility j uses design k,

0 otherwise

Cj =
(
c1j , c

2
j

)
: coordinate of facility j where Cj ∈ R2

We define the following distance metrics as follow:
dij =

(∣∣c1j − a1i ∣∣+
∣∣c2j − a2i ∣∣) for Rectilinear distance

dij =
((
c1j − a1i

)2
+
(
c2j − a2i

)2)1/2
for Euclidean distance

The problem can be modelled as a nonlinear problem as follows.

Minimise
n∑

i=1

wi

pmax∑
j=1

Xij · dij +
K∑

k=1

Fk

pmax∑
j=1

Yjk (9)

subject to
pmax∑
j=1

Xij = 1, ∀i ∈ I (10)

n∑
i=1

wi ·Xij ≤
K∑

k=1

bk · Yjk, ∀j = 1, . . . , pmax (11)

K∑
k=1

Yjk ≤ 1, ∀j = 1, . . . , pmax (12)

Xij ∈ {0, 1}, ∀i ∈ I, j = 1, . . . , pmax (13)

Yjk ∈ {0, 1}, ∀j = 1, . . . , pmax, k = 1, . . . ,K (14)

Cj ∈ R2, ∀j = 1, . . . , pmax (15)

The objective function (9) aims to minimise the sum of the total costs including
the opening facilities and the transportation costs. Constraints (10) guarantee
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that each demand point is served by one facility. Constraints (11) ensure that
capacity constraints of the facilities are met. Constraints (12) state that each
opening facility only uses one capacity design. Constraints (13) and (14) refer to
the binary nature of the decision variables while Constraints (15) indicate the
continuous location variables.

B. The CLP-CLC

This model is an enhancement of the model proposed by Irawan et al (2017).
In the DLP-CLC, the opening facility cost is not only based on the chosen capacity
but also on the region/zone where the facility is sited. In this model, a number
of areas are given along with their cost. As the location of facilities is unknown,
the region/zone is also treated as a decision variable. For simplicity, we consider
the shape of each zone to be a convex polygon. We use the D-function to check
whether a point is inside a convex polygon or not, see Chernov et al (2010) and
Irawan et al (2017). For simplicity this mechanism is as follows. The direction of
the edges that makes up the zone is the same (clockwise or anticlockwise) where
Figure 1a presents an example of an area. Each edge vector of the polygon has
four parameters (α, β, γ, and δ) which are defined in Figure 1b.

A point, say point P3(x3, y3), is inside the polygon if this point is on the right
hand side of all edges. The check is performed to see whether a point is on the
right side of an edge. Let θ = α · x3 + β · y3 + γ. Point P3 lies on the edge if θ = 0.
In case that θ > 0, point P3 is on the left hand side of the edge, otherwise point
P3 will be on the right hand side of the edge.

Fig. 1 An example of a convex polygon with parameters formulation of the edges

Sets and Parameters

These are similar to the previous model except the following:

R: set of areas with r as its index
Er: set of edges of area r(r ∈ R) with e as its index. The edges made up a convex

polygon (area) where one or more facilities can be located
O: the number of areas (in this study, the area shape is convex polygon)
αer: the parameter used to formulate Edge e(e ∈ Er)
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βer: the parameter used to formulate Edge e(e ∈ Er)
γer: the parameter used to formulate Edge e(e ∈ Er)
θr: the correction factor of opening facility in area r(r = 1, . . . , O)
F̃kr = θr ·αk ·F : fixed cost of facility with capacity k in area r(k = 1, . . . ,K; r =

1, . . . , O)

Decision Variables

Xij =

{
1 if customer i (i ∈ I) is served by facility j (j = 1, . . . , pmax),

0 otherwise

Yjkr =

{
1 if facility j located in area r uses capacity k,

0 otherwise

Cj =
(
c1j , c

2
j

)
: coordinate of facility j where Cj ∈ R2

The problem can be modelled as a nonlinear problem as follows.

Minimise

pmax∑
j=1

n∑
i=1

wi ·Xij · dij +

pmax∑
j=1

K∑
k=1

O∑
r=1

F̃kr · Yjkr (16)

subject to
pmax∑
j=1

Xij = 1, ∀i ∈ I (17)

n∑
i=1

wi ·Xij ≤
K∑

k=1

O∑
r=1

bk · Yjkr, ∀j = 1, . . . , pmax (18)

K∑
k=1

O∑
r=1

Yjkr ≤ 1, ∀j = 1, . . . , pmax (19)

αer · c1j + βer · c2j + γer ≤ U · (1− Yjkr), (20)

∀r ∈ R, e ∈ Er, k = 1, . . . ,K, j = 1, . . . , pmax

Xij ∈ {0, 1}, ∀i ∈ I, j = 1, . . . , pmax (21)

Yjkr ∈ {0, 1}, ∀r ∈ R, j = 1, . . . , pmax, k = 1, . . . ,K (22)

Cj ∈ R2, ∀j = 1, . . . , pmax (23)

where

U = max
i

(Max(a1i , a
2
i ))

The objective function (16) is to minimise the sum of the total costs including
the location cost. Constraints (20) indicate the area of the open facilities.

Linearisation of the continuous model

In case the rectilinear distance is used, the above models can be linearised as
follows:
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First we define a1min = mini(a
1
i ), a1max = maxi(a

1
i ), a2min = mini(a

2
i ), a2max =

maxi(a
2
i ), and set â1min = 0, â1max = a1max − a1min, â2min = 0, and â2max = a2max −

a2min. We then transform the coordinate of each customer by âi =
(
a1i − a1min, a

2
i − a2min

)
which will be used in the mathematical model.
Given that

Xij ·wi ·
(∣∣∣c1j − â1i ∣∣∣+

∣∣∣c2j − â2i ∣∣∣) = wi ·
(∣∣∣Xij · c1j −Xij · â1i

∣∣∣+
∣∣∣Xij · c2j −Xij · â2i

∣∣∣)
We define the new variables as ρ1ij = Xij · c1j and ρ2ij = Xij · c2j .
The first part of the objective function in Equations (9) and (16) can then be
rewritten as follow:

Minimise
n∑

i=1

wi ·
pmax∑
j=1

(∣∣∣ρ1ij −Xij · â1i
∣∣∣+

∣∣∣ρ2ij −Xij · â2i
∣∣∣) (24)

We now have a linear model with the following additional constraints:

ρ1ij ≤ â1max ·Xij , ∀i ∈ I, j = 1, . . . , pmax (25)

ρ1ij ≥ â1min ·Xij , ∀i ∈ I, j = 1, . . . , pmax (26)

ρ1ij ≤ c1j − â1min · (1−Xij), ∀i ∈ I, j = 1, . . . , pmax (27)

ρ1ij ≥ c1j − â1max · (1−Xij), ∀i ∈ I, j = 1, . . . , pmax (28)

ρ2ij ≤ â2max ·Xij , ∀i ∈ I, j = 1, . . . , pmax (29)

ρ2ij ≥ â2min ·Xij , ∀i ∈ I, j = 1, . . . , pmax (30)

ρ2ij ≤ c2j − â2min · (1−Xij), ∀i ∈ I, j = 1, . . . , pmax (31)

ρ2ij ≥ c2j − â2max · (1−Xij), ∀i ∈ I, j = 1, . . . , pmax (32)

As â1min = â2min = 0, we can substitute this value in constraints (26), (27), (30),
and (31) making the above model more concise.

4 Solution methods

Based on our preliminary study, the location models with opening cost for dis-
crete and continuous cases are very hard to solve using a commercial solver such
as CPLEX especially when the size of the problem is large (n ≥ 500). To over-
come this weakness, two solution methods that incorporates the exact method
and heuristic technique are proposed. Such a hybridisation is usually powerful and
known as matheuristics (see Salhi (2017) for more details). The exact method is
used to optimally solve the customer allocation problem whenever the locations of
the opening facilities are fixed. Note that when the number of open facilities (p̂)
and the location of open facilities Cj(c1j , c

2
j ) are known, the problem reduces to an

assignment problem. The model will also find the optimal capacity for each open-
ing facility. Here the distance between a facility and a customer (dij) is treated
as an input instead of a decision variable. The formulation of the integer linear
model is presented as follows.
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Decision Variables

Xij =

{
1 if customer i (i ∈ I) is served by facility j (j ∈ J),

0 otherwise

Yjk =

{
1 if facility j uses capacity k,

0 otherwise

The objective function of the problem with capacity cost:

Minimise
n∑

i=1

wi ·
p̂∑

j=1

Xij · dij +
K∑

k=1

Fk ·
p̂∑

j=1

Yjk (33)

The objective function of the problem with capacity and location costs:

Minimise
n∑

i=1

wi ·
p̂∑

j=1

Xij · dij +

p̂∑
j=1

K∑
k=1

F̂kj · Yjk (34)

subject to

p̂∑
j=1

Xij = 1, ∀i ∈ I (35)

p̂∑
j=1

K∑
k=1

Yjk = p̂ (36)

n∑
i=1

wi ·Xij ≤
K∑

k=1

bk · Yjk, ∀j ∈ J (37)

K∑
k=1

Yjk = 1, ∀j ∈ J (38)

Xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (39)

Yjk ∈ {0, 1}, ∀j ∈ J, k = 1, . . . ,K (40)

Constraints (36) ensure that all the facilities are open whereas (38) guarantee that
a customer is served by one facility with a given capacity.

In this section, the two proposed solution methods are described. The proposed
approaches are used to solve both discrete and continuous problems. The first
method is referred to as an iterative matheuristic approach whereas the second one
is called VNS-based matheuristic. In the second approach, a powerful metaheuristic
technique known as Variable Neighbourhood Search (VNS) is implemented.
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4.1 The iterative matheuristic approach (IMA)

The main steps of the proposed iterative matheuristic approach (IMA) are pre-
sented in Algorithm 1. The method is an iterative approach where the algorithm
seeks the best solution for various values of the number of the open facilities start-
ing from pmin to pmax where pmin is calculated based on the total demand and the
maximum capacity used by an open facility. The algorithm starts from p = pmin

where the initial solution (the location of opening facilities) is randomly gener-
ated. When p > pmin, the initial solution is based on the best solution obtained
when the number of opening facilities is set to (p−1) with an additional randomly
generated opening facility location. In other words, the set of facility locations
obtained from the previous iteration is treated as the promising potential sites.
Moreover, this procedure is known as a learning process where the result from a
current iteration will be fed into the next one. In Step 3, a multi-start procedure
is applied where an iterative process is conducted until the number of iterations
reaches a prescribed maximum number of iterations (T ). This can be easily per-
formed as our model (33) - (40) is relatively easy to solve using the exact method
within CPLEX though any other powerful software can be used.

Algorithm 1: The iterative matheuristic for both discrete and continuous problems

Initialization:
(a) Let x∗j and y∗j be x- and y- coordinates of the location of open facility

j(j = 1, . . . , p∗) in the best solution with k∗j be the capacity of the facility
and z∗ be its objective function value

(b) Calculate pmin =

⌊ ∑
i∈I wi

maxk(bk)

⌋
and set p = pmin

(c) Define the number of iterations (T ) and set z∗ =∞

Main Steps:
Repeat the following steps until p > pmax

Step 1: Let (x̂pj , ŷpj) be the coordinates of the location of the open facility j in
the best solution when the number of open facilities is set to p. Denote k̂pj be
the capacity of facility j(j = 1, . . . , p) and ẑp be its objective function value

Step 2: Set ẑ =∞
Step 3: For iter = 1 to T do the following steps:
(a) If p = pmin then pick randomly p customer sites as the location of the open

facilities with (xpj , ypj) as their coordinates j(j = 1, . . . , p)
Else take the best facility location obtained when the number of open fa-
cilities is set to (p − 1). In other words, xpj = x̂(p−1)j and ypj = ŷ(p−1)j ,
j = 1, . . . , (p − 1). To complement the number of open facilities, choose
randomly a customer location as an open facility location

(b) Solve the allocation problem given by model (33)-(40) using CPLEX with
the location of open facilities (xpj , ypj) as an input. Let zp be its objective
function value and kpj be the capacity of facility j(j = 1, . . . , p)

(c) This step is for continuous problem: Call a local search procedure given in
Algorithm 3 with (xpj , ypj) as an input to improve the solution. As result,
the value of zp, xpj and ypj may change.

(d) If zp < ẑp then ẑp ← zp, x̂pj ← xpj , ŷpj ← ypj , and k̂pj ← kpj .
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Step 4: This step is for discrete problem: Improve the quality of solution (ẑp)
using the proposed local search presented in Algorithm 2 with (x̂pj , ŷpj) as an
input.

Step 5: If ẑp < z∗ then z∗ ← ẑp, p∗ ← p, x∗j ← x̂pj , y∗j ← ŷpj , and k∗j ← k̂pj .

In this study, a similar but tailored local search for both the discrete and
continuous cases is used. The algorithm will seek the smallest objective function
value (z∗) along with the corresponding number of opening facilities (p∗) with
their respective coordinates (x∗j , y

∗
j ) for j = 1, . . . , p∗.

Local search for the discrete problem

The proposed local search procedure for the discrete problem is presented in
Algorithm 2 where the initial objective function value (z), the number of open
facilities (p) with then initial locations (xj , yj) for j = 1, . . . , p are given as inputs.
This local search is based on the interchange heuristic using the first improvement
strategy. In Step 2(b), the location of facility j is moved to the location of customer
i where customer i is served by facility j. In other words, the new location of facility
j will be relatively close to the old one for reducing the computing time. Model
(33)-(40) is solved to calculate the objective function value and for allocating
customers to the open facilities. As the first improvement is applied, once the
swapping process improves the solution, the location of a facility moves to the
customer site. This procedure is repeated until there no improvement is found or
the maximum time allowed for the local search (tmax) is reached.

Algorithm 2: The proposed local search for the discrete problem

Input: z, p, xj , and yj
Initialization: Define tmax and compute Nj(j = 1, . . . , p)
Step 1: Set τ = true
Step 2:
(a) Set θbest = 0 (θbest is the best saving occurred from the swapping operator).
(b) For j = 1 to p do the following steps:

For each customer i ∈ Nj do the following:
– Move the location of facility j to the location of customer i
– Solve optimally the allocation problem by solving model (33)-(40) with

the new location of facility j. Let z̃ be its objective function value.
– Calculate the saving θ = z − z̃
– If θ > θbest, set θbest ← θ, jbest ← j, ibest ← i, and go to Step 3
– If CPU time is greater than tmax, update τ = false and go to Step 3

Step 3:
(a) If θbest > 0, update z ← z − θbest, xjbest ← a1ibest

, and yjbest ← a2ibest
.

(b) If θbest ≤ 0 or τ = false, stop, otherwise compute Nj(j = 1, . . . , p) and go
back to Step 2.
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Local search for the continuous problem

Algorithm 3 presents the main steps of our proposed local search for the contin-
uous problem. The input for this procedure is identical to the one for the discrete
problem. In the proposed local search, ALA is implemented where the Weiszfelds
formula (see Equation 41) is used to find the new location of the open facilities.
In other words, the current location of an open facility, Cj(xj , yj), is updated into
a new location C̃j(x̃j , ỹj) using (41),

x̃j =

∑
i∈Nj

wi · a1i
d(Cj , ai)∑

i∈Nj

wi

d(Cj , ai)

; ỹj =

∑
i∈Nj

wi · a2i
d(Cj , ai)∑

i∈Nj

wi

d(Cj , ai)

(41)

where Nj is the set of customers that is served by facility j and d(Cj , ai) is the
distance between facility j and customer i.

The model (33)-(40) is then solved considering the new facility locations result-
ing in a new objective function value (z̃) and customer allocations. This process is
repeated until the gap of the objective function value between the current iteration
and the previous one in the ALA algorithm is less than ε.

Algorithm 3: The proposed local search for the continuous problem

Input: z, p, xj , and yj
Initialization: Define ε and compute Nj(j = 1, . . . , p)

Main Step
Step 1:

Update x̃j ← xj and ỹj ← yj using Equation (41)
Step 2:

Solve the allocation problem by solving model (33)-(40) with the location of
open facilities with (x̃j , ỹj) as an input. Let z̃ be its objective function value
and Nj the set of customers that are served by facility j, j = 1, . . . , p

Step 3:
If (z − z̃) ≤ ε, stop and return the values of z, xj , and yj
Else update z ← z̃, xj ← x̃j , yj ← ỹj and go back to Step 1.

4.2 The VNS-based matheuristic approach

Variable neighbourhood search (VNS) was introduced by Brimberg and Mladen-
ović (1996) for solving continuous location-allocation problems. However, Hansen
and Mladenović (1997) first formally formulated this metaheuristic when solving
the p-median problem. For more details on VNS implementations and its vari-
ants, see Hansen and Mladenović (2001) and Hansen et al (2010). VNS consists
of local search and neighbourhood search where the former seeks local optimal-
ity whereas the latter aims to escape from these local optima by systematically
using a larger neighbourhood if no improvement is found otherwise, the search
reverts back to the first neighborhood, usually the smallest one. The main steps
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of our VNS based matheuristic are presented in Algorithm 4. In the first step, the
parameters required in the proposed matheuristic method are also defined here
including the maximum computational time (cpumax) and the number of neigh-
borhood structures (kmax).

Algorithm 4: The procedure of the proposed VNS-based matheuristic

Initialization:
(a) As the initialisation step of Algorithm 1
(b) Define σ, η, cpumax and kmax

Stage 1: finding a good initial solution
1. Set p = pmin and phi = pmax

2. Repeat the following steps until p > pmax

(a) Apply steps 1-3 of Algorithm 1. Note that Step 1c) is also carried out
for discrete problem

(b) Store the values of ẑp, x̂pj , ŷpj , and k̂pj
(c) If there is no improvement within σ successive times (in term of ẑp)

then set phi = p and go to Step 3
(d) p = p+ 1

3. Set p = phi − 1
4. Repeat the following steps until p < pmin

(a) Apply steps 2a)-2b). Note that in Step 1a), we take the best facility
location obtained when the number of open facilities is set to (p+ 1).
Then, we remove randomly one facility from this configuration

(b) Store the values of ẑp, x̂pj , ŷpj , and k̂pj
(c) If there is no improvement within σ successive times then go to Step 5
(d) p = p− 1

5. Take η best facility configurations with different values of p from previous
steps

6. For continuous problem: Use the local search in Algorithm 3 starting from
η different initial solutions based on different values of p.
For discrete problem: For each facility from the best facility configurations
do:
(a) Move the facility site (continuous) to the nearest potential facility site

(discrete)
(b) Use the local search in Algorithm 2 using the facility configuration

obtained from the previous step (a) as the initial solution
7. Take the best number of facilities (p∗), facility configuration S ∗ (x∗j , y

∗
j ),

capacity configuration (k∗j ) and objective function value (z∗)
Stage 2: VNS Implementation

8. Set k = 1
9. Set S ← S∗

10. Shaking Procedure
Do the following step k times:
(a) Choose randomly a customer site, say customer î
(b) Change a facility (that serve customer î), say facility ĵ, from the cur-

rent solution (S′) with the location of customer î without changing its
capacity
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(c) Implement CPLEX to solve the assignment problem (GAP) based on
(S′) and capacity configuration (k∗j ) with z′ as its objective function
value

11. Local search
For discrete problem: Implement the proposed local search presented in
Algorithm 2 with z′ and S′(x′j , y

′
j) as inputs and outputs.

For continuous problem: Apply the proposed local search given in Algo-
rithm 3 with z′ and S′(x′j , y

′
j) as inputs and outputs

12. Move or Not
If z′ < z∗ then update k = 1 along with z∗ = z′ and S∗ ← S′

Else update k = k + 1 along with z′ = z∗ and S′ ← S∗

13. If computing time is greater than cpumax then go to Step 15
14. If k ≤ kmax go back to Step 10
15. Return z∗, S∗, p∗, k∗j

In the first stage, an iterative procedure to find a good initial solution is put
forward. This stage aims to seek the best number of open facilities (p∗) along with
its facility configuration (location and capacity). Step 2 of Algorithm 4 is similar
to Step 1-3 of Algorithm 1. It finds the best solution for various p starting from
pmin to pmax in the continuous space for both discrete and continuous problems.
The search terminates when there is no improvement within σ successive times.
To speed up the search, in Step 3c), we fix the capacity of each facility when
solving allocation problem (Equations 33-40). In Step 4 of Algorithm 4, similarly
to Step 2, seeking the best configuration is also conducted but starting from higher
p (phi) to pmin. Here, the initial solution is based on the best solution obtained
when the number of opening facilities is set to (p+ 1). Then a facility is randomly
removed. The proposed local searches (for both discrete and continuous problems)
are applied starting from the best facility configurations with different values of
p found in the previous steps. In case of discrete problem, before the proposed
local search is implemented, in the initial solution we move the facility sites to the
nearest potential facility sites (customer sites). To speed up the search, in the local
searches we fix the capacity of each facility when solving the allocation problem.
From the results of local searches, we take the best number of facilities (p∗), facility
configuration S∗(x∗j , y

∗
j ), capacity configuration (k∗j ) and objective function value

(z∗). This solution is then fed into the next stage, which is the VNS algorithm.

In the proposed VNS, the shaking process (Step 10) is carried out by choosing
randomly a customer site, say customer î, and moving the location of the facility
that serves customer î to this customer site. Note that, the capacity for the fa-
cility does not change. The quality of the new facility is evaluated by solving the
allocation problem (Equations 33-40). This process is repeated k times. In Step
11, the proposed local searches (Algorithms 2 and 3) are put forward to improve
the quality of solution by finding the local optima. In the local search, we fix the
capacity of each facility when solving the allocation problem. This restriction aims
to reduce the computational time at the expense of a small loss in terms of solution
quality. Step 12 of the algorithm is the Move or Not step where if the local search
is not able to improve the solution, a larger neighborhood is gradually utilised
otherwise the smallest one will be used. This can be carried out by updating the
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value of k with k = kmax representing the index of the largest neighborhood and
k = 1 the index of the smallest one. In VNS, it is claimed that the smallest neigh-
borhood is the one that is closest to the current solution, whereas the largest one
is the farthest from the current solution (Hansen and Mladenović, 1997).

5 Computational Experiments

Extensive experiments to examine the performance of the proposed matheuristic
approaches were carried out. The algorithms were coded in C++ .Net 2012 and
the IBM ILOG CPLEX version 12.6 Concert Library is used for solving the models
with the exact method. The experiments were run on a PC with an Intel Core i5
CPU @ 3.20GHz processor, 8.00 GB of RAM and under Windows 7. The perfor-
mance of the proposed methods was assessed using generated dataset constructed
based on the four well known data sets from Brimberg et al (2000) originally used
for the multi-facility Weber problem with the addition of setting various capacities
and location costs. It consists of 50, 287, 654, and 1060 customers with the demand
in all data sets being unity except the one with 287 customers.

The possible capacity levels along with the capacity and the corresponding
opening cost is presented in Table 1. For the opening cost related to the site where
the facilities are located, each region/zone is divided into two types of polygons
namely the hexagonal and the diamond shapes where they are referred to as the
diamond and the hexagonal data sets. For illustration, Figure 2 shows an example
of the diamond and the hexagonal datasets with n = 50. The area is categorised
into three classifications namely light grey, medium grey, and dark grey areas with
three setting of θr (1, 1.25, and 1.5) respectively.

Table 1 The possible design capacities with its opening cost

n Capacity Design (k) Capacity Cost (Fk)

50
1 2 4

2 6 6

3 10 7.5

287
1 500 500

2 750 700

3 1000 850

654
1 50 12500

2 75 16000

3 100 20000

1060
1 90 105000

2 120 125000

3 160 160000

In our computational experiments, we set the value of pmax to 15. In the case of
the discrete problem, the customer sites are treated as the potential facility sites
(i.e., m = n). To assess our proposed matheuristic techniques, we compare the
solutions of the proposed methods with those of the exact method using CPLEX.
As the problems are quite hard to solve, we limit the computational time (CPU
time) to the one recorded in the exact method. Therefore, lower bound (LB)
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Fig. 2 The shape of area for dataset with n = 50

and upper bound (UB) are also reported here. The performance of the proposed
matheuristic methods are also measured by duality gap denoted by gap which is
calculated as follows:

gap =
Zh − LB

Zh
× 100 (42)

where Zh refers to the objective function value obtained by the proposed matheuris-
tics (or upper bound by the exact method) and lower bound attained from the
exact method. The CPU time is measured in seconds.

5.1 Discrete problem scenario

The exact methods provided in Section 3 are implemented using CPLEX to first
solve the discrete case namely the DLP-CC and the DLP-CLC problems. As the
models are relatively hard to solve, we limit the computing time of CPLEX to 3
hours. For the proposed iterative matheuristic approach (IMA), we set the number
of iterations (T ) to 10. For the VNS-based matheuristic we set kmax = p∗. The
computational results for the DLP-CC problem are given in Table 2 whereas the
results of the DLP-CLC problem using the diamond and the hexagonal data sets
are shown in Table 3 and Table 4, respectively. Based on the average gap obtained
by the exact method, the complexity of the DLP-CC and DLP-CLC problems
is relatively the same. This is due to the opening cost related to the location of
potential facilities in the DLP-CLC problem being known.

Based on our computational results given in Table 2, it can be observed that
for the smallest instance (n = 50), the optimal solution can be obtained using
CPLEX for both Rectilinear and Euclidean cases. However, for relatively larger
instances (n = 287 to 1060), CPLEX was not able to guarantee optimality after
the set time of 3 hours. It was also observed that gap increases exponentially
with the size of the problem. For n = 50, IMA found the optimal solution for
both Rectilinear and Euclidean cases. On average, IMA produced better solutions
for Rectilinear case (gap of 9.28%) whereas VNS performed better for Euclidean
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case (gap of 9.49%) which are relatively much smaller than the ones found by the
exact method (15.20% and 14.58%). In general, the matheuristic approach runs
relatively much faster than the exact method while producing better solutions.

Table 2 Computational results for the DLP-CC

n
Exact Method IMA VNS

LB gap (%) p∗ gap (%) CPU Time p∗ gap (%) CPU Time p∗

Rectilinear Distance

50 112.38 0.00 10 0.00 28.21 10 0.16 38.78 11

287 13,714.44 3.03 14 3.15 1,473.64 14 3.34 848.56 14

654 250,298.28 15.71 13 11.19 3,305.23 11 11.19 1,742.13 11

1060 2,074,296.67 42.05 15 22.79 5,418.40 12 22.84 3,231.47 13

Average 15.20 9.28 2,556.37 9.38 1,465.23

Euclidean Distance

50 101.07 0.00 10 0.00 22.21 10 0.30 32.63 9

287 12,607.80 4.08 14 3.76 1,880.91 13 3.76 1,368.72 13

654 237,392.39 12.80 12 11.59 3,521.65 11 11.59 1,448.62 11

1060 1,874,148.90 41.44 15 22.90 5,420.08 12 22.33 3,383.88 11

Average 14.58 9.56 2,711.21 9.49 1,558.46

For the DLP-CLC problems, according to Table 3 and Table 4, CPLEX was
also able to find the optimal solutions when n = 50 using both the diamond and
hexagonal data sets. Similarly to the previous experiments, CPLEX experienced
difficulties when the size of the problem becomes relatively large. For all cases, the
matheuristic approach yields better average gap compared to the exact method.
Moreover, the computational time needed by our matheuristic approach is less
than a third of the one required by the exact method. Furthermore, it can also be
highlighted that based on gap obtained, the use of Rectilinear distance tends to be
harder to solve compared to its counterpart the Euclidean distance. Confirming
the previous results, in this case IMA also yielded the smallest gap for Rectilinear
case whereas VNS generated better solutions for Euclidean case. In general, VNS
runs faster than IMA while yielding good solutions.

5.2 Continuous problem scenario

For the continuous problem, the exact method is only implemented for the rec-
tilinear distance case where linearisation was taken place. The model with the
Euclidean distance on the other hand is a nonlinear problem which cannot be
solved using CPLEX. For the CLP-CC and the CLP-CLC with diamond area
datasets, due to CPLEX memory issue, the computing time set for CPLEX is 2
hours only to obtain the lower and upper bounds. The results of our matheuristic
methods with Euclidean distance are obtained for benchmarking purposes only as
no other results are available in the literature.

The computational results for the CLP-CC problem are given in Table 5 while
the results of the CLP-CLC problem using the diamond and the hexagonal data
sets are presented in Table 6 and Table 7, respectively. For the Euclidean case, gap
is calculated based on Zbest instead of lower bound (LB) where Zbest is the best
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Table 3 Computational results for the DLP-CLC using diamond area datasets

n
Exact Method IMA VNS

LB gap (%) p∗ gap (%) CPU Time p∗ gap (%) CPU Time p∗

Rectilinear Distance

50 121.94 0.00 9 0.00 24.36 9 0.00 22.79 9

287 16,935.47 5.06 12 4.65 1,988.75 11 4.67 1,002.61 11

654 304,886.25 12.28 11 10.69 3,241.89 11 10.69 1,791.69 11

1060 2,218,010.54 46.59 15 26.17 5,422.06 12 27.51 3,056.51 12

Average 15.98 10.38 2,669.27 10.72 1,468.40

Euclidean Distance

50 108.53 0.00 7 0.00 27.22 7 0.00 27.81 7

287 15,808.05 5.03 12 6.39 2,449.80 9 4.79 1,165.00 11

654 287,842.41 14.70 11 12.92 3,281.38 13 12.14 1,676.98 11

1060 2,232,653.56 34.65 15 16.04 5,422.96 11 17.70 2,896.25 11

Average 13.60 8.84 2,795.34 8.66 1,441.51

Table 4 Computational results for the DLP-CLC using hexagonal area datasets

n
Exact Method IMA VNS

LB gap (%) p∗ gap (%) CPU Time p∗ gap (%) CPU Time p∗

Rectilinear Distance

50 125.75 0.00 9 0.78 27.81 7 0.31 35.46 10

287 16,937.40 4.35 12 3.67 1,911.47 12 3.84 807.88 11

654 306,557.17 9.10 11 8.06 3,140.53 11 8.82 2,616.83 12

1060 2,440,325.66 39.51 15 19.62 5,421.31 12 20.50 2,796.30 11

Average 13.24 8.03 2,625.28 8.37 1,564.12

Euclidean Distance

50 112.28 0.00 8 0.33 22.31 7 0.33 30.22 7

287 15,745.06 5.44 12 4.13 2,110.88 11 4.14 1,238.91 13

654 291,277.77 9.13 11 9.01 3,235.15 10 8.75 2,100.50 11

1060 2,250,517.00 39.16 15 18.12 5,423.72 11 17.67 2,908.07 12

Average 13.43 7.90 2,698.01 7.72 1,569.42

solution produced by either IMA or VNS. For the continuous problem, the DLP-
CLC problem is significantly harder to solve as the location cost of the opening
facilities is also a decision variable. The average gap with rectilinear distance in
Table 5 and Table 6 confirms this statement where the average gap for the CLP-
CLC problem (80.43%) is much higher than the one for the CLP-CC problem
(60.87%). According to the computational results shown in Table 5, it is noted
that for the continuous problem the optimal solution cannot be obtained using an
exact method (rectilinear case). The gap produced in the continuous problem is
also higher than the one obtained in the discrete problem. In line with the previous
results, it can also be highlighted here that our matheuristic approaches produces
a better (i.e., much lower) average gap than the exact method while requiring a
relatively shorter computational time. Here, the performance of IMA and VNS is
relatively similar. However, IMA yielded a smaller gap for the Euclidean case.
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Table 5 Computational results for the CLP-CC

n
Exact Method IMA VNS

LB gap (%) p∗ gap (%) CPU Time p∗ gap (%) CPU Time p∗

Rectilinear Distance

50 45.13 59.56 10 59.82 81.48 11 59.67 48.69 10

287 5,372.00 62.02 14 62.58 879.05 13 62.67 679.53 13

654 130,800.00 54.72 13 53.62 1,219.94 11 53.69 866.06 11

1060 1,060,000.00 67.19 15 60.66 2,795.36 12 60.64 961.76 12

Average 60.87 59.17 1,243.96 59.17 639.01

Euclidean Distance

Zbest

50 NP NP NP 100.31 0.01 216.64 9 0.00 61.10 9

287 NP NP NP 13,089.03 0.00 1,335.45 13 0.02 1,170.44 12

654 NP NP NP 267,993.55 0.00 3,716.36 11 0.00 902.28 11

1060 NP NP NP 2,402,452.54 0.00 7,026.66 11 0.17 1,618.56 12

Average 0.00 3,073.78 0.05 938.09

NP: CPLEX cannot be used to solve the Euclidean case as it is a nonlinear problem

Diamond area datasets

Table 6 shows the computational results for the CLP-CLC problem with di-
amond area datasets. It can be noted that the matheuristic approach performs
also well in tackling this problem as it obtained a smaller average gap compared
to the exact method while consuming less computational time. Based on these
results, the number of open facilities needed for all instances is less than or equal
to 12 whereas the current UB found by the exact method required facilities in the
largest instances.

Table 6 Computational results for the CLP-CLC using diamond area datasets

n
Exact Method IMA VNS

LB gap (%) p∗ gap (%) CPU Time p∗ gap (%) CPU Time p∗

Rectilinear Distance

50 52.84 66.94 6 56.37 70.04 9 56.46 38.22 9

287 8,574.65 73.61 14 52.11 831.17 11 51.91 741.07 11

654 130,800.00 90.11 15 61.76 1,150.19 11 61.81 933.44 11

1060 1,060,946.20 91.06 15 66.00 548.32 11 65.31 372.35 12

Average 80.43 59.06 649.93 58.87 521.27

Euclidean Distance

Zbest

50 NP NP NP 107.77 0.03 91.49 7 0.00 27.03 7

287 NP NP NP 16,495.34 0.17 1,355.73 12 0.00 1,211.57 12

654 NP NP NP 327,993.55 0.00 1,393.19 11 0.00 609.00 11

1060 NP NP NP 2,736,352.42 1.18 851.63 12 0.00 283.01 11

Average 0.34 923.01 0.00 532.65
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Hexagonal area datasets

The computational results for the CLP-CLC problem with hexagonal area
datasets are given in Table 7. In this scenario, the exact method using CPLEX
was not able to obtain lower and upper bounds within 24 hours. In line with the ex-
periments on diamond area dataset, VNS outperformed IMA for both Rectilinear
and Euclidean cases.

Table 7 Computational results for the CLP-CLC using hexagonal area datasets

n
Exact Method

Zbest
IMA VNS

LB gap (%) p∗ gap (%) CPU Time p∗ gap (%) CPU Time p∗

Rectilinear Distance

50 NF NF NF 126.27 0.67 64.21 8 0.00 39.30 10

287 NF NF NF 17,706.04 0.70 781.29 13 0.00 804.54 11

654 NF NF NF 345,589.32 0.84 1,108.11 11 0.00 355.50 12

1060 NF NF NF 3,059,632.21 0.37 527.50 12 0.00 384.98 12

Average 0.65 620.28 0.00 396.08

Euclidean Distance

50 NP NP NP 112.63 0.13 171.96 7 0.00 38.82 7

287 NP NP NP 16,404.82 0.00 1,261.00 13 0.02 1,120.61 11

654 NP NP NP 329,742.09 1.28 708.37 11 0.00 420.84 11

1060 NP NP NP 2,773,752.46 0.00 646.81 11 0.54 365.18 10

Average 0.35 697.03 0.14 486.36

NF: LB/UB not found within 24 hours

6 Conclusions

The single source location problem with the presence of several possible capac-
ities and the opening facility fixed cost that is capacity and zone dependent is
investigated. Mathematical models for the discrete and the continuous cases us-
ing the Rectilinear and Euclidean distances are produced. As the location mod-
els with opening cost for discrete and continuous cases are very hard to solve
optimally especially when the size of the problem is large, two matheuristic ap-
proaches, which embeds the exact method to tackle the assignment subproblem
are put forward, namely an iterative matheuristic approach (IMA) and VNS-based
matheuristic. The exact method is first applied where optimal solutions or lower
and upper bounds can be found. In our experiments, it can be seen that the
matheuristic approaches (IMA and VNS) produce a better average gap than the
exact method besides requiring a shorter computational time. For instance, the
proposed matheuristics for the discrete problem generate an average gap with just
below 9% compared to around 14% for the exact method for both rectilinear and
Euclidean cases. For the continuous case, these gap averages increased to around
60% and 70% for the matheuristics and the exact method respectively, demonstrat-
ing the complexity of solving the continuous problem. In general, VNS performs
the best as it runs relatively fast while producing good solutions. Note that these
gaps may not be as informative as one would like given the lower bounds obtained
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may be too loose. To overcome this issue, one can tighten the formulations by
creating new cuts, and also produce tighter upper bounds through more powerful
metaheuristics. For future research, it could be interesting to explore other variants
including the uncertainty in the customers demand and the presence of forbidden
regions. Another exciting aspect that could be pursued is to integrate the routing
distances instead of the classical radial ones. This falls into the class of continuous
location routing problem (Salhi and Nagy, 2009) which is more challenging but
could be worth the investigation.
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