
1 
 

Title 1 

Terrestrial plant microfossils in paleoenvironmental studies, pollen, microcharcoal and 2 

phytolith. Towards a comprehensive understanding of vegetation, fire and climate changes 3 

over the past one million years. 4 

 5 

Authors 6 

Anne-Laure Daniau1*, Stéphanie Desprat2, 3, Julie C. Aleman4,5, Laurent Bremond2,6, Basil 7 

Davis7, William Fletcher8, Jennifer R. Marlon9, Laurent Marquer10, Vincent Montade11, César 8 

Morales Del Molino12, Filipa Naughton13, 14, Damien Rius15, Dunia H. Urrego16 9 

 10 

Equal contribution: Anne-Laure Daniau, Stéphanie Desprat 11 

 12 

*Corresponding author: anne-laure.daniau@u-bordeaux.fr 13 

 14 

Affiliations 15 

1. Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS), 16 

Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Unité Mixte 17 

de Recherche (UMR) 5805, F-33615 Pessac, France 18 

2. École Pratique des Hautes Études (EPHE), PSL Research University, Paris, France 19 

3. EPOC UMR 5805, Université de Bordeaux, Pessac, France 20 

4. Département de Géographie, Université de Montréal, C.P. 6128, Succ. Centre-Ville 21 

Montréal (Qc) H3C 3J7 Canada, 22 

5. Laboratoire de Foresterie des Régions tropicales et subtropicales, Gembloux Agro-Bio 23 

Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique 24 



2 
 

6. Institut des Sciences de l’Évolution - Montpellier, UMR 5554 CNRS-IRD-Université 25 

Montpellier-EPHE, Montpellier, France 26 

7. Institute of Earth Surface Dynamics IDYST, Faculté des Géosciences et l’Environnement, 27 

University of Lausanne, Batiment Géopolis, CH-1015, Lausanne, Switzerland 28 

7. Department of Geography, School of Environment, Education and Development, 29 

University of Manchester, Oxford Road, Manchester, M13 9PL, UK 30 

9. School of Forestry & Environmental Studies, Yale University, New Haven, CT, 06511 31 

USA 32 

10. Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, 33 

Hahn-Meitner-Weg 1, 55128 Mainz (Germany) 34 

11. University of Goettingen - Department of Palynology and Climate Dynamics - Albrecht-35 

von-Haller Institute for Plant Sciences, Wilhelm-Weber-Str. 2a, 37073 Goettingen, Germany 36 

12. Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University 37 

of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland  38 

13. Portuguese Sea and Atmosphere Institute (IPMA), Rua Alfredo Magalhães Ramalho 6, 39 

1495-006 Lisboa, Portugal 40 

14. Center of Marine Sciences (CCMAR), Algarve University, Campus de Gambelas 8005 - 41 

139 Faro, Portugal 42 

15. Université de Franche-Comté, Centre National de la Recherche Scientifique (CNRS), 43 

Laboratoire Chrono-Environnement, Unité Mixte de Recherche (UMR) 6249, 16 route de 44 

Gray, 25030 Besançon Cedex, France 45 

16. Geography, College of Life and Environmental Sciences, University of Exeter, Amory 46 

Building B302, Rennes Drive, Exeter EX4 4RJ, United Kingdom  47 

 48 

 49 



3 
 

Type of article 50 

Invited review 51 

 52 

To be submitted to: 53 

Revue de Micropaléontologie - Special issue numéro 60 ème anniversaire 54 

 55 

Keywords : 56 

Pollen; microcharcoal; phytolith; terrestrial and marine sedimentary archives; vegetation; 57 

fire; Middle Pleistocene; last glacial period; Holocene 58 

 59 

Abstract 60 

Earth has experienced large changes in global and regional climates over the past one million 61 

years. Understanding processes and feedbacks that control those past environmental changes 62 

is of great interest for better understanding the nature, direction and magnitude of current 63 

climate change, its effect on life, and on the physical, biological and chemical processes and 64 

ecosystem services important for human well-being. Microfossils from terrestrial plants, 65 

pollen, microcharcoal and phytolith preserved in terrestrial and marine sedimentary archives 66 

are particularly useful tools to document changes in vegetation, fire and land climate. They 67 

are well preserved in a variety of depositional environments and provide quantitative 68 

reconstructions of past land cover and climate. Those microfossil data are widely available 69 

from public archives, and their spatial coverage includes almost all regions on Earth, 70 

including both high and low latitudes and altitudes. Here, i) we review the laboratory 71 

procedures used to extract those microfossils from the sediment for microscopic observations 72 

and the qualitative and quantitative information they provide, ii) we highlight the importance 73 

of regional and global databases for large-scale syntheses of environmental changes, and iii) 74 
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we review the application of terrestrial plant microfossil records in paleoclimatology and 75 

paleoecology using key examples from specific regions and past periods. 76 

 77 

1. Introduction 78 

 79 

The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by the 80 

World Meteorological Organisation (WMO) and the United Nations Environment 81 

Programme (UNEP) to provide an assessment of the understanding of all aspects of any 82 

climate change over time, whether driven by natural variability or by human activity (IPCC, 83 

2001). Thirty years later, the scientific consensus is that current climate change, an average 84 

global warming, is anthropogenically-driven, rapid and of large magnitude. Population’s 85 

daily life is already or will be affected and the “climate action” is now targeted as one of the 86 

Sustainable Development Goals by the United Nations. 87 

Over the last decades our perception of our environment radically changed. The curiosity of 88 

scientists observing and trying to understand past climate variability enabled contextualizing 89 

the current climate change within a long-term perspective. Over the geological times, the 90 

Earth experienced large changes in global and regional climates. Multi-millennial time scale 91 

changes in orbital and greenhouse gas forcings during the Quaternary, for example, have 92 

produced several glacial and interglacial periods of different length and magnitudes (Hays et 93 

al., 1976; Masson-Delmotte et al., 2010; Milankovitch, 1941; Past Interglacials Working 94 

Group of PAGES, 2016; Yin and Berger, 2012). The current interglacial period, the 95 

Holocene, is part of the 100-ky world established since the Middle Pleistocene transition 96 

(1.25-0.7 Ma) and characterized by large amplitude glacial-interglacial oscillations occurring 97 

with a periodicity of 100 kyr (Clark et al., 2006). The Earth climate also experienced decadal 98 

to millennial-scale variability (e.g. Fleitmann et al., 2009; Johnsen et al., 1992; Jouzel et al., 99 
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2007; Loulergue et al., 2008; McManus et al., 1999; Sánchez Goñi et al., 1999). Observing, 100 

modeling, and understanding processes and feedbacks that control those past environmental 101 

changes are of critical importance for a better understanding of the nature, direction and 102 

magnitude of current climate change, its effect on life, and on the physical, biological, and 103 

chemical processes and ecosystem services essential for human well-being. 104 

Climate on Earth is conceptualized as a system where different spheres, i.e. the atmosphere, 105 

cryosphere, hydrosphere, lithosphere, biosphere, respond to external forcings, such as 106 

astronomical and anthropogenic forcing (Ruddiman, 2001). The anthroposphere is sometimes 107 

considered as a sphere of the climate system, and not as an external forcing (Cornell et al., 108 

2012). The different spheres interact and depend on one another as an interconnected Earth 109 

system. Paleoclimate studies not only aim at reconstructing the response of the atmosphere, 110 

but also of all different spheres as well as their interactions and related feedback mechanisms 111 

modulating climate changes. Climate models are necessarily now designed to include 112 

interactive coupled components that extend to all of these aspects of the Earth system. 113 

Vegetation, which is a major element of the biosphere, develops in response to climate and 114 

soil characteristics and plays an important role in the climate system. It is involved in 115 

different vital ecosystem services like nutrient and food production, mitigation of climate 116 

change, and soil and fresh water production and conservation (Faucon et al., 2017). 117 

Terrestrial plants act as a carbon sink and can limit the warming of atmospheric and ocean 118 

temperature by removing carbon from the atmosphere during the photosynthesis. Through the 119 

evapotranspiration process, plants also increase water vapor locally in the atmosphere, 120 

enhancing precipitation and cloud cover, which reinforces cooling. Changes in land cover 121 

further modify the albedo and act as a positive (warming) or negative (cooling) radiative 122 

forcing. Vegetation is therefore an integral part of the biogeochemical- and -physical 123 

processes between the land surface and the atmosphere. 124 
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All ecosystems experience disturbances at different scales, and fire is one of the most 125 

widespread and severe disturbances in ecosystems globally, although it may maintain certain 126 

vegetation type, like savanna (Bond et al., 2005). It is commonly found in intermediate 127 

environments in terms of climate, vegetation and demography, in all vegetation types 128 

(Harrison et al., 2010). Fire dynamics today result from the complex interplay between 129 

climate (precipitation and temperature controlling fuel flammability), vegetation (fuel type 130 

and load), ignition (lightning and human induced) and human fire suppression (Harrison et 131 

al., 2010). Fires have impacts on climate by modifying the carbon cycle and atmospheric 132 

chemistry, clouds, and albedo through the release of greenhouse gases and aerosols (Bowman 133 

et al., 2009; Lavorel et al., 2007). 134 

Terrestrial plant-derived microfossils, preserved in terrestrial and marine sediments, such as 135 

pollen, microcharcoal and phytolith, greatly contributed to the present knowledge of the 136 

Quaternary vegetation and fire dynamics, and land-climate changes. (Fig. 1). Pollen grains 137 

are part of the reproduction cycle of seed plants (angiosperms and gymnosperms); they are 138 

the male gametophyte, allowing for dissemination of the genetic material. Fossil pollen 139 

consists only of the external envelope, the so-called exine, which is made of sporopollenin 140 

that is very resistant to decay. Microscopic charcoal (microcharcoal) is a carbonaceous 141 

material formed by pyrolysis, i.e. during the combustion process of vegetal elements (Jones et 142 

al., 1997). Phytoliths are opaline silica particles that precipitate in and/or between the cells of 143 

living plant tissues forming particular morphotypes. They are deposited in sediments when 144 

the plants die or burn. 145 

Pollen, microcharcoal and phytoliths are studied from both terrestrial and marine archives. 146 

Terrestrial and marine sequences of plant-derived microfossils may give different but often 147 

complementary information due to the source vegetation area varying from local (peat, pond, 148 

small lakes) to regional (large lakes, ocean) and transport processes. Deglacial and Holocene 149 
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vegetation and fire changes were far more largely studied due to easier recovery of short 150 

cores and accessibility to recent sediments. Back in time, terrestrial sequences become rarer 151 

and rarer and often suffer from discontinuities, involving chronostratigraphic complications 152 

that often hamper reliable reconstruction of past vegetation and climate changes. For 153 

instance, fragmentary Pleistocene sedimentary sequences are common in regions that have 154 

experienced the repeated expansions and retreats of the large northern North hemisphere ice-155 

sheets such as northern Europe and North America (de Beaulieu et al., 2013; Turner, 1998; 156 

Zagwijn, 1996), or glacier advances such as in New Guinea and New Zealand (Kershaw and 157 

van der Kaars, 2013), or in arid and semiarid environments of Africa or Australia (Kershaw 158 

and van der Kaars, 2013; Meadows and Chase, 2013). The Pleistocene marine sedimentary 159 

archives in which terrestrial microfossils are studied, benefit in contrast from a continuous 160 

sedimentation. They are mostly located on continental margin from the shelf to the deep-sea, 161 

usually on seamounts to be devoid of turbidites, recruiting terrestrial microfossils produced 162 

by the vegetation of the nearby continent (Heusser, 1998). Marine records provide 163 

information on vegetation and fire changes at regional-scale on a chronology, beyond 164 

radiocarbon dating, that derives from stable oxygen isotope measurements on foraminifera 165 

enabling a reliable comparison with oceanic records (Heusser, 1998; Sánchez Goñi et al., 166 

2018).  167 

Since the beginning of the 20th century, a large amount of palynological data was produced, 168 

revealing the major features of Pleistocene vegetation history and constituting the 169 

foundations of many basic concepts in Quaternary paleoecology. For instance, in Europe and 170 

North America, where there is a long tradition in palynological research, pollen studies have 171 

played an important role for the understanding of Holocene vegetation history (Birks and 172 

Berglund, 2018; Davis, 1984) and climate. They have yielded important contributions to 173 

diverse biogeographical and paleoecological topics such as continental-scale tree migrations 174 
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(Huntley and Birks, 1983; Huntley and Webb, 1989) and the biomes dynamics (e.g. 175 

Overpeck et al., 1992; Williams et al., 2004) after the end of the last Ice Age, the rates and 176 

magnitudes of species declines (e.g. Peglar, 1993) and vegetation response to interglacial 177 

climate changes (e.g. Turner and West, 1968; Zagwijn, 1994). Marine palynology greatly 178 

developed since Heusser’s seminal works in the seventies (e.g. Heusser and Balsam, 1977; 179 

Heusser and Shackleton, 1979) bringing unique information on the phasing of the terrestrial 180 

and marine responses to orbital and millennial-scale climatic changes (Dupont, 2011; 181 

Sánchez Goñi et al., 2018). 182 

Fossil microcharcoal preserved in terrestrial and lacustrine sediments has been counted 183 

classically during pollen analyses as a complementary proxy of vegetation since the eighties 184 

(Clark, 1982; Tolonen, 1986). They constitute a powerful approach for reconstructing 185 

paleofire histories over time older than few centuries provided by remote sensing and by 186 

dendrochronological and historical records (Whitlock and Larsen, 2001). During the last 187 

decade, a significant increase in the number of paleofire records and their regional or global 188 

syntheses has substantially improved our understanding of key drivers of fire under different 189 

climate conditions and of anthropogenic fire regime alteration (Daniau et al., 2012; Marlon et 190 

al., 2008; Vannière et al., 2011). Marine microcharcoal studies also developed relatively 191 

recently to address regional fire responses to orbital and millennial-scale climatic changes 192 

(Beaufort et al., 2003a; Daniau et al., 2009b; Daniau et al., 2013; Daniau et al., 2007). 193 

Paleofire science has also led to new perspectives on long-term fire ecology paradigms 194 

(Aleman et al., 2018a). 195 

Phytoliths were firstly described at the beginning of the 19th century (Struve, 1835) and well-196 

studied in plant tissues (e.g. Prat, 1932) before being used as paleoecological indicator in the 197 

sixties (Twiss et al., 1969). Interpretation of phytolith assemblages is far more complex than 198 

that of pollen assemblages due to imprecise correspondence between phytolith shapes and 199 
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taxonomy. However, phytoliths, unlike pollen, present a high resistance to oxidation and 200 

therefore are well-preserved in arid environments. The increasing amount of modern 201 

reference collection from fresh terrestrial plants and soil assemblages allowed the 202 

development of archeological and paleoenvironmental research after the eighties (see 203 

Piperno, 2006). Today, fossil phytolith assemblages are much well-understood. Combined 204 

with a multi-proxy approach, they were recently used to discuss the evolution of grassland 205 

over the last million years in North America (Strömberg et al., 2013), the origin of the 206 

domestication of maize in Mexico (Piperno et al., 2009), or to examine late Quaternary C3 207 

and C4 grasses vegetation history in East Africa (Montade et al., 2018). Phytolith have also 208 

been studied from deep-sea cores to document glacial-interglacial variations in aridity in the 209 

tropical Africa (Parmenter and Folger, 1974; Pokras and Mix, 1985). 210 

Here we present a review of how terrestrial plant microfossils are extracted from different 211 

sedimentary archives during laboratory processing, how they are identified and quantified, 212 

and how they can inform us about past environmental changes at different spatial and 213 

temporal scales necessary for understanding the Earth system (Fig. 1) focusing on continents 214 

from northern and southern hemispheres: Europe, Africa, North and South America. 215 

 216 

Figure 1 217 

 218 

2. Microfossil concentrates and slide preparation 219 

 220 

Sample processing consists of a series of physical and chemical laboratory treatments in 221 

order to obtain clean slides of microfossil concentrates, i.e. a sufficient amount of 222 

microfossils that are observable under the microscope. The different chemical treatments are 223 

determined according to the composition of the sediments, mostly of calcium carbonates, 224 
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organic matter and siliceous materials. Hydrochloric acid (HCl) is used to remove calcium 225 

carbonates. A variety of chemical reagents are suited for organic matter removal, such as the 226 

potassium hydroxide (KOH), the acetolysis mixture consisting of acetic anhydride 227 

((CH3CO)2O) and concentrated sulphuric acid (H2SO4), the hydrogen peroxide (H2O2), or a 228 

mixture of nitric acid (HNO3) with potassium chlorate (KClO3). Hydrofluoric acid (HF) is 229 

used to eliminate siliceous material, although use of this highly dangerous chemical can be 230 

substituted by a density separation process using much more benign sodium polytungstate. 231 

 232 

2.1 Pollen and spores 233 

 234 

Standard procedure for pollen extraction may include short boiling with potassium hydroxide 235 

(10 % KOH) for deflocculation and humic acid removal, cold diluted hydrochloric acid 236 

treatment (10 % HCl), to remove calcium carbonates (CaCO3) and hydrofluoric acid (30 % to 237 

70 % HF) treatment to retrieve siliceous material (Faegri and Iversen, 1964; Moore et al., 238 

1991). Acetolysis, with concentrated sulphuric acid and acetic anhydride, can also be 239 

performed after KOH digestion in particular in cellulose-rich material preparation such as 240 

peat deposits. Successive HCl digestions at higher concentrations (25 %, 50 %) may be 241 

processed depending on the sample richness in CaCO3. It is recommended to use cold HCl 242 

since hot reagent can cause corrosion of the pollen wall (Moore et al., 1991). Traditionally, 243 

cold HF treatment for a long time (at least 24 hours) or hot HF for a few minutes has then 244 

been performed, followed by another HCl treatment to remove colloidal SiO2 and 245 

silicofluorides formed during the HF digestion. Alternatively, an inert heavy liquid such as 246 

sodium polytungstate solution can be used to remove siliceous material, rather than the highly 247 

dangerous (and expensive) HF. This process works by preparing a solution of a specific 248 

gravity that is sufficiently dense to support the pollen, but allows the denser siliceous material 249 
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to float to the bottom, allowing the pollen fraction to then be simply decanted off. Through a 250 

series of washes and filtering using a 5 µm nylon mesh, it is also possible to reclaim the 251 

sodium polytungstate so that it can be reused. In addition, ultrasonic vibration can be used to 252 

disperse clays. A final sieving step using a 10 µm nylon mesh screen that is particularly 253 

useful for removal of fine particles in clay-rich samples can end the extraction procedure. The 254 

use of 5 µm filter is recommended for tropical pollen flora which typically includes grains of 255 

size below 10 µm. 256 

To determine the sample pollen concentration, a tablet containing a known amount of exotic 257 

marker grains (commonly of Lycopodium spores) is added to the sample at the beginning of 258 

the preparation. The volumetric and weighting methods are other classical techniques used to 259 

establish pollen concentrations (Moore et al., 1991). 260 

Pollen grains may be stained by adding drops of safranin or fuchsin to the residue with KOH 261 

during the final wash or directly into the mounting medium. Staining can help observation 262 

and identification under the microscope, although it is optional. 263 

Residues obtained after pollen extraction are preferentially mounted in a mobile mounting 264 

medium such as glycerol or silicone oil since identification requires turning over the pollen 265 

grain for observation of the polar and equatorial views. Both mount types have side effects: 266 

glycerol makes the pollen swollen and slides with this media are quite short-lived while 267 

silicon oil requires an extra-step for dehydrating the residue before mounting (Andersen, 268 

1960). If silicon oil does not influence pollen size, dehydrating agents such as ter-butanol 269 

(TBA) and the formerly used benzene do have an effect (Andersen, 1960; Meltsov et al., 270 

2008). Glycerin jelly that does not allow pollen mobility is preferred for permanent slides 271 

such as modern pollen samples for reference collection, although like glycerol it has an 272 

influence on pollen size. Before mounting in glycerin jelly, the tube is placed upside down on 273 

a filter paper for a couple of hours or even a day to remove extra-water. In contrast to silicon 274 
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oil, glycerol and glycerin jelly require slide sealing usually done with histolaque LMR, 275 

paraffin or nail polish. An advantage of glycerin jelly on normal slides is that because pollen 276 

mobility is limited, unknown grains found during the identification process can by recorded 277 

by the x-y co-ordinates on the microscope and reviewed later. The disadvantage of jelly in 278 

not allowing grains to be rotated for identification can also be somewhat overcome by 279 

applying a heated needle to the slide above the grain which temporarily heats and liquefies 280 

the jelly.  281 

 282 

2.2 Microcharcoal 283 

 284 

Charcoal is mostly composed of pure carbon formed at temperature between 200 and 600°C 285 

(Conedera et al., 2009). It is divided into two categories based on the size of the particles, the 286 

microscopic (length between >10 and <100 µm) and macroscopic (length >100 µm) charcoal 287 

particles (Whitlock and Larsen, 2001). It is relatively resistant to chemical decomposition 288 

(classified as inertite) (Habib et al., 1994; Hart et al., 1994; Quénéa et al., 2006). Microbial 289 

decomposition is minimal (Hockaday et al., 2006; Verardo, 1997) especially if charcoal 290 

burial occurs in an environment with high sedimentation rate. Microscopic charcoal particle 291 

is commonly counted in the same slides used for pollen analyses in transmitted light. In this 292 

case, concentrates of microcharcoal are obtained following the standard procedure described 293 

in the pollen section (2.1.1) (Faegri and Iversen, 1964). No ultrasonic baths are used in order 294 

to avoid charcoal-particle breakage (Tinner and Hu, 2003). Rhodes (1998) proposed the 295 

extraction of microcharcoal of the sediment samples using a dilute solution of hydrogen 296 

peroxide (6%) for 48 hours at 50°C to bleach the dark organic component, followed by 297 

sieving at 11µm and another bleaching step. Reflected light (or incident light) has been used 298 

also during pollen slide analyses (Doyen et al., 2013) to secure the identification of 299 
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microcharcoal from uncharred organic matter, although polished thin sections are generally 300 

more suitable to the analyses using reflected light (Noël, 2001). 301 

The protocol of Daniau et al. (2009b) combines chemical treatments to concentrate 302 

microcharcoal and polished slides technique allowing both the particle observations in 303 

transmitted and reflected light. It has been developed on marine samples (Daniau et al., 304 

2009b) but has also been recently used for lake sediments (Inoue et al., 2018). It consists of 305 

concentrating microcharcoal particles by removing carbonates, silicates, pyrites, humic 306 

material, labil or less refractory organic matter (Clark, 1984; Winkler, 1985; Wolbach and 307 

Anders, 1989). This procedure bleaches organic matter and does not blacken unburned plant 308 

materials (Clark, 1984). The chemical treatment consists of successive chemical attacks by 309 

adding hydrochloric acid (HCl), then cold or hot nitric acid (HNO3) and hydrogen peroxide 310 

(H2O2) on approximately 0.2 g of dried bulk sediment. A hydrofluoric acid (HF) step can be 311 

used, followed by rinsing with HCl to remove colloidal SiO2 and silicofluorides formed 312 

during the HF digestion, as in the pollen and spores protocol. A dilution of 0.1 is applied to 313 

the residue. The suspension is then filtered onto a membrane of 0.45 mm porosity. A portion 314 

of this membrane is mounted onto a slide before gentle polishing for observation under the 315 

microscope. The chemical treatment may be slightly modified, depending on the sample 316 

sediment composition. 317 

Although this review focuses on microcharcoal, we briefly present laboratory analyses for 318 

macrocharcoal because many fire syntheses information were obtained from studies using 319 

both macro and microcharcoal records (see section 4.4 and fire discussion section). It is 320 

suggested however that the trends between macro and microcharcoal records display similar 321 

fire history patterns (Carcaillet et al., 2001). Macro-charcoal is extracted by using a KOH or 322 

sodium pyrophosphate solution to removes humic acid and dissagregates, followed by a 323 
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dilute hydrogen peroxide (4-6% only) step and a wet sieving through a 125 µm sieve 324 

(Stevenson and Haberle, 2005). 325 

2.3 Phytolith 326 

 327 

Phytolith extraction procedure from soil or lacustrine sediments consists of multiple steps 328 

following Aleman et al. (2013b). The sediments are deflocculated using a 5 % weight 329 

solution of NaPO3 heated at 70 °C, and shaked for twelve hours. Decarbonatation, using a 330 

1N-solution of HCl at 70 °C during one hour on a hot plate, is performed prior to the organic 331 

matter reduction as this step is more efficient in a slightly acid and non-calcareous 332 

environment (Pearsall, 2000). This step is also crucial to disperse the mineral fraction and 333 

prevent secondary reactions (Madella et al., 1998). Lake sediments are generally rich in 334 

organic matter which is removed by using 33 % H2O2 (Kelly, 1990; Lentfer and Boyd, 1998) 335 

at 70°C to accelerate the reaction to properly obtain cleaned slides for easier identification 336 

and counting. Alternatively, a mixture of nitric acid (HNO3) with potassium chlorate (at a 337 

ratio of 1:3) heated for two hours at 90°C using glass material on a hot plate can be used to 338 

accelerate the reaction (Strömberg, 2002; Strömberg et al., 2018). 339 

For lateritic sediments, removal of oxidized iron using tri-sodium citrate and sodium 340 

dithionite is recommended (Kelly, 1990). Another deflocculation, using NaPO3 at 70 °C 341 

(Lentfer and Boyd, 1998) shaken for 12 hours, then is required to remove clay efficiently 342 

since high clay concentration may affect data quality (Madella et al., 1998). Clay is removed 343 

by gravity sedimentation using ‘low-speed’ centrifugation to speed up the processing. 344 

Distilled water is added to the residue to a height of 7 cm and centrifuged for 1 min 30 s at 345 

2000 rpm (Stokes' law for particles < 2 μm, calculated for a Sigma Aldrich 3–16 centrifuge 346 

with an RCF.g of 769 at 2000 rpm). The step is repeated until the float is clear. Before 347 
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performing densimetric separation of phytoliths, the residue is dried using ethanol to avert 348 

dilution of the dense liquor by the water contained in the residue.  349 

The density of the heavy liquid is crucial for the densimetric separation step to prevent bias 350 

regarding phytolith selection, densities of which range from 1.5 to 2.3. Different heavy 351 

liquids can be used: ZnBr2/HCl solution adjusted to a relative density of 2.3–2.35 (Kelly, 352 

1990) or, better, sodium polytungstate (Na 6[H2W12O40]) that is a non-toxic of solution. 353 

The density 2.3 of 1 L of dense liquor is obtained by mixing 1662 g of sodium polytungstate 354 

powder with 637 ml of distilled water. The residue and the dense liquor are mixed and then 355 

centrifuged for two minutes at 3000 rpm. Disposable transfer pipets are used to suck the fine 356 

white layer floating on the dense liquor and transfer it to a 5 μm PTFE filter (Kelly, 1990) 357 

mounted on a vacuum glass filtration holder. The dense liquor is recycled to reduce the costs 358 

of the extraction procedure and the environmental pollution. The floating residue on the filter 359 

is rinsed with HCl (1 N) if ZnBr2 is used, and distilled water; otherwise the supernatant is 360 

only washed with distilled water. The phytoliths are transferred to a vial and an exotic marker 361 

is added (a lycopodium tablet or silica microspheres (Aleman et al., 2013b)). The samples are 362 

decanted for twelve hours and then dried in a drying oven if silica microspheres are used; 363 

otherwise naturally dried by evaporation. The residue is preserved in ethanol or glycerin. 364 

 365 

3. Identification, counting and digital image processing of terrestrial plant microfossils 366 

 367 

3.1 Pollen and spores 368 

 369 

Microscopic observation of the pollen of flowering plants and gymnosperms and spores of 370 

pteridophytes allows identification with a taxonomical resolution rarely reaching the specific 371 

level but more often the family or genus levels and sometimes the group of species within a 372 
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genus (Jackson and Booth, 2007). The identified grains are allocated to a morphotype (or 373 

pollen taxa) based on various features related to the size and shape of the grain, to the shape, 374 

number and distribution of the apertures/scars and to the structure and ornamentation of the 375 

pollen/spore wall (Fig. 2). A large literature describes these features although the associated 376 

terminology varies depending on the authors (Erdtman, 1954; Faegri and Iversen, 1964; 377 

Hesse et al., 2009; Kapp's, 2000; Moore et al., 1991; Reistma, 1969). We only report 378 

hereafter the main characteristics used for identification (see above references for further 379 

details), mainly with the terminology used in Moore et al. (1991). The descriptive 380 

terminology can be bewildering for the novice but provides an essential basis for accurate 381 

description, comparison and identification of morphotypes; a valuable illustrated glossary is 382 

provided by Punt et al. (2007).  383 

Pollen size varies mostly between 15 and 100 µm although some grains can be as large as 384 

140 µm such as Malvaceae pollen or slightly less than 10 µm such as pollen from tropical and 385 

subtropical trees and shrubs, like Elaeocarpus and Cecropia. The shape of a pollen grain 386 

generally varies from spherical to elliptical, either oblate when the polar axis is shorter than 387 

the equatorial axis or prolate for the reverse. An aperture is a thin area or a missing part of 388 

the exine, either circular to elliptical (pori or pores) or elongated (colpi or furrows), that 389 

allow the germination of the pollen tubes for plant reproduction. The shape, number and 390 

arrangement of the apertures constitute a primary criterion for identification of pollen types. 391 

Types names include the terms porate, colpate or colporate describing the aperture shape 392 

with a prefix (mono-, di-, tri-, tetra-, penta-, hexa- and poly-) defining the aperture number. It 393 

is possible to find grains without aperture, corresponding to the inaperturate pollen type. 394 

Another prefix describing the aperture arrangement can also be added: zono- and panto-, 395 

following Erdtman (1954) and Moore et al. (1991) or stephano- and peri- following Faegri 396 

and Iversen (1964) for apertures distributed in the equatorial zone or all over the surface of 397 
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the grain, respectively. The structure and sculptures of the pollen wall present a large 398 

variability constituting precious criteria for the identification of the pollen grains. The fossil 399 

pollen wall of angiosperms, namely the exine, is composed of a homogenous inner layer, the 400 

endexine, and a complex outer layer, the ectexine, which may include a foot layer, with above 401 

radial rods, named columellae, supporting a tectum with various supratectatal sculpturing 402 

elements (bacula, clavae, echinae, pila, gemmae, verrucae, scabrae or granules). All layers 403 

may be continuous, discontinuous or absent, may present particular thickening features such 404 

as arcus or annuli (cf. Alnus and Poaceae pollen grains). When there is no tectum (intectate 405 

grain as opposed to tectate grain), sculpturing elements may be found on the top of the foot 406 

layer. Columellae can also be partially joined at their heads; the grain is described in this case 407 

as semitectate. The arrangement of the columellae or of the supratectal sculpturing elements 408 

or their fusion in elongated elements can give rise to a network (reticulum) or striations. 409 

Gymnosperm pollen wall slightly differs: the endexine is lamellate and the ectexine never has 410 

columellae but alveoli or granulas (Hesse et al., 2009). Pinaceae and Podocarpaceae pollen 411 

grains display a special feature: the air sacs (sacci).  412 

Pteridophyte spores have the same size range but depart from pollen for the presence of 413 

monolete and trilete scars and a simpler wall structure, although it can be multilayered and 414 

ornamented (Kapp's, 2000). 415 

 416 

Figure 2 417 

 418 

An exhaustive list of pollen atlases are referenced in Hooghiemstra and van Geel (1998). 419 

Pollen atlases published since 1998 are reported in Table 1. In addition, an initiative has been 420 

developed to aid the identification of pollen grains, and provide virtual access to reference 421 

material at https://globalpollenproject.org/ (Martin and Harvey, 2017). 422 

https://globalpollenproject.org/
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 423 

Region Reference 

Europe Beug (2004) 

Africa Schüler and Hemp (2016) 

Scott (1982) 

Gosling et al. (2013) 

Asia For Japan: Demske et al. (2013) 

For Indonesia: Jones and Pearce (2014) 

For India: Kailas et al. (2016); Mudavath et al. (2017) 

For China: Fujiki et al. (2005); (Yang et al., 2015) 

North America Kapp's (2000); (Willard et al., 2004) 

Central and 

South America 

For the whole Neotropics, freeware online database: Bush and Weng 

(2007) 

For Amazonian taxa: Colinvaux et al. (1999) 

For Paramo and high elevation Andean taxa: Velasquez (1999) 

For Brazil: Cassino and Meyer (2011) 

For Venezuela: Leal et al. (2011) 

For Atlantic forest: Lorente et al. (2017) 

 424 

Table 1. List of pollen atlases for different regions of the world available for pollen grains 425 

identification (not referenced in Hooghiemstra and van Geel (1998)). 426 

 427 

Counting is routinely done with a light microscope at 400x although oil immersion objective 428 

allowing a 1000x is required in some cases (Birks and Birks, 1980). The number of pollen 429 

grains and spores counted varies depending on the research objectives although it should be 430 

enough high to reach constant percentages of the different taxa and at least exceed a 431 

minimum count of 100 to calculate the relative proportions (expressed as percentages of the 432 

pollen sum). For terrestrial sediments, 300 to 500 grains are usually counted (Birks and Birks, 433 

1980). For marine sediments, counting usually aims at reaching a total of 300 pollen and 434 

spore grains with at least 100 pollen grains excluding Pinus, a well-known over-represented 435 

taxa (Desprat, 2005; Turon, 1984). At least 20 taxa are usually identified to provide a 436 
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representative image of the composition and diversity of the European or North American 437 

vegetation (McAndrew and King, 1976; Rull, 1987). In tropical regions where the taxa 438 

diversity is far more important and largely variable, saturation curves can be used to 439 

determine the number of grains that have to be counted to reach a plateau in the number of 440 

taxa found (Birks and Birks, 1980).  441 

 442 

3.2 Microcharcoal 443 

 444 

Microcharcoal is identified microscopically in transmitted light as black debris, opaque, with 445 

sharp edges according to criteria from Boulter (1994) (Fig. 3). Petrographic criteria in 446 

reflected light include visible plant structures characterised by thin cell walls and empty 447 

cellular cavities, or particles without plant structure but of similar reflectance than the 448 

previous ones (Noël, 2001). 449 

Originally, both the number of microcharcoal and the area of microcharcoal were analysed in 450 

pollen slides. The area of microcharcoal was estimated using tedious methods, the square 451 

eye-piece grid method (Swain, 1973) or the point-count method (Clark, 1982). Both the 452 

concentration of pieces of microcharcoal and the concentration of microcharcoal areas are 453 

highly positively correlated (Tinner and Hu, 2003). It was therefore suggested avoiding the 454 

quantification of microcharcoal areas because it was time consuming for gaining little 455 

additional information compared to a simple counting of microcharcoal fragments. Counting 456 

microcharcoal on pollen slides is currently performed at 200x or 500x magnification (Doyen 457 

et al., 2013; Morales-Molino et al., 2011) by counting only the number of microcharcoal in 458 

pollen slide (Tinner and Hu, 2003) with a minimum of two hundred items (the sum of 459 

charcoal and exotic marker grains) (Finsinger and Tinner, 2005). 460 
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More recently, some studies indicated that fragmentation of charcoal particle may occur 461 

during taphonomical processes (Crawford and Belcher, 2014; Leys et al., 2013). This 462 

potential fragmentation may lead to an overrepresentation of microcharcoal, i.e. a virtual 463 

increase of the number of fragments per gram, while this increase would not have been seen 464 

in the total area concentration (see below for an explanation of the two concentrations). Using 465 

the total area helps therefore interpreting charcoal number concentration. Counting and area 466 

measurement of individual charcoal particles is recommended further because it provides an 467 

opportunity to link both particle counts and particle areas to different metrics of fires, such as 468 

burned area, fire number, fire intensity or fire emissions (Adolf et al., 2018b; Hawthorne et 469 

al., 2018). 470 

Digital image processing can be used to generate microcharcoal data more efficiently and to 471 

conduct morphological particle analyses. Image analysis can be carried out in software such 472 

as ImageJ (open source) (Abramoff et al., 2004) which can be used to measure the individual 473 

area of each particle, total area of all particles and the number of particles that are observed in 474 

each microscopic field (Beaufort et al., 2003a; Daniau et al., 2009b; Doyen et al., 2013; Inoue 475 

et al., 2018; Thevenon et al., 2004). The shape is studied using the length, width and the 476 

elongation measurements. 477 

Automated image analysis consists of scanning the slides in a controlled light adjustment 478 

(transmitted light) to detect and measure microcharcoal using a threshold value in red, green 479 

and blue (RGB), or in tint, saturation and lightness (TSL) color space (see for example 480 

Daniau et al., 2009a). Automated scanning of the slides requires the microscope to be 481 

equipped with a stage motorized in the X, Y and Z axes. Moving on the X and Y axes permits 482 

to scan different separate fields of the slide (150 or 200 images with a pixels digitising 483 

camera to provide reproducible results, (Beaufort et al., 2003b; Daniau et al., 2007; Doyen et 484 

al., 2013). The Z-axis permits to adapt the focus for each field. Observations and automated 485 
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image analysis is performed in general at 400x (Doyen et al., 2013) or 500x magnification 486 

(Daniau et al., 2009b; Inoue et al., 2018). Identification of uncharred organic matter (in 487 

reflected light, using oil immersion), characterized by the absence of plant structures and 488 

distinct level of reflectance, can be used to set the best-fit threshold level to secure 489 

identification of microcharcoal by image analysis. 490 

From these measurements, two types of concentration per gram of dry bulk sediment are 491 

calculated, i.e. the number of fragments of microcharcoal (number or fragments #/g) and the 492 

total area of microcharcoal (mm2 or μm2/g). When the density or the volume of the treated 493 

sediment is known concentrations are expressed per volume (cm3). The total area corresponds 494 

to the sum of the individual areas of microcharcoal. The shape is studied using the elongation 495 

ratio (or aspect ratio) expressed as the ratio Length on Width (Umbanhowar and McGrath, 496 

1998) (Crawford and Belcher, 2014); or as the ratio Width on Length (Aleman et al., 2013a).  497 

 498 

Figure 3 499 

 500 

3.3 Phytolith 501 

 502 

The recovered phytolith fraction from the extraction procedure is mounted on microscope 503 

slides using mobile mounting medium, glycerin or immersion oil, to allow the rotation of 504 

phytolith for observation. Phytoliths are counted at 400x or 600x magnification. Immersion 505 

oil may be preferred as mounting media to facilitate observation because phytolith show a 506 

better contrast under the microscope rather than by using glycerin. Phytoliths are amorphous 507 

silicate and are distinguishable from quartz grains using a polarizing filter on the microscope. 508 

Other siliceous components can be diatoms, freshwater sponge spicules or siliceous 509 

protozoans such as testate amoebae (Rhizopoda). Diatoms, or even parts of valves, are easily 510 
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distinguishable from phytoliths via finer ornamentations compared to phytoliths. Sponge 511 

spicules are generally needle-like in form and are either smooth or spined. They are visually 512 

distinguishable from phytoliths because their surfaces are generally smooth and the purity of 513 

the silicate makes it translucent. Finally, testate amoebas are recognizable when they are 514 

entire, but the tests are composed of siliceous plates that may be disarticulated during 515 

taphonomic processes or lab treatments. These plates have round to square shapes and 516 

measure usually between 5 to 15 µm. Rounded curved plates can be confused with 517 

microspheres. In this case rotation of the particle is needed for identification. 518 

During the counting procedure, sufficient items (exotic marker and the most frequent 519 

phytolith morphotype with taxonomic significance) should be counted to reach an estimate of 520 

the total phytolith concentration with a precision of at least ±15 %, as described in (Aleman 521 

et al., 2013b). In general, this consists in counting at least 300 phytolith of morphotypes with 522 

taxonomic significance per sample and with size greater than 5 µm. 523 

Description of phytolith morphotypes should be done according to their three-dimensional 524 

shape and classification should follow the International Code for Phytolith Nomenclature 525 

(ICPN; Madella et al. (2005)). The ICPN was developed in order to use a standard protocol to 526 

name and describe new phytoliths, and to use a glossary of descriptors for describing 527 

phytoliths. As such, when describing a phytolith type the following information are 528 

necessary: 1) description of the shape (3D and 2D), 2) description of the texture and/or 529 

ornamentation, and 3) symmetrical features. Other information can also be provided when 530 

possible (e.g. morphometric data, illustrations and anatomical origin, Madella et al. (2005)). 531 

Because of redundancy and multiplicity in phytolith shape (Fredlund and Tieszen, 1994; 532 

Mulholland, 1989; Rovner, 1971), one phytolith type can rarely be related to one plant taxon 533 

and therefore in order to use this vegetation proxy, the whole phytolith assemblage must be 534 

considered. Past tree cover, aridity/humidity changes and plant water stress can be assessed 535 
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by grouping morphotypes into specific indices. In addition, phytoliths from the Poaceae 536 

family produces peculiar morphotypes that provide information about past grass dynamics 537 

and evolution (Strömberg, 2002). 538 

In general, phytolith morphotypes are grouped into five large categories (Fig. 4): 539 

 540 

Figure 4 541 

 542 

1. Grass silica short cells (GSSC) are produced by Poaceae (Mulholland and Rapp, 1992). 543 

Among the GSSCs, the bilobates (a), polylobates and crosses (b) are mainly produced by the 544 

Panicoideae subfamily (Fredlund and Tieszen, 1994; Kondo et al., 1994; Mulholland, 1989; 545 

Twiss et al., 1969), which are C4 grasses adapted to warm and humid climate. The saddle (c) 546 

type occurs dominantly in the Chloridoideae subfamily (Mulholland, 1989; Twiss et al., 547 

1969) (Fredlund and Tieszen, 1994; Kondo et al., 1994), C4 grasses adapted to a warm and 548 

dry climate. The rondel type (d), corresponding to the pooid type defined by Twiss et al. 549 

(1969) and the conical, keeled and pyramidal types (e) from Fredlund and Tieszen (1994), 550 

include conical, conical bilobate (f), conical trilobate and conical quadrilobate morphotypes. 551 

The trapeziform short cell type (Fredlund and Tieszen, 1994; Kondo et al., 1994; Mulholland, 552 

1989; Twiss et al., 1969) comprises trapeziform, trapeziform bilobate (g), trapeziform 553 

trilobate (h) and trapeziform quadrilobate morphotypes. The rondel and trapeziform short cell 554 

types are preferentially produced by the Pooideae subfamily (C3, high elevation grasses), but 555 

also by the other subfamilies (Barboni and Bremond, 2009). Zea mays produces a particular 556 

cross type, and using morphometric analysis it is possible to precisely identify its presence in 557 

archeological records (Piperno, 2006). Bambusoideae grasses produce Bilobate and Saddle 558 

short-cells and some genus produce distinct phytolith types such as Chusquoid body or 559 

collapsed saddles in Chusquea (Piperno and Pearsall, 1998). 560 
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2. The bulliform cells category relates to cell morphology trackers that can be identified. For 561 

example, epidermal cells have been calibrated to reconstruct leaf area index (LAI) (Dunn et 562 

al., 2015). Bulliform cells (i) from the leaves of Poaceae are used as a proxy of aridity 563 

(Bremond et al., 2008). 564 

3. The woody dicotyledon category is composed of globular granulate (j) (Alexandre et al., 565 

1997; Bremond et al., 2005a; Kondo et al., 1994; Scurfield et al., 1974), globular decorated 566 

(k) (Neumann et al., 2009; Novello et al., 2012; Piperno, 2006; Runge, 1999), sclereid 567 

(Mercader et al., 2000; Neumann et al., 2009; Runge, 1999), blocky faceted (l) (Mercader et 568 

al., 2009; Neumann et al., 2009; Runge, 1999) and blocky granulate morphotypes (Mercader 569 

et al., 2009). 570 

4. The other family-specific morphotypes are composed of morphotypes that can be 571 

attributed to specific families. Papillae types (m) (Albert et al., 2006; Gu et al., 2008; Novello 572 

et al., 2012; Runge, 1999) are produced by Cyperaceae (Kondo et al., 1994) that mainly grow 573 

in wetlands. The globular echinate morphotype (n) is produced by palms (Arecaceae) (Kondo 574 

et al., 1994; Runge, 1999). Phytoliths of Musa are volcaniform (o) (Ball et al., 2016) when 575 

the ones from Cucurbita are spheroidal or hemispheroidal with deeply scalloped surfaces of 576 

contiguous concavities (Piperno et al., 2000). Other specific phytoliths can be attributed to 577 

rice, Maize or Marantaceae (see the exhaustive discussion in Piperno (2006)). 578 

5. Non-diagnostic morphotypes (p) such as globular smooth, elongated or tabular and blocky 579 

types are sometimes attributed to specific vegetation types, such as closed environments. 580 

However, the diversity of shapes behind the generic terms makes it difficult to be exhaustive 581 

for this category (see Garnier et al., 2012; Novello et al., 2012; Runge, 1999). 582 

 583 

Comprehensive databases and atlases for phytolith identification do not exist yet. The web 584 

and scientific papers provide some atlases but the data are diverse, dispersed and not easily 585 
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comparable. The data are presented generally by taxon (Family, Genus or Species) or by 586 

phytolith morphotypes. Modern phytolith assemblages have been extensively studied in 587 

Africa (Barboni et al., 2007). The PhytCore DB (http://www.phytcore.org) provides modern 588 

phytolith assemblages but it is very oriented for archeological studies. It is therefore 589 

important analysing modern soil or recent sediment samples in the surrounding vegetation 590 

types of the “fossil” studied area. Here, we provide a non-exhaustive list of different phytolith 591 

atlases available on the web (Table 2). 592 

 593 

Name Website link 

PhytCore (Archeological sites from Spain, East 

and South Africa) 

http://www.archeoscience.com/ 

The University of Missouri Online Phytolith 

Database (essentially the flora of Ecuador) 

http://phytolith.missouri.edu/ 

Paleobot (collaborative, open-access web 

resource for scientists and scholars engaged in 

paleobotanical research) 

http://www.paleobot.org/ 

Old World reference phytoliths http://www.homepages.ucl.ac.uk/~tcrndf

u/phytoliths.html 

The Blinnikov's Phytolith Gallery http://web.stcloudstate.edu/msblinnikov/

phd/phyt.html 

 594 

Table 2: List of phytolith atlases available online. 595 

 596 

4. Terrestrial plant microfossils for qualitative and quantitative environmental 597 

reconstructions 598 

 599 

4.1 Information from pollen 600 

 601 

4.1.1 Environmental information 602 

http://www.phytcore.org/
http://www.archeoscience.com/
http://phytolith.missouri.edu/
http://www.paleobot.org/
http://www.homepages.ucl.ac.uk/~tcrndfu/phytoliths.html
http://www.homepages.ucl.ac.uk/~tcrndfu/phytoliths.html
http://web.stcloudstate.edu/msblinnikov/phd/phyt.html
http://web.stcloudstate.edu/msblinnikov/phd/phyt.html
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 603 

Fossil pollen assemblages are widely used for reconstructing past vegetation composition and 604 

distribution, and thereby climate and land-use changes. Pollen analysis is based on a set of 605 

principles that allow relating the pollen assemblage found in sedimentary archives with the 606 

surrounding vegetation (e.g. Birks and Birks, 1980; Prentice, 1988). Information on the 607 

pollen-vegetation relationship in particular is issued from the extensive study of surface 608 

(modern) pollen samples, taken in defined vegetation units characterizing an ecosystem or a 609 

bioclimate, as well as in various sedimentary contexts. Modern pollen rain-vegetation 610 

relationship was therefore investigated in a wide variety of landscape worldwide, although 611 

some regions are still under-studied, such as arid and semiarid environments. From these 612 

studies arose several regional modern pollen databases for Europe (Davis et al., 2013; Fyfe et 613 

al., 2009), North America (Whitmore et al., 2005), East Asia (Zheng et al., 2014), Africa 614 

(Gajewski et al., 2002) and South America (Flantua et al., 2015).  615 

Surface sample studies have shown there is no linear relationship between pollen proportions 616 

and plants abundances. Pollen proportions from a sedimentary archive give qualitative 617 

information on changes in vegetation composition through time and over a spatial area. Many 618 

studies demonstrated that pollen assemblages clearly discriminate between vegetation 619 

formations or forest-types and that pollen proportions of the major taxa reflect their relative 620 

importance in the vegetation (Prentice, 1988). Individual calibration studies prior to the 621 

analysis of a sedimentary archive are recommended to provide the characterization of the 622 

relationship between the pollen rain and local and regional vegetation essential to interpret 623 

the fossil pollen records in terms of vegetation changes. For example, in Southern Africa, 624 

Poaceae percentages were demonstrated to be critical to distinguish the pollen signal of the 625 

major biomes and associated climatic zones (Urrego et al., 2015). In the Mediterranean 626 
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region, pollen assemblages within degraded maquis, for instance, appear largely influenced 627 

by adjacent land-covers such as conifer woodland and open vegetation (Gaceur et al., 2017).  628 

A large literature aims at understanding and estimating the factors that determine the source 629 

vegetation and modifies the pollen representativeness in terms of vegetation composition and 630 

abundance (e.g. Broström et al., 2008; Bunting et al., 2013; Gaillard et al., 2008; Havinga, 631 

1984; Prentice, 1985; Sugita, 1994; Traverse, 2007). The differential pollen production, 632 

dispersal and preservation between pollen taxa lead to the over- or under-representation of 633 

some morphotypes. The long-transport of anemophilous taxa is a common factor biasing the 634 

representation of the local vegetation by pollen assemblages (e.g. Traverse, 2007). This is 635 

particularly true in mountain regions where wind drives uphill transport of tree pollen (Ortu 636 

et al., 2006). The most widely known example is the pollen over-representation of Pinus that 637 

produces a large quantity of highly buoyant saccate pollen.  638 

The structure and composition of the surrounding vegetation affect the source area of pollen. 639 

For instance, pollen rain in open landscape is prone to increased contribution of pollen 640 

originating from far-distant vegetation (Bunting et al., 2004). The size (i.e. few meters to 641 

kilometers) and type (e.g. bogs, mires, lakes and ocean) of the sampling site also influence 642 

the pollen source area from local to regional inputs (e.g. Prentice, 1985; Sugita, 1994; 643 

Traverse, 2007). Ponds and small lakes mostly receive pollen from the vegetation 644 

surrounding the sampling site and therefore represent more local estimates of vegetation than 645 

large lakes (in their centers) that collect predominantly wind-transported pollen from the 646 

regional vegetation background (e.g. Sugita, 1994, 2007a, b). Note that without using specific 647 

pollen-based modelling approaches (see section 4.1.2) the dissociation between local and 648 

regional pollen signals cannot be assessed. Pollen studies on modern marine surface 649 

sediments showed that pollen assemblages reflect an integrated image of the regional 650 

vegetation of the adjacent continent (e.g. Heusser, 1983; Naughton et al., 2007). Such studies 651 
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revealed that pollen grains are mainly transported to the ocean realm by wind and rivers but 652 

the role of these transport agents depends essentially on the environmental conditions of each 653 

area (e.g. Dupont et al., 2000; Groot and Groot, 1966). Pollen is predominantly supplied to 654 

the ocean by fluvial transport, in regions where hydrographic systems are well-developed 655 

such as in the western Iberian margin, northern Angola basin, western North Atlantic margin 656 

and in the Adriatic Sea (e.g. Bottema and van Straaten, 1966; Dupont and Wyputta, 2003; 657 

Heusser, 1983; Naughton et al., 2007). In arid zones, like in northwest (NW) of Africa, with 658 

weak hydrological systems and strong winds, pollen are mainly wind-blown (e.g. 659 

Hooghiemstra et al., 2006; Rossignol-Strick and Duzer, 1979). A mixture of fluvial and wind 660 

pollen transport may also occur as shown in the Gulf of Guinea (Lézine and Vergnaud-661 

Grazzini, 1993) and the Alboran Sea (Moreno et al., 2002). Once in the ocean, pollen grains 662 

sink rapidly through the water column thanks to processes decreasing its floatability such as 663 

agglomeration (taking part to the marine snow), flocculation and incorporation in fecal pellets 664 

(Mudie and McCarthy, 2006) and thereby preventing from long-distance marine current 665 

transport (Hooghiemstra et al., 1992). 666 

 667 

4.1.2 Pollen-based land cover reconstruction 668 

 669 

Pollen assemblages extracted from terrestrial sedimentary cores reflect a mix of both local 670 

and regional vegetation, and this makes difficult the assessment of quantitative vegetation 671 

reconstruction based on pollen proportions. Correction factors were proposed as early as the 672 

fifties to minimize biases in the representativeness of pollen assemblages (see Birks and 673 

Berglund (2018) and references therein). From the eighties, important methodological 674 

improvements took place with the development of models taking into account the differential 675 

production and dispersal of pollen, and the size and type of the sedimentary basin (e.g. 676 
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Prentice and Parsons, 1983; Sugita, 1993, 1994, 2007a, b). These models have resulted in the 677 

development of the Landscape Reconstruction Algorithm (LRA; Sugita (2007b)) for 678 

quantitative reconstruction of past vegetation composition. 679 

The LRA approach corresponds to two sub-models, REVEALS (Regional Estimates of 680 

Vegetation Abundance for Large Sites; (Sugita, 2007a) and LOVE (Local Vegetation 681 

Estimate; Sugita (2007b)). REVEALS reconstructs the regional vegetation composition in a 682 

radius of ca. 50 km using pollen counts from large lakes (>50 ha). REVEALS can also be 683 

used for a combination of small and large lakes and bogs, although the standard errors would 684 

be greater than when using for a large lake only (Marquer et al., 2017; Trondman et al., 685 

2016). LOVE reconstructs the local vegetation composition in a radius of few meters to 686 

kilometers that corresponds to the relevant source area of pollen (RSAP). LOVE uses pollen 687 

counts from small sites (lakes and bogs <50 ha) and REVEALS estimates as the regional 688 

background of pollen (i.e. pollen coming from beyond the RSAP) to subtract the regional 689 

background of pollen and calculate quantitative estimates of local vegetation composition. 690 

LOVE estimates represent the local vegetation composition within the RSAP. The LRA 691 

models incorporate critical parameters to correct the non-linear relationships between pollen 692 

percentages and plant abundances, e.g. pollen productivity estimates of specific plant taxa, 693 

fall speed of pollen and basin size, and several assumptions, e.g. specific wind speed and 694 

characteristics of atmospheric conditions. Current model improvements correspond to the 695 

implementation of an alternative pollen dispersal model in the LRA approach (e.g. 696 

Theuerkauf et al., 2016; Sugita, unpublished). 697 

The REVEALS and LOVE models are now increasingly applied to provide quantitative 698 

reconstructions of the Holocene vegetation composition from local, regional to sub-699 

continental spatial scales (e.g. Cui et al., 2014; Fyfe et al., 2013; Hellman et al., 2008a; 700 

Hellman et al., 2008b; Marquer et al., 2017; Marquer et al., 2014; Mazier et al., 2015; Nielsen 701 
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et al., 2012; Nielsen and Odgaard, 2010; Overballe‐Petersen et al., 2013; Soepboer et al., 702 

2010; Sugita et al., 2010; Trondman et al., 2015; Trondman et al., 2016). The REVEALS 703 

model has largely been used for pollen-based land cover reconstruction in Europe and it is 704 

now applied to other regions (essentially in the Northern Hemisphere) via the support of the 705 

PAGES LandCover6k initiative (Gaillard et al., 2018). Evaluation of the LRA models 706 

reliability in the Southern Hemisphere and tropics (Southern Asia, Central Africa and South 707 

America) is in progress. 708 

The REVEALS approach requires some a priori information on pollen productivity estimates, 709 

which are difficult to collect and highly variable, lake size and assumptions on wind speed. 710 

This constitutes one disadvantage of the approach since all these parameters may vary 711 

through time, increasing the uncertainties of the REVEALS land-cover reconstructions. In 712 

addition, the physical size of taxa in the landscape which can be important in reconstructing 713 

past forest cover is not reconstructed (Zanon et al., 2018).  714 

An alternative and less resource intense approach has been developed by Williams (2003), 715 

based on the popular modern analogue technique (MAT) applied in pollen-climate 716 

reconstructions, whereby analogues of fossil pollen samples are found in a modern pollen 717 

database. In the land-cover reconstruction method, the fossil sample is assigned the remote-718 

sensing derived forest cover of the closest matching modern pollen sample site. 719 

This method is particularly useful to reconstruct past forest cover at continental scales. It was 720 

used to reconstruct Holocene forest cover in North America (Williams, 2003), Europe (Zanon 721 

et al., 2018), Northern Eurasia (Tarasov et al., 2007), and time slices for the whole of the 722 

Northern Hemisphere mid and high latitudes (Williams et al., 2011). Zanon et al. (2018) 723 

showed that both methods generally provide comparable results. However, the MAT 724 

systematically estimates lower forest cover than REVEALS although this offset reduces in 725 

some pioneer vegetation landscapes. This discrepancy may be due to different definitions of 726 
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‘forest cover’ between the two methods, with trees greater than 5 m in the case of MAT, 727 

whereas forest is simply defined as the proportion of forest forming taxa irrespective of their 728 

size in REVEALS. 729 

Other semi-quantitative methods for reconstructing land-cover are based on the ‘biomisation’ 730 

method (Prentice et al., 1996). This essentially compensates for differing pollen productivity 731 

and dispersion by transforming pollen percentages data using the square-root method. 732 

This has the effect of de-emphasising the taxa which represent the larger proportions (often 733 

the trees) and emphasizing more the taxa with the smaller proportions (often the herbaceous 734 

taxa). Taxa are then grouped into common plant functional groups (pft’s) grouped in turn into 735 

biomes. The sum of the square rooted percentages of each group of taxa represents its ‘score’. 736 

The highest ‘score’ represents the vegetation biome of the pollen sample assemblage. 737 

Biomisation classification schemes have been developed for almost all regions of the world 738 

(Prentice and Jolly, 2000). The original motivation for this work was the evaluation of 739 

climate model simulations through forward modelling. This side-steps the problems 740 

associated with pollen-climate based data-model comparisons (see section 4.1.3) because the 741 

vegetation represented by the pollen record is directly compared with the vegetation 742 

generated by a process based vegetation model fed with output from the climate model 743 

simulation (Prentice et al., 1998). This approach has many advantages, not least the ability to 744 

take into account the complex response of vegetation to many different aspects of climate, 745 

such as temperature, precipitation, seasonality, cloudiness and frost frequency. Unfortunately, 746 

one of the main disadvantages is the difficulty in aligning the vegetation generated by the 747 

vegetation model with that represented by the pollen record. For instance, the link between 748 

the original biome vegetation model and pollen biomisation classification schemes (Prentice 749 

et al., 1996) is based on the unproven assumption that modelled Net Primary Productivity 750 

(NPP) is directly linked to pollen percentages. Similarly, because the model generates 751 
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potential natural vegetation, and the pollen data reflects actual vegetation, it becomes difficult 752 

to judge the accuracy of a pollen biomisation scheme with for instance over 8 different 753 

schemes available in Europe alone (Allen et al., 2010; Allen et al., 2000; Bigelow et al., 754 

2003; Binney et al., 2017; Marinova et al., 2018; Peyron et al., 1998; Prentice et al., 1996; 755 

Tarasov et al., 1998)). 756 

However, considering the simplicity of the approach, the biomisation procedure nevertheless 757 

proved to work remarkably well in many regions at continental scales. While the original 758 

procedure was developed specifically to reconstruct the natural potential vegetation, the 759 

procedure has also been adapted to reconstruct human impacted landscapes, the pseudo-760 

biomisation approach (Fyfe et al., 2010). It was used to reconstruct the land-use and forest 761 

cover of Europe throughout the Holocene (Fyfe et al., 2015). Roberts et al. (2018) showed 762 

that the three methods, pseudo-biomisation, REVEALS and biomisation approaches, captured 763 

the basic trend in forest cover change over Europe during the Holocene. 764 

Biomisation, pseudo-biomisation and modern analog technique can be used at continental and 765 

global scales and provide semi-quantitative estimates for biomes, plant functional types, land 766 

cover classes and tree covers, when LRA provides quantitative estimates of the cover of plant 767 

taxa at specific spatial scales, i.e. from local, regional to continental scales. Those 768 

quantitative estimates of vegetation are critical to i) evaluate climate and human-induced 769 

changes in vegetation composition and diversity, ii) answer archaeological questions about 770 

land use, iii) inform strategies related to conservation of natural resources and iv) be used as 771 

inputs for climate and dynamic vegetation modelling (e.g. Cui et al., 2014; Gaillard et al., 772 

2010; Marquer et al., 2018; Marquer et al., 2017; Mazier et al., 2015). 773 

 774 

4.1.3 Pollen-based climate reconstruction 775 

 776 
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Fossil pollen data have been used for quantitative reconstructions of past climate for over 70 777 

years (Iversen, 1944). Pollen remains the main terrestrial proxy used for continental-scale 778 

evaluation of climate model simulations as part of the Paleo-climate Model Intercomparison 779 

Project (PMIP) for key time periods of the last climatic cycle (126, 21 and 6 ka) (Otto-780 

Bliesner et al., 2017), and as far back as the mid-Pliocene (3.0-3.3 Ma) under the Pliocene 781 

Model Intercomparison Project (PlioMIP) (Haywood et al., 2013). Those models are used to 782 

simulate future climate and their paleo-climate evaluations provide the only real test of 783 

reliability outside of our modern climatic experience. Paleo-climate reconstructions have 784 

been based on widely spaced time-slices. It becomes possible now to produce spatially 785 

explicit continuous reconstructions through time in data rich regions such as Europe (Davis et 786 

al., 2003a; Mauri et al., 2015) and North America (Viau and Gajewski, 2009). Spatially 787 

explicit reconstructions allow us to view the spatial structure of climate change, much of 788 

which is driven by change in atmospheric circulation which appears to be under-estimated in 789 

climate models (Mauri et al., 2014). The high spatial variability indicated by pollen synthesis 790 

studies (and others; (see de Vernal and Hillaire-Marcel, 2006; Kaufman et al., 2004)) 791 

suggests strong sampling bias in regional or even global interpretations from one or very few 792 

sites (Hansen et al., 2006; Marcott et al., 2013). Large networks of pollen sites allow area-793 

average estimates that reflect more accurately climate system energy-balances. They are also 794 

more comparable with climate models with their large grid box resolutions (Bartlein et al., 795 

2011).  796 

The main advantage of pollen data is its almost unrivalled spatial coverage from almost all 797 

terrestrial regions of the Earth, together with the wide range of seasonal and annual climate 798 

parameters that can be commonly reconstructed. Disadvantages include relatively low 799 

centennial-scale temporal resolution (especially when multiple records are combined at large 800 

spatial scales), and the possibility that non-climatic environmental factors may also influence 801 
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the vegetation record through disease, succession, migration lag, soils and human action 802 

(Mauri et al., 2015). Another issue is the no-analogue-vegetation problem (Jackson and 803 

Overpeck, 2000; Williams et al., 2001), i.e. unique associations of taxa in the past that do not 804 

occur today, such as during the rapid post-glacial re-colonisation of higher mid-latitudes 805 

following the retreat of LGM ice sheets. This problem is also related to the no-analogue-806 

climate problem, when there is no modern analogue for a climate in the past, such as the 807 

particular combination of seasonal insolation during the last Interglacial, or the low CO2 808 

concentration during the LGM. It should be noted that the problem of human action on 809 

vegetation is often the inverse of how it is popularly conceived, since most transfer functions 810 

are assessed and calibrated for the present day when human action has probably been at its 811 

highest. It is in fact a lack of human action in the past that can create a no-modern-analogue 812 

problem for the transfer function. 813 

Since the first pollen-climate transfer function over 70 years ago, there have been a large 814 

number of different methods developed, largely motivated by the problems that we have 815 

already outlined. These methods can be grouped into 4 main groups.  816 

1) The first and generally the most popular group of methods is based on matching an 817 

assemblage of taxa present in a fossil pollen sample with unknown climate, with the same 818 

assemblage in a modern pollen sample whose climate is known. This includes the classic 819 

modern analogue technique (MAT), but also variants such as response surfaces (Brewer et 820 

al., 2007). Advantages include simplicity and an ability to incorporate non-linear responses to 821 

climate, while disadvantages include the need for a large calibration dataset of modern pollen 822 

samples and poor statistical treatment of uncertainties. 823 

2) The second group of methods builds a regression model for each taxa based on the 824 

relationship between modern pollen samples and known modern climate, which is then used 825 

to deduct the past climate from the taxa in a fossil pollen sample assemblage. This includes 826 
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the popular Weighted Averaging – Partial Least Squares (WA-PLS) method (Birks et al. 827 

2010). The advantage of this method includes better statistical treatment of uncertainties and 828 

elimination of problems such as spatial auto-correlation that are common to MAT. However 829 

disadvantages include heavy reliance on capturing the correct climate response within the 830 

calibration dataset and poor performance at the edges of the response envelope.  831 

3) Both the previous two groups of methods require an extensive and representative modern 832 

pollen surface sample dataset for calibration of the transfer function, and also rely on the 833 

relative proportions of the taxa in the pollen assemblage. The third group of methods instead 834 

uses modern vegetation distribution rather than modern pollen samples as the basis for 835 

calibrating the transfer function, and generally uses presence and absence of taxa rather than 836 

its proportional occurrence in the assemblage. This includes classic methods such as mutual 837 

climatic range, as well as the more recent probability density function approach (Chevalier et 838 

al., 2014). These methods work by establishing the climate envelope for each taxa based on 839 

its modern vegetation distribution, and then combining the envelopes of the taxa found in the 840 

fossil pollen assemblage to deduce the most likely climate where all the taxa are able to exist 841 

together. This group of methods does not require a calibration dataset of modern pollen 842 

samples. They are especially good in areas where these datasets are limited such as in Africa 843 

(Chevalier et al., 2014), as well as being able to perform in no-analogue situations where taxa 844 

are found combined in assemblages that are not found today. The disadvantages of this type 845 

of model is that pollen may be found in areas beyond the geographical range of its source 846 

vegetation, while the use of geographical range alone to define the optimum climate for a 847 

taxa (rather than abundance) leads to large envelopes and consequently large uncertainties in 848 

reconstructions. 849 

4) The final fourth group of methods uses a process based vegetation model to determine the 850 

climate of a fossil pollen assemblage. Normally vegetation models use climate data as input 851 
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to arrive at a vegetation, but in this ‘inverse’ method, the vegetation model is used in inverse 852 

mode where the vegetation is already known (the fossil pollen assemblage) and the most 853 

likely climate to result in that vegetation is the output. This method does not require any 854 

modern calibration data (although in reality vegetation models are largely parameterized 855 

based on what we know of modern vegetation), and since it is process based, it can provide 856 

reconstructions in no-analogue situations such as low CO2 climates (Wu et al., 2007).  857 

The importance of pollen-based climate reconstructions are likely to increase in future as 858 

more climate models simulations are made in transient mode and at increasing spatial 859 

resolutions. At the same time, more fossil and modern calibration pollen data becomes 860 

available in public relational databases. Improvements in transfer function performance can 861 

also be expected, particularly through the application of Bayesian approaches that include 862 

multi-sample and multi-site analysis. 863 

 864 

4.2 Information from microcharcoal 865 

 866 

Vegetation fires produce different sizes of particles of which the smallest, classified as fine 867 

particles, are deposited far from the source (Patterson et al., 1987). Aeolian and fluvial 868 

processes are the main agent responsible for the transport of microcharcoal from the 869 

combustion site to the sedimentation basin where they are preserved. These microcharcoal 870 

particles remain in the atmosphere and are transported over long distances (Clark, 1988) by 871 

low atmospheric winds (<10 km) and deposited a few days or weeks after their formation 872 

(Clark and Hussey, 1996; Palmer and Northcutt, 1975). In water, after a short period of 873 

bedload transport, charred fragments break down into relatively resistant, somewhat rounded 874 

pieces, and thereafter remain stable. They exhibit the same behaviour as fragments of highly 875 

vesiculated pumice, which initially floats and sinks as it becomes waterlogged (Nichols et al., 876 
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2000). (Whitlock and Millspaugh, 1996) have reported charcoal introduced into deep lake 877 

sedimentary record within a few years after a fire event. Suspended fine material (including 878 

microcharcoal) fluvially supplied to the ocean can be transported to the deep ocean through 879 

canyons (Jouanneau et al., 1998). Microcharcoal sedimentation, which may be comparable to 880 

pollen sedimentation behaviour, can be deposited in several weeks on the ocean floor as a 881 

part of the marine snow (Chmura et al., 1999; Hooghiemstra et al., 1992). It is assumed that 882 

microcharcoal mostly reflect regional fire history. 883 

Microcharcoal accumulations (concentrations and influx) are used therefore to reconstruct 884 

changes in biomass burning at regional scale. The chronology of the record, through the 885 

development of age models, is used to calculate the sediment accumulation rate (sediment 886 

accumulation thickness per unit time, cm/yr). Microcharcoal influx (also called 887 

microcharcoal accumulation rate) is expressed as number of fragments per unit area per unit 888 

time (#/cm2/yr) or total areas of microcharcoal per unit area per unit time (µm2/cm2/yr). It is 889 

calculated by multiplying the concentration of microcharcoal per volume by the sediment 890 

accumulation rates, or by multiplying the concentration of microcharcoal per weight by the 891 

density of the sediment samples and by the sediment accumulation rates. 892 

Influx accounts for variations in the sedimentation rate over time which can vary widely 893 

(Adolf et al., 2018b; Marlon et al., 2016). When the sediments are varved, it is possible to 894 

obtain an accurate estimation of the sediment accumulation rate and to calculate 895 

microcharcoal influx for each sample (Maher, 1981). In this case, assuming that the full 896 

production of microcharcoal is transported to the sediment deposition site, microcharcoal 897 

influx may be interpreted directly in terms of charcoal production. 898 

However, varved-sediments are rare and the age-depth model of sedimentary sequence 899 

commonly derives from discrete dated levels (radiometric dating, use of “tie-points” based on 900 

events stratigraphy). Several studies then present calculated values of microcharcoal influx 901 
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for each sample of the dated sequence. However, an average sedimentation rate over several 902 

meters of core lacks information about the rate in a sample taken from a centimeter interval 903 

within the dated sequence (Maher, 1981). Because of this uncertainty in the sedimentation 904 

rate, a rigorous solution is not possible for a single sample: interpreting long term trend in 905 

microcharcoal influx is preferred rather than interpreting single microcharcoal influx 906 

variation. Maher (1981) suggested using in this case an averaged influx between two dates, 907 

calculated by the average concentration multiplied by the average sedimentation rate. More 908 

recently, the 230Th normalization method provides a means of achieving more accurate 909 

interpretations of sedimentary fluxes (Francois et al., 2004). 910 

In addition, calculation of microcharcoal influxes for some marine sediment sequences 911 

obtained by piston coring may be prevented. The piston coring process sometimes elongate 912 

parts of the core, and this elongation is not constant over the sequence. It can increase 913 

virtually the sedimentation rate and so the derived influx. The coring artefacts should be 914 

corrected before influx calculation, if physical parameters of the coring are recorded during 915 

the core collection (Toucanne et al., 2009). For some cores collected in the past decades, 916 

some missing parameters avoid this correction. The equipment of the upgraded R/V Marion 917 

Dufresne for example now prevents or minimizes elastic stretching of the sediment and allow 918 

physical parameters to be recorded (http://www.insu.cnrs.fr/en/node/5762). 919 

In a few cases, some “apparent” sediment hiatuses of tens of centimeters in the core are 920 

observed. In the absence of changes in lithology, those apparent sediment hiatuses may 921 

happen because of the split of the sediment due to stretching strength during core collection. 922 

The original depths therefore need to be corrected before the calculation of the depth-age 923 

model and of the influx (see for example core MD04-2845 in Sánchez Goñi et al. (2017)). In 924 

addition, the lack of information about the density of the sediment may also prevent influx 925 

http://www.insu.cnrs.fr/en/node/5762
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calculation from microcharcoal concentration per weight. However, it is possible to use an 926 

estimated marine sediment density (Tenzer and Gladkikh, 2014). 927 

The deep ocean (in the absence of turbidite deposits) receives plant microfossils and 928 

terrigenous sediments coming from the adjacent continent and material derived from in situ 929 

biological surface productivity. Those materials are part of the hemipelagic sedimentation. 930 

Quick events of high sediment accumulation of material produced outside of the adjacent 931 

continent or outside of the depositional basin may happen, such as the Ice Rafted Debris 932 

deposits (due to the melting of icebergs during ice sheet abrupt calving) in the marine realm, 933 

or such as volcanic ash deposits. The sedimentation rate increases sharply and so the 934 

calculated microfossil influx. However, this influx increase informs that the sediment source 935 

is modified rather than that more microfossils attain the depositional basin. For example, core 936 

MD04-2845, located on a seamount, receives hemipelagic sediment including allochthonous 937 

terrigenous material, i.e. eolian and fluvial particles coming from the adjacent continent, 938 

including plant microfossils (Daniau et al., 2009b). During the last glacial period, several 939 

events of high sedimentation rate are associated with the Heinrich layers, i.e. a huge amount 940 

of IRD released during the melting of icebergs in the North Atlantic. To estimate plant 941 

microfossils influx, biogenic and glacial terrigenous influx (IRD) should be removed from 942 

the total sediment influx. Caution is therefore needed in interpreting influx when the source 943 

area of the sediments is modified. 944 

Rare calibration studies, performed in some varved sediment lakes and one in an oceanic 945 

basin, suggest that microcharcoal accumulation is strongly linked to “burnt area” (Mensing et 946 

al., 1999; Tinner et al., 1998) but further investigations are required (Adolf et al., 2018b). 947 

In addition to microcharcoal concentration or influx, the morphology of charcoal including 948 

the elongation ratio may provide information about the type of burnt vegetation in 949 

paleoecological and paleoenvironmental studies (Aleman et al., 2013a; Courtney Mustaphi 950 



40 
 

and Pisaric, 2014; Daniau et al., 2013; Daniau et al., 2007)). Charcoal fragmentation occurs 951 

along axes derived from the anatomical structure of plant species and the elongation degree is 952 

preserved even when the particle is broken (Clark, 1984; Umbanhowar and McGrath, 1998). 953 

Experimental studies show that the dominance of elongated particles (high elongation ratio) 954 

in a sample characterizes the burning of herbaceous vegetation while a near-squared 955 

morphology (low ratio) indicates the burning of forest (Crawford and Belcher, 2014; 956 

Umbanhowar and McGrath, 1998). 957 

 958 

4.3 Information from phytolith 959 

 960 

Phytolith deposition and accumulation are associated with the decomposition of local 961 

vegetation (Piperno, 2006), thus phytolith studies can provide valuable complementary 962 

information to pollen analysis that have a larger source area. However, since grasses produce 963 

much more phytoliths than any other plant types, the direct environment of the sedimentary 964 

archive needs to be carefully described and studied. For example, it has been shown in some 965 

African studies that a lake surrounded by a grass-marsh will record a ‘super’ local signal, i.e. 966 

the signal from the marsh overrides the signal from the surrounding landscape (Aleman et al., 967 

2014). In this case, the source area is very local and the main transportation mode is by run-968 

off. Conversely, a lake surrounded by a riparian forest perfectly records the landscape 969 

surrounding the lake (Aleman et al., 2014). The source area is wider and the main 970 

transportation mode is wind-blown (Aleman et al., 2014; Alexandre et al., 1997; Bremond et 971 

al., 2005b). Knowing the taphonomic processes therefore is of particular importance when 972 

interpreting a micro-proxy assemblage and the derived indices (see Strömberg et al., 2018).  973 

 974 

4.3.1 Land cover reconstructions from phytoliths 975 
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 976 

The phytolith tree cover index or D/P, is the ratio of woody dicotyledons to Poaceae 977 

phytoliths and is commonly used to characterize the openness of an environment (Alexandre 978 

et al., 1997). It has been quantitatively calibrated against the Leaf Area Index (LAI) in two 979 

studies from Africa (Aleman et al., 2012; Bremond et al., 2005a). Recently, the D/P index 980 

was slightly changed from the original calibration publication (Bremond et al., 2017) to avoid 981 

infinite values of ratio. The ratio used is D/(D+P), with D corresponding only to the globular 982 

granulate and P only to the GSSC (Aleman et al., 2014; Bremond et al., 2017). This new 983 

index is thus bounded between 0 and 1 making it easier to interpret (Bremond et al., 2017). 984 

This proxy, however, can only be used in tropical environment where D phytoliths are 985 

produced. As such, other studies have calibrated LAI against phytoliths derived from leaf 986 

epidermal cells for which morphology is light-dependent (Dunn et al., 2015). Indeed, there 987 

are large differences between sun leaves and shade leaves: shade leaves have larger and more 988 

undulated epidermal cells than sun leaves. Using this proxy, the authors were able to 989 

reconstruct LAI for the Cenozoic (49 to 11 Ma) in middle-latitudes of Patagonia (Dunn et al., 990 

2015). 991 

 992 

4.3.2 Characteristics and phytolith indices 993 

 994 

Several GSSC indices exist and enable to characterize the grassland or grass-dominated type 995 

of ecosystem. First, the Iph or humidity-aridity index compares the number of saddle short 996 

cell phytoliths against the number of lobate short cell phytoliths observed in a soil/sediment 997 

assemblage [Iph (%)= saddle vs. cross + dumbbell + saddle]. Calibrated for western Africa, 998 

the Iph index accurately characterizes the grass cover, allowing the discrimination of 999 

Sahelian grass communities from Sudanian ones (Bremond et al., 2005b) and the dominance 1000 
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of short-grass or tall-grass savannas (using a boundary of ~20%). The Fs or water stress index 1001 

is computed as the ratio of bulliform phytoliths over the sum of characteristic phytoliths [fan-1002 

shaped index (Fs) (%) = fan-shaped vs. sum of characteristic phytoliths]. It was calibrated 1003 

over the same area as the Iph index by using modern soil assemblages and climate data 1004 

(Bremond et al., 2005a) and was proven successful to record the water stress and 1005 

transpiration experienced by the grass cover. While the calibration is relevant for this part of 1006 

Africa, care must be used when applied in other bio-climatic zones.   1007 

The Iaq index refers to the percentage of grass short cell morphotypes present in a 1008 

soil/sediment assemblage that are mostly produced by hydro-/helophytic (=aquatic) grass 1009 

species (Novello et al., 2012). It was calibrated for Chad (central Africa), where the Iaq index 1010 

was shown to display high values for samples from the vegetated marshes of the current Lake 1011 

Chad where aquatic grass communities are largely represented (Novello et al., 2012; Novello 1012 

et al., 2015; Novello et al., 2016). Additionally, recent studies (Novello et al., 2015; Novello 1013 

et al., 2016) have demonstrated that an Iaq value of 34.5% or more is estimated to represent 1014 

the signal of aquatic grass communities in a fossil assemblage.  1015 

Combining indices can improve the interpretation of past grass-dominated communities 1016 

(Strömberg, 2004). For example, the combination of the Iaq and Iph indices, calculated for 1017 

each of the fossil assemblages, may allow distinguishing the signal of the dry-loving grass 1018 

communities (mostly observed in arid domain), from the signal of the humidity-loving grass 1019 

communities associated with regional high precipitation (mostly observed in wetter domain) 1020 

or else with local aquatic conditions (Novello et al., 2012). 1021 

 1022 

4.4. Online data sharing for regional and global environmental data syntheses using 1023 

plant microfossil data 1024 

 1025 
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Plant microfossil data from a sedimentary archive are long to generate but rich in information 1026 

on past local to sub-regional paleoenvironments. It is important therefore to study, and to 1027 

continue the training of the next generation of scientists on plant microfossils that inform us 1028 

about past changes in vegetation and fire dynamics, paleoclimates and paleoecology. Data 1029 

needs careful archiving and long-term storage. Data of a specific site or a dataset can be 1030 

archived easily (for instance, the NOAA, http://www.noaa.gov/ and Pangaea, 1031 

https://www.pangaea.de/, offer this service to the paleo scientific community). 1032 

Over the past 15 years, the increasing amount of plant microfossils paleodata and the 1033 

establishment of data sharing in the scientific culture (although some barriers still exist in 1034 

hampering data sharing and good management practice, Neylon, 2017), and the development 1035 

of large dataset analysis skills opened the possibility to tackle new questions at regional and 1036 

global scale. Databases including plant microfossils are useful tools for comparing different 1037 

records, for reconstructing past regional dynamics of vegetation, fire and climate, and for 1038 

examining their feedbacks to climate. Those databases are also key for evaluating modeling 1039 

results of past climate, vegetation and fire. For example, recently the analysis of the European 1040 

Pollen Database allowed to re-examine the mean annual temperature trend over the Holocene 1041 

(Marsicek et al., 2018). They would make possible also to tackle questions arising from 1042 

global environmental change such as acclimation, adaptation, migration, risk and safe-1043 

operating space ecosystems. 1044 

Some databases can be focused on one proxy, on one continent or on a specific time period of 1045 

interest. The structure of the existing paleo databases is generally similar and includes key 1046 

metadata as geospatial and dating (chronological) information as well as data in the form of 1047 

pollen and charcoal counts. The main structure includes sites, samples, pollen or charcoal 1048 

data, and dating tables. 1049 

http://www.noaa.gov/
https://www.pangaea.de/
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The Global Pollen Database (GPD) has now been replaced by the new Neotoma multi-proxy 1050 

paleoecological database. The North American Pollen Database is already included in 1051 

Neotoma and the other regional constituent databases of the GPD are in the process of being 1052 

absorbed into the new structure as quickly as resources permit it (largely through voluntary 1053 

efforts). This includes the European Pollen Database, the Latin American Pollen Database 1054 

and the African Pollen Database. It is hoped that other regional pollen databases that 1055 

presently remain outside the public domain such as the Chinese and Indo-Pacific Pollen 1056 

Databases will ultimately be made available through Neotoma over the next few years. It 1057 

should be noted that all of these databases are relational databases composed of interlinked 1058 

tables, together with a harmonized and standardized taxonomy, and including additional 1059 

information on related aspects such as chronologies. In this way, they differ markedly from 1060 

simple data archives such as NOAA paleoclimate and Pangaea, which only provide file 1061 

storage. By creating a global interlinked database, Neotoma is providing the scientific 1062 

community with a powerful new analysis tool, and one that will allow analysis of not just 1063 

pollen data but all kinds of paleocological information. 1064 

The Global Charcoal Database holds hundreds of fire history records from six continents 1065 

mostly based on macro and micro-charcoal particles and on few black carbon accumulations 1066 

in diverse terrestrial and marine sediments. Successive global syntheses based on increasing 1067 

number of quantitative data demonstrated a strong relationship between fire and climate over 1068 

the past 21,000 years (Daniau et al., 2012; Marlon et al., 2016; Power et al., 2008). As 1069 

charcoal values vary by orders of magnitude between and within sites the data have to be 1070 

standardised to facilitate comparisons between sites and through time. A full description of 1071 

the procedure and details about the contents of the database can be found in Marlon et al. 1072 

(2008) and Power et al. (2010b). The current version of the database is now stored under the 1073 

MySQL environment at gpwg.paleofire.org. The paleofire R package (Blarquez et al., 2014) 1074 
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allows easy access to the GCD data and manipulation of its contents to produce biomass 1075 

burning reconstructions for subsets of records. 1076 

The ACER (Abrupt Climate Changes and Environmental Responses) project is an 1077 

international Focus Group of INQUA. ACER aims to understand the timing, frequency and 1078 

amplitude of the rapid climate variability, the so-called Dansgaard–Oeschger (D–O) cycles, 1079 

which occurred during the last glacial period (73–15 ka) and the feedback mechanisms 1080 

involved. Those rapid changes are similar in velocity and magnitude to those expected in the 1081 

21st-century. The global pollen and charcoal database released in 2017 (Sánchez Goñi et al., 1082 

2017) aims specifically at examining the nature of the vegetation and fire responses. The 1083 

database includes 93 pollen records with a temporal resolution better than 1000 years, 32 of 1084 

these sites also provide charcoal records. In order to compare patterns of change from 1085 

different regions, harmonized and consistent chronology based mostly on radiometric dating 1086 

and additional tie points based on event stratigraphy below 14C dating limit or below 14C 1087 

levels has been constructed for ninety six of these records.  1088 

The ACER synthesis emphasized the scarcity of paleoclimatic records from the tropical 1089 

regions with enough resolution to investigate millennial-scale climate events (Harrison and 1090 

Goñi, 2010; Sánchez Goñi et al., 2017). The Latin American ACER (LaACER) project was 1091 

conceived to fill this gap by compiling and synthesizing data from the American tropics and 1092 

subtropics. Paleorecords of these regions may help understanding globally-important oceanic 1093 

and atmospheric systems in the climate variability since these regions are influenced by the 1094 

Pacific and Atlantic oceans, and by large-scale atmospheric features including the 1095 

Intertropical convergence Zone (ITCZ), El Niño-Southern Oscillation (ENSO), the North 1096 

American Monsoon (NAM) and the South American Summer Monsoon (SASM) (Garreaud 1097 

et al., 2009). LaACER sits within the Paleoclimate commission of INQUA, and was co-1098 

sponsored by PAGES (Urrego et al., 2014). 1099 
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Acrony

m 

Full name Status Website link proxy Key 

references 

APD African Pollen 

Database 

archive  pollen Vincens et 

al. (2007) 

EPD European Pollen 

Database 

Active http://www.e

uropeanpolle

ndatabase.net

/data/ 

pollen Giesecke et 

al. (2014) 

GCD Global Charcoal 

Database 

Active, 

MySQL 

https://paleof

ire.org/ 

charcoal V1: Power et 

al. (2008) 

V2: Daniau 

et al. (2012) 

V3: Marlon 

et al. (2016) 

V4: in 

progress 

ACER 

and 

LaACER 

 archived in 

Microsoft 

AccessTM at 

https://doi.or

g/10.1594/P

ANGAEA.8

 Pollen and 

charcoal - 

focus on the 

last glacial 

period 

Sánchez 

Goñi et al. 

(2017) 

https://doi.org/10.1594/PANGAEA.870867
https://doi.org/10.1594/PANGAEA.870867
https://doi.org/10.1594/PANGAEA.870867
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70867. 

 

Neotoma Neotoma 

Paleoecology 

Database 

Active http://www.n

eotomadb.or

g 

Various 

paleoecologi

cal data 

including 

pollen 

(Williams et 

al., 2018) 

 1101 

Table 3: List of databases including pollen and microcharcoal sedimentary records 1102 

 1103 

5. Glacial-interglacials cycles of the 100-ky world and the climatic shift of the Mid-1104 

Bruhnes event during the Middle Pleistocene 1105 

 1106 

5.1 Vegetation 1107 

 1108 

For the last climatic cycle, vegetation reconstructions and simulations suggest that temperate 1109 

forests dominated the mid-latitude landscape during the last interglacial while steppe and 1110 

tundra largely expanded, south of a large area covered by ice-sheets, during the last glacial 1111 

period (e.g.Harrison et al., 1995; Harrison and Prentice, 2003; Hoogakker et al., 2016). The 1112 

interglacial-glacial cooling generated a fragmentation of the boreal and temperate forests. 1113 

Their area of extent during the LGM was greatly reduced in Eurasia while they migrated 1114 

southward in eastern North America. Temperature variations as well as the low CO2 1115 

concentrations, which have a direct physiological effect on plants, strongly influenced the 1116 

vegetation worldwide during the last glacial period (e.g. Bennett and Willis, 2000; Harrison 1117 

https://doi.org/10.1594/PANGAEA.870867


48 
 

and Prentice, 2003). For further details, the reader is directed to a set of review papers 1118 

making a state of the art knowledge on vegetation changes on each continent based on Late 1119 

Pleistocene pollen records (Bigelow, 2013; de Beaulieu et al., 2013; Hooghiemstra and 1120 

Berrio, 2013; Kershaw and van der Kaars, 2013; Lozhkin and Anderson, 2013; Meadows and 1121 

Chase, 2013; Thompson, 2013; Urrego et al., 2016). Hereafter, we will focus on vegetation 1122 

changes during the Middle Pleistocene, from 781 to 126 kyr ago.  1123 

Several terrestrial and marine continuous pollen records covering only part of the Middle 1124 

Pleistocene exist. Here we review the long pollen sequences covering continuously the full 1125 

Middle Pleistocene. The most well-known terrestrial long pollen sequences were recovered in 1126 

the sixties and seventies in southern Europe and South America: Tenaghi Philippon and 1127 

Funza (Fig. 5 and 6). They yields a 1.35 Ma continuous history of the vegetation and climate 1128 

in the Philippi plain from Greece (Tzedakis et al., 2006; Van Der Wiel and Wijmstra, 1987a, 1129 

b; Wijmstra, 1969; Wijmstra and Smit, 1976) and a 2.25 Ma history of the tropical Andean 1130 

vegetation in the Bogotá high plain from Colombia (Hooghiemstra, 1989; Torres et al., 1131 

2013), respectively. Over the past two decades, a huge effort was done in the frame of the 1132 

ICDP (International Continental scientific Drilling Program) to drill ancient lakes and recover 1133 

long terrestrial sedimentary archives. In particular, the Heqing lake drilling allowed 1134 

producing an outstanding pollen sequence recording the vegetation and Asian monsoon 1135 

variability in southwestern China over the last 2.6 Ma (Xiao et al., 2007; Xiao et al., 2010; 1136 

Zhisheng et al., 2011). Sedimentary archives going back to 1.8 and 1.2 Ma were also 1137 

collected from the tropical African lakes Bosumtwi and Malawi and pollen records were 1138 

generated for the last 540 and 600 kyr, respectively (Ivory et al., 2016; Ivory et al., 2018; 1139 

Miller and Gosling, 2014). In Brazil, a 50 m deep borehole drilled in 2017 at Lake Colônia 1140 

will allow studying the response of the Atlantic rainforest and fire to the South American 1141 

subtropical monsoon variability during the last 1.6 Myr (Ledru et al., 2015; Ledru, 1142 
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pers.comm.). At higher latitudes, pollen data from the famous Siberian drill sites Lake 1143 

El’gygytgyn, Lake Baikal and Lake Hovsgol are also available. However, pollen data from 1144 

Lake El’ El’gygytgyn are so far available for selected periods only, mostly interglacial 1145 

periods (Melles et al., 2012; Wenwei et al., 2018)). In the Baikal region, although both 1146 

sedimentary archives are continuous, pollen records are not because of low pollen 1147 

concentrations in glacial sediments (Prokopenko et al., 2010; Prokopenko et al., 2009). A 1148 

global synthesis of the available marine pollen records (Sánchez Goñi et al., 2018) reveals 1149 

that among the 129 sites listed, 19 cover several climatic cycles, 8 go beyond the Mid-1150 

Brunhes event with only 3 sites covering entirely the Middle Pleistocene. These sites are the 1151 

ODP site 1144 from the South China Sea (Sun et al., 2003), the ODP Site 646 off Greenland 1152 

(de Vernal and Hillaire-Marcel, 2008) and the IODP site U1385 from the SW Iberian margin 1153 

although pollen data are mostly available for interglacial periods, so far (Sánchez Goñi et al., 1154 

2018). One additional site, the ODP site 1075 from the Congo fan, contains pollen data for 1155 

the interval 600-1050 kyr (Dupont et al., 2001). The Middle Pleistocene sequences reveal that 1156 

like the last climatic cycle, the past glacial-interglacial cycles forced repeated large biome 1157 

shifts.  1158 

In southern Europe, the 100-kyr cycles are marked by the alternation of interglacial temperate 1159 

forest and glacial open vegetation as shown by the Tenaghi Philippon and the IODP site 1160 

U1385 pollen sequences but also in other southern European pollen sequences covering 1161 

several climatic cycles such as Ioannina and Kopais in Greece (Okuda et al., 2001; Tzedakis, 1162 

1993; Tzedakis et al., 1997; Tzedakis et al., 2006), Praclaux in France (de Beaulieu et al., 1163 

2001; Reille et al., 2000), Lake Ohrid in Albania (Sadori et al., 2016), Valle di Castiglione in 1164 

Italy (Follieri et al., 1988) and cores MD99-2331/MD03-2697/MD01-2447 from the NW 1165 

Iberian margin and MD95-2042/MD01-2443 from the SW Iberian margin (e.g. Desprat et al., 1166 

2017; Sánchez Goñi et al., 2018). During all interglacial Marine Isotopic Stage (MIS), two or 1167 
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even three major phases of forest expansion occurred, related with low ice volume (warm 1168 

MIS substages) and boreal summer insolation peaks. Despite small ice volume fluctuations 1169 

during the interglacial MIS, the temperate tree variations in the Mediterranean region are of 1170 

high amplitude due to the strong influence of precession on the Mediterranean vegetation 1171 

(Sánchez Goñi et al., 2018; Tzedakis, 2007). However, the most important forest phase often 1172 

occurs at the beginning of the MIS during the substage with the largest ice volume minimum, 1173 

corresponding to the interglacial sensu stricto (e.g. Desprat et al., 2017; Tzedakis, 2005). In 1174 

addition, emblematic constituents of ancient European forests, the so-called “Tertiary relicts”, 1175 

such as Eucomia, Carya, Pterocarya, Cedrus and Tsuga, became extirpated over Europe 1176 

during the Middle Pleistocene. Most of them disappeared from the Philippi plain during the 1177 

MIS 16 glacial period, setting the point from which less diverse interglacial forests, similar to 1178 

the modern one, established in southern Europe (Tzedakis et al., 2006). 1179 

In south America, glacial-interglacial temperature changes forced cyclical altitudinal 1180 

migration of the montane forest and páramo, the open equatorial alpine vegetation, as shown 1181 

by the Funza sequence and the 280 kyr-long pollen record Fuquene (Groot et al., 2011; 1182 

Hooghiemstra and Sarmiento, 2001). However, the composition of interglacial Andean forest 1183 

changed over the last one million years. Quercus immigrated in the Bogota area at ~430 kyr 1184 

ago, during MIS 12, becoming a major constituent of the Andean forest since MIS 7, 1185 

competing at high altitudes with Weinmannia and Podocarpus and replacing Polylepis near 1186 

the upper forest limit (Torres et al., 2013). 1187 

In Africa, marine pollen records such as the IODP site 1075 and the 700 kyr-long records 1188 

M16415-2 and GIK16867-3 located off tropical Africa, indicate that the extent of the major 1189 

vegetation formations also varies with the 100 kyr glacial-interglacial cycles although 1190 

migrations of the southern Saharan desert limit appear paced by obliquity. In addition, in the 1191 

tropics the rain forest fluctuated with summer insolation and precession, likely related with 1192 
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the orbital forcing of the monsoon variability (Dupont, 2011; Dupont and Agwu, 1992; 1193 

Dupont et al., 2001). At the orbital-scale, tropical lowland ecosystems drastically shifted from 1194 

woodland to savannah in the western Africa and from tropical forest to desert, steppe and 1195 

grassland vegetation in the eastern Africa in response to strong regional hydroclimatic 1196 

changes (Ivory et al., 2018; Miller et al., 2016b). 1197 

While the MBE is clearly recorded by marine and ice archives, this event is not a clear 1198 

feature of pollen records. The amplitude of forest expansion does not appear higher during 1199 

the post-MBE interglacials in southern Europe pollen sequences (i.e. Tenaghi Philippon, 1200 

Tzedakis et al. (2006); IODP site U1385, Sánchez Goñi et al. (2018); Lake Ohrid, Sadori et 1201 

al. (2016)) nor in northern high latitudes (ODP 646, de Vernal and Hillaire-Marcel (2008)) 1202 

and tropical Africa and South America (Dupont (2011); Funza, Torres et al. (2013)) records 1203 

(Fig. 6). In the Heqing basin, Tsuga percentages, an indicator of winter temperature and 1204 

annual temperature range, also do not display the MBE, although the XRF data show reduced 1205 

strength of the summer monsoon rainfall during the interglacial peaks of the last 400 kyr 1206 

likely related to strong inter-hemispheric interaction (Zhisheng et al., 2011). Simulations with 1207 

the LOVECLIM model showed that in comparison with pre-MBE interglacials, the post-1208 

MBE interglacials are globally warmer mainly during boreal winter in response to both 1209 

higher atmospheric greenhouse-gas concentrations and increased insolation during this 1210 

season, in particular in the Southern Hemisphere (Yin and Berger, 2010). However, this 1211 

simulated warming differences exhibit a strong regional and seasonal pattern supporting that 1212 

some regions such as western Europe or tropical South America, were likely not affected by 1213 

the MBE or as strongly as the southern high latitudes where the largest difference is 1214 

displayed.  1215 

Long pollen sequences also contribute to show that past interglacial periods of the past one 1216 

million years are diverse in terms of intensity, temporal trend, duration as well as spatial 1217 
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variability (Past Interglacials Working Group of PAGES, 2016; Tzedakis et al., 2017). For 1218 

instance, records from northern high latitudes clearly display this diversity in warming 1219 

strength, suggesting that some interglacial periods were particularly warm, such as the 1220 

“super-interglacial” MIS 11 (Melles et al., 2012). During this stage, the southern Greenland 1221 

ice-sheet collapsed (Reyes et al., 2014) allowing the expansion of the boreal conifer Picea in 1222 

that region usually devoid of trees (de Vernal and Hillaire-Marcel, 2008). In contrast, in the 1223 

mid-latitudes, the difference in warming intensity between interglacials appears tenuous as 1224 

shown by weak differences in temperate tree percentages in the European pollen records from 1225 

the NW Iberian margin and the Massif Central (de Beaulieu et al., 2001; Desprat et al., 2017) 1226 

Pollen records from the southern Iberian margin show that the magnitude of Mediterranean 1227 

forest development in the Iberian Peninsula substantially differed from one interglacial to 1228 

another suggesting that the amount of winter precipitation was quite variable (Desprat et al., 1229 

2017; Sánchez Goñi et al., 2018). The interglacial hydroclimate variations observed in SW 1230 

Iberia do not, however, parallel with the high latitude warming strength. The regional 1231 

variability of the magnitude of temperature and hydroclimate change on land is a strong 1232 

feature given by the few available Pleistocene sequences. However, an accurate view and 1233 

understanding of the regional impact of climate changes during warm periods require suitable 1234 

sedimentary archives to be recovered and analysed in the future. 1235 

 1236 

Figure 5 1237 

Figure 6 1238 

 1239 

5.2 Fire 1240 

 1241 
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The different syntheses of the Global Charcoal Database (Daniau et al., 2012; Marlon et al., 1242 

2016; Power et al., 2008) showed that biomass burning varies closely with climate changes. 1243 

For example, biomass burning increased globally from the Last Glacial Maximum to the 1244 

Holocene (Fig 6d). Daniau et al. (2012) demonstrated this global increase in biomass burning 1245 

is controlled by rising mean annual temperature and moisture, temperature being the primary 1246 

control. 1247 

Few biomass burning records document older glacial/interglacial transition. The synthesis of 1248 

twenty long records of charcoal, registering not only the Holocene but also the Eemian and 1249 

part of the last glacial period, suggested that biomass burning is generally high during 1250 

interglacials and low during glacials (Daniau et al., 2010). Similar results based on 1251 

microcharcoal analyses were observed more recently in Anatolia (Pickarski et al., 2015) and 1252 

Greece (Lawson et al., 2013), and in the Andes from a macroscopic charcoal record covering 1253 

the last ca. 370 kyr (Gosling William et al., 2009; Hanselman et al., 2011). Increases of 1254 

biomass burning during interglacials in the Andes appeared to be associated with increased 1255 

fuel load from the Polylepis woodlands expansion. 1256 

However, other regions in the tropics and the subtropics illustrate the opposite trend in 1257 

biomass burning, i.e. high level of biomass burning during glacials or during the LGM 1258 

(Daniau et al., 2013; Inoue et al., 2018; Nelson et al., 2012). A clear cyclic pattern is 1259 

observed in southern Africa by a marine long microcharcoal record covering several 1260 

glacial/interglacial cycles over the last 180,000 - 30,000 years (Fig. 7c). Peaks in biomass 1261 

burning occur during each precession and local summer insolation maxima (Fig. 7b) (Daniau 1262 

et al., 2013). Under reduced monsoonal activity, dry and fuel-limited interglacials would have 1263 

reduced fire activity compared to glacials characterized by enhanced precipitation supporting 1264 

grass-fueled fires. This hypothesis was confirmed by modeling (Woillez et al., 2014) and by 1265 

vegetation observation (Urrego et al., 2015). Grass-fueled fires were also suggested to be 1266 
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higher under colder climates in China based on the analysis of the black carbon content, 1267 

another fire proxy, from loess sequences (Wang et al., 2005). 1268 

Two long terrestrial charcoal records older than the MBE exist yet. One is from tropical 1269 

woodland (lake Malawi, eastern Africa) and covers the last 1.2 million years (Ivory et al., 1270 

2016). Charcoal record was only interpreted for the last 600,000 years and the study 1271 

suggested that fire activity was a component of the ecosystem since the beginning of MIS7 1272 

and a driver of the decline in species richness at 80,000 years (Ivory et al., 2018). Presence of 1273 

charcoal is also reported in the lake Bosumtwi sequence covering the last 540,000 years, 1274 

located in the tropical rainforest region of West Africa (Miller et al., 2016a) but no charcoal 1275 

time series were presented in this paper. 1276 

The longest published record of fire covering the last one million years is from Bird and Cali 1277 

(1998) but is a measure of organic resistant elemental carbon (OREC). Originally, they 1278 

reported peaks in fire activity at the transitions from interglacial to glacial modes since MIS 1279 

13. The only peak during a full interglacial occurred at MIS 1 and was interpreted as of 1280 

anthropogenic origin because no peak in fire was observed during other past interglacials. 1281 

They later published a revised chronology of the record (Bird and Cali, 2002) showing that 1282 

fire also peaked during the interglacial MIS7; their anthropogenic influence hypothesis from 1283 

their original paper being then challenged. The microcharcoal analyses (Daniau A-L, work in 1284 

progress) on the IODP site U1385 from the SW Iberian margin (Sánchez Goñi et al., 2018) 1285 

covering the last one million years will allow exploration of patterns of fire at orbital-scale in 1286 

relation to changes in vegetation and hydrology in a region considered highly vulnerable to 1287 

future fires (Settele et al., 2014). 1288 

 1289 

6. Millennial-scale changes during the last glacial period  1290 

 1291 
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6.1 Vegetation 1292 

 1293 

About 200 pollen records cover the last glacial period worldwide, but only half have 1294 

sufficient resolution and dating control to show millennial-scale variability (Harrison and 1295 

Goñi, 2010). Here we illustrate patterns of vegetation in response to Dansgaard-Oeschger 1296 

events (D-O) focusing on Europe, North America, Africa and South America obtained from 1297 

the synthesis of the ACER International Focus group in 2010 (Fletcher et al., 2010; Hessler et 1298 

al., 2010b; Jimenez-Moreno et al., 2010; Sanchez Goñi and Harrison, 2010). Those patterns 1299 

are based on changes in biomes, defined by original authors as pollen percentages of certain 1300 

taxa. The recent published harmonised chronology (Sánchez Goñi et al., 2017) and the 1301 

application of biomisation on those records (Harrison S, pers. com) will allow a deeper 1302 

analysis of the impact of rapid climate change on the land biosphere. 1303 

In Europe, high temporal resolution terrestrial, such as Lago Grande di Monticchio in Italy 1304 

(Allen et al., 1999) or Tenaghi Philippon in Greece (Müller et al., 2011), and marine pollen 1305 

records (for instance MD95-2042, Fig 6h, (Sánchez Goñi et al., 2000b)) reveal changes in 1306 

vegetation cover and composition on millennial timescales during the last glacial period. 1307 

Continuous records spanning the entire last glacial are concentrated in the Mediterranean 1308 

region and southern Europe, while records from central and northern Europe tend to be 1309 

fragmentary (Feurdean et al., 2014; Fletcher et al., 2010). Greenland Interstadials (GI) were 1310 

associated with relatively warm and humid conditions over Europe, promoting the 1311 

establishment of grassland and shrub tundra in northwestern Europe, shrub-and forest-tundra 1312 

in northeastern Europe, open boreal forest in central western Europe and the Alpine region, 1313 

and open temperate forest in southern Europe (Fletcher et al., 2010). Greenland Stadials (GS) 1314 

or Heinrich Stadials (HS) were marked by cool and dry stadials over Europe and by the 1315 

expansion of xerophytic and steppe taxa (Fletcher et al., 2010). Marine pollen records from 1316 
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the Atlantic and Mediterranean furthermore play a vital role in demonstrating the effective 1317 

synchrony of atmospheric and oceanic signals of D-O variability (Naughton et al., 2009; 1318 

Roucoux et al., 2005; Sánchez Goñi et al., 2002; Sánchez Goñi et al., 2000b), since 1319 

vegetation changes typically display a one-to-one match with millennial-scale changes in 1320 

marine paleoclimate tracers such as foraminiferal assemblages, organic biomarkers or ice-1321 

rafted detritus (in the Atlantic) (Sánchez Goñi et al., 2018). In addition, high temporal 1322 

resolution records from the Iberian margin show that vegetation/climate response to Heinrich 1323 

Stadials (HS) is even more complex, marked by two or three phases (Fletcher and Sanchez 1324 

Goñi, 2008; Naughton et al., 2007; Naughton et al., 2009; Naughton et al., 2016). In 1325 

particular the last HS (HS1) (Oldest Dryas on the continent; Naughton et al. (2007)) is 1326 

marked by three synchronous main phases in regions directly influenced by the North 1327 

Atlantic: a first phase with extremely cold/relatively wet conditions, a second phase 1328 

characterized by cool/dry conditions, and a last phase with relatively warmer/increasing 1329 

moisture availability. Both the Atlantic Meridional Oceanic Circulation slowdown and 1330 

changes in the strength and position of North Atlantic westerlies could explain the 1331 

temperature and moisture variability within HS 1 in western Iberia (Naughton et al., 2009; 1332 

Naughton et al., 2016). 1333 

In North America, vegetation responded rapidly also to millennial-scale variability but the 1334 

absolute phasing of this response to Greenland atmospheric surface temperatures is uncertain. 1335 

Altitudinal movements of climate-sensitive plant species occurred in the western part 1336 

characterised by more mountainous regions while the southeast showed latitudinal shifts in 1337 

vegetation (Jimenez-Moreno et al., 2010). The YD signature is spatially variable. It is clearly 1338 

marked by a cold reversal in pollen records from the northwest and northeastern North 1339 

America(Peteet, 1995; Shuman et al., 2002b; Whitlock and Brunelle, 2007). Toward the 1340 

continental interior, in the Midwest, pollen records do not display vegetation reversal during 1341 
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the YD but distinct plant associations from earlier and later time periods suggesting with 1342 

warmer than before summers and colder than before winters. This vegetation patterns is 1343 

likely related to the unique combination of forcings (Shuman et al., 2002a). In contrast, 1344 

warmer and wetter conditions during the YD and the HS are recorded in Florida at Lake 1345 

Tulane (Grimm, 2006). The YD atypical warming is even detected up to the Virginia 1346 

Appalachians, at Browns Pond, although at the same latitude, the Chesapeake Bay pollen 1347 

record indicates cooler and drier conditions close to the coast (Kneller and Peteet, 1999; 1348 

Willard, 2013). 1349 

Tropical Africa and South America present few high resolution records covering the full 1350 

glacial period. The compilation of Hessler et al. (2010a) based on about 16 pollen records 1351 

showed that the vegetation signature of HS and GI can be opposite between the northern and 1352 

southern parts of the region influenced by the ITCZ. The influence of the ITCZ is particularly 1353 

well evidenced in northeastern Brazil where a rain forest development during the HS 1 is 1354 

related to an ITCZ southward shift (Ledru et al., 2006). Furthermore, concomitant lowland 1355 

vegetation changes between this region and western Patagonia reveal that the ITCZ and the 1356 

southern westerlies shift together through an atmospheric teleconnection regulated by the 1357 

Atlantic Meridional Oceanic Circulation variations (Montade et al., 2015). The recent study 1358 

of Urrego et al. (2016) identified rapid responses of the tropical vegetation to millennial-scale 1359 

climate variability in the Andean tropics. They found that Andean forest migrations as far as 1360 

16.5° south of the Equator displayed millennial-scale climate oscillations closely linked to the 1361 

Greenland ice core (Wolff et al., 2010) and North-Atlantic records (Martrat et al., 2007). The 1362 

signature of HS and the Younger Dryas were generally recorded as downslope migrations of 1363 

Andean forest and likely linked to air temperature cooling. The GI 1 signal is overall 1364 

comparable between northern and southern records and indicates upslope Andean forest 1365 

migrations and warming in the tropical Andes. Cooling during Northern-hemisphere stadials 1366 
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and warming during interstadials recorded by Andean vegetation was consistent with 1367 

millennial-scale fluctuations of δ18O in the Sajama ice cap and uk’37-derived sea surface 1368 

temperature (SST) changes in the western tropical Atlantic. However, differences in 1369 

amplitude between the SST and forest migrations suggested a potential difference between 1370 

the magnitude of temperature change in the ocean and the atmosphere that could be related to 1371 

the thermal inertia of the oceans. Together these findings suggest that the precipitation 1372 

signature of millennial-scale events follows the predicted migration of major atmospheric 1373 

systems and circulation cells, but the temperature signature is driven by Northern-1374 

Hemisphere fluctuations. 1375 

 1376 

6.2 Fire 1377 

 1378 

Sixty seven sedimentary charcoal records (30 sites with better than millennial resolution) 1379 

which have records for some part of the last glacial period were compiled to examine changes 1380 

in global biomass burning to rapid climate changes associated with Dansgaard–Oeschger (D-1381 

O) cycles (Daniau et al., 2010). This synthesis indicated that biomass burning increased 1382 

during D-O warming events and decreased during intervals of cooling, including the Heinrich 1383 

stadials. In addition, this analysis showed that biomass burning responded extremely quickly 1384 

to rapid climate changes, within a few hundred years. At global scale, a vegetation 1385 

productivity forcing was speculated to explain increases (decreases) in fire during D-O 1386 

warming (cooling) because vegetation itself responds to rapid millennial-scale changes 1387 

(Daniau et al., 2010). At regional scales, this vegetation productivity hypothesis is clearly 1388 

illustrated by a marine record documenting south-western Iberian Peninsula vegetation (Fig. 1389 

7h, Sánchez Goñi et al. (2000b)) and fire (Fig. 7g, Daniau et al. (2007)). Variations in fire 1390 

dynamics are related to changes in fuel type and quantity due to shifts between semi-desert 1391 



59 
 

vegetation during D-O stadials and Heinrich stadials and Mediterranean forest during D-O 1392 

interstadial (Daniau et al., 2007). 1393 

Other proxies like ammonium from Greenland ice cores also exhibit D-O cycles, with 1394 

increases in fire in North America during GI (Fig 7e, Fischer et al. (2015)). A pattern of D-O 1395 

cycles is also observed in the Australasian region (Mooney et al., 2011). 1396 

The Younger Dryas (~12.9 – 11.6 thousand years ago) was the last of a series of abrupt 1397 

deglacial climate events and its end marks the beginning of the Holocene. It is sometimes 1398 

considered the most recent D-O event, but it is not thought to be caused by ice-rafted debris 1399 

and so is different. Charcoal records across North America were synthesized for the YD 1400 

interval in part to address a hypothesis that a large comet impact caused the climate change 1401 

and set of continent-wide wildfires. The fire synthesis (Marlon et al., 2009) provided no 1402 

evidence for this, but did indicate widespread fire activity at both the beginning and end of 1403 

the YD interval, suggesting that fire increases when large and rapid climate changes and 1404 

associated ecosystem reorganizations occur. 1405 

In the central American lowlands, fire activity increased during Greenland stadials and 1406 

decreased during interstadials (Correa-Metrio et al., 2012) although the direction of this 1407 

relationship is heavily dependent on the chronology. 1408 

 1409 

Figure 7 1410 

 1411 

7. Post-glacial vegetation and fire changes 1412 

 1413 

7.1 Europe 1414 

 1415 
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At the beginning of the Holocene, the higher summer insolation, rising greenhouse gas levels 1416 

and retreating residual LGM ice-sheets caused a general warming of the climate that 1417 

encouraged the spread of early-successional trees such as birch and pine across Europe and 1418 

the arrival of other arboreal taxa from their glacial refugia. This post glacial development led 1419 

to a rapid change in the abundance and composition of plant taxa (Birks and Birks, 2008; 1420 

Marquer et al., 2014). The mid-Holocene represented the warmest period of the Holocene 1421 

over higher latitudes of the Northern Hemisphere, and in Europe was characterized by the 1422 

spread northward of temperate deciduous trees  (e.g. hazel, elm, lime, oak and Alder; Birks, 1423 

1986). Over southern Europe, temperate deciduous vegetation also expanded during the mid-1424 

Holocene (Brewer et al., 2017; Collins et al., 2012; Davis et al., 2015; Prentice et al., 1996), 1425 

indicative of cooler and wetter summers at this time over most (Davis and Brewer, 2009; 1426 

Davis et al., 2003b; Hessler et al., 2014; Huntley and Prentice, 1988; Mauri et al., 2015; Wu 1427 

et al., 2007), but not all of the region (Samartin et al., 2017). From the mid-Holocene, the 1428 

climate cooled over northern Europe and generally warmed over southern Europe, following 1429 

a decline in summer insolation (Imbrie et al., 1992) and weakening of the Earths latitudinal 1430 

temperature and insolation gradient (Davis and Brewer, 2009). In the circum-Mediterranean 1431 

lands, forest expansion was not limited by distance to glacial refugia and where moisture 1432 

levels permitted, forests developed rapidly in the early Holocene, or indeed had already 1433 

developed during the Late Glacial (e.g. Allen et al., 2002; Fletcher and Sanchez Goñi, 2008). 1434 

In drier settings, including Mediterranean North Africa, steppic, scrub and open woodland 1435 

landscapes often persisted into the Early Holocene (Campbell et al., 2017), delaying the 1436 

maximum development of mixed Mediterranean and temperate forest cover until the later 1437 

Early Holocene and Mid-Holocene. From the Mid-Holocene (ca. 5 ka), forests declined in the 1438 

Western Mediterranean associated with a gradual aridification trend (Carrión et al., 2010; 1439 

Chabaud et al., 2014; Fletcher and Sanchez Goñi, 2008), while in the central Mediterranean 1440 
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compositional changes including increase in Mediterranean elements is recorded (Allen et al., 1441 

2002; Desprat et al., 2013). 1442 

The development of pollen records at high sampling resolution, with strong dating control 1443 

and often in a multiproxy investigative framework has also yielded a major contribution to 1444 

the understanding of Holocene vegetation responses to climate on short timescales. Pollen 1445 

records have played an important role in evaluating the speed of ecosystem response to global 1446 

climate change at the onset of the Holocene. They reveal that vegetation responses to major 1447 

climatic perturbation initiated within a few decades, on timescales similar to those observed 1448 

in fast-reacting tracers such as the Greenland ice cores (Birks and Ammann, 2000). High-1449 

resolution pollen records also reveal vegetation responses to rapid climate changes during the 1450 

Holocene. The 8.2 ka abrupt cooling event has been widely detected, for example (Ghilardi 1451 

and O’Connell, 2013; Pross et al., 2009; Tinner and Lotter, 2001). Numerous pollen records 1452 

also reveal that the 8.2 ka event is not unique, but rather one of several recurrent Holocene 1453 

cooling events which impacted on vegetation development. For example, in the Western 1454 

Mediterranean pollen records reveal multiple early Holocene climatic perturbations, as well 1455 

as pervasive variability associated with the North Atlantic Bond Events (Burjachs et al., 1456 

2016; Pèlachs et al., 2011; Pérez-Sanz et al., 2013; Ramos-Román et al., 2018). More widely, 1457 

especially sensitive dynamics can be observed at ecological margins, and pollen records are 1458 

valuable for reconstructing climate impacts at mountain timberlines (Feurdean et al., 2016; 1459 

Haas et al., 1998). At the sub-continental spatial scale, pollen records furthermore support the 1460 

identification of oscillating behaviour in atmospheric circulation systems, thus contributing to 1461 

the understanding of past dynamics of important modes of variability such as the North 1462 

Atlantic Oscillation (Di Rita et al., 2018; Fletcher et al., 2013). Against the wealth of pollen 1463 

evidence for sensitive and rapid vegetation response to Holocene climate variability can also 1464 

be set important examples of resilience and inertia (Aranbarri et al., 2014) which can 1465 
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ultimately help to refine the understanding of the vegetation-climate interactions at the 1466 

regional to global scale. 1467 

Pollen-based land cover reconstructions (REVEALS approach) show a decline in forest cover 1468 

from ca. 6 cal kyr BP in temperate and northern Europe, while arable land indicators (such as 1469 

cereals) become recurrent through time (e.g. Fyfe et al., 2015; Marquer et al., 2017; Marquer 1470 

et al., 2014; Roberts et al., 2018) (Fig. 8). This landscape openness at a sub-continental scale 1471 

is caused by intense Neolithic land clearance for agriculture practices. The impact of land-use 1472 

is gradually increasing from the early farming (ca. 7.4 cal ka BP in Central Germany; 1473 

(Shennan et al., 2013) to the last century. During the second half of the Holocene, human 1474 

pressure increases and results in a spread of arable land, pastures and intensification of 1475 

deforestation in most of Europe (e.g. Fyfe et al., 2015; Marquer et al., 2017; Ruddiman et al., 1476 

2016; Zanon et al., 2018). Land use is then regarded as the primary driver of this decline in 1477 

forest cover although the role of climate should not be dismissed (Marquer et al., 2017). 1478 

Identifying the relative role of climatic and anthropogenic forcing of vegetation changes on 1479 

different temporal and spatial scales is actually a great challenge based on pollen data 1480 

(Kuosmanen et al., 2018; Marquer et al., 2018; Marquer et al., 2017; Reitalu et al., 2013). 1481 

The major anthropogenic impacts occur during the last century, although vegetation still 1482 

remains climatically sensitive (Marquer et al., 2017). In addition, pollen-based REVEALS 1483 

modelling (Marquer et al., 2014) indicates an underestimation of grassland cover and later 1484 

timing of landscape openness during the Bronze Age in temperate and northern Europe 1485 

compared to the use of untransformed pollen data (pollen proportion). Deforestation was 1486 

therefore more important and started earlier than previously thought. The use of the 1487 

REVEALS model also provides a deeper understanding of the vegetation rate of changes and 1488 

the changes in vegetation composition and diversity over time and space. 1489 

 1490 
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Figure 8 1491 

 1492 

Over the past 30 years, charcoal-based paleofire studies have largely developed in Europe 1493 

because of raising awareness about the importance of fire as both a tool for human-driven 1494 

landscape transformation and a major ecological factor closely linked to climate and 1495 

vegetation. This research provided crucial methodological advances like the calibration of the 1496 

sedimentary charcoal records (Adolf et al., 2018a; Tinner et al., 1998; Tinner et al., 2006), 1497 

but above all a more comprehensive understanding of human-driven fires imprints on 1498 

forested ecosystems (Tinner et al., 2005), of the mechanisms causing the decline of certain 1499 

key species (Morales-Molino et al., 2017b; Tinner et al., 1999), and of the connections 1500 

between climate variability and fire regimes in previously assumed low flammability 1501 

temperate areas (Clark et al., 1989). 1502 

Charcoal-based studies made a major contribution to the assessment of the chronology and 1503 

relevance of fire use as a landscape management tool. The first evidence of forest clearance 1504 

by fire is usually related to the timing of agriculture arrival to the different European regions: 1505 

e.g. ca. 8 cal kyr BP at the Mesolithic-Neolithic transition in Italy (Vannière et al., 2008), 6.5 1506 

cal kyr BP in south-western France (Rius et al., 2009), 5.7 cal kyr BP in southern Germany 1507 

(Clark et al., 1989) and ca 4 cal kyr BP in southern Sweden (Olsson et al., 2010). Significant 1508 

vegetation changes such as the decline of several keystone tree species like holm oak 1509 

(Quercus ilex) (Colombaroli et al 2009) and silver fir (Abies alba) in the southern Alps and 1510 

Tuscany were attributed to the early human use of fire (Colombaroli et al., 2007; Henne et al., 1511 

2013; Tinner et al., 1999). Climate remains however the main driver of fire regimes at 1512 

regional to continental scales until the last millennia (Marlon et al., 2013). For instance, 1513 

increased fire activity between 11.7 and 6 cal kyr BP was related to stronger boreal summer 1514 

insolation and/or summer drought (Power et al., 2008) while the decreasing fire 1515 
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activity/frequency recorded since the mid-Holocene is attributed to decreasing seasonality 1516 

and/or wetter summers (Vannière et al., 2011) (Rius et al., 2011). The role of fire, of either 1517 

anthropogenic or natural origin, in the expansion of some emblematic tree species such as 1518 

Fagus sylvatica (e.g. Giesecke et al., 2007; Tinner and Lotter, 2006; Valsecchi et al., 2008), 1519 

on forest composition (Carrión, 2002; Carrión et al., 2003; Gil-Romera et al., 2010), and on 1520 

the historical vegetation dynamics of currently protected areas (Morales-Molino et al., 2017a) 1521 

(Morales-Molino et al., 2017b) remains matter of debate. 1522 

The paleofire research has eventually made available a large dataset of individual charcoal 1523 

and fire frequency records that has enabled a more comprehensive assessment of fire-1524 

vegetation-climate-human activities linkages at the continental scale. Recently, a synthesis of 1525 

around 20 high-resolution charcoal records from Portugal to Romania (Vannière et al., 2016) 1526 

highlighted that European fire regimes strongly depend on elevation, which underlines the 1527 

crucial role of vegetation productivity (biomass availability) of temperate and Mediterranean 1528 

biomes on fire activity at millennial timescales. This work also showed that fire frequency 1529 

peaked at ca 7-6 cal kyr BP at the European scale, and remained stable at high level from 4 1530 

kyr BP onwards, while burned biomass followed an inverse pattern. The decrease in southern 1531 

European biomass burning since 7 ka is in line with both orbitally-induced climate cooling 1532 

and reduction in biomass availability because of land use. 1533 

 1534 

7.2 North America 1535 

 1536 

Due to a long history in palynological research in North America, more than 1 300 pollen 1537 

sequences are included in the Neotoma paleoecology database (Williams et al., 2018) 1538 

covering entirely or part of the last 20 kyr, although most of them only contain the Holocene 1539 

period. Several state of the art papers aim at retracing the North American postglacial 1540 
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vegetation history, such as Gavin and Hu (2013), Wigand (2013), Whitlock and Brunelle 1541 

(2007) and Whitlock (1992) for the western part of the sub-continent, Williams and Shuman 1542 

(2013), Willard (2013), Grimm and Jacobson Jr (2004), Webb et al. (2003), Davis (2015), 1543 

Davis (1984), Naughton et al. (2015) and Blarquez and Aleman (2016) for the eastern part 1544 

and Bigelow (2013) for regions above 60°N. In North America, the deglacial warming (19-11 1545 

ka) along with the retreat North American ice-sheets resulted in large range shifts of 1546 

terrestrial ecosystems. Pollen records reveal a northward and east-west expansion of arboreal 1547 

taxa in NE North America. For instance, northern pines and spruce began their northward 1548 

migration while mesic and cool-temperate deciduous tree taxa expanded in the southeastern 1549 

United States after 17 cal ka BP (Willard, 2013). These cold-tolerant conifers expanded with 1550 

Betula and Alnus in regions formerly occupied by the Laurentide ice-sheet in the NE North 1551 

America while Pinus, Artemisia and Ambrosia migrated eastward. In the northwestern, high-1552 

elevation mesophytic forest taxa expanded to the west of the Cascade Range and Sub-Alpine 1553 

parkland to the east when warmth and humidity increased and the Cordilleran ice-sheet 1554 

retreated (at ~16 cal ka BP), while temperate arboreal taxa only appeared at ~14.5 cal ka BP 1555 

associated with Sub-Alpine species (Whitlock and Brunelle, 2007). This plant association no 1556 

longer exists today in North America. No-analog pollen assemblages characterized by high 1557 

abundances of the conifers Picea and Larix, the hardwoods Ulmus, Ostrya/ Carpinus, 1558 

Fraxinus and Quercus, and sedges are widely recorded in the Midwest during the late glacial 1559 

(17-12 ka BP). This unusual taxa combination is known as mixed parkland or spruce 1560 

parkland resulting from the individualistic plant response to the no-analog climate conditions 1561 

characterizing the last deglaciation and helped, at least in some areas, by megafaunal 1562 

population decline (Jackson and Overpeck, 2000; Williams and Shuman, 2013; Williams et 1563 

al., 2001). 1564 
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In the eastern North America, the pollen records reveal vegetation shifts in response to the 1565 

Younger Dryas-Holocene transition warming. Quercus became the dominant forest element 1566 

in the oak-pine association developing in the southeast due to warmer but persistent dry 1567 

conditions while in the northeast, white pine, oak and hemlock expanded in areas formerly 1568 

occupied by cold-tolerant taxa in response to increased warmth and moisture availability (e.g. 1569 

Naughton et al., 2015; Willard, 2013). In the northeast, temperature and humidity continues 1570 

to increase in the northern areas to reach a maximum during the Mid-Holocene as suggested 1571 

by the expansion of pine in New England and oak with some mesic tree taxa toward the south 1572 

during the Early Holocene followed by hemlock and beech during the Mid-Holocene 1573 

(Naughton et al., 2015; Williams and Shuman, 2013). In the southeast, the increase in 1574 

humidity only occurred in the Mid-Holocene as indicated by the widespread oak-dominated 1575 

forest decline and pine expansion. Pollen based reconstructions support stronger than present 1576 

annual precipitation at 6 ka for most of the eastern North America (Bartlein et al., 2011). The 1577 

Mid-Holocene wet conditions were interrupted a few millennia later, which resulted in the 1578 

replacement of pine by oak in the south and likely the well-known hemlock sudden decline 1579 

widely recorded at 5.5 ka in the northeastern US, although a pest outbreak cannot be 1580 

discarded (Williams and Shuman, 2013 and references therein). Eastern North American 1581 

pollen records indicate that dry conditions persisted into the Late Holocene. The Late 1582 

Holocene increased humidity suggested by vegetation changes in Northeast (NE) US (e.g. 1583 

Naughton et al., 2015) is supported by tree ring, varve thickness and lake level data (Marlon 1584 

et al., 2017). A cooling trend in this region over the last 2.5 millennia is also shown by 1585 

pollen-based summer and annual temperature reconstructions (Marlon et al., 2017 and 1586 

reference therein). Noticeable human impact on vegetation began with the European 1587 

colonization 500 years ago, through land clearance practices as shown the large reduction in 1588 

tree cover and expansion of Ambrosia recorded in eastern North America.  1589 
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In the western North America, the Holocene vegetation changes present a complex pattern 1590 

due to the heterogeneity of landscape and climatic influences. A main feature revealed by 1591 

pollen records is that Early Holocene contrasting hydrological changes between the northern 1592 

and southern regions. Drier (and warmer) than present summers are recorded in the Pacific 1593 

Northwest to southeastern Alaska and over much of the Northern Rocky Mountains and 1594 

wetter than present conditions in the American Southwest and the summer-wet regions of the 1595 

Rocky Mountains in response to stronger summer monsoons (Whitlock and Brunelle, 2007). 1596 

In the Great Basin, drought-tolerant shrub communities established in the Early Holocene 1597 

associated to drier conditions than today (Jimenez-Moreno et al., 2010; Wigand, 2013). 1598 

Pollen-based quantitative reconstructions show lower temperatures at 6 ka than at present and 1599 

the anomaly also appears stronger in the southwest likely related to the cloud cover generated 1600 

by the monsoonal circulation (Bartlein et al., 2011). From the middle to late Holocene, 1601 

western North American pollen records indicate cooler conditions along with increased 1602 

humidity in the north and dryness in the south likely related to a weakening of the summer 1603 

monsoon (Whitlock and Brunelle, 2007). 1604 

The North American vegetation also responded to higher frequency climatic changes during 1605 

the Holocene. For instance, the 8.2 ka abrupt cooling event is clearly detected in NE pollen 1606 

North America (Shuman et al., 2002a). Pollen based temperatures reconstructions show 1607 

warmer conditions during the Medieval Climate Anomaly than during the Little Ice Age 1608 

across North America (Viau et al., 2012). Even though differences are subtle, both events are 1609 

also detected in other proxy-derived reconstructions (Marlon et al., 2017). 1610 

Reconstructions of biomass burning from charcoal-based syntheses in four broad regions of 1611 

North America are generally marked by a gradual, persistent increase in biomass burning 1612 

during the Holocene except for the north eastern boreal forest (Blarquez et al., 2015). There 1613 

were large deviations from this general trend in the early Holocene, however, with 1614 
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millennial-scale intervals of high fire activity that often started and ended very abruptly 1615 

(Marlon et al., 2013). For example, in the northwestern boreal forests, there was relatively 1616 

high fire activity from 12-10 ka, and in the northeast, there was widespread, intensive fire 1617 

activity from about 10-8 ka as compared with later intervals. In contrast, fire activity was 1618 

very low in the west at that same time as compared with late-Holocene fire activity. All 1619 

regions showed gradual increases during the middle Holocene, and only the continent’s 1620 

interior grass and woodlands show maximum Holocene burning prior to 2 ka – here fire was 1621 

highest at 4 ka and has subsequently declined. Anthropogenic effects on fire are obvious in 1622 

the biomass burning records during the past century, but the 4-ka peak in burning in the 1623 

central region likely reflects anthropogenic activity as well. 1624 

 1625 

7.3 South America 1626 

 1627 

Evidence of Holocene environmental change from tropical South America showed that the 1628 

continent was impacted by significant changes in precipitation and intensified human 1629 

occupation (Prado et al., 2013; Smith and Mayle, 2018; Urrego et al., 2009). A mid-Holocene 1630 

drought (MHD) is recorded in the Andes, the savannas and Amazonia (Baker et al., 2001; 1631 

Berrío et al., 2002; Bush et al., 2007; Mayle et al., 2000; Paduano et al., 2003; Rowe et al., 1632 

2002; Urrego et al., 2013b) and had a significant impact in the climate and fire regimes of the 1633 

region. Multiple records indicate lowering of lake levels and reductions in sediment 1634 

accumulation or sedimentary hiatuses (Bush et al., 2007). However, mesic forest prevailed 1635 

around sites located in the core of Amazonia and the eastern flank of the Andes (e.g. Bush et 1636 

al., 2007; Urrego et al., 2010; Urrego et al., 2013a) while savanna vegetation and dry forest 1637 

expanded in seasonal parts of South America or nearby ecotones, (e.g. Berrio et al., 2002; 1638 

Berrío et al., 2002; Mayle et al., 2000). The MHD is also reported in subtropical South 1639 
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America by paleo-data syntheses predominantly based on pollen records (Prado et al., 2013; 1640 

Smith and Mayle, 2018). In particular, the replacement of wet forests by shrubs and 1641 

grasslands are frequently observed in southeastern Brazil during the mid-Holocene (e.g. 1642 

Behling and Safford, 2010). Only in Northeast Brazil is evidenced an opposite trend, with 1643 

more humid conditions during the mid-Holocene than during the late Holocene (Smith and 1644 

Mayle, 2018). Precipitation generally increased during the late Holocene and multiple studies 1645 

have revealed the interplay between changing climate conditions and human occupation. 1646 

Southward, in temperate regions, records of past vegetation mainly from western Patagonia 1647 

generally start after the retreat of the Patagonian Ice Sheet fully extended over the lands 1648 

during the Last Glacial Maximum (Bennett et al., 2000; Heusser, 1995; Moreno et al., 1999) 1649 

(Abarzúa et al., 2004; Fontana and Bennett, 2012; Haberle and Bennett, 2004; Markgraf and 1650 

Huber, 2010; Villa-Martínez and Moreno, 2007). At these southern latitudes, vegetation 1651 

changes followed the same climate trends evidenced by Antarctic ice core records. In 1652 

particular, the development of Nothofagus forest during the warming of the last deglaciation 1653 

is interrupted by a cold and wet event contemporaneous with the Atlantic Cold Reversal 1654 

before to reach Holocene climate conditions (Montade, 2011; Moreno and Videla, 2016). 1655 

Starting from ca. 11.5 ka, the early Holocene is marked by a development of thermophilous 1656 

tree taxa characterizing a warm and dry phase in northwest Patagonia (Montade et al., 2012; 1657 

Moreno, 2004). A subsequent expansion of the cold-resistant conifers from 7.5 ka indicate 1658 

more variable climate conditions superimposed on a cooling trend associated with an increase 1659 

in precipitation during the mid-Holocene that has persisted until the present (Henríquez et al., 1660 

2015). Further south, in southwest Patagonia (>50°S), the forest-steppe ecotone shifts in 1661 

lowlands show also a precipitation decrease during the early Holocene followed by a 1662 

precipitation increase (Fletcher and Moreno, 2011; Moreno et al., 2010). This pattern 1663 

suggests a co-variability of moisture changes through western Patagonia related to reduced 1664 
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intensity of the southern westerlies during the early Holocene and a sustained increase 1665 

afterward. However several paleoenvironmental records from southwestern Patagonia 1666 

indicate a different pattern characterized by wetter/windier conditions at the beginning of the 1667 

Holocene followed by intermediate conditions to reduced precipitation from the mid- to late 1668 

Holocene (Kilian and Lamy, 2012; Lamy et al., 2010). Resolving these inconsistencies in 1669 

southwest Patagonia still needs more high-resolution records of past vegetation and climate 1670 

dynamics. 1671 

Synthesis of fire records in South America since the LGM (Power et al., 2010a) show that 1672 

fire regimes increased during the late glacial and towards the Holocene. Such an increase in 1673 

continental-scale fire activity was linked to precipitation seasonality and suggests that fires 1674 

were mostly likely natural (Power et al., 2010a). However, precipitation seasonality explains 1675 

only part of the observed variability highlighting the importance of taking fuel availability 1676 

into account.  1677 

The mid-Holocene dry event also had a significant impact in fire regimes in tropical South 1678 

America. Urrego et al. (2013a) compiled fire records from forest, savanna and ecotone sites 1679 

in western Amazonia. This regional synthesis showed increased fire activity in forest sites at 1680 

around 9, 6 and 3 ka (Urrego et al., 2013a). The 6-ka fire peak seems the most consistent 1681 

amongst sites and largely coincides with the MHD. Regional drought during mid-Holocene 1682 

resulted in increased fire activity in sites where fuel was available. Increased fire activity was 1683 

also observed in savanna sites during the late Holocene and was probably associated with 1684 

human occupation (Maezumi et al., 2018; Urrego et al., 2013a; Watling et al., 2017). Finally, 1685 

multiple fire records in lowland Amazonia consistently show a signal of fire suppression 1686 

around 1500 AD when pre-columbian populations decreased due to the arrival of European 1687 

colonizers (Burbridge et al., 2004; Bush et al., 2000; Bush et al., 2007; Mourguiart and 1688 

Ledru, 2003; Urrego et al., 2013a).  1689 
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 1690 

7.3 Central and West Africa 1691 

 1692 

The distribution of current forests and savannas in West and Central Africa is thought to be 1693 

the legacy of the long-term history of climate and human impacts. Indeed, paleo-1694 

environmental reconstructions suggest that West and Central African forests have 1695 

experienced a succession of contraction and extension (Maley, 1991; Vincens et al., 1999) in 1696 

response to dry and humid periods since the Last Glacial Maximum (LGM, ~21 cal ka BP).  1697 

The LGM was a period of very low precipitation; temperatures and paleodata (Maley, 1991; 1698 

Shanahan et al., 2016) suggest that during this period tropical forests were even reduced to 1699 

only few refugees in Central Africa (Maley, 1996). After the Younger Dryas (from ~12.9 to 1700 

~11.7 ka BP), which was a short but intensely dry period (Shanahan et al., 2016), rainfall 1701 

started to increase at the beginning of the Holocene. During this period, also known as the 1702 

African Humid Period (deMenocal et al., 2000; Shanahan et al., 2015), rainfall was 1703 

apparently higher than present-day. The tropical forest was more widespread across West and 1704 

Central Africa than it currently is. Pollen data suggest that tropical forest was present in the 1705 

Adamawa Plateau of Cameroon (Lézine et al., 2013; Vincens et al., 2010) and the Niari 1706 

Valley of the Republic of Congo (Vincens et al., 1994; Vincens et al., 1998). The African 1707 

Humid Period ended abruptly ~4 ka BP, but sequentially in latitude (Shanahan et al., 2015), 1708 

with a period of reduced precipitation and major droughts that lasted until 1.2 ka BP (Vincens 1709 

et al., 1999). This period, called the ‘third millennium rainforest crisis’, is divided into two 1710 

major phases (Maley, 2002; Maley et al., 2018; Vincens et al., 1999). The first phase (~4 ka 1711 

BP), is associated with an abrupt decrease in rainfall (Maley et al., 2018), that impacted areas 1712 

in periphery of the Congo Basin and was responsible for the opening of coastal savannas in 1713 

Central Africa (Elenga et al., 1994; Ngomanda et al., 2005) and of the Dahomey Gap in West 1714 
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Africa (Salzmann and Hoelzmann, 2005). During the same period, savanna vegetation was 1715 

also heavily modified, with a gradual (during AHP termination) and abrupt (3 ka BP crisis) 1716 

floristic shifts from Guinean to Sudan-Guinean savanna (Salzmann et al., 2002). 1717 

The second phase was short and abrupt, between 2.5 and 2 ka BP, and showed strong climate 1718 

seasonality as suggested by sea surface temperature reconstructions and geological limestone 1719 

zones (Maley et al., 2018). Vegetation reconstructions from pollen data showed increasing 1720 

abundance of pioneer and secondary forest trees, and grasses (Vincens et al., 1999) 1721 

suggesting that during this period, forests were highly disturbed. Some authors suggested the 1722 

opening of a north-south savanna corridor in the Sangha River Interval (Maley and Willis, 1723 

2010) that would have permitted the migration of Bantu-speaking people, but the existence of 1724 

this corridor is not supported by recent phytolith records in the region (Bremond et al., 2017). 1725 

Interestingly, the relative role of climate and people in the third millennium crisis has been a 1726 

matter of some debate in the literature. Some authors tend to affirm that the Bantu migrations 1727 

actively participated to the large-scale forest disturbance (Bayon et al., 2012; Garcin et al., 1728 

2018) while others favor the climate hypothesis (Giresse et al., 2018; Lézine et al., 2013; 1729 

Maley et al., 2012; Neumann et al., 2012b). This debate is not yet resolved, but it seems that 1730 

the migration of Bantu people from the border of Cameroon and Nigeria, where they 1731 

originated, was concomitant to this abrupt climate change (Maley et al., 2018). Moreover, 1732 

Bantu people were agriculturalists and metallurgists (Bostoen et al., 2015), able to use slash-1733 

and-burn and needing large quantities of wood for metallurgy. They were farming pearl 1734 

millet (Neumann et al., 2012a) and cattle (Grollemund et al., 2015) within the present-day 1735 

tropical rainforest of western and central Africa. Even if they were not responsible for this 1736 

large scale event, they may have caused more localized perturbations, through canopy 1737 

opening and wood collection, in the forest (Neumann et al., 2012a; van Gemerden et al., 1738 

2003). Additionally, with or without the presence of people, even in the deepest part of the 1739 
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forest, charcoal were found in lakes, wetlands and soils, suggesting extended forest burning 1740 

(Biwolé et al., 2015; Hubau et al., 2015; Morin-Rivat et al., 2016; Tovar et al., 2014). An 1741 

increase in the occurrence of charcoal is registered when seasonality increased drastically 1742 

~2.5 ka BP (Hubau et al., 2015), with a possible role of people in maintaining newly formed 1743 

savannas in peripheral areas of the Congo forest (Neumann et al., 2012a). After 1.2 ka BP, 1744 

rainfall started to increase again, and forest expanded. This trend of forest transgression is 1745 

still observed today in some areas (Aleman et al., 2018b; Guillet et al., 2001; Youta Happi, 1746 

1998). 1747 

 1748 

 1749 

6. Conclusion and perspectives 1750 

 1751 

Terrestrial plant-derived microfossils -- pollen, microcharcoal and phytoliths -- have been 1752 

analysed in both terrestrial and marine sedimentary archives for several decades and 1753 

contributed to the current knowledge of past changes in vegetation and fire dynamics, 1754 

Quaternary paleoclimates and paleoecology. While the study of pollen is considered to be a 1755 

“classic” tool in this respect, interest in microcharcoal and phytolith represents a more recent 1756 

area of growth. 1757 

Several different techniques are employed to extract microfossils because of the diversity of 1758 

Quaternary sedimentary contexts, but the main objective is to concentrate microfossils for 1759 

microscopic observations. Identification and counting of pollen, microcharcoal and phytolith 1760 

require specialist expertise. Terrestrial plant microfossil data from sedimentary archives are 1761 

time-consuming to generate but are rich in information on past local to sub-regional 1762 

paleoenvironments. It is important therefore to continue improving the identification and 1763 

interpretation of these microfossils and to keep training the next generation of scientists. 1764 
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The datasets generated also need to be carefully archived and should benefit from long term 1765 

storage. Over the past 15 years, the growing wealth of plant microfossil paleodata, the 1766 

establishment of data sharing protocols in the scientific community and the development of 1767 

large (continental to global) datasets, and the development of new analytical approaches have 1768 

provided the opportunity to tackle new scientific questions. Key topics at regional and global 1769 

scales include the response of vegetation and fire to climate change, as well as feedback 1770 

mechanisms related to both vegetation, such as the vegetation-(snow)-albedo feedback, and 1771 

fire, such as fire feedback on the carbon cycle and on albedo. Those databases are also key 1772 

for developing data-model comparison exercises and evaluating modeling results of past 1773 

climate, vegetation and fire. Finally, they are also essential for applying lessons from the past 1774 

to respond to current biodiversity, conservation and management issues. 1775 

This review highlights strong regional variability in the response of past vegetation and fire to 1776 

Pleistocene climate changes. The different studies synthesized here nevertheless suggest 1777 

similar patterns: vegetation and fire respond to orbital, millennial and sub-millennial climate 1778 

changes; and their response may be rapid, within a few hundred years. This review also 1779 

highlights that climate is the major driver of vegetation and fire regimes since at least the 1780 

Middle Pleistocene. Human activities impacted on vegetation and fire at local scales mainly 1781 

since the mid-Holocene and most significantly during recent millennia.  1782 

Although terrestrial plant microfossils are well-established tools in Quaternary science, the 1783 

full extent of the information they contain remains to be exploited. Further calibration studies 1784 

are needed, i.e. coupling microfossil accumulation in sediments with remotely sensed 1785 

vegetation and fire. In addition, it is important to keep improving the taxonomic resolution of 1786 

these plant microfossils. For instance, morphometric analyses of pollen grains coupled with 1787 

statistical classification methods can in some cases provide greater taxonomic detail within 1788 

visually similar groups, e.g. Pinus (Desprat et al., 2015; Lindbladh et al., 2002). 1789 
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Morphological analyses of microcharcoal may bring also important new information for the 1790 

determination of burnt vegetation type although is not yet a widely used technique 1791 

(Hawthorne et al., 2018). Recent studies employing techniques from organic geochemistry 1792 

also highlight how the chemical composition of the preserved pollen wall may yield valuable 1793 

insights into taxonomy and/or environmental conditions during pollen formation such as past 1794 

solar radiation (e.g. Bell et al., 2017; Julier et al., 2016; Willis et al., 2011). In sum, the 1795 

prospects are great for exciting new insights from the study of terrestrial plant microfossils to 1796 

the understanding of Quaternary environmental and climatic change.  1797 
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Figure captions 1809 

 1810 

Figure 1: Reconstructing vegetation and fire using plant microfossils (pollen, phytolith and 1811 

microcharcoal) (modified from Patterson et al. (1987)). 1812 

 1813 
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Figure 2 : Examples of classical fossil pollen grains and spores presented by grain 1814 

arrangement and pollen apertural type: a. Pinus, b. Ericaceae, c. Cereal type, d. Poaceae, e. 1815 

Carpinus betulus, f. Betula, g. Amaranthaceae, h. Cyperaceae, i. Aspodelus, j. Scabiosa, k. 1816 

Acer, l. Quercus deciduous type, m. Erodium, n. Olea, o. Brassicaceae, p. Aster type, q. 1817 

Centaurea scabiosa type, r. Fagus, s. Cichorioideae, t. Ephedra distachya type, u. Ephedra 1818 

fragilis type, Spores: v. Isoetes, w. Polypodium vulgare type. 1819 

 1820 

Figure 3: Examples of microcharcoal preserved in marine deep-sea core sediments. a) core 1821 

MD95-2042 (Daniau et al., 2007); b) core IOPD Site U1385 (Daniau, work in progress); c) 1822 

core MD04-2845 (Daniau et al., 2009b); d) core MD96-2098 (Daniau et al., 2013). 1823 

 1824 

Figure 4: Examples of classical phytoliths grouped into five large categories. Grass silica 1825 

short cells (a-i); Bulliform cells (i); woody dicotyledon (j-l); Family-specific families 1826 

morphotypes (m-o); Non-diagnostic morphotypes (p). 1827 

 1828 

Figure 5: Location of the terrestrial and marine pollen and microcharcoal records presented in 1829 

Fig. 6 and 7. 1- Funza, 2-Heqing lake, 3-MD96-2098 , 4- Tenaghi Philippon, 5-MD95-2042. 1830 

The background map represents the present-day potential vegetation after (Levavasseur et al., 1831 

2012). 1832 

 1833 

Figure 6: Response of vegetation to orbital variability. (a) summer insolation at 65°N from 1834 

(Laskar et al., 2004), (b) atmospheric CO2 EPICA Dome C (Bereiter et al., 2015; Monnin et 1835 

al., 2001; Petit et al., 1999; Siegenthaler et al., 2005), (c) Antarctic air temperature from 1836 

EPICA-Dome C (Jouzel et al., 2007), (d) LR04 benthic δ18O (Lisiecki and Raymo, 2005), (e) 1837 

arboreal pollen percentages data from Tenaghi Philippon record (Tzedakis et al., 2006), (f) 1838 

arboreal pollen from Funza sequence (Torres et al., 2013), (g) Tsuga pollen percentages from 1839 
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Heqing lake record (Zhisheng et al., 2011). The grey dashed bar indicates the position of the 1840 

Mid-Brunhes Event (MBE). 1841 

 1842 

Figure 7: Response of fire and vegetation to orbital and millennial variability. (a) Antarctic 1843 

air temperature (Jouzel et al., 2007), (b) summer insolation at 25°S (Berger, 1978), (c) 1844 

biomass burning from southern Africa (microcharcoal record from core MD96-2098) (Daniau 1845 

et al., 2013), (d) biomass burning (z-score of transformed charcoal, about 700 sites) (Daniau 1846 

et al., 2012), (e) fire peak frequency from Greenland ice core (Fischer et al., 2015), (f) 1847 

Greenland air temperature from NGRIP ice record (Landais et al., 2004); data compiled in 1848 

Sánchez Goñi et al. (2008), (g) biomass burning from southwestern Iberia (microcharcoal 1849 

MD95-2042 record) (Daniau et al., 2007), (h) Mediterranean forest (pollen percentages from 1850 

core MD95-2042) from southwestern Iberia (Chabaud et al., 2014; Sánchez Goñi et al., 1851 

2000a; Sánchez Goñi et al., 2008). 1852 

 1853 

Figure 8: Example of pollen-based modelling land cover reconstruction for Central Europe 1854 

(Marquer et al., 2014). 1855 
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