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 Perhaps the most “dangerous” aspect of future climate change is the possibility that 
 

 human activities will push parts of the climate system past “tipping points”, leading to 
 

 irreversible impacts1. The likelihood of such “large-scale singular events”2 is expected to 
 

 increase with global warming1-3, but is fundamentally uncertain4. A key question is how 
 

 should the uncertainty surrounding tipping events1,5  affect climate policy? We address 
 

 this  using  a  stochastic  integrated  assessment  model6,  based  on  the  widely-used 
 

 deterministic  ‘DICE’  model7.  The  temperature-dependent  likelihood  of  tipping  is 
 

 calibrated  using  expert  opinions3,  which  we  find  to  be  internally  consistent. The 
 

 irreversible impacts of tipping events are assumed to accumulate steadily over time 
 

 (rather than instantaneously8-11), consistent with scientific understanding1,5. Even with 
 

 conservative assumptions  about the rate and  impacts of  a  stochastic tipping event, 
 

 today’s optimal carbon tax is increased by ~50%. For a plausibly rapid, high-impact 
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 tipping event, today’s optimal carbon tax is increased by >200%. The additional carbon 
 

 tax to delay climate tipping grows at only about half the rate of the baseline carbon tax. 
 

 This implies that the effective discount rate for the costs of stochastic climate tipping is 
 

 much lower than the discount rate7,12,13 for deterministic climate damages. Our results 
 

 support recent suggestions that the costs of carbon emission used to inform policy12,13
 

 

 are being underestimated14-16, and that uncertain future climate damages should be 
 

 discounted at a low rate17-20. 
 

 

 Integrated assessment models (IAMs) are key tools to assist climate policy-making7,12,13, 
 

 which attempt to capture two-way interactions between climate and society. There is much 
 

 debate  over  what  discount  rate  to  assume  for  evaluating  future  damages  due  to  global 
 

 temperature rise17, which in turn partly determines how much we should be willing to pay 
 

 now  to  avoid  or  delay  those  damages.  The  Stern  Review21 followed  a  prescriptive 
 

 (and controversial22-24) approach; based on ethical arguments it assumed a near-zero rate for 
 

 discounting the utility of future generations, implying a low discount rate for monetized 
 

 damages of climate change and a high willingness to pay now.  In contrast, studies using a 
 

 descriptive approach7,12,13  generally evaluate the costs of climate change using much higher 
 

 market rates of return as discount rates.  Most studies are deterministic, but uncertainty will 
 

 also affect the rate at which future levels of climate damage are discounted17-20.   Climate 
 

 tipping points and their impacts are a key source of uncertainty, for several reasons1,3,4. 
 

 Firstly, our knowledge of thresholds, in terms of e.g. regional warming, is imperfect, and the 
 

 mapping from global temperature rise to regional thresholds is also uncertain. Secondly, 
 

 even if we knew a tipping point precisely, stochastic internal variability in the climate system 
 

 could trigger tipping at a range of times and corresponding global temperatures4.   Several 
 

 IAM approaches to model climate tipping points are fundamentally deterministic8,9,14,25,26, 
 

 whereas only a few studies include stochastic climate damages10,11,27  (see Supplementary 
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 Discussion).  In common with deterministic IAMs, they generally assume10,11 that the impacts 
 

 of passing a tipping point are felt instantaneously, whereas in reality impacts will accumulate 
 

 over time at a rate determined by the dynamics of the system that has been tipped1.   One 
 

 recent study27  assumes that tipping instantaneously increases climate sensitivity or weakens 
 

 carbon sinks, which then causes damages to accumulate at an increased rate, but this is 
 

 scientifically questionable (see Supplementary Discussion) and leads to increased discounting 
 

 of future damages27. 
 

 Here, we examine how a more realistic treatment of stochastic climate tipping points 
 

 affects the optimal policy choice, including the discount rate to evaluate future damages. Our 
 

 stochastic  integrated  assessment  model6,  DSICE  (Fig.  1a),  builds  on  the  deterministic 
 

 Dynamic Integrated Climate and Economy (DICE) model7 (2007 version) as used in the 2010 
 

 U.S. federal assessment of the social cost of carbon12. The federal assessment13  and the 
 

 DICE model28 have since been updated, in ways that tend to increase the estimated social cost 
 

 of carbon (see Supplementary Methods). Hence the reader should focus on our relative 
 

 changes in carbon tax due to stochastic climate tipping more than the absolute values. 
 

 DSICE uses a dynamic programming framework, representing the decision maker’s 
 

 uncertainty by a stochastic formulation  of a tipping event  as  a Markovian process  (see 
 

 Methods and Supplementary Methods). Specifically, for a potential hazard event the model 
 

 specifies a hazard rate – i.e. the conditional probability that a tipping point will be passed in a 
 

 particular  year  given  the temperature that  year.   The decision  maker is  assumed  to  use 
 

 the hazard rates inferred from an expert elicitation study3 (see Methods and Supplementary 
 

 Methods). The average experts’ hazard rate has a default value of 0.0025 °C-1 yr-1 – e.g. if we 
 

 observe 1°C of warming, the conditional probability of having a tipping event in that year is 
 

 0.25%, rising to 0.5% yr-1 for 2°C of warming. Following the expert elicitation3, the tipping 
 

 event  could  be  one  out  of  five  candidates:  reorganization  of  the  Atlantic  meridional 
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 overturning circulation; irreversible melt of the Greenland ice sheet; collapse of the West 
 

 Antarctic ice sheet; dieback of the Amazon rainforest; or an increase in the amplitude of the 
 

 El Niño Southern Oscillation. We conservatively assume that (i) whatever the tipping event 
 

 is, it leads to only modest damages – our default setting is a 10% reduction in global GDP, 
 

 and (ii) these damages take significant time to unfold (Fig. 1b) – with a default setting of 50 
 

 years (appropriate e.g. for Amazon rainforest dieback).  Incorporating this stochastic potential 
 

 tipping event into the DSICE model, the resulting cumulative probability of tipping is ~2.5% 
 

 in 2050, ~13.5% in 2100, and ~48% (i.e., as likely as not) in 2200 (see Supplementary 
 

 Results), in good agreement with the expert elicitation results3. 
 

 Despite our conservative default assumptions, the prospect of an uncertain future 
 

 tipping point causes an immediate increase in the initial (2005) carbon price (Fig. 2, blue 
 

 line) by ~50%, from $36.7 tC-1 to $55.6 tC-1 (all prices are in 2005 US$, multiply by 1.16 for 
 

 2013 US$).  The relatively low carbon price when the tipping point is ignored, and its high 
 

 average growth rate of 1.68% yr-1 (from ~$36.7 tC-1  in 2005 to $173 tC-1  in 2100: Fig. 2, 
 

 black  line),  is  the  response  to  the  steadily  increasing,  deterministic  effect  of  rising 
 

 temperature on economic output. It reflects the DICE preferences of discounting future 
 

 welfare at a high rate.  In contrast, the expected additional carbon tax to address the tipping 
 

 point threat (difference between black and blue lines in Fig. 2) grows at roughly half the 
 

 average rate (0.81% yr-1) of the baseline DICE carbon tax (Fig. 3).  Such a flat carbon tax 
 

 path is also obtained when the discount rate is prescribed to be lower (as in e.g. the Stern 
 

 Review20). Thus, despite assuming the same dynamic preferences of discounting welfare of 
 

 future generations as Nordhaus7, our model indicates that the appropriate discount rate for 
 

 climate tipping damages is a low one. 
 

 This can be understood by considering the expected returns on mitigation investment. 
 

 Tipping points add a source of risk to the economic system, which increases the variance of 
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 future output. Hence mitigation expenditures have two effects on economic output. First, they 
 

 increase expected output (by reducing expected damages). Second, they reduce the variance 
 

 of output, further increasing social welfare.  This means decisions on capital investment and 
 

 mitigation expenditures will face different criteria:  Increasing the capital stock in the DICE 
 

 model will increase future expected output, and the marginal benefit from investment today is 
 

 discounted at the market interest rate.  Increasing mitigation expenditures will increase future 
 

 expected  output  (again  discounted  at  the  market  interest  rate),  but  will  also  reduce  the 
 

 
 

 
 

variance of future output.  Therefore, mitigation expenditures to address stochastic damages 
 

will exceed the level justified by the discounted impact on expected output17,19,20. This 
 

 implies a discount rate that is less than the interest rate.  It explains why the increase in the 
 

 carbon tax from tipping events exceeds that from the change in future expected output. 
 

 The optimum way of dealing with the threat of a tipping point event also resembles 
 

 characteristics of an insurance policy. Insurance purchases have a negative rate of return 
 

 since insurance premiums are much higher than the expected loss.  The expected additional 
 

 carbon price thus balances discounting of the future with the desire for insurance, resulting in 
 

 its slower growth rate.  It can be thought of as a premium that is levied upon society with the 
 

 
 

 
 

purpose of delaying potential damage from the tipping event. 
 

Previous  deterministic  IAM  studies14,25,26,29    have  suggested  that  increasing  the 
 

 convexity of the damage function in the DICE model could represent the characteristics of a 
 

 tipping point.   As a comparison exercise we studied the implications for climate policy of 
 

 doubling or tripling the exponent of the damage function.  Unsurprisingly, these deterministic 
 

 approaches enhance the growth rate of the carbon price (implying a higher discount rate) 
 

 
 

 
 

(Fig. 3, red lines), whereas our stochastic treatment decreases it (Fig. 3, blue line).  Hence, 
 

existing studies16,26-29  that adjust the shape of a deterministic damage function qualitatively 
 

 fail to capture the implications of stochastic tipping points. 



6 

 

 Candidate tipping points differ in their intrinsic timescales and impacts1,5.  Hence, in a 
 

 sensitivity study (Fig. 4), we considered tipping processes that take 5, 50 (default), 100, and 
 

 500 years to fully unfold, with final stage impacts of 2.5%, 5%, 10% (default), and 20% 
 

 damage to output. We also looked at how a higher hazard rate affects the optimal climate 
 

 policy.  This  gives  a  total  of  32  combinations,  each  of  which  can  be  thought  of  as 
 

 hypothetically representing the characteristics of some tipping event. The additional carbon 
 

 
 

 
 

price significantly decreases with increasing transition time (Fig. 4a) suggesting that previous 
 

studies10,11 (see Supplementary Discussion), assuming an instantaneous full impact of climate 
 

 tipping,  bias  the  carbon  price  upward.  The  additional  carbon  price  also  increases  with 
 

 increasing damage and likelihood of the tipping point event (Fig. 4a). As the final stage 
 

 damage doubles, the additional carbon price also roughly doubles. Furthermore, a higher 
 

 hazard rate amplifies the effect of shorter transition scales on the additional carbon price. 
 

 The additional carbon tax delays the expected occurrence of the climate tipping point 
 

 (Fig. 4b), in our default scenario by 20 years (from year 2214 to 2234). This expected delay 
 

 time increases with increased damage, shorter transition periods, and with higher likelihood 
 

 of tipping, to more than a century in our extreme cases (Fig. 4b). The expected additional 
 

 carbon tax (in $/tC) correlates with the length of the expected delay (in years), such that each 
 

 dollar added to the carbon tax correlates with a delay of the tipping event by a year. 
 

 
 

 
 

 

 
 

The growth rate of the additional carbon price is relatively insensitive to varying 

damage level or transition time, ranging over 0.43%-0.96% yr-1  in our sensitivity analysis 

(Fig. 4c).  This is 40-70% less than the growth rate of the baseline carbon price (1.68% yr-1) 
 

 
 

 
 

in the deterministic model without tipping. 
 

Actual candidate tipping elements in the climate system1 can be tentatively related to 
 

 
 

 
 

modeled combinations of hazard rate, tipping duration, and final damages (Fig. 4d), based in 

part  on  previous  reviews  of  the  literature1,5.  This  is  necessarily  somewhat  subjective. 
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 Nevertheless, it serves to qualitatively illustrate that the optimal policy response for different 
 

 specific climate tipping points could differ profoundly. 
 

 In conclusion, the optimal policy in response to the threat of a stochastic, irreversible 
 

 tipping point differs substantially from the policy response to the deterministic effect of 
 

 
 

 
 

temperature on output.   The damages associated with the stochastic possibility of a future 
 

climate tipping point should be discounted at a low rate17.  This calls for a higher carbon price 
 

 
 

 
 

and increased efforts to mitigate emissions now – without even considering other co-benefits 
 

of mitigation30, such as decreased air pollution and greater energy security. Thus, when 
 

 appropriately  treating  the  intrinsic  uncertainty  in  the  climate  system  –  in  this  case  the 
 

 stochastic nature of future climate tipping points – a strict climate policy can emerge from a 
 

 
 

 
 

pure  market-based  approach. It  does  not  have  to  be  based  on  moral  judgments  about 
 

sustainability and  the wellbeing of future  generations21  –  although  these are,  of course, 
 

 legitimate and important concerns. 
 
 
 

 Methods Summary 
 
 
 

 
 

 
 

 

 
 

We  use  DSICE6,  a  multidimensional  stochastic  integrated  assessment  model  (IAM)  of 

climate and the economy, based on the DICE model7. DICE has been applied in numerous 

studies, e.g.9,14,26, and the main drivers of its behavior have been analyzed7. DSICE computes 
 

 the optimal, global greenhouse gas emission reduction. Higher emission control at present 
 

 mitigates the damage from climate change in the future but limits consumption and/or capital 
 

 investment today. The global economy (the social planner) is set to weigh these costs and 
 

 benefits of emission control to maximize the expected present value of global social welfare. 
 

 DSICE includes the possibility of a climate tipping point with potential damages to economic 
 

 output. The occurrence of a climate tipping point is modeled by a Markov process (with a 
 
 hazard rate) and its timing is not known at times of decisions. Because DSICE is a stochastic 
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 model, it can compute the optimal policy response, i.e.: a tax on carbon emissions to address 
 

 the uncertain climate tipping event. See Supplementary Methods for a full model description. 
 

 
 The hazard rate for a tipping event represents the conditional probability that a tipping point 

 
 

 

 
 

will occur in a particular year given the actual degree of global warming in that year (above 
 

year  2000).  Previous  work3   from  a  range  of  experts  has  elicited  imprecise  cumulative 
 

 probabilities  for  passing  five  different  tipping  points  under  three  different  temperature 
 

 corridors up to the year 2200. Each temperature corridor spans an uncertainty range, and 
 

 together they range over 0-8 °C warming (above year 2000) depending on the year and the 
 

 scenario. Here, we calibrate the hazard rate for the tipping event by reverse engineering the 
 

 
 

 
 

contemporaneous conditional probability of tipping from the cumulative probabilities from 
 

the expert elicitation study3. See Supplementary Methods for full details of the hazard rate 
 

 calibration. 
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 Figure captions 

 
 

 Fig. 1. Schematic of the DSICE model. a. The forward-looking decision maker (social 
 

 planner) chooses mitigation and consumption to maximize the sum of discounted expected 
 

 utilities over some time horizon. Increased mitigation must be traded off against consumption 
 

 and savings. Global warming adversely impacts the economy and increases the probability of 
 

 a tipping point with additional irreversible economic impacts. b. The length of the pre-tipping 
 

 phase is stochastic, and its likelihood depends on global warming. Once tipping is triggered, 
 

 damages increase linearly over a specified transition time (5-500 years here) to a specified 
 

 
 

 
 

final level (2.5-20% of World GDP here). 

 
 Fig. 2. Optimal carbon tax path. Gray-shaded area: Range of stochastic carbon tax paths 

 
 from 10,000 simulations of the optimal model’s solution. Black line: Expected carbon tax 
 

 from the stochastic model (average of 10,000 simulations). Blue line: Optimal carbon tax 
 

 from a deterministic version of the model in which the decision maker ignores the tipping 
 
 
 

 
 

point (consistent with the DICE model path). 

 
 Fig. 3. Growth rates of carbon tax. Black line: Baseline carbon tax in the deterministic 

 
 DICE model (no tipping point). Blue line: Expected additional carbon tax when including a 

 
 stochastic tipping point. Solid red line: Additional carbon tax when doubling the exponent of 

 
 

 

 
 

the damage function in the DICE model. Dashed red line: Additional carbon tax when further 
 

increasing the deterministic damage function to 6th-order. Solid green line: Additional tax in a 
 

 deterministic  setting  where  the  potential  damage  from  tipping  is  represented  by  a 
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 deterministic damage function with an additional component which is the expected damage 
 

 
 

 
 

path of the stochastic model. 

 
 Fig. 4. Sensitivity analysis. Sensitivity of DSICE model results to varying the likelihood 

 
 

 

 
 

 

 
 

(hazard rate), transition time, and final impact of the tipping event: a. Expected additional 

carbon tax ($ tC-1) in year 2005. b. Expected delay (yr) of the tipping event. c. Average 

(2005-2100) annual growth rate (% yr-1) of the expected additional carbon tax. d. Illustrative 
 

 categorization of elements that could be tipped: Arctic summer sea-ice (ASI), Greenland ice 
 

 sheet (GIS), West Antarctic ice sheet (WAIS), Atlantic meridional overturning circulation 
 

 (AMOC),  El  Niño  Southern  Oscillation  (ENSO),  Indian  summer  monsoon  (ISM),  West 
 

 African monsoon (WAM), Amazon rainforest (AMAZ), boreal forests (BOFO). 
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Supplementary Methods  

Description of DSICE: The stochastic integrated assessment model (IAM) used in the present 
analysis is an adapted version of the DSICE framework1,2. The latter builds on the DICE-CJL model3, 
which itself is a numerically stable version of DICE-20074 with a flexible time-period length. The 
DICE model has been applied in numerous studies and the main drivers of its behavior have been 
studied extensively. Besides those associated with risk and uncertainty, the model parameters used for 
our analysis are calibrated to the same levels as those used in DICE-2007. Hence the deterministic 
form of DSICE (without stochastic tipping) is almost identical to DICE-2007. The few differences are 
due to the adaptation of the DICE code to dynamic programming to facilitate solving a stochastic 
version. These few differences include a flexible time step (DICE has 10 years, DSICE has 1 year), a 
terminal value function for the optimization procedure (DICE has none) and a fix that future levels of 
atmospheric carbon do not induce global warming today (DICE-20135 has that fix as well). Generally, 
a multidimensional stochastic IAM (e.g., the one in the present study) requires heavy computation, 
but DSICE makes it tractable by using an efficient and accurate dynamic programming algorithm6. 
Here, we present the details of the equations of the model used in this study, with the parameter 
values given in Table S1.  

Like DICE, DSICE computes the time paths of the optimal greenhouse gas emission reduction for the 
world. Stringent emission control at present mitigates the damage of climate change in the future 
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while reducing income today; the global economy (the social planner) is set to weigh these costs and 
benefits of emission control. Uncertainty (stochasticity) of climate change effects is included in such a 
way that the global economy makes emission control decisions by expecting future developments of 
climate and the economy that are not precisely known at the times of decisions. The model finds the 
levels of global emission control that maximize the expected present value of global social welfare. 

The impact of global warming on the economy is reflected by a convex damage function of 
temperature in the atmosphere. This is a standard feature of the DICE model family. We modify the 
standard damage function by explicitly modeling the possibility of a climate shock (a tipping point) to 
account for the threat of abrupt and irreversible climate change. One important element of the tipping 
point module is the transition scale of the tipping process. For example, Lenton et al.7 characterize the 
transition scales of tipping for various climate elements. While some elements are believed to exhibit 
a rapid tipping transition of about ten years (e.g., Arctic summer sea ice), other elements are believed 
to exhibit a slower transition of more than 300 years (e.g., the Greenland ice sheet). As we have 
argued, we do not concentrate on a specific tipping element but we find the one-out-of-five example 
in Kriegler et al.8 appealing. Therefore, our tipping point can represent any of the five tipping 
elements in Kriegler et al.8. In this study, we investigate transition scales of 5, 50, 100, and 500 years 
to reach a new equilibrium of the tipping element. 

Mathematically, the tipping point module is described as follows: after the tipping event is triggered, a 
persistent climate impact state,  ܬ௧, will increase continuously from a minimal level (i.e., ܬ௧ ൌ 0 ) to 
some maximum level (ܬ ൐ 0ሻ, implying that ܬ௧ାଵ ൌ min	ሼܬ௧ ൅ Δ௧, ሽ , where Δ௧ܬ   is the incremental 
impact level from stage ݐ to ݐ ൅ 1. In our computations we make the continuous tipping process 
discrete with the time steps. We use It as the indicator function to denote the pre-tipping state of the 
world as ܫ௧ ൌ 0 and the post-tipping state of the world as ܫ௧ ൌ 1, where ܫ௧  is a jump process with the 
Markovian hazard rate. The latter is endogenous with respect to the contemporaneous level of global 
average atmospheric temperature ௧ܶ

஺். The transition function for ܫ௧  from stage ݐ to stage ݐ ൅ 1 is 
௧ାଵܫ ൌ ݃ூሺܫ௧, ௧ܶ

஺், ߱௧
ூሻ , where ߱௧

ூ  is a random process. Therefore, ܬ௧ାଵ ൌ min൛	ܬ௧ ൅	Δ௧,  ௧ and theܫൟܬ
impact factor on the economy becomes 

Ωሺܶ஺், ,ܬ ሻܫ ൌ 	
1 െ ܬܫ

1 ൅ ଶሺܶ஺்ሻଶߨ
 

where ܶ஺்  is the average global atmospheric temperature and ߨଶ is a coefficient in the damage 
function.. We specify the probability transition matrix of the tipping process at time ݐ as 

ቂ1 െ ௧݌ ௧݌
0 1

ቃ, 

where its ሺ݅, ݆ሻ element is the transition probability from state ݅ to ݆ for ܫ௧, and 
௧݌ ൌ 1 െ exp	ሺെܾଵ maxሼ0, ௧ܶ

஺் െ 1ሽሻ, where ܾଵ is called the hazard rate factor. 

We assume that the damage function affects final output and consequently the accumulation of capital 
݇௧, which transits to the next period, is formulated in a standard fashion: 

݇௧ାଵ ൌ ሺ1 െ ሻ݇௧ߜ ൅ ௧ܻሺ݇௧, ௧ܶ
஺், ,௧ߤ ,௧ܬ ௧ሻܫ െ ܿ௧, 

where µt is the emission control rate, δ is the annual depreciation rate, ܿ௧  is consumption, and ௧ܻ  

denotes the stochastic production function. It follows that 

௧ܻሺ݇௧, ௧ܶ
஺், ,௧ߤ ,௧ܬ ௧ሻܫ ൌ ቀ1 െ	ߠଵ,௧ߤ௧

ఏమቁ ௧݇௧ܣ
ఈ݈௧
ଵିఈΩሺ ௧ܶ

஺், ,௧ܬ  ,௧ሻܫ

where ݈௧  is exogenous labor supply and At is the exogenous productivity level. Furthermore, ߠଵ,௧ߤ௧
ఏమ 

accounts for the costs of mitigation as a fraction of output. Given the production function, annual total 
carbon emissions are given by 
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ε௧ሺ݇௧, ௧ሻߤ ൌ 1	௧ሺߪ	 െ ௧݇௧ܣ௧ሻߤ
ఈܫ௧

ଵିఈ ൅ ௧ܧ
௅௔௡ௗ, 

where ߪ௧ denotes an exogenous carbon intensity of output, and ܧ௧
௅௔௡ௗ is an exogenous rate of 

emissions from biological processes. Furthermore, we employ the standard separable utility function 
in the DICE-2007class of models4, which is 

,ሺܿ௧ݑ ݈௧ሻ ൌ 	
ሺ௖೟/௟೟ሻభషഗ

ଵିట
	݈௧ , 

Here, ߰ represents the risk aversion parameter. 

The structure of the carbon cycle in this study is adapted from the DICE-2007 model4. The carbon 
cycle components are modeled by a three-box module with 

௧ࡹ ൌ ሺܯ௧
஺்,ܯ௧

௎௉,ܯ௧
௅ைሻୃ, 

representing carbon concentrations in the atmosphere ( ܯ௧
஺்), the upper oceans (ܯ௧

௎௉ ) and the lower 
oceans ( ܯ௧

௅ை). The transition system of the carbon concentration from year ݐ to year ݐ ൅ 1 is 

௧ାଵࡹ ൌ 	Φெܯ௧ ൅ ሺߝ௧ሺ݇௧, ,௧ሻߤ 0, 0	ሻୃ, 

with the carbon cycle transition matrix given by 

઴ெ ൌ	 ൥
1 െ ߶ଵଶ ߶ଵଶ 0
߶ଵଶ 	1 െ ߶ଶଵ െ ߶ଶଷ	 ߶ଷଶ
	0	 	߶ଶଷ 	1 െ ߶ଷଶ	

൩, 

where the coefficient ߶௜௝  is the rate at which carbon diffuses from carbon stock ݅ to carbon stock ݆, for 
݅, ݆	 ∈ ሼܯ஺்,ܯ௎௉,ܯ௅ைሽ. The carbon concentrations in the atmosphere affect the global average 
surface temperature via radiative forcing: 

஺்ሻܯ௧ሺܨ ൌ ߟ logଶ൫ܯ஺் ௉ூܯ
஺்⁄ ൯ ൅ ௧ܨ

ா௑, 

where ߟ is an exogenous forcing parameter, ܯ௉ூ
஺்	is the preindustrial carbon concentration in the 

atmosphere and ܨ௧
ா௑  denotes exogenous radiative forcing. Here, we also make use of the DICE-2007 

two-box model for the climate4. The global mean temperature is represented by a two-layer model, 

௧܂ ൌ ሺ ௧ܶ
஺், ௧ܶ

௅ைሻୃ		 

representing the average temperature in the atmosphere ( ௧ܶ
஺்) and the lower oceans ( ௧ܶ

௅ை). The 
transition system of the global average temperature from year t to year ݐ ൅ 1	 is 

௧ାଵ܂ ൌ 	઴ୃ܂௧ ൅ ሺξଵܨ௧ሺܯ௧
஺்ሻ,0	ሻୃ, 

with 

																																																			Φ் ൌ 	 ൤
1 െ ߮ଶଵ െ	ߦଶ ߮ଶଵ

߮ଵଶ 1 െ ߮ଵଶ
൨, 

where ߦଵ	is a conversion parameter, the coefficient ߮௜௝  is the heat diffusion rate from temperature 
stock ݅ to temperature stock ݆, for ݅, ݆	 ∈ ሼܶ஺், ܶை஼ሽ and ߦଶ is the rate of atmospheric temperature 
change by infrared radiation to space.  

The social planner’s goal is to maximize the expected sum of present-discounted welfare over a 
specific time horizon, taking into account (i) that the release of carbon into the atmosphere has a 
deterministic and reversible adverse impact on future economic productivity, and (ii) that enhanced 
global warming induces a higher probability of a stochastic and irreversibly cascading tipping point 
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event leading to permanent damages. The stochastic optimization problem of the social planner 
becomes 

max
௖೟,ఓ೟

ॱ ൝෍݁ିఘ௧ݑሺܿ௧, ݈௧ሻ
ஶ

௧ୀ଴

ൡ 

݇௧ାଵ ൌ ሺ	1 െ ሻ݇௧ߜ ൅ ௧ܻሺ	݇௧, ௧ܶ
஺், ,௧ߤ ,௧ܬ ௧ሻܫ െ ܿ௧ 

௧ାଵۻ ൌ 	઴ெۻ௧ ൅ ሺ	ߝ௧ሺ	݇௧, ,௧ሻߤ 0, 0ሻୃ 

௧ାଵ܂ ൌ 	઴்܂௧ ൅ ሺ	ߦଵܨ௧ሺܯ௧
஺்ሻ, 0	ሻୃ 

௧ାଵܬ ൌ ݃௃ሺܬ௧,  ሻ	௧ܫ

௧ାଵܫ ൌ ݃ூሺ	ܫ௧, ௧ܶ
஺், ߱ூሻ 

where ॱ represents the expectation operator and ߩ signifies the utility discount rate. There are seven 
continuous state variables: the capital stock ݇, the three-dimensional carbon system ۻ, the two-
dimensional temperature vector ܂, and ܬ, which represents the damage factor of the tipping point 
event. Furthermore, ܫ is the discrete shock to the climate.  

The Bellman equation cannot be solved analytically and must be solved numerically. We approximate 
the infinite horizon model by a 600-year-horizon problem with a given terminal value function 
approximating the summation of discounted expected utilities from period 600 onwards. The main 
idea behind the solution method is that we recursively compute the optimal amount of consumption 
and mitigation in each period as a function of the state space, including the capital stock, the carbon 
cycle, the climate and the productivity state. Thus, we start at the last decision period (period: 599) 
and use value function iteration and approximation methods to obtain the value function (maximand) 
for any combination of possible (bounded) state space in that period.  After solving the problem in the 
second-last period, we move one period backwards in time to the second-last-decision period (period: 
598) and proceed with the same approach until we reach the initial time (period: 1). For a more 
detailed discussion this procedure see e.g., Cai and Judd6. 

In accordance with the DICE model4 in which a time period lasts 10 years, we use the following 
functional forms and parameter values for our model in which we assume that each period lasts one 
year. The exogenous population path is given by 

௧ܮ ൌ 6514݁ି଴.଴ଷହ௧ ൅ 8600ሺ1 െ ݁ି଴.଴ଷହ௧ሻ 

The deterministic productivity level ܣ௧ equals 

௧ܣ ൌ ଵሺ1ߙሺ	଴expܣ െ ݁ିఈమ௧ሻ/ߙଶሻ, 

where ߙଵ is the initial growth rate and ߙଶ  is the decline rate of the growth rate. Additional equations 
for ߪ௧  (carbon intensity of output.), ߠଵ,௧  (mitigation cost coefficient), ܧ௅௔௡ௗ,௧  (annual carbon emissions 
from biological processes), and ܨா௑,௧  (exogenous radiative forcing) are given by 

௧ߪ ൌ ሺെ0.0073ሺ1	଴expߪ െ ݁ି଴.଴଴ଷ௧ሻ/0.003ሻ 

ଵ,௧ߠ ൌ ௧ሺ1ߪ1.17 ൅ ݁ି଴.଴଴ହ௧ሻ/2ߠଶሻ 

௅௔௡ௗ,௧ܧ ൌ 1.1݁ି଴.଴ଵ௧ 

ா௑,௧ܨ ൌ ቄെ0.06 ൅ ݐ	݂݅									,ݐ0.0036 ൑ 100
݁ݏ݅ݓݎ݄݁ݐ݋																																					0.3

ቅ 

The following Table S1 specifies all variables and parameter values of the model. 
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Table S1: Parameters of the DSICE Model. 
 
Differences in DICE-2013: Since calibrating the DSICE model against DICE-2007, the underlying 
model has been updated5 to DICE-2013, with several changes: Exogenous processes have been 
updated, including a higher growth rate of total factor productivity, a lower rate of decarbonisation of 
the economy and newer estimates of population and exogenous radiative forcing. Ocean absorption of 
carbon is now lower for higher degrees of global warming. The deterministic damage function has 
been increased by about 25% to account for additional damages. Perhaps most importantly, the rate of 

ݐ ∈ ሼ0,1, … , 600ሽ time in years (t represents year t + 2005) 

߰ ൌ 2 risk aversion parameter 

	ߩ ൌ 	0.015 discount factor 

଴ܣ , ௧ productivity trend at time tܣ ൌ 0.0272 

଴ܭ ,௧ capital at time t (in $ trillions)ܭ ൌ 137 

	ߙ ൌ 	0.3 output elasticity of capital 

ଵߙ ൌ 0.0092 initial growth rate of the productivity trend 

ଶߙ ൌ 0.001 decline rate of the growth rate of the productivity trend 

	ߜ ൌ 	0.1 annual depreciation rate 

௧ܯ
஺் carbon concentration in atmosphere (billion tons) at time t. ܯ଴

஺் ൌ 808.9 

௧ܯ
௎ை carbon concentration in upper ocean (billion tons) at time t. ܯ଴

௎ை ൌ 1255 

௧ܯ
௅ை carbon concentration in lower ocean (billion tons) at time t. ܯ଴

௅ை ൌ 18365 

௧ܶ
஺் average surface temperature change from 1900 (∘ at time t.  ଴ܶ (ܥ

஺் ൌ 0.7307 

௧ܶ
ை஼ average ocean temperature change from 1900 (∘ at time t.  ଴ܶ (ܥ

ை஼ ൌ 0.0068 

ଶߨ ൌ 0.0028388 damage factor parameter 

ଶߠ ൌ 2.8 damage factor parameter 

଴ߪ ൌ 0.13418 initial technology factor 

߮ଵଶ ൌ 0.019 rate of carbon flux: atmosphere to upper ocean 

߮ଶଷ ൌ 0.0054 rate of carbon flux: upper ocean  to lower ocean 

߮ଶଵ ൌ 0.01 rate of carbon flux: upper ocean  to atmosphere ocean 

߮ଷଶ ൌ 0.00034 rate of carbon flux: lower ocean  to upper ocean 

ଵߦ ൌ 0.037 temperature transition parameter 

ଶߦ ൌ 0.047 rate of atmospheric temperature decrease due to infrared radiation to space 

߶ଵଶ ൌ 0.01 rate of heat diffusion: atmosphere to ocean 

߶ଶଵ ൌ 0.0048 rate of heat diffusion: ocean to atmosphere 

	ߟ ൌ 	3.8 radiative forcing parameter 

௉ூܯ
஺் ൌ 596.4 preindustrial atmospheric carbon concentration 

ܶ஺் ൌ 1 surface temperature with zero probability of tipping 

ܾଵ ∈ ሾ0.0025,0.0045ሿ hazard rate factor 
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relative risk aversion has been reduced (from 2 to 1.45), which is justified5 by the desire to match 
empirical data on market interest rates. This is a key driver of an increase in the carbon tax in DICE-
2013 relative to DICE-2007, which is also increased by a much higher projection of world population.     

Calibration of the Hazard Rate: We calibrate the hazard rates for climate tipping events using the 
results of the expert elicitation study by Kriegler et al.8. In that study, experts were offered the 
opportunity to give imprecise probability ranges for the likelihood of triggering 7 different tipping 
points under 3 different temperature corridors, by the year 2200. A total of 52 experts responded 
across the 7 tipping points, and their names and affiliations are given in Table S2 of Kriegler et al.8. 
For each tipping point, the number of self-selected experts varied from 9-22 (their identities are listed 
in Table S1 of Kriegler et al.8). For 2 tipping point scenarios (dieback of boreal forests, and decline of 
ocean carbon sink) the number of experts willing to give imprecise probability statements was <10 
and those results were excluded from the main analysis of Kriegler et al.8. Imprecise probability 
statements for the 5 remaining tipping points are summarized in Fig. 1 of Kriegler et al.8. Individuals 
sometimes gave large imprecise probability ranges for a particular tipping point and temperature 
corridor, and different experts sometimes disagreed considerably. These are reasons to support 
modeling a tipping point event in a (stochastic) Markovian fashion.  

Figure S1 replicates the three different corridors for the evolution of temperature to 2200 from 
Kriegler et al.8 (shaded gray). We also show the computed average temperature corridor and the 
benchmark deterministic DSICE temperature path without tipping. The latter is well represented by 
the low temperature corridor (the left part of Fig. S1) for this century and by the lower half of the 
medium corridor (the center part of Fig. S1) from 2100 onwards. 

 

 
 
   Fig. S1. Temperature corridors from Kriegler et al.8 
 
Given the temperature corridors in Fig. S1, the climate experts expressed their beliefs about the 
occurrence of tipping point events in a probabilistic fashion for each of those temperature corridors. 
We use the experts' subjective beliefs (within a range of 0-8 Celsius of global warming) to calibrate 
the probability of a tipping point event. Our calibration method involves the following steps. First, 
with the three specified temperature corridors from Kriegler et al.8 we perform a polynomial 
approximation on the lower bound, the mean, and the upper bound of each of these corridors. This 
leaves us with nine temperature paths. For our default case, we use the average of the medium 
temperature corridor, implying a warming of about 3°C by 2200 (relative to 2000 levels). Second, we 
specify the general relationship between the hazard rate and the contemporaneous temperature by ht = 
b1(Tt-b0) if Tt>b0 (here b0 =1). Third, using the approximated time path for the temperature scenario 
and integrating the hazard rate up to time t gives the cumulative hazard (Ht) with the probability that a 
tipping has occurred up to time t being 1 – exp(-Ht).  

At this point we make use of the range of cumulative probabilities of tipping at 2200 from the expert 
elicitation study8. For example, for the medium temperature corridor, for which temperature at 2200 
ranges from 2°C to 4°C, the range of expert-assigned probabilities is between 37% and 100%. It 
extends downward to 16% when the experts are weighted according to their level of expertise. We do 
not consider the weighting results on the lower end. However, we also cut off the top 9.45% of the 
remaining range, leaving us with a probability range of 37% to 90.55%. In the next step, we assign the 
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probability range to the temperature corridor, resulting in matched probabilities of 37% for 2°C, 
90.55% for 4°C, and 63.78% (the average probability) for 3°C (the average temperature). The latter 
combination is used for our default case.  

We first derive the hazard rate for the mean of the medium temperature corridor (which gives ~3 °C 
warming in 2200), and calibrated the cumulative probability of tipping using the average experts’ 
results for the probability of tipping (at least 1 of 5 elements) given a 3 °C warming by 2200. With 
these numbers the hazard rate can be inferred by solving for the constant b1 and assuming that b0 =1. 
This implies that the probability of observing a tipping point today is zero. For our default case we 
obtain a hazard rate factor of ~ ܾଵ = 0.0025 which means if we observe 1 °C warming the probability 
of having a tipping event in that year is ~0.25%, and if we later observe 2 °C warming the probability 
rises to ~0.5% in that year (if tipping has not already occurred).  We also study other combinations of 
probabilities and temperature paths. We proceed in the same fashion for the low and high temperature. 
Looking across the different temperature corridors (Table S2), the experts are internally (logically) 
consistent, with the average experts’ hazard rate factor b1 ~0.003 under the low temperature corridor 
and b1 ~0.0025 under the medium and high temperature corridors. Furthermore, the difference in 
inferred hazard rates among experts narrows as the degree of global warming increases – i.e., experts’ 
beliefs on tipping point probabilities converge. 

 
Temperature 

Corridor 
Low Medium High 

Temp. in 2200 
Above 2000 

0.56 1.21 1.87 1.89 2.95 4 4.04 6.14 8.25 

Expert Type opt. ∅ pes. opt. ∅ pes. opt. ∅ pes. 

Inferred 
hazard rate 

0.001 0.003 0.0053 0.0018 0.0025 0.0041 0.0025 0.0025 0.0033 

 
Table S2. Inferred hazard rate factors of triggering a tipping point event based on data from expert 
elicitations8. “Expert type” resembles the range of elicited probabilities of a tipping point event (any 
one of five) among experts (opt.: representative optimistic expert, pes.: representative pessimistic 
expert and ∅: average expert) 

Our hazard rate formula implies a linear relationship between global warming and the hazard rate. 
While in principle any other relationship can be used, we found that if using a linear hazard rate, the 
experts’ beliefs for different temperature corridors as reported in the elicitation study8 exhibit a high 
degree of consistency. Table S2 summarizes the inferred hazard rates for the nine different 
temperature paths.  

One alternative method to our hazard rate approach would be to formulate a tipping point event as a 
problem with an unknown threshold. However, a threshold formulation implies by definition that a 
tipping point event cannot occur in phases of global cooling. Given the fact that there are indeed some 
years in which the average global temperature decreases, we consider such a threshold formulation as 
unnecessarily limiting. Nevertheless, our specification is compatible with a threshold problem for any 
monotonically increasing temperature path. Our specification of tipping and its dependence on 
temperature is agnostic. Some experts might actually have had in mind a threshold model. Even for 
those experts, the hazard rate simply represents the conditional probability that at this temperature a 
climate element is passing its threshold. Consequently, with the hazard rate approach we can handle 
many different interpretations of the nature of tipping points. Furthermore, our assumption of the 
uncertainty faced by the decision maker is equivalent to assuming that the decision maker considers 
the experts’ beliefs, which are reflected by hazard rates. Therefore, we abstain from arguing that the 
evolution of tipping elements is deterministic or stochastic. We rather assume that the decision maker 
has a lack of knowledge about that evolution and that the decision maker’s uncertainty can be 
represented by a stochastic formulation. 
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Supplementary Results  

Comparison of DSICE with MAGICC6 using RCP scenarios: The DSICE model1,2 used in this 
study builds on the DICE-2007 model4 in which the carbon cycle and the climate module are 
represented by a three-box and a two-box model respectively. This is considerably less than what is 
typically assumed in more complex climate models. Nevertheless, DICE-20074 is the only forward-
looking model that has been used by the recent U.S. Government Interagency Working Group on 
Social Cost of Carbon for the analysis of optimal carbon taxation9. Here, we briefly study how the 
DSICE carbon and climate module compares to a more complex model. Fig. S2 illustrates the 
comparison of the benchmark deterministic DSICE carbon-climate module with MAGICC610, a more 
advanced and widely accepted box model. We compare the DSICE and MAGICC6 (default setting) 
global average temperature for four IPCC RCP scenarios until 2100. As Fig. S2 shows, DSICE 
delivers a good match of MAGICC6. For the highest exogenous emission scenario (RCP8.5) DSICE 
is off by 0.8°C at year 2100. However, here we used the benchmark MAGICC6 specification and our 
results are still within the range of temperature paths that result under alternative model settings in 
MAGICC6. Other specifications within MAGICC6 - which we do not show here - make us conclude 
that even 4°C of global warming by 2100 might be reasonable. At the same time, the deterministic (no 
tipping point) variant of DSICE used in this study delivers a temperature path very close to that of the 
RCP4.5 run (second from the left). 

 
Fig. S2. Temperature responses to four RCP emission scenarios 
 
DSICE model (default parameter specification): The right plot in Fig. S3 shows how our 
benchmark calibrated hazard rate translates into the cumulative probability of triggering the tipping 
point event. The cumulative probabilities are obtained by simulating 10,000 stochastic time paths of 
the model’s optimal solution. Our benchmark case translates into a probability of about 97.5% that a 
tipping point event will occur after the year 2050 and a probability of about 86.5% that the tipping 
point event will not be triggered by the year 2100. These numbers compare well with those from 
Kriegler et al.8 considering that our optimal temperature path lies clearly in the lower part of the 
medium temperature corridor (see Fig. S1). 

 
Fig. S3. Results of the stochastic optimization model DSICE. (left) -  The optimal total carbon tax - 
statistical analysis of 10,000 Monte Carlo paths. (right) - Cumulative probability of triggering a 
tipping point event (average of 10,000 Monte Carlo paths). 
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To illustrate the results of the optimal carbon tax when the decision maker does account for the 
tipping point event, we perform Monte Carlo simulations using the optimal solution to the dynamic 
programming problem, generating 10,000 possible stochastic realizations of the model. The dashed 
lines in Fig. S3 denote the 1%, 10%, 30% and 45% quantiles of triggering the tipping point process 
and the gray area represents the range of all sample paths. For instance, 2022 is the earliest year in our 
10,000 simulations at which a tipping point process has been triggered. By the year 2038, 1% of all 
Monte Carlo runs have triggered a tipping point process (left dashed line), by 2086 in 10% of our 
sample paths a tipping point process has been triggered, by 2150 in about 30% of our sample paths a 
tipping point process has been triggered and by 2195 in about 45% of our (right dashed line). These 
numbers can also be read off the right panel in Fig. S3. Note that this implies that it is as likely as not 
that a tipping point process will be triggered by the year 2200, with its full impacts taking about 50 
years to fully unfold. Yet, as our results suggest, the optimal pre-trigger carbon tax for our default 
parameter specification (as specified by the upper envelope of the shaded area) increases strongly by 
about 50% when compared to a model version in which the tipping point process is ignored in the 
decision making process (see Fig. 4 in the main text). 

One possible explanation for this significant increase in the optimal carbon tax lies in the Markovian 
structure of the tipping point event which allows for triggering that event much sooner, such as e.g., in 
2038 as in our 1% quantile (left dashed line). Also, as our calculations show, this additional and 
substantial carbon taxation leads to an expected delay of the tipping point trigger of 20 years in our 
benchmark case from year 2214 to 2234 (see Fig. 4 in the main text).  

Two other important observations are warranted.  First, after the tipping point process has been 
triggered the optimal carbon tax drops significantly. This is because the uncertainty about the tipping 
point event has disappeared and no additional policy is required to address the tipping point 
externality, since the latter has already occurred.  

Second, note the convex shape of the average expected carbon tax (solid black line), which 
reproduces the carbon tax ramping structure of the DICE-2007 model4. This ramping occurs because 
damages rise gradually with global warming and all future values are discounted. The convex shape is 
thus an artifact of the DICE-2007 model. Consequently, the general pattern of the carbon tax in the 
DSICE model will also exhibit this ramping since the deterministic damage structure from DICE-
2007 is retained. The 2005 carbon tax in a purely deterministic version of our model, in which climate 
tipping is ignored is about $36.7 and it increases to about $173 by the end of this century, an average 
annual growth rate of about 1.68%. However, as Fig. 3 in the main text depicts, our benchmark model 
calibration produces a quite flat expected additional carbon tax to delay the triggering of the tipping 
point event. In fact, its average growth rate until 2100 is only about 0.81%. This is less than half the 
average growth rate of the deterministic carbon tax component (which is 1.68%). 

 

 
         
     Fig. S4. Comparison of our model (default case) with RCP emission and temperature scenarios 
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Paths of the total carbon tax for selected cases of the tipping point parameters: In Fig. S5 we 
present the time paths of the total expected carbon tax (average of 10,000 simulated stochastic paths) 
for our default case and compare its paths resulting from some alternative parameterizations of the 
tipping point events (e.g. higher damage, higher hazard, lower transition time). Our default 
specification of the tipping point events results in today’s optimal carbon tax of about $55.6 tC-1 and 
the optimal carbon tax in year 2100 is about $210.6 tC-1 under this scenario. Higher hazard rates 
(0.0045 instead of 0.0025), lower transition times (5 years instead of 50 years) and higher damage 
levels (20% instead of 10%) increase strongly today’s optimal tax level, as quantified in Fig. 4 of the 
main text. The 2100 levels of the carbon tax are also much higher. In general, the paths in panel A 
indicate that the growth rate of the additional carbon tax is similar in these cases, as shown in Fig. 3 of 
the main text. In panel B, we compare our default parameter case to the most extreme parameter case 
in our sensitivity (20% damage, 5 years transition and 0.0045 hazard). In addition, we also show a 
case for which the damage is increased to 30% (red line). The latter case increases today’s optimal 
total carbon tax to about $280 tC-1. 

 

 
 
Fig. S5. Expected total carbon tax paths for alternative specifications of the tipping point parameters.  
 

Supplementary Discussion 

Comparison of our approach to other studies: The analysis performed in this study is based on 
three key novel elements: (a) we make the scientifically-grounded assumption that the effects of 
passing a tipping point are not instantaneous, they accumulate over time at a rate dictated by the 
transition time of the tipping element in question (in common with other studies, these impacts are 
irreversible); (b) we calibrate the hazard rate of a climate tipping point using the results of the most 
recent expert elicitation by Kriegler et al.8; (c) we are able to solve a higher-dimensional system of 
equations under stochastic uncertainty than in other studies and are thus able (in the deterministic 
special case) to reproduce the DICE-2007 model as used in the original US government social cost of 
carbon estimates. 

Previous studies generally assume that tipping points are instantaneous, which is unrealistic because 
no part of the Earth system can transition instantaneously. Furthermore, most previous studies treat 
tipping points deterministically while only a few treat them stochastically. To explain how our work 
differs from existing studies we focus on those studies that may appear similar to our own, in 
particular, numerical integrated assessment model studies, especially those using variants of the DICE 
model, and those implementing a stochastic treatment of a tipping point/catastrophe. Here we review 
the scientific basis for the functions chosen to represent the likelihood and impacts of a tipping 
point/catastrophe, and the methodology used.  



 11

Earlier expert elicitation: Many existing studies use results for the likelihood of a climate 
catastrophe from an earlier expert elicitation by Nordhaus11. In that study experts provided a 
probability of a “high-consequence” outcome defined as a 25% loss in GDP indefinitely (akin to a 
permanent Great Depression), under scenarios of 3°C temperature rise by 2090, 6°C by 2175, or 6°C 
by 2090. The results differed considerably according to the background of participants and between 
the scenarios. An often-used result is the mean (across 19 participants) 4.8% probability of a 
catastrophe under 3°C in 2090. However, for this scenario, the 3 natural scientist participants gave a 
mean 12.3% probability whereas the 8 non-environmental economists gave a 0.4% probability. Mean 
probabilities across all participants for the other scenarios were 12.1% under 6°C by 2175 and 17.5% 
under 6°C by 2090 (suggesting sensitivity to the rate of warming). Some confusion has stemmed from 
statements of generally lower probabilities subsequently given by Nordhaus & Boyer12 referring to the 
same expert elicitation. For example, they12 state a mean probability of 0.6% for the 3°C warming in 
2090 scenario (rather than 4.8%), and a 3.4% probability under 6°C warming in 2175 (rather than 
12.1%). Nordhaus & Boyer12 then double their stated probabilities based on concern at the time about 
a collapse of the thermohaline circulation (THC), which is Nordhaus’ model for the catastrophe, 
although this was not made explicit to the participants. In Nordhaus & Boyer12 the damage due to the 
catastrophe is increased (by 20%) to 30% permanent loss in income based on increased concern about 
the impacts of THC collapse.  

Stochastic IAM studies: Gjerde et al.13 was one of the first numerical integrated assessment model 
studies of a stochastic climate catastrophe, which assumed the hazard rate to be a convex function of 
temperature (above preindustrial) with power 1.5, calibrated on Nordhaus’11 4.8% probability of 
catastrophe under 3°C warming in 2090. Three catastrophe scenarios were considered, one where 
utility drops instantaneously and irreversibly to zero, one where it drops to 1990 levels, and one where 
it drops to zero but the hazard rate is independent of temperature (exogenous). The reduction of utility 
to e.g. a constant 1990 level implies that the economic damage due to a particular tipping point is 
relatively small if it happens soon and can grow hugely the further in the future it occurs. A 
percentage decrease in utility would have been more defensible. More fundamentally, with 
stochasticity only applied to the utility function – and not changing the climate or economic system – 
this is a certainty-equivalent method, so it can be easily transformed to be a deterministic optimal 
control problem that can be solved by an optimization solver directly.  

A subsequent study by Castelnuovo et al.14, in turn building on a working paper by Bosello & 
Moretto15, follows Gjerde et al.13  in assuming that an uncertain level of global temperature triggers an 
irreversible drop in utility to 1990 levels (or to zero, as a sensitivity study). Again, these studies only 
apply stochasticity to the utility function making it a certainty-equivalent method, which can be 
transformed to a deterministic optimal control problem that can be solved by an optimization solver 
directly. Castelnuovo et al.14 use the ETC-RICE model, whereas Bosello & Moretto15 use different 
integrated assessment models. Both endogenous and exogenous hazard rates are considered and in the 
endogenous case the catastrophe requires temperature to increase in a given year (which is overly-
restrictive). Large reductions in emissions are predicted as optimal, but they don’t depend on whether 
the irreversible drop in utility is to 1990 levels or to zero – probably because the drops in utility is 
already very large, as by the time the catastrophe happens, GDP has risen far above 1990 levels. In 
one variant of the endogenous case of Castelnuovo et al.14, a dependence of the hazard rate on the rate 
of temperature change is included and calibrated on Nordhaus’11 4.8% probability of a catastrophe 
under 3°C warming in 2090. The probability is assumed to be 0% for the 1990 climate state. It is 
further assumed to be <0.1% in 2010-2020, but this is erroneously justified with reference to 
Bentley16 who argues specifically that <0.1% is the probability of a West Antarctic Ice Sheet collapse 
over the next two centuries. This erroneous assumption requires a (therefore unjustified) probability 
of catastrophe that is non-linear with time and steeply rising late in this century. The authors 
acknowledge that their chosen values have “weak scientific foundations”.  

Recently, Lemoine & Traeger17 added a representation of tipping points to a stochastic-dynamic IAM 
based on a simplified, 3-dimensional version of the 6-dimensional DICE-2007, developed in a 
working paper by Crost & Traeger18. Neither the carbon cycle nor ocean temperature is included in 
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the model – there is just atmospheric carbon and atmospheric temperature – with 3°C climate 
sensitivity.  

Lemoine & Traeger17 use a very different formulation of a climate ‘tipping point’ to ours. Their 
‘tipping point’ cannot occur if temperature falls from one year to the next – which seems overly 
restrictive. The ‘tipping point’ can be one of two types (leading to two different versions of the 
model) – an instantaneous, irreversible increase in climate sensitivity (from 3°C to 4, 5 or 6°C), or an 
instantaneous, irreversible weakening of carbon sinks (by 25, 50 or 75%), which in turn feeds into the 
standard DICE formulation of damages (quadratically increasing with temperature). This is different 
from a tipping point that directly and irreversibly decreases GDP. Neither of the formulations of a 
tipping point suggested by Lemoine & Traeger17 is particularly scientifically plausible.  

To support the argument for an abrupt increase in climate sensitivity, Lemoine & Traeger17 discuss 
two examples of positive climate feedbacks. However, positive feedbacks are never instantaneously 
switched on – instead they may get progressively stronger as temperature increases – so an 
instantaneous ‘tipping’ formulation is qualitatively wrong. Furthermore, the actual examples given are 
implausible as sources of strong and rapid positive feedback. The first example given is warming 
mobilizing large methane stocks resulting in further warming that mobilizes further methane stocks. 
Current assessments19 are that this feedback has modest strength on a century timescale, potentially 
enhancing warming by up to ~10%. Furthermore, the feedback is roughly proportional to warming – it 
does not suddenly switch on. The second example given is the retreat of land ice sheets lowering 
surface albedo and thus increasing warming, but this is an inherently slow and weak positive feedback 
because the timescale of ice sheet retreat is centuries to millennia, and they cover a relatively small 
area. 

Lemoine & Traeger17 support their argument for an instantaneous weakening of carbon sinks, with 
reference to positive climate feedbacks on ocean and land carbon storage. Again, such feedbacks do 
not suddenly switch on. Instead, they may increase in strength as temperature increases, for example 
if Amazon rainforest dieback is triggered, providing an additional source of CO2. 

Finally, Lemoine & Traeger17 assume that the hazard rate of tipping increases linearly with 
temperature. However, in sharp contrast to our study (where climate tipping is always stochastic), the 
baseline assumption in Lemoine & Traeger17 is that tipping is certain at 4.27°C (with a sensitivity 
range of 3-9°C), which is not supported by available scientific information. Aggregated imprecise 
probabilities from expert elicitation by Kriegler et al.8 suggest tipping is more likely than not in a 4-
8°C long-term warming scenario, but not certain.  

Our model is also so far the only stochastic integrated assessment model, which embodies the full 6-
dimensional DICE model on short time-steps with a computational structure that is able to deal with a 
more realistic formulation of climate tipping points. Future research with DSICE will also embody 
ideas from ongoing studies by e.g. Martin & Pindyck20 on multiple catastrophes or van der Ploeg & de 
Zeeuw21 on different shapes of the hazard function for climate tipping. The study by van der Ploeg & 
de Zeeuw21 is the first to investigate the effects of climate tipping on precautionary capital 
accumulation, suggesting that climate tipping requires precautionary accumulation of capital together 
with an additional price on carbon emissions. Our model, in part captures this effect indirectly, but we 
do not focus on the decomposition explicitly. 

Deterministic IAM studies and critiques: Studies that treat tipping points as deterministic are 
qualitatively different to our approach. Assuming deterministic (i.e. perfect) knowledge of the 
likelihood of catastrophe is not scientifically reasonable given that even for a deterministic tipping 
point, stochastic internal variability in the climate system will tip the system at an uncertain time, 
before the deterministic tipping point is reached. This intrinsic uncertainty is compounded by 
uncertainty in our present knowledge about the location of tipping points. 

Kosugi22 offers a deterministic version of the DICE-2007 model with no stochasticity and 
instantaneous, irreversible impacts of a tipping point, giving results in terms of emissions paths not 
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social cost of carbon. The author explores a range of parameter settings for the probability of abrupt 
change (under 2.5°C rise in 2090 from 1900, using default 1.2%, and range 0-30%), the exponent of 
the hazard function (either 2 or 12), and the impact of abrupt change (default 30%, range 0-100%), 
where the first two parameters jointly determine the intercept of the hazard function. The default 
settings of 1.2% probability and 30% impact are taken from Nordhaus & Boyer12 but (as noted above) 
are inconsistent with those originally given by Nordhaus11. Setting this discrepancy aside, the implied 
hazard rate from Nordhaus’11 experts appears to be near quadratic, so the 12th power explored by 
Kosugi22 must be viewed as an extreme sensitivity test. The default value of instantaneous 30% 
reduction in GDP (taken from Nordhaus & Boyer12) is also very high. In the sensitivity analysis, an 
upper bound of 30% probability of abrupt change in 2090 is considered, which when combined with a 
12th power hazard rate gives a 100% probability (i.e. certainty) of catastrophe early in the 21st century, 
at around 3°C warming. This is far above results from expert elicitation8. 

Weitzman23 offers a deterministic, analytical model study, which elegantly critiques the assumption of 
a quadratic damage function, as assumed in DICE and many other models – showing that such a 
function is relatively insensitive to very high warming levels and is outweighed by discounting. 
Weitzman23 focuses on the possibility that climate sensitivity could be very high (in other words, there 
are strong positive feedbacks in the climate system as a whole). Weitzman23 considers two alternative 
fat-tailed probability density functions for climate sensitivity, and introduces an additional damage 
function that is approximately a 7th power of temperature, giving 50% loss in output at 6°C and 99% 
loss in output at 12°C warming. With this formulation, Weitzman23 shows that a normally risk-averse 
agent should be willing to pay a significant amount now to reduce the likelihood of a catastrophic 
outcome a long way into the future. Weitzman23 demonstrates this by having all the damaging effects 
of temperature be stored up and then felt instantaneously, 150 years from now. Despite strong 
discounting (6% interest rate) the fat-tailed probability of high temperature outcomes combined with 
the high damages from high temperatures still register now. The approach of Weitzman23 could be 
described as considering an ‘impacts tipping point’ under smooth climate change, especially in his 
150-year scenario.  

Ackerman & Stanton24 use a deterministic version of the DICE model and do not explicitly consider 
climate-tipping points. They build on Weitzman23 by including as an option his 7th power damage 
function, also experimenting with combining it with Hanemann’s25 estimate of greater damages than 
Nordhaus under low warming (2.5°C) – this damage function can be seen as an impacts ‘catastrophe’ 
centered on 6°C warming. The analysis also looks at two discount rates (1.5% and 3%) and considers 
average (<3°C) or 95th percentile (7.14°C) climate sensitivity. For various combinations of these 
assumptions Ackerman & Stanton24 obtain very high values of the social cost of carbon. They 
conclude that given the possibility of a catastrophic outcome an insurance approach is needed which 
lowers the deterministic probability of catastrophe by reducing emissions to zero as swiftly as is 
feasible. In our model, we take the original parameter values from DICE2007 – if we applied the same 
sensitivity analysis on the parameters we would also get much higher results for the social cost of 
carbon. 

As part of our research, we studied the deterministic approximations of a climate tipping point as 
advocated by e.g. Weitzman23 and Ackerman & Stanton24 – and described in the previous paragraphs. 
As Fig. 3 in the main text shows, these deterministic approximations which attempt to represent the 
potential damages from climate tipping by increasing the convexity of the damage function fail to 
capture the flattening of the growth rate of the carbon tax, which occurs when the tipping point is 
formulated in a stochastic manner. Instead they tend to have the opposite effect. 
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