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1 Introduction

The aim of this paper is to prove a special case of a deep conjectural relation between periods of automorphic
forms and central values of L-functions. An early prototype of such a result is due to Waldspurger [21], who
computed toric integrals of automorphic forms on GL, to be an ‘Euler-product’ of local integrals scaled by
a global constant of certain L-values. Soon after, Gross—Prasad [8] made a series of fascinating conjectures
relating periods of SO,;1 x SO,-forms along SO,, (embedded diagonally) to central L-values — the case n = 2
is implied by the work of Waldspurger. These conjectures were extended to include all classical groups by
Gan—Gross—Prasad [6].

In their original form, the Gross—Prasad conjectures omit a precise description of the factorisation of the
global automorphic period. However, a recent work of Liu [14], extending that of Ichino—Ikeda [12], offers
arefined conjecture by giving a precise conjectural formula for the Bessel period of a wide family of automor-
phic forms in terms of the central values of certain L-functions. In its full generality, Liu’s conjecture appears
out of reach of our current methods, even for specific groups. Nevertheless, one can try to prove special cases
of it; Liu himself proved his conjecture in the case of endoscopic automorphic forms on GSp, [14], motivated
by Prasad-Takloo-Bighash [15]. These endoscopic forms are classically known as Yoshida lifts and essen-
tially correspond to lifts from GL; x GL,.

In this paper we prove such a formula for the non-endoscopic Yoshida lifts: the automorphic forms on GSp,,
lifted from the non-split orthogonal group GO, (that is, the underlying quadratic space defining GO, has
non-square discriminant). Making use of exceptional isomorphisms, we see that such forms are obtained by
automorphic induction from GL, (E) where E is a quadratic extension of the base field F. (Liu’s result covers
the split case where E = F x F.) For our proof we require both a much finer analysis of the four-dimensional
quadratic spaces governing GO4 (of non-square discriminant) and a more detailed construction of the
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automorphic representations of this group than that found in [14]. This analysis provides a notable diversion
from Liu’s method, especially in the final deduction of our explicit formula Section 7.

Before describing our results in more detail we also remark on a conjecture of Bocherer [2] (see also [19]).
In this work Bocherer formulates an equality between sums of Fourier coefficients (indexed by ideal classes of
a fixed quadratic field K) of Siegel modular forms and certain L-values. The present paper considers the Bessel
period of an automorphic form on GSp, (A ); if the form in question is the adélisation of a Siegel modular form,
then (by [4] for example) one computes the Bessel period to be precisely the Fourier coefficients that Bocherer
considered. Thus our result provides a proof of (a refinement of) Bécherer’s conjecture for non-endoscopic
Yoshida lifts.

1.1 The Bessel period

Let F be a (totally real) number field with adéle ring A = Ar. We consider the refined Gan—Gross—Prasad
conjecture for the groups (SOs, SO,). In this case we extend SO, to the Bessel subgroup R = U x SO;, with
R — SOs, where U is a certain unipotent subgroup of SOs. The conjecture describes the explicit form of
a period integral of automorphic forms on SOs x R along the (diagonally embedded) subgroup R. Our
approach to the problem makes use of the exceptional isomorphisms

SOs = PGSp, and SO, = Resk/r K*/F*

where K is a quadratic field extension of F.

More specifically, let y be a unitary Hecke character of A%, simultaneously thought of as a character of
SO, (F)\SO,(A), and let 77 be an irreducible, cuspidal automorphic representation of GSp,(A ) in the space of
cusp forms V. Impose the central character condition that 7 ® y|4x = 1. Additionally, make a (standard and
inconsequential) choice of automorphic character 1 of U so that i ® y is an automorphic character of R. We
then define the y-Bessel period of ¢ € V to be the absolutely convergent integral

P(p, x) = j 0(g) (YY) dg. (1.1)
AXR(F)\R(A)

This integral defines an element of Hompg4) (71 ® () ® ), C). The unrefined conjecture claims that there exists
some vector ¢* in (the Vogan L-packet of) 7 such that

P(p*,x)#+0 & L(1/2,1m)) #0

where P(¢*, ) may be defined for more general elements ¢* of the Vogan L-packet in a similar way to (1.1).
It is this unrefined dependence which we make explicit.

To discuss the local side, assume the factorisations 7 = ®,m,; ¥ = ®xv; Y = ®,3, and suppose that
¢ = ®,¢,. Associated to this data, we follow Liu in defining

a'(py, xv) € Homgr,)(m, ® (1, ®y,), C)

at each place v to be an integral over local matrix coefficients (see Section 6). Roughly speaking — up to
a normalisation constant (see (6.1)) — the integral defining a®(¢,, xv) is equal to

B, (my(8v)Pv, Pv) (Xv B Py)(8v) dgv
FA\R(F,)

where B, is a local unitary pairing for mr,. The foundation on which Liu is able to generalise the refined
conjecture is the regularisation of these integrals. They are shown to converge absolutely and a natural nor-
malisation is found such that a(¢,, x,) = 1 for almost all places v (see [14, Theorem 2.1 and 2.2]). We may
thus make sense of the infinite product [], a"(@y, xv)- The refined Gan—Gross—Prasad conjecture then asks
for the constant of proportionality between this product of local factors and the square of the absolute value
of the Bessel period.
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1.2 Lifted representations

The representations of SO5(A) = PGSp,(A) are precisely those representations of GSp,(A) with trivial
central character. We consider a class of representations of PGSp, (A) which are lifted from representations
of the group GO4(A), when GOy is non-split, via the theta correspondence for (GO4, GSp,) — we call such
lifted representations the non-endoscopic Yoshida lifts. The domain of this lift comprises of the representa-
tions of GO4(A) (of trivial central character); these are uniquely determined by representations of D*(Af) for
a canonical choice of quadratic extension E/F and quaternion algebra D over F. Thus, via Jacquet-Langlands
transfer, one may view a non-endoscopic Yoshida lift 77 as being of the form 7 = Al(n'): the automorphic
induction, to GSp,(A), of a representation 7’ of GL,(Ag).

1.3 Main result

We refer the reader to Theorem 7.5 for a more precise statement of our result. To simplify notation here assume
the following decompositions for both the Petersson inner product B, on 77 and the Tamagawa measure dg
on A*\R(A):

B = U B, dg= U dg, (1.2)

where B, and dg, are the local factors used to define a'(@y, xv)-

Theorem. Let m = Al(r1') be a non-endoscopic Yoshida lift to PGSp,(A.), as per Section 1.2, where i’ is an irre-
ducible, cuspidal automorphic representation of GL,(A ) with trivial central character. Let K be a quadratic
field extension of F such that SO, = K*/F*. Let x be a unitary Hecke character of Ay with x|ax = 1. Then x is
simultaneously an automorphic character of SO, (A). Denote by xx/r the quadratic character associated to K
by class field theory. Assume the choices of (1.2) and that the local integrals a" (¢, xv) are properly normalised
(as in Definition 7.1). Then for a cusp form ¢ = ®,¢, in the space associated to m we have

1 §r(2)r(4) L(1/2, mmY) u
4 L(1,m, Ad)L(1, xx/F) Ha((pV’Xv)-

14

1P(@, )1 =

1.4 Remarks

The case where E = F x F is dealt with by Liu [14, Section 4]. Liu’s theorem determines the Bessel period
attached to an automorphic form on GSp, which is a lift from GL, x GL,. These lifts are precisely the endo-
scopic representations of GSp,. Moreover, Qui has proved a formula for |P(¢, x)|> when 7 is in the nontem-
pered cuspidal spectrum of SOs (see [16]). This is achieved by considering the so-called Saito—Kurukawa and
Soudry lifts.

Following these two works, this paper uses the functorial lift from GL,(E) to give a wide class of
nonendoscopic, tempered, cuspidal automorphic representations of PGSp, that conform to the refined
Gan-Gross—Prasad conjecture. Further works on attempting to prove such a formula in general have been
approached by using tools such as relative trace formulae (see [5] for example).

The assumption that F is a totally real number field is needed only to permit the application of a result
of [7] on the Petersson inner product of a theta lift; they, in turn, only require this assumption to use the
Siegel-Weil formula in their calculation.

Finally, we would like to highlight the occurrence of the constant 1/4 in our formula, to be compared with
the constant 1/8 appearing in [14]. This falls in line with the general conjecture of Liu [14] in that it relates
precisely to the (conjectural) Arthur parameters of 7 and y (as first pointed out by Ichino-Ikeda [12, Section 2]
and then by Gan-Ichino [7, Remark 1.2]). Specifically, the constant should be m where 8 (resp. 8) is the
centraliser of the image of the Arthur parameter of 77 (resp. x); note that in our case we trivially have |8, | = 2.
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The discrepancy of 1/2 between our result and that of [14] is supported by the observation that

5ol ifE=FxF,
"7 )2 ifE = F(+e) for some e ¢ (F¥)2.

It is interesting to see this factor arise naturally due to the structure of the representations of GO4(A): in [14]
the Bessel period boils down to twice the period considered by Waldspurger [21] in contrast to the single
occurrence that we observe in our computation.

This paper is set out as follows: after some preliminary definitions regarding the Bessel period (Section 2)
we review the theta correspondence for (GO4, GSp,) (Section 3) and discuss the representation theory of
GO, (Section 4), explaining the lift we use and its domain. We then analyse the global (Section 5) and local
(Section 6) periods before uniting these quantities (Section 7) via a theorem of Waldspurger and proving the
result at hand.

2 Preliminary discussion

2.1 Some conventions

We work over a fixed number field F which we assume to be totally real. Put O for the ring of integers of F and
A for the ring of F-adéles. Given an extension L > Flet A; = A ®f L.
If G is a linear algebraic group defined over F and R is an F-algebra, write G(R) for the R-points of G. At
a place v of F simplify the notation G(F,) to G,. Given a function f on G, denote left and right translation by
elements g € G by
L(g)f(x) = fig"'x) and  R(g)f(x) = f(xg).

If S is a finite set of places of F, then introduce the following notation: Fs = [],.s Fy and AS = [}, Fy.
Note the compatibility of the products G(Fs) = [],s G(Fy) and G(AS) = ]_["NE s G(Fy) meaning that we can for-
mally identify G(A) = G(Fs)G(AS).

2.1.1 Measures

For an algebraic group G we fix a Haar measure on G(A) by taking the Tamagawa measure dg (as originally
defined in [22]). Let dg, be a specified choice of local Haar measures on G, for each v such that [], dg, is
a well-defined measure on G(A). By the uniqueness of Haar measures there exists a constant of proportion-
ality C € C such that dg = C[], dg,. We call such a C Haar measure constant, as in [12].

2.1.2 Automorphic representations and pairings

The space of automorphic (resp. cusp) forms on G(A ) shall be denoted .A(G) (resp. Ao(G)). For an irreducible,
cuspidal automorphic representation  of G(A) we denote by V, the realisation of 7 in Ay (G) and put w, for
its central character. One has 7 = ®,7, (and V, = ®,V, ) where at each place v of F, m, is an irreducible,
admissible, unitary representation of G, on V,,. Let 77 denote the conjugate representation of 7 realised on
the space

Va=1{f:f € Va)

There is a canonical bilinear pairing B, : V,; ® Vz — C given by the Petersson inner product

Balf, ) = j f(@)() dg

Z(A)G(F)\G(A)
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where Z; is the maximal split torus in the centre of G and dg is the Tamagawa measure on (Z;\G)(A) as
always. In particular, since V' is a complex Hilbert space and 7 is unitary, one can show that 77 is isomorphic
to 71, the contragredient representation of m realised on the space of smooth vectors in the dual space V}
of V. Moreover, any pairing on a unitary Hilbert space representation is unique up to a scalar factor. Both of
these facts are corollaries to the Riesz representation theorem. Throughout, any local, irreducible, admissible
representation of G, is always considered to be unitary.

2.1.3 L-functions

Given a representation r of the Langlands dual group and an automorphic representation 77 of G we have the
Langlands L-function L(s, 7, r). When r is the standard representation of the dual group, which we assume is
a subgroup of GL,(C), we write L(s, m) for L(s, r, r). The notation 71 ® 77, denotes the (external tensor prod-
uct) representation of the direct product G, x G,, where 71; are representations of the groups G; fori =1, 2,
respectively.

The most interesting L-function for us is given as follows. Let 71 be an automorphic representation of
PGSp,(A) = SOs5 and let x be a character of SO, (F)\SO,(A) corresponding to a Hecke character of A\.IX( as in
the introduction. Then we consider the SO5 x SO, L-function L(s, 7 ® ). However, other authors interpret
this L-function as:

+ the GSp, x GL, L-function L(s, m = Al(y)), where Al(y) is the automorphic induction of y from A%
to GL,(A), or

« the GSp,(K) L-function L(s, BC(mr) ® x), where BC() is the base change of 77 from GSp,(AF) to GSp,(Ak).

Each of these representations arises due to a functorial transfer from the original representation 77 @ y. The

characteristic property of such a transfer implies that these L-functions are indeed all equal.

Other notation includes: {r, the Dedekind zeta function for a number field F, and yx/r which always
denotes the quadratic character of K* given by class field theory. Note that for any Hecke character x of Ay,
the adjoint L-function is trivially L(s, x, Ad) = L(s, Xk/F)-

2.1.4 Quadratic spaces

Let (V, q) be a quadratic space over F of even dimension 2m (we always assume such a V is non-degenerate).
The quadratic form g corresponds to a symmetric matrix S; € szrfln (F) such that g(v) = 'vSqv for v € V. One

defines the discriminant of V to be disc V = (-1)™ det S and the associated discriminant algebra as

F(+/disc V) if disc V ¢ (F*)?,
Ky = (2.1)
FxF if disc V e (F¥)2.

We intend to study the orthogonal similitude group of V:

GO(V) = {g € GL(V) : g(gv) = A(g)q(v) forall v € V} = {g € GLym(F) : ‘gSq8 = A(8)Sq}

where A : GO(V) — F* is the similitude character. One observes that (det g)2 = A(g)?™, so there is a natural
sign character on GO(V):

sgn : g — detg/A(g)" € ua
where u, = u, (F). We define the connected component of GO(V) to be the normal subgroup GSO(V) = ker(sgn)
which sits in the exact sequence

1 — GSO(V) — GO(V) 2y — 1.

Similarly, if one defines the classical orthogonal group O(V) = ker(A), then the special orthogonal group SO(V)
is found in the exact sequence

1—S0(V) — O(V) &% iy — 1
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where det = sgn here. When dim V' = 4, we see later in Section 4.1 that the sign character is surjective and we
exhibit a natural choice of representatives for GO(V)/GSO(V). In essence, there is a unique element 1 € GO(V)
with

A)=1, *=1, deti=-1. (2.2)
We are then able to fix a splitting such that p, is identified with the subgroup of GO(V) generated by . In
particular, we arrive at the decomposition GO(V) = GSO(V) x p5.
Remark 2.1. For an F-algebra A, the above comments apply more generally to the exact sequence

1 — GSO(V)(A) — GO(V)(A) -2 > (A) — 1

where the A points of GSO(V) coincide with the kernel of the sign function on GO(V)(A). In particular, we
have a well-defined notion of y,(A), GSO(V)(A), GSO(V), and so on.

2.2 The Bessel period and definitions

2.2.1 GSp,(F) in coordinates

Let W = F* and endow W with an antisymmetric bilinear form (-, - )i so that W becomes a four-dimensional
symplectic vector space over F. In the coordinates of F* one may choose

1
(u, V)w = u (_22 02> %

where 1, is the 2 x 2 identity matrix. Setting W; = F? then W = W; @ W) gives a complete polarisation of
W such that W\l’ is identified with the dual space of W; under the form (-, - ). Recall the definition for the
symplectic similitude group:

GSp,4(F) = GSp(W) = {g € GL(W) : (gu, gv)w = A(g)(u, v)w forall u, v € W}

where A(g) € F*. We use A for the similitude character of any similitude group.

2.2.2 The torus

S = ( / / ) € MSZ m(l )

to represent the quadratic form gs(v) = tvSv for v € W1. Then (W1, gs) is a two-dimensional quadratic space
over F of (scaled) discriminant
d =-4detS = b? - 4ac.

By the anisotropy of S (that gs(v) = 0 = v = 0) it is clear that d is not a square in F. Hence the discriminant
algebra Ky, = F( Vd) is a quadratic field extension of F. Fix the notation K = K w, - We consider a maximal,
non-split torus in GL;(F) given by the orthogonal group

T =Ts = {g € GLy(F) : ‘gSg = (det g)S} = GSO(W,).
One has the isomorphism T = Resg;r K* of algebraic groups over F. Specifically, one shows that
b/2 c .
T(F) = {x+y(_a —b/2> IX,) € F}
and defines an isomorphism T(F) — K* = F(v/d )* by

X+ b/2 ¢ n—>x+\/—a
y -a -b/2 y
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2.2.3 The Bessel subgroup

Consider the following subgroups of GSp, (F).
o Let U be the unipotent radical stabilising the flag {0} ¢ W1 ¢ W; explicitly we have

U= {u(A) = (102 fz) 1A e ng’“(F)}.

All elements of U have similitude A(u(A)) = 1. We also identify U with the space of symmetric F-linear
maps WY — W;. Taking the standard additive character

Y: F\A — C%, (2.3)
we define a character s of U(F)\U(A), for a matrix M € M5 (F), by
Yu(u(A)) = P(Tr(MA)). (2.4)

All characters of U arise in this way for some M.
o One has an embedding T — GSp(W) by mapping g € T to

= (8
g= ( (detg)‘g‘1> € GSp(W).

This element has similitude factor A(g) = det g. Moreover, if u € U, then ug = gu.
o The Bessel subgroup of GSp,(F) is then the semidirect product

R=UxT.

2.2.4 The Bessel period

Let 7 be an automorphic representation of GSp,(A). All automorphic representations of the abelian group
T(A) are given by characters
X : T(A\T(A) —» C*,

of which we now fix a y such that w, - y|ax = 1. We shall simultaneously think of y as a character of K* \A}é.
For ¢, € V,, the Bessel period of ¢, (with respect to x) is defined by the period integral

P(Qr, x) = j J P (U)X (@)Y5' (u) du dg (2.5)
AXT(P\T(A) UF)\U(A)

where du and dt are the Tamagawa measures on U(A) and A*\T(A) respectively. We realise A* as the scalar
matrices in the domain of integration A*R(F)\R(A).

2.3 Notation for groups
For a fixed four-dimensional quadratic space V over F and the four-dimensional symplectic vector space
W = F* (from Section 2.2.1) assign the notation
G=GSp(W), H=GO(V), H®=GSO(V),
G1=Sp(W), Hy=0(V), Hj=S0(V)
which will be used freely throughout. Also define the groups
Y = G(Sp(W) x O(V)) = {(g, h) € GSp(W) x GO(V) : A(g) = A(h)}

and
G" ={g € G : A(g) = A(h) for some h € H}.

Brought to you by | MPI fuer Mathematik
Authenticated
Download Date | 4/30/17 2:40 PM



66 —— A.J.Corbett, The refined Gan—-Gross—Prasad conjecture for non-endoscopic Yoshida lifts DE GRUYTER

3 The theta correspondence for (GO,, GSp,)

This section is devoted to constructing certain representations of GSp, from representations of GO, both
locally and globally.

3.1 The local theta correspondence

Let v be a place of F and omit the subscript v from the notation in this section (F = F,, G = G(F,), W = W ®f F,
and so on). Define the space W = W ® V which is given the symplectic form (-,-)w = (-, )w ® (-, -)y. Then
groups G and H; form a reductive dual pair as subgroups of Sp(W). The polarisation of W = W7 & WY induces
a polarisation

W=WieV)e(W)eV)

on which we make some remarks:

« Having chosen the natural basis for W we may identify W} ® V = V2.

e There is an isomorphism WY ® V = Homp(Wq, V).

(These comments are also relevant in the global setting, considering the adélic points of the above spaces.)
Choose a non-trivial additive character i of F by taking it to be a local component of the standard (addi-

tive) adélic character (2.3). Let @ = wy, be the Weil representation of G1 x H1, with respect to 1, which may be

extended to a representation of Y asin [9, p. 82]. We realise w in the space of Schwartz functions V¢ = S(V?)

where Y acts as follows. For (g, h) € G; x H; and ¢ € §(V?):

w(1, () = p(h 1 x),
w(J2, )P0 = y4(x),

w(u(4), Np(x) = P(Tr(MxA))p(x),
w(m(B), 1)¢(x) = xv(det B)|det B|2¢p(xB) (3.1)

(0 1 (1, A (B 0
]z—<_12 0), u(A)—(O 12), m(B)—(O tBl)

generate G1 = Sp(W) where A € Hom(WY, W) and B € GL(W;). The character yy(det B) is the quadratic
character of F*; it is defined using the Hilbert symbol. The action of the unipotent group U is dependent
on the Gram matrix of x = {(x1, x3) € V? defined to be

where the elements

MX = ((Xi’ Xj)V)i’j-

We define the character Ys(u(A)) = Y(Tr(SA)). We also have that y, € py4 is a certain fourth root of unity and
(}5 is the Fourier transform of the Schwartz function ¢ (see [18, Section 1] for more details on this action). As
in [9], the extended action of w to Y is obtained by taking (g, h) € Y, ¢(x) € 8(V?) and setting

w(g, ) p(x) = AW w(gr, 1) p(h™'x) (3.2)
where
(1 0
gl‘g(o A<g>-112)661'

We now closely follow [7, Section 5]. Define the induced Weil representation by compact induction:
Q = nd? % (w).

If o is an irreducible, unitary, admissible representation of H and ¢ is the conjugate representation of o,
then the maximal G-isotypic quotient of Q is given by Q/ (| ker(¥) where ¥ runs over Homg(Q, &). This is
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a 0-isotypic direct sum as an H-representation. Since G* naturally commutes with H in G* x H, the space of
Q / nker(¥) inherits an action of G* and as a representation of G* x H thus we may write

Q/ ﬂker(‘l’) =3x0*(0)

where ©*(0) is a smooth representation of G*. We call ©*(0) the big theta lift of o to G*. Whilst ©* (o) may
be zero, it is known that if this is not the case then ©*(0) is of finite length, and hence is admissible, and
has a unique, maximal, irreducible quotient [7, Theorem A.1] which we denote 6* (o). This allow us to finally
define the (local) theta lift of o to G as

6(0) = Ind&. (6*(0)).

By [7, Lemma 5.2], if ¢ is non-zero and unitary,! then 6(o) is an irreducible representation of G. We obtain
a unique (up to scalar) Y-equivariant, surjective map

0: Vg ® Vw - Vg(g). (3.3)

Remark 3.1. That 6% (o) exists as a unique, maximal, irreducible representation is in fact the statement of the
local Howe conjectures.

3.2 The global theta correspondence

In this section we return to our original notation where F is a number field. The following construction follows
[7, Section 7.2].

We have the fixed, non-trivial, additive character ¥ = ®,1, of A/F (chosen in (2.3)). For each place v
of F we let w, = wy, be the Weil representation of Y(F,), with respect to ,, realised in the Schwartz space
Ve, = S(VZ(F,)). Let Bw, : Vw, ® Vg, — C be the canonical pairing defined by

Buo, (¢, §) = j B0 P(x) dx.

V2(Fy)

The Weil representation of Y(A) is given by w = ®, w,, and comes equipped with the decomposable unitary
pairing By =[], Bw,. The action of w in V¢ = ), 8(V2(F,)) is applied place-by-place using the local action
in (3.1) and (3.2).

The global theta correspondence, in our setting, provides a cuspidal automorphic form on G(A ) from one
on H(A). We define this cusp form now. For a Schwartz function ¢ € V,, we note that the series

Y w(g )
xeV2(F)
is a smooth function on (g, h) € Y(F)\Y(A) of moderate growth.

Definition 3.1. Let o be an irreducible, cuspidal automorphic representation of H(A) and let ¢ € V,,. Then
for any f € V; c Ag(H) we define the theta integral

0, $;8) = Y w(g, hhg)p(x) f(hhg) dh (3.4)

Hy(F)\Hy (A) X€V?(F)

where hg is any element in H(A) such that A(hg) = A(g).

This integral is absolutely convergent and independent of the choice h, since all such elements are of the
form hghg for hg € H1(A). One computes the central character of 0(f, ¢) to be equal to w, the central char-
acter of f (since dim V = 4 is even).

By construction, 0(f, ¢) is a function on G*(F)\G*(A). By the natural inclusion of G* — G we extended
0(f, ¢) to a function on G(F)\G(A) by letting it take the value zero outside G*(A ). This extension is unique.

1 This is indeed the case when o is a local component of an irreducible, unitary, cuspidal automorphic representation of H(A)
with a non-zero, cuspidal global theta lift to G(A).
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Remark 3.2. For any h € H = H® x u, there is an hy € H® with A(h) = A(hg) since h = hoe for € € py = (1)
where 1 € H is the element defined in (2.2) with A(1) = 1. Thus we may interchange H with H° in the defi-
nition of G*.

Definition 3.2. Let 6(0) be the automorphic representation of G(A ) realised in the space
Vo) = {R©Q) 0(f, §) : f € Vg, $ € S(VX(A)), g € G(A)}.
We call 6(0) the (global) theta lift of o to G(A).

We shall fix assumptions on ¢ (see Assumption 4.1) under which 6(0) is cuspidal. Under these conditions
[7, Lemma 7.12] applies so that Vg, # 0. We then obtain a Y(A)-equivariant, surjective map

0:Vs®Vey — Vo). (3.5)

We may restrict 6 to V,, ® V4, at each place v and conclude that, by the uniqueness of the local maps (3.3),
for o =, 0y,
0(0) = ®, 6(0v)

and is irreducible [7, Lemma 7.2]. In particular, the local factors 6(o,) are unitary and non-zero at each v.

3.3 Automorphic induction

An alternative description of the theta lift is that it arises due to a functorial transfer of representations from
H'(A) to GSp,(A) where H' = Resg/r(GL;) is the Weil restriction of scalars (meaning that H "is unique in that
H'(F) = GL,(E) as algebraic groups) and E is a quadratic extension of F. For simplicity let us consider the
trivial central character interpretation: the automorphic induction transfer between automorphic represen-
tations of the groups H! = Resg/r SL; and G1 = Sp,. On the one hand, the L-group of G is LG, =S05(C) x GF
where Gr is the absolute Galois group of F. On the other hand, the L-group of H' is

tHy = [] SLaC) % SF
Se\GF
noting Gg\Gfr = Gal(E/F) acts on the first factor in the product via permutations of the index set. Once again
make note of the isomorphism SO5(C) = PGSp, (C) which gives rise to an embedding

a b

a b a b a' b’
SLy(C) x SLa(€C) — Sp4(C), ((C d) , (C, d’)) nd d
¢! d’
which in turn induces an L-homomorphism
u: LH,l e LGl.

On composing u with a representation r of the Weil-Deligne group Wy, of E into Ly | we obtain a representa-
tion u o r that lands in 'G1. Noting W ¢ W, this acquired representation is precisely the induced represen-
tation ’

Uor = Indxz r
(on the Galois side). Whilst on the automorphic-side we have an irreducible, cuspidal automorphic represen-
tation Al(7') of G1(A) for each 7’ on H) (A) = SL,(Ag). A more general review in support of this exposition
is given in [3].

A characteristic property of such a lift is that the L-function of the representations (Al(7') and ') are
equal, thus uniquely characterising the target L-packet. By the work of Roberts [18, Section 8] we find that
this is also the case for the theta lift discussed in the previous two sections. Then, due to an exceptional
isomorphism (see the next section, Section 4.1), we may realise the group GO, as Resg/r(GL,) and hence any

representation given by the above theta lift is functorial in this sense.

Brought to you by | MPI fuer Mathematik
Authenticated
Download Date | 4/30/17 2:40 PM



DE GRUYTER A.]. Corbett, The refined Gan—Gross—Prasad conjecture for non-endoscopic Yoshida lifts —— 69

4 Automorphic Representations of GO,

To classify the image of the theta correspondence for (GO4, GSp,) we provide a thorough review concerning
the domain of the lift: we determine the structure of all four-dimensional quadratic spaces V, giving rise
to GO(V) = GO4, and with this analysis we examine the irreducible, cuspidal automorphic representations
of GO(V)(A). The review in this section is largely expository, however it includes new notation and crucial
results which are used freely later on.

4.1 Four-dimensional quadratic spaces and their similitude groups

Any four-dimensional quadratic space is isomorphic to a member of a family of spaces whose structure is
explicit and indexed by two invariants: a quaternion algebra and a square-free integer (corresponding to the
discriminant). For more details we refer to the exposition given in [18, Section 2].

Consider a four-dimensional quadratic space V over F with disc(V) = e. Let E = Ky be the discriminant
algebra of V (defined in (2.1)) and put Gal(E/F) = {1, x}, using both x(z) and z* to denote the image of z € E
under k. The usual norm and trace of E/F are given by

K

Ng/p(z) = zz° and  Trgr(z) = z + 2~

Definition 4.1. Let B be an arbitrary F-algebra whose centre is E with an involution x +— x* that fixes E. Call
B a quadratic-quaternion algebra over F if there is a quaternion algebra D, over F, contained in B such that the
natural map D ®¢ E — B, given by x ® z — xz, is an isomorphism of E-algebras and the canonical involution
on D is given by x — x*. Choosing a D, there is no loss in generality in considering B = D(E), the E-points of
the F-algebra D. The norm and trace on B are defined respectively as

Np(x) = xx* and Trp(x) =x+x".

When restricted to D these are the usual reduced norm Np and trace Trp. Endow B with the unique Galois
action (with respect to D) by linearly extending the automorphism x of E to B, that is x(xz) = xx(z) for z € E,
x € D. Denote this Galois action by k as well. Finally, define a second four-dimensional quadratic space
(over F) by

X =Xpe={xe€D(E) : x(x) =x"},

whose quadratic form, denoted Ny, is given by the restriction of Np to X. We find that this new space has
disc Xp,. = det Nx = e upon computing the determinant of Ny.

Remark 4.1. A Galois action on B is an F-automorphism a : B — B such that a? = 1 and a(xz) = a(x)k(z) for
z € E, x € B. There is a bijection between Galois actions on B and quaternion F-algebras contained in B.

By [18, Proposition 2.7] we have the exact sequence
15 B A P x5 Gsox) — 1 (4.1)

where the injection A : EX — F* x B* is given by A(z) = (Ng/r(z), z) and the action of F* x B* on X is given
by
p(s, a)x = s taxi(a)*.

In particular, writing AE* for Im(A), we have
F* x B*/AE* = GSO(X). (4.2)
The similitude factor of an element p(s, a) € GSO(X) is given by

Alp(s, a)) = s~ Ng/p(Np(a)).
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We denote by ( the restriction of the Galois action k to the subspace X ¢ B (again writing ((x) and x* for
the image of x under ¢). The notation « rightfully coincides with that already introduced in Section 2.1.4 since
the map ¢ is precisely the unique element of GO(X) satisfying the properties 1 € O(X), 1> = 1 and det: = -1
by [18, Proposition 2.5 and 2.7]. We choose this element to fix, once and for all, the splitting

W (F) =) and GO(X) = GSO(X) % (1).

Conjugating an element p(s, a) € GSO(X) by t gives the relation ip(s, a)t = p(s, a'); we denote this adjoint of
t action by
Ad(1) : p(s, a) — p(s, a'). (4.3)

Proposition 4.2. Let V be an arbitrary four-dimensional quadratic space over F of discriminant e. Then there
exists a quaternion algebra D over F and an isomorphismy : V. — Xp . such that the map

¢y : GSO(V) — GSO(Xp,e),

given by c,(g) = y o g oy !, is an isomorphism of similitude groups. There is therefore no loss in generality in
considering the space GSO(Xp,) in place of GSO(V)

Proof. See [18, Proposition 2.8]. O

From here on in, fix a quaternion algebra D over F and a square free integer e. We shall work with the
four-dimensional quadratic space X = Xp .. Fix notation for: the quadratic extension E = F(1/e) and the
quadratic quaternion algebra B = D(E). We assume the application of V = X to the notations H = GO(V) etc. of
Section 2.3.

4.2 Local representation theory for H(F,)

In this section let v be a place of F and suppress the subscript v from the notation (for example, F now denotes
alocal field). We shall systematically discuss the local (and later global) representation theory of H in terms of
that of H°. We use this section to fix notation; this material has been previously considered in the expositions
[10, Section 1], [18, Sectiona 2—-4] and [7, Section A] — we advise the reader to look there for details and proof.
In [20], all restrictions in [18] are removed, in particular the quadratic space X may be of any signature.

4.2.1 Admissible representations of H®

In light of the isomorphism in (4.2),
p: FXxB*/AE* 5 H°,
let (7,V;) be an irreducible, admissible, unitary representation of B* = B*(F) with central character w,
(noting Zp~ = E*). Further assume that w, is Gal(E/F)-invariant; thus we let v be the unitary character of F*
such that
wr=v'oNgp. (4.4)

Every irreducible, admissible, unitary representation of H° may then be written in the form oo = 0o(v, 1), for
such a v and 1, by defining

ao(p(s, a)) = v(s)T(a).
Both 0 and 7 are realised in the same space Vg, = V;. The requirement on v (4.4) ensures that oo(v, T) is
indeed trivial on AE*. We identify the centre Zpo = F*, through p, as the set

{(x"1,1) : x € F*} c F* x B*/AEX,
from which we note that o has central character

we, = v L.

Brought to you by | MPI fuer Mathematik
Authenticated
Download Date | 4/30/17 2:40 PM



DE GRUYTER A.). Corbett, The refined Gan—Gross—Prasad conjecture for non-endoscopic Yoshida lifts == 71

Definition 4.2. Suppose that v is not splitin E (so that E = E(F,) is a field). In this case, we call an irreducible
admissible representation oo of H distinguished if

)
0o = 0o(w,", OF)

for some irreducible admissible representation g of GL,(F); denoting by gr the base-change lift of p from
GL;(F) to GL,(E), and appending the superscript D to mean that gg is the Jacquet-Langlands transfer of gg
from GL(E) to D*(E) = B*.

The central character of such a distinguished o (w p L QIE) ) is wy, the central character of p. This follows from

properties of the base-change lift (that w,, = w, o Ng/r). Distinguished representations are invariant under
the adjoint action of 1 on H® (4.3). Hence a distinguished representation has the property that oo = 09 o Ad(1)
since we have gg = pg o t (see [1, Section 3]).

4.2.2 Admissible representations of H

To describe the irreducible, admissible representations of H it suffices? to consider the induction of some o
as 0y varies over the irreducible, admissible representations of H. To make this explicit, put 0 = 00 o Ad(1)
and consider a second representation of H° in V,, given by

ou(h)v = op(tht)v  forv € Vg,.
Now define the representation (6, V) of H by setting Vs = Vg, ® Vg, and letting H act on u & v by

{ 6(h0)u @V =o0g(hy)ue Ub(ho)v,

ocluev=veu

noting that any h € H may be written uniquely as h = hoe for some hy € H® and € € y5.
On the other hand, recall that Indgo(oo) is given by right translation in the space

{f : H— Vg, | flhoh) = 0o(ho)f(h) for hg € H}.

One may check that there is an H-module isomorphism between the representations & = Indg0 (00). We will
use ¢ as a model for Indg0 (0¢) from now on and proceed by dividing our analysis into two cases.

Definition 4.3. Let 0 be an irreducible, admissible representation of H°.
o We say oy is regular if ¢ = Indgo(oo) is irreducible. We find ¢ = 6 ® sgn and, as H°-representations,
0o # 0. In this case denote o = Indgo(ao).
o Wesay 0y is invariant if 6 = Indg0 (09) is reducible. We find 0 # ¢ ® sgn and the adjoint action of ¢ in Vg,
is trivial, that is, oo = o). In this case
Ind!, (00) = 0 @ 05

where o} are two non-isomorphic irreducible representations of H.

Remark 4.3. If 0y is distinguished, then we have already noted that oy is invariant. In this instance exactly
one of og occurs in the theta correspondence with GSp,, (see [18, Theorem 3.4]), denoting this representation
by o. Then for an irreducible, admissible representation o of H we have that 6(0) # 0 if and only if o % o,
for some distinguished o of H°.

2 Let 0 be an irreducible, admissible representation of H. Then either Resg0 (0) is irreducible, in which case o is an irreducible
constituent of Indg0 (Resg0 (0)) and we are in the ‘invariant’ case, or

H
Res,(0) = 00,1 ® 00,2,

inwhich case o = Indg0 (00,;) foreither i = 1, 2; this is the ‘regular’ case. Definition 4.3 provides a full explanation of the invariant
and regular cases.
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4.3 Global representation theory and automorphic forms for H(A)

In this section we reinstate F as a number field. Our purpose is now to review the theory of automorphic forms
on H(A). The following sources should be referred to for more detail: [10, Section 1], [18, Sections 5-7] and
[7, Section 2].

4.3.1 Automorphic representations of H°(A)

The exactness of the sequence in (4.1) (taking F = F, for each place v) implies that
x A X X P 0
1A% > A*xBY(A) > H(A) — 1

is also exact, where p and A operate as in the exact sequence (4.1) at each place. We identify E(A) with Ag
and note BX(A) = D*(AE). As subspaces of L2(A* x B*(A)), the tensor product of the spaces of cusp forms
Ao(F*) ® Ao(B*) is dense in Ao (F* x B*) and since these are spaces of smooth functions they are isomorphic.
Any function on A x B*(A) /AAE is a function on A* x B*(A) subject to the constraint that it is constant
on equivalence classes modulo AA} = Im(A). In particular, if v : F*\A* — C* is a unitary Hecke character
and (7, V;) an irreducible, cuspidal automorphic representation of B*(A ) then, given some 1 € V., we have
thatven € Ao(F* x B*/AEX) if and only if

w(2) =v ' oNgp(z) forallz e A%

where w; : EX\A} — C*is the central character of 7. Hence any irreducible, cuspidal automorphic represen-
tation of HO(A) is of the form oo = 0o(v, T), for such a v and 7, where oy is realised in the space of cusp forms
Vo, ={ven :n eV:ibyoo(p(s, a))ven = v(s)ve® t(a)n. Once again, the central character of 0g is w, = vl

4.3.2 Factorising automorphic representations of BX(A ) and H°(A)

Consider the isomorphism
EerF,=[]Ew (4.5)

wlv

where the product is over all places of w of E above v [17, Proposition 4-40]. One deduces

B*(F,) = [ | B*(Ew).
wlv
Thus smooth representations of B*(F,) are of the form 7, = ®y, Ty where the 1,, are smooth representations
of BX(E,) for w|v. If 0 = 0¢(v, T) is an irreducible, cuspidal automorphic representation of H°(A), as in
Section 4.3.1, then by the tensor product theorem we may assume 0y = ®,0p,, and v = ®,V,, over places
v of F, and 1 = ®, T, over places w of E. Then, by the previous remark, these local factors are related by
0o,v = 00,v(Vy, Ty) where Ty = ®y,, T and the space Vs, , = V7, = ®up Ve, (as per Section 4.2.1).

4.3.3 Automorphic representations of H(A)

Assumption 4.1. Let 0 = ®,0, be an irreducible, cuspidal automorphic representation of H(A) realised on

the space V, ¢ Ao(H). For the remainder of this paper we shall assume the following for such a representa-

tion o.

(1) The Jacquet-Langlands transfer of o|p~(a ) to GL2(AF) is cuspidal.

(2) There is at least one place v for which ¢, = 0, ® sgn.

(3) If oy # 0y ®sgn, then o, # 0y, , for any distinguished (and invariant) admissible representation oo,y
of HO(F,).
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These conditions are imposed in [7], thus ensuring that 8(0) is both cuspidal (1) and non-zero (3). Condition
(2) is necessary to compute the Petersson inner product of the theta lift 8(o) in (4.9).

We now determine all such ¢ by considering their restriction to H°(A). (This top-down approach contrasts
with the bottom-up analysis used in the local setting.) To this end, define a (possibly infinite) subset of the
places of F by

G ={v:0,=0,®s8n}.

Assumption 4.1 (2) implies & # 0. By the tensor product theorem, fix an isomorphism of H(A)-representa-

tions
! . o
Vo= @'V, =in(@Ve.) o (R1:)
v S vesS v¢S

where V, is the space of 0, and, for a sufficiently large set of places S outside which o, is unramified, f; € Vg,

is an H(Oy)-invariant (spherical) vector for v ¢ S. By analogy with our local discussion Section 4.2.2, the

restriction of o, to HY gives rise to two cases.

« Ifve@, then oyly = 0o,y ® 06,‘, where 0, is an irreducible representation of H? with g, # 06,‘,.
Earlier, we called such a o¢,, regular and noted that its induction, 6,, was irreducible. The space of
oy decomposes as Vg, = Vg, , Vgg'v, realising the space VUB,V = 0y()Vy,,. For almost all v € G, the
spherical vector f; = 3, + 0v(1)F), € Vg, ® \70;” where §: is an H°(O,)-invariant vector.

« Ifv ¢ &, then oy|po is irreducible and invariant; we have V,, = V4, , and the spherical vector fO=3is
HO(0,)-invariant. Write Oo,v = 0y| HO in this case.

Let S be a sufficiently large set of places of F and put S’ = S~ (Sn &). For each € = (g,) € uz(Fsng) define

Vfr,s c Vg by
VE o= ( X ov(sv)\?ao_v> ® <§) VUO!V) ® (%%)f;).

vesSns
Viewing o from a different perspective, consider the space of restricted functions

Volmowa) = flroa) : f € Vol

By [10, Lemma 2] there exists an irreducible, cuspidal automorphic representation oo of H°(A) realised in
a space of cusp forms V,, such that
Volro@a) = Vo, ® Vg, » (4.6)

defining Vg = {f' = fo Ad(1)) : f € Vg,}, and such that oo # 0¢. In this circumstance we shall say o lies
above o0g.

Applying the tensor product theorem and comparing the local components of o and o with those oo,,
already defined, we may assume that oy = ®,00,,. Moreover, choosing ¢ = 1, the restriction of the space of
functions V{ ¢ = Vy,.

As a final remark, (4.6) shows that ij, slHo(a) = {0} unless € € u;(F) (else contradicting that o # 0y). In
particular, consider evaluating a function f € V}L son

HA) = |J HAu A ).

e€pz(Fsns)
For € € uy(Fsns) we have fo,s = 0(8)\7(17’5 and hence o(¢)f = O unless € € u,(F). We then obtain [7, Lemma 2.2]

supp(f) ¢ HO(A)u2(AS"®) U HO(A)pu2 (AS ). (4.7)

4.4 Explicit unitary pairings and the Petersson inner product

The unique (up to scalar) unitary pairings Bg,, : Vo,, ® V5,, — C associated to the local components
0o,y = 00,v(Vv, Ty) of 0o(v, T), as in Section 4.3.2, are precisely the pairings on V;, ® Vz, since V4, = Vg,
and v, is unitary.

We therefrom assume that, whenever B., is specified, by B, , we always mean the pairing By, , = Be,.

The possible splitting of v in E must also be accounted for in our choice of pairing: we make the convention
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that if B, is a specified pairing on V;, (for each place w of E lying above v), then

BTV = ® BTW

wlv

is the fixed pairing on (®w}yV¢,) ® (®wvVz,) and hence also on V4, , ® V5, ,.

If Vg, carries a pairing By, , and oy is an irreducible, admissible representation above 0y,,, then we
choose to consider a specific pairing on V,, :
o Ifve&,then Vg g =V, & \706” is irreducible; take the pairing

B, : Voo, ®Vor,)® Vg, ® Vi ) — C

given by B, (X + 0,(0)Y), (X + 5,(07)) = 3 (Bay, (4, X) + Bay, (v, 7))-
« Ifv¢ &, then Vg |go = Vg, , is irreducible; take By, = By, , -
This pairing is chosen carefully so that we may factorise the Petersson inner products B, and B, when
0 = ®,0, is an automorphic representation of H(A) that lies above 0y = ®,0¢,,. As before, fix an isomorphism
for the conjugate representation ¢ = ®, 0y,

V, = Qvg)vﬁv . th}(@ vm) ® ((V%)f;)

where, for a sufficiently large set of places S outside which &, is unramified, f,‘; € Vg, is an H(Oy)-invariant
(spherical) vector forv ¢ S.Ifv € S, thenf,‘,’ = §‘,’, + ov(1)§;’, where ;?‘1’, isan H°(O,)-invariant vectorand if v ¢ &
then f0 = §: is H°(O,)-invariant.

Lemma 4.4. For almost all v suppose that B, , is normalised by B, , (37, 3°) = 1. Then, if the pairings Boo.,
are normalised so that the Petersson inner product may be factorised as By, =[], Bo,,,» we additionally have
the following decomposition:
Bo =] [ Bo,-
14

Proof. See [7, Lemma 2.3]. O

The Petersson inner products for both the automorphic representations oo = 0o(v, T) and 1 agree: if we have
(1, 7) € V@V and fo =ven, fo = v® i, then

Bﬂo(fO’fO) = 3T(n’ ﬁ)-

The Petersson inner product associated to the unitary Hecke character y of A (trivially) coincides with
the Tamagawa number of F*\K*, given by Vol(AX*K*\A%) = 2 (see [14, p. 44]). Underlying our calculations
we choose local pairings By, = 1 atall v.

4.5 The Petersson inner product for theta lifts

Gan-Ichino prove a decomposition of the Petersson inner product for the theta lift 6(o) with respect to some
specified pairings for the local factors (o). This result assumes that F is a totally real number field and
that 0 = ®,0, is an irreducible, cuspidal automorphic representation of H(A ) satisfying Assumption 4.1. In
particular, in this assumption, conditions (2) and (3) are used explicitly in the proof of this formula whereas
the totally real assumption is required for an application of the Siegel-Weil formula.

Fix a choice of local pairings By, , such that B, =[], Bo,, and consider the pairings B,,, defined in
Section 4.4. For (f, f) €V, ® V5 and Schwartz functions (¢, d’),,) €V, ® Vg, define

{r, (2)CF, (4)

Boo) (O v, Dy, e(fv; d)V)) = m

j B, (@y (1) bvs Pr)Bo, 0y (W)fys f) Ay (4.8)

1(Fy)

where the Haar measures dh, on Hy,, are those determined by a differential form (of top degree) on H; and
the self-dual Haar measure on F}; (with respect to ¢,) — these in fact give the Tamagawa measure dh = [[, dh,
of H{(A) (as constructed in [22]).
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Gan-Ichino take care in deriving the constant of proportionality between the Petersson inner product for
0(0) and [], Be(s,). With Assumption 4.1 we have [7, Proposition 7.13]

L(std o,1)
Bo(o) = TG Hﬁe(ov) (4.9)

5 Global calculation: The Bessel period

Preliminary remarks aside, we use this section to determine the form of the Bessel period (2.5) for the theta
integral (3.4). First of all we explicitly highlight any running assumptions and notations (in addition to those
in Assumption 4.1).

5.1 Hypotheses and variables

We have fixed the (base) number field F to be totally real. This assumption permits the use of the Siegel-Weil
formula (or rather its corollary; the Rallis inner product formula) in a calculation made in [7] whereby the
Petersson inner product for a theta lift is computed in terms of local pairings (see Proposition 4.9).

In Section 4.1 we acquired the following notation an assumptions: V is a four-dimensional quadratic
space (over F) of discriminant disc V = e; we assume that e is not a square in F* (since the case when e is
a square has been settled by Liu); Proposition 4.2 implies that it suffices to fix such an e € F* and a (possibly
split) quaternion algebra D over F and consider instead the space X = Xp . — we do this and apply V = X to
the notations H = GO(V) etc. of Section 2.3; fix once and for all E = F(+/e) and B = D(E) = D ®r E.

Our result is concerned with irreducible, cuspidal automorphic representations of GSp, (A ) lifted from
GO(V)(A) by the theta correspondence (Section 3).

Assumption 5.1. We only consider representations of PGSp,(A) = SO5 (A ); these are precisely the represen-
tations of GSp,(A) with trivial central character.

Note that the thetalift 8(o) has central character wg(s) = Wy S0 we assume w, = 1.If o liesabove oy = 0o (v, T),
as in (4.6), then v = w,! = 1. For the remainder of this paper, we keep in mind a fixed irreducible, cuspidal
automorphic representation ¢ = ®,0, of H(A) (in the space V,) lying above 0¢ = 09(1, T) where T = ®, Ty
is an irreducible, cuspidal automorphic representation of B*(A) whose central character w; = 1. Also fix
a factorisation for the conjugate representation ¢ = ®,6,. There exists a set of places & = {v : g, = 0, ® sgn}
which determine ¢ uniquely given o (see Section 4.3.3).

Let f = ®,f, € V; be a pure tensor, fixing this choice throughout the remainder of this paper. We identify
a factorisation for the conjugate of f by

f=af (5.1)

so that it makes sense to talk about a specific f, corresponding to a local factor f, of f. Similarly, we fix fac-
torisations for the Schwartz functions ¢ = ®,¢, € V and ¢ = ®,¢, € V.

Choose a series of local unitary pairings B, on V;, ® Vz , for each place w of E, such that the Petersson
pairing has the factorisation B; = [],, B¢, . Due to the choices of Section 4.4, we then automatically obtain the
pairings Bg, , and By, for 0o,y and 0y, respectively. Note that these depend on the place v of F. The Petersson
pairings will satisfy a similar factorisation

00 =[] Bor, and By =]]Bs,. (5.2)
14 14

Fix another non-square element d € F¥. Let K = F(\/d) and define a Hecke character y : K\A} — C*.
Then K and y index a unique Bessel period (see Section 2.2.4). We impose the following assumption, which
is essentially the trivial central character assumption when considering y as a representation of GSO(X).

Assumption 5.2. Suppose that y is unitary and satisfies x| ar=1
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5.2 Explicit vectors

We shall consider vectors ¢ = 0(f, ¢) for f € V; and ¢ € V¢ such that ¢ = ®,¢, is a pure tensor. The global
map 6 of (3.5) is linear in each variable and hence ¢ is a pure tensor when both f = ®,f, and ¢ = ®, ¢, are pure
tensors (as we have assumed). We fix the notation ¢, = 6(f,, ¢,) for the local components in the factorisation
of O(f, ¢) (noting that this is necessary as each local map 6 (3.3) is only unique up to a scalar constant).

Our choice of local vectors f, € Vs, (see (5.1)) and (i),, € V@, give rise to the factors in ¢ = ®,¢, in the
sense that

(pv = g(fw 4)1/) = e(fv’ (i)v) (53)

by the uniqueness of (3.3) and (3.5), the choice of vectors ¢, = 0(f,, ¢,) and then applying [7, Proposi-
tion 5.5].

Lemma 5.1. Define f'(h) = f(ht). One has 0(f, ¢) = 0(f', w(1)P).
Proof. We compute

0. wopie) = | Y wghh@Cofithhe dh

Hy(F)\H, (a) X€X*(F)

= Y w(g, ththy)()f(thihy) dh
Hi (F)\H; (&) XX (F)

=0(f, $;8)
where hé = thgt has /\(hé) = A(g). Here we use the automorphy of f under ( € u»(F) and rearrange the sum-
mation by x — (x. The Tamagawa measure dh is invariant under the transformation h — tht. O

Since an arbitrary element f of V is of the form f = f; + f5 forsomefy, f> € \7(17’ s (by (4.6)), Lemma 5.1 implies

01 +f3, ) = 0(f1, P) + 0(f2, w(1)P).

There is then no loss in generality in restricting our choice of f € V,; to the following.

Assumption 5.3. For a fixed, finite set S, assume that f = ®,f, € \7},’ < is a pure tensor. Such an f satisfies the
property that flgoa) € Vo, .
Recalling that 7 is the automorphic representation of B*(A) such that a9 = 0¢(1, 7), we denote by
n=®whw € Vs
(decomposed over places w of E) the function such that
flp(s, a)) = n(a).

The local factors of these functions are identified by f, = ®,,1 (see Section 4.3.2). Note that f = o(1)f, and
since 0(f, ¢) = ®,0(f,, ¢,), Lemma 5.1 implies that for each v

0(fv, pv) = 0(ov(O)fy, Wy (D) y).

5.3 A calculation in terms of the variant theta integral

To simplify matters (overall) we introduce the variant theta integral (to be compared with (3.4)):

0°(f, p3 8) = Y w(g, hohg)p(x)f(hohg) dho

HOFNH () XX ()

where the domain is defined in terms of the connected, index-two subgroup H (1’ of Hy. For this function we
also have

0°(f, d) = 6°(f", w(1)h) (5.4)
by a computation identical to Lemma 5.1. Observe how 0°(f, ¢) is related to 0(f, ¢).
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Lemma 5.2. For any integrable function ® on H1(F)\H(A) we have
D(h) dh = j j D(hoe) dho de
Hy(F)\H1(A) M2 (F)\M2(A) HY(F)\HY(A)

where de is the Tamagawa measure on u,(A).

Since 6°(f, ¢; g) is independent of a particular choice of hg, we may apply Lemma 5.2 and substitute
hg — ehge (as A(e) = 1) to find

0(f, p; 8) = J 6°(a(e)f, w(e)p; g) de. (5.5)
M2 (F)\p2(A)

This relation permits one to consider the refined quantity P(6°(f, ¢), x).

5.4 Unfolding the Weil representation

By definition (see (2.5)) we have
26°¢ 0= | | oo gruan@wstw dudg
AXT(E\T(A) UFRU(A)
so we start out by computing
Ofgud)= | Y wug hohod(fihohs) dho.
HOP\HO(a) ¥ )

Applying the action of w to ¢ = ®,¢, (place-by-place) we find that
(g, hohg)9() = ([ Txus(det(g, A7 det g} Ju, (0I5 g xg) = Y, (W) p(hg i x),
14

recalling [, xv,v(det(gy)) = 1 (by quadratic reciprocity) and ¥y, is the character of U defined in (2.4). On
removing the factor containing the integral over U(F)\U(A) we obtain

26 0- | Y pihgh5'xg)f(hohg) D) dho dg
AXT(E\T(A) HO(F)\HO(A) ¥ )
where we have introduced the notation
D(x) = J WYar, (5 () du.
UFN\U(A)
This integral of orthogonal characters simply boils down to

00 - {Vol(wF)\U(Ax)), Yo, = s,

i (5.6)
0, otherwise.

The group U is abelian (and hence unimodular) so the Tamagawa number Vol(U(F)\U(A)) = 1 (see [22]).

sym

Writing u = u(A4) for A e M (A) we then have
D(x)=1 & P(Tr(SA-M4A))=1 — My=S.
Thus ®(x) is an indicator function allowing only those x € X?(F) with M, = S to contribute non-zero terms to
the summation in P(6°(f, ¢), x). Define
Xi={xeX®: My=S5}
so that

PO 90 = J J Y. ¢(hg'h ' xg)f(hhg) dh dg. (5.7)
AXTENT(A) HY(F\H) (&) *X5(F)
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We are interested in decomposing the algebra B = D ® E into its subalgebras, in particular the role played
by the field L = K ® E. Hence we make the following observation.

Proposition 5.3. If L does not embed into B as a subalgebra, then X§(F ) = 0 and consequently

PE°(f, ), x) = 0.

Proof. Suppose L +— B and assume the contrary: there exists & € Xﬁ (F) with & # 0. Then ¢ gives a realisa-
tion of W as a quadratic subspace of X and we have X = Wy @ W7 as before. Since E n X = F, we have that
X ® E = B, so we may decompose B as

B=(W:®E) e (Wi ®E).

But Lemma 5.4 gives us that W; = Kw for any w € W;. Noting that 1 € X we proceed by checking two cases:
Firstly, if 1 € W;, we may take w = 1 so that W; = K. Then Wy ® E=L and B=Le L*. Thus L — B as
a quadratic subalgebra (over E), a contradiction. Secondly, if 1 ¢ W1, then ] = Wli ® E is a field and subalge-
bra of B. In fact, this field hasto be L: foranyj € J* = W; ® E we may write J* = Jjbut W; = Kwimplies Jj = Lw
for any w € Wy ¢ J*. Taking j = w gives J = L and thus, once again, we have the contradiction L — B. O

Assumption 5.4. Without loss in generality we assume that X§(F ) # 0.

Indeed it is clear from (5.6) that X §(F ) = @ implies P(6°(f, ¢), x) = 0. Under Assumption 5.4 we may conclude
that, by Proposition 5.3, one has an algebra-embedding L — B and subsequently that K — D asa subalgebra
too. Note that this assumption is truly on the choice of K (or equivalently d) since E has been fixed in advance.

We continue by expressing X§ in terms of the group SO(X) acting on it, reconsidering points of X § via
the isomorphism X?(F) = Homp(W1, X). Fix a base point ¢ € X§(F ), to be considered as an F-homomorphism
&: Wy — X satisfying the properties:
(1) ¢1isinjective (since the Gramm matrix My = S is invertible).
(2) ¢&isanisometry onto its image in X.
We briefly justify (2). Recall that (Section 2.2.2) W; is endowed with the quadratic form gs; a simple cal-
culation shows that for w € W; we have gs(w) = qu, (W) = Nx(§(w)). Thus W, is identified with a quadratic
subspace of X via . (We abuse notation and call this subspace W; too.) Consider the orthogonal decomposi-
tion

X=W;eW;.

Lemma 5.4. The image of W1 in X is a one-dimensional K-vector space: for any w € W, we have W1 = Kw. In

particular, there is an F-vector space isomorphism Wy = K.

Proof. Recall M¢ = S and fix
a b/2 sym
= M (F
5= (i "¢ )mEe
so that d = -4 detS = b? - 4ac. Fix a basis {e1, e;} of Wy and let & = &(e;) for i = 1, 2. We show that any
two vectors in W, are linearly dependant over K. Note that the polynomial p(X) = X? — bX + ac has the root
&HE = %(b - V6. Multiplying each side by ¢;, and noting a = Nx(&;) by assumption, we see that
1
2= (b~ V6)¢1 € K.

Since ¢ is injective, &; and &, constitute a basis for W; c X over F. Hence the K-span of any vector w € W is
equal to W, as F-vector spaces. O

We proceed by continuing to exploit the base point £. The group SO(X) acts transitively on X § (F) in which the
stabiliser of ¢ is SO(W7 ) by construction. Then after some calculation the isomorphism

X3(F) = SO(W)\SO(X)
permits the following reformulation of (5.7):

PO, b), x) = j B(h5 O AR (Mo, x) dho,
SO(W)(A)\SO(X)(A)
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by defining

Ae(Fiy) = j X©)fehy) dyg dg
AXG(SO(Wf)XSO(Wl))\G(SO(Wf)XSO(Wl N(A)

where hg € HO(A) is any element such that
A(hg) = A(g)

with the additional constraints that hg(é(v)) = é(g(v)) for v € W, and hg(w) = w when w € Wll. The variable
of integration (y,, g) is an element of G(SO(W7) x SO(W1))(A) whence A(y,) = A(g).

5.5 Exploiting exceptional isomorphisms

In this section we analyse the domain of A¢(f, ) and apply the representation theory of H to rewrite this
integral as a period of automorphic forms on B*(A). By the decomposition X = W; & W3-, we look to reinter-
pret the subgroup G(SO(W7) x SO(W1)) < GSO(X) (featured in A¢(f, x)) as a subgroup of F* x B*/AE* via the
isomorphism p of (4.2).

5.5.1 Structural decomposition of quadratic spaces

Since K — D, the standard involution * on D restricts to the non-trivial Galois automorphism of K. We may
write
D =KeoKj

foranyj € K* since for such a j we have K+ = Kj. Extending this decomposition to B = D ® E (where * extends
to a Galois action on B, trivial on E, as in Section 4.1) define

L=K(E)=KerE.

Then L = E(V/d) is a quadratic extension of E such that we have an embedding L — B. The standard invo-
lution on B (given by x — x*) restricts to the non-trivial Galois involution on L. Then, for the same j € K* as
before, we have B = L & Lj.

Focusing now on the subspace X c B define

X;={xeL:ux)=x"}

Both X; ¢ Xand 1 € X;. Moreover, we may realise X; as a quadratic extension of F. Under the quadratic form
Nx we have the orthogonal decomposition X = X; @ X; which is described by the following lemma.

Lemma 5.5. For any zo € E with Trg/r(zo) = O we have the orthogonal decomposition
X=X o Z()Kj.

Proof. The orthogonal complement X; is given by X n Lj (otherwise X; n X7 # 0). Hence X; contains ele-
ments xj where x € L such that ((xj) = (xj)*; these are the elements x € L such that x + ((x) = 0 since j and x
are orthogonal under Ny. Fix some z € E with Trg/r(zo) = O then for any k € K we have 1(zok) = —zok. Hence
zoKj < X+, and since both are two-dimensional F-vector spaces we have equality. O

Lemma 5.4 gave us an interpretation of W; c X as the space W, = K. Combining this with Lemma 5.5 allows
one to deduce the following (F-vector space) isomorphisms:

Wi=X; and Wi =X.
Consequently, we have the reinterpretation of the orthogonal groups
GSO(X7) = GSO(W;) = K* and GSO(Xp) = GSO(W7),
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justifying our conclusion that
G(SO(X1) x SO(X7)) = G(SO(W7) x SO(W1)). (5.8)
Proposition 5.6. There is an F-isomorphism of algebraic groups
@ : F* x L*/AE* 5 G(SO(W7) x SO(W1))

Wwhere the projection onto the second component is given by (s, k) — s~ 1kk' € K* (whereby K* acts on W1 = K
by left multiplication).

Proof. By the isomorphism (5.8), it suffices to find an isomorphism @ such that the following diagram com-
mutes:
F*x BX/AE* 25 GSO(X) = GSO(X, @ X?)
U U (5.9)
F* x L*]AE* —cD—> G(SO(Xp) x SO(Xf)).

We consider the surjective map
@: F*xL* — {(s tku(k)*, s ku(k)) : s € F¥, k e L*}.

One can check that the projections of Im(®), onto the first and second components, act on X; and X7, respec-
tively, by left multiplication. Noting that the similitude factors of each component in the image are equal,
hence we may extend @ to a mapping into G(SO(Xy) x SO(Xf)). Since the kernel of @ is AE*, we have an
injection

@ : F* x L*/AE* — G(SO(X1) x SO(X})).
To demonstrate the surjectivity of @ we need only check that diagram (5.9) commutes. Observe that, for
(s, k) e F*x L%,

p(s, k) (XL @ X7) = s k(X @ X7)u(k)* = s ku(k)* X @ s~ ku(k) X7 = D(s, k)(XL @ X7).

Thus meaning that, up to an automorphism of X; ® X3, p|pxxrx = ®. Since p is one-to-one then ® must also
be surjective. O

5.5.2 Interpretation of the integral Az(f, x)

Considering the domain of A¢(f, ), one uses Proposition 5.6 to deduce the isomorphism
AXG(SO(W7) x SO(W1))\G(SO(W7) x SO(W1))(A) = AZL*\AT.

The application of this isomorphism to A¢(f, x) requires a change of integration variable. This is accom-
plished by substituting (yg, g) — p(1, k) where k € A;L*\A7}. For this we note that the original variables
hg € GSO(W1)(A) and (yq, 8) € G(SO(W7) x SO(W1))(A) satisfy:
o hg € GSO(W1)(A) fixes W7 (A) and acts as g on W1 (A),
+  Yyg € GSO(W7)(A) fixes W1(A) and acts as yg on Wi (A),
. Alhg) = Alyg).
Hence the product yghg, corresponding to (yg, g), is substituted with p(1, k) and element g € GSO(W1)(A),
the projection of (yg, g) onto its second factor, is substituted with kk' (as in Proposition 5.6). This substitution
returns

M0 = | XU, ko)

AXL\AS

For any k € A} we have kk' € A} so we have a character Q : L*\A| — C* by defining
Q(k) = y(kk") (5.10)
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such that upon restricting Q to A ; we have Q| ax =X o Ng/p. Since we have chosen f ¢ \7},’ ¢ to correspond to
some 1 € V; such that flgoa)(p(s, a)) = n(a), the integral above becomes

M) = J Q(on(k) dk. (5.11)

AZL\A]

6 Local calculation: Integrals over matrix coefficients

We will ultimately show that |P(8(f, ¢), x)|? factorises into a product of special L-values and a finite number
of local integrals. In this section we follow [14] in defining these local integrals and make use of the excellent
results proved by Liu to rearrange them for our purposes. Throughout this section we work locally at a place
v of F suppressing the subscript v form the notation (so that F = F,, ¢ denotes one local component in the
tensor product ®,0, and so on).

6.1 Localintegrals

To provide a complete picture, we define the local integrals in full generality for any (local) irreducible,
admissible representation 77 of G. The definition is divided into a non-archimedean and an archimedean case;
this is due to the nature of the analysis in [14, Section 3] in ‘regularising’ these integrals. Immediately after
this definition we specialise to choosing 71 = 6(0), the (local) theta lift of g, and unify the integrals from each
case since they have the same form in this specialisation. We point out that such a 7 = 6(0) is always tempered
and thus the regularisation results of [14] apply.

6.1.1 The non-archimedean case

Suppose that F is a non-archimedean local field. We consider the notion of a stable integral as defined in [13].
We refer the reader to there for more information since it is not of central importance to our discussion.

Definition 6.1 (The non-archimedean local factors). Given ¢ € V., ¢ € V7 and a unitary paring
Br:V®Vz— C

we define
st

a@. 950 = | [ Batntug)p. p)x(e5 (W duds
FA\T U
where the integral over U is called a stable integral (see [13, Definition 2.1]) and is evaluated on a certain
compact open subgroup N ¢ U. This N is chosen to be ‘maximally’ in the sense that if N’ is another compact
open subgroup with N ¢ N’ ¢ U, then the integral over N’ equals the integral over N. The product of Haar
measures dudg is again a Haar measure on the Bessel subgroup F*\R.

Indeed it is not obvious that the integrals of Definition 6.1 converge, nor should such an N exist, but Liu
proves these facts in [14, Theorem 2.1] and [14, Lemma 3.2], respectively.

6.1.2 The archimedean case

Let F be an archimedean local field. The method of regularisation here is to consider the Fourier transform of
certain matrix coefficients in a so-called regular subset of U.
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Recall that the abelian unipotent group U = M;Vm (F)is self-dual and all its characters are given by 1, for
some M € M3 (F), as in (2.4). We denote by M5 (F)™8 the open and dense subset of non-singular symmetric
matrices in M;ym(F ) and define its image in U as

Us = M;ym(F )res.
Definition 6.2 (The archimedean local factors). Given ¢ € V,, p € V5 and a unitary paring
Br:Vi®Vz— C

we define
a(p, Pix) = j jBn(n(ug)w, PX(@W5! () du dg.
FA\T Utes

Here, for a fixed g € T, the map
vs > | Batn(ug)p. $)5 (0 du

Utes

is the Fourier transform (in U*¢) of the function u — B,(7(ug)o(f, ¢), o(f, (i))).

Once again, Liu proves that this integral converges absolutely in [14, Theorem 2.1].

6.1.3 Normalisation of local integrals

In his paper [14], Liu goes on to show that there exists a specified set of good places, which exclude a finite
number of places of the base number field (including the archimedean ones), for which the local integrals
may be computed as follows (see [14, p. 7] for details).

Proposition 6.1. Ifvis a good place of the base number field, then for the local vectors ¢ € V, p € V7 one has

{r(2)¢r(4)L(1/2, TR Y)
L(1, m, Ad)L(1, xk/F) ~

ale, p;x) =

Hence we normalise the local factors by setting

- L(1, m, Ad)L(1, Xk/F) -
b oy — .
a’ (@, ¢;X) GQG@LA/2, X ale, @;X) (6.1)

so that a (¢, @;x) = 1 for almost all v.
Given any place v, if, instead of considering an arbitrary vector ¢ € V5, we take the local vector ¢ = ¢ —
in the context of being local factors of functions on adéle groups as in (5.3) — then we define the notation

a(p,x) = alp, p;x) and  a¥(@,x) = a'(p, @;x). (6.2)

As well as absolute convergence, [14, Theorem 2.1] states that whenever such a 7 is tempered, we have the
positivity result
a(p,x) = 0.

Remark 6.2. The integrals defining a(¢p, ¢;x) have a unipotent part (over U) which is given by either
a stable integral (over a compact open N ¢ U) or a Fourier transform (with respect to U™ ¢ U) when v
is non-archimedean or archimedean, respectively. We consider these integrals for 77 tempered. The choices
of regularisation for these integrals are justified by noting that when 7 is square integrable we may take the
entire space U in each definition. That is, for any v, when 7 is square integrable we have

(@, PiX) = j jBn(n(ugyp, PX@W5 ) du dg,
FAT U

by [14, Propositions 3.5 and 3.15].
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6.1.4 A unified result for theta lifts

Let us specialise now by assuming 7 = 6(0) is the theta lift of g, a local factor of the fixed representation
in Section 5.1. We select the pairing B to be defined as in (4.8); this depends on a choice of B, which we
made in (5.2). Retaining some generality in what follows, we note that by [7, Proposition 5.5] the conjugate
representation 7 is generated by elements 6(f, ¢) for f € V5 and ¢ € V.

Proposition 6.3. In either the non-archimedean or archimedean cases, if 6(f, ¢) € V, and 6(f, ) € Vi then
the local integrals become

a(o(f, ), 6(F, d); x)

_ Cr(2)Cr(4) “1p-13-1 g0 (p-1 7
-t | ] | et'hh b 9Ba(othngt, ) dhy dh dg

FX\GSO(W1) O(X) SO(W3)\SO(X)

where hg € HO(A) is any element such that A(hg) = A(g) with the additional constraints that hg(&(v)) = &(g(v))
forv e Wy and hg(w) = w when w € Wy (for comparison see Section 5.4); the element & € X§ is the base point
chosen in Section 5.4; dh is the Haar measure for O(X) fixed in the definition for Bg(s), see (4.8); and finally dh,
is the Siegel-Weil measure on SO(Wf)\SO(X).

Proof. This follows immediately from [14, Lemma 4.2]. O

Remark 6.4. The product of local Siegel-Weil measures is precisely the Tamagawa measure on the adélic
points of the group in question (see [14, Remark 3.18]).

6.2 Explicit local factors for theta lifts

We analyse the terms a! (8(f, ¢), 8(f, ¢); x) where 8(f, ¢) € V, and 6(f, ) € Vi are as before. We point out
again that, even though the subscripts are removed, everything is local here. We will determine the quantity

Cr(2)r(4) \7! .
<m) a(0(f, $), 6(f, $); x)

- [ j j (@M)P)O @)D (EBo(a(h; hgh)f, Pix(g) dhy dh dg
FX\GSO(W;) 0(X) SO(Wf)\SO(X)

after making the substitution h — h[lhghhg1 and recalling that g = hg¢, by definition. We decompose the
integral over O(X) in terms of its connected component SO(X) and replace the measure dh with

dh, = 2dh|so(x)
so that the volumes
Vol(0(X), dh) = Vol(SO(X), dh;).
Then we find that the above quantity is equal to

Y [ ][ @ee@@nrdresaotigher. e dh dhs dg.

£612(F) p\GS0 (1) SO(X) SO(W)\SO(X)

To simplify further, note that
SO(X) = (SO(W)\SO(X)) x SO(W7)
where we substitute h, — (h3, y), with measure dh, — dh,dy, so that

(Mﬁ(em 9), 6, $);x)

L(1, o, std
=Y || whee@@nreseotyhehaef, Px(s) dh dha dy ds,

€€12(F) p\GSO(W) SO(W) (SO(W)\SO(X))?
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recalling that y € SO(W7) stabilises & and commutes with hg. Using that o is unitary under B, we finally
obtain

a(8(f, ), 0(F, P); )

1 {r(2)¢r(4) y

2L(1,0,std) £e2(F) 50w \so(x))?

(@(h2)9)(O)(@(h1)P) ()T, (0(h2€)f, G(h1)f; X) dhy dhy

by defining

Teulfi fix) = j ng(o<yhg)f,f>x<g) dy dg.
FX\GSO(W;) SO(WlL)

7 The result: Local and global assembly

This section concludes with the unification of the global period in Section 5 and the rearranged local integrals
in Section 6. The connection is facilitated by the work of Waldspurger [21] who, in 1985, gave the pioneering
example of refined Gan—Gross—Prasad conjecture: a proof for the pair (SO3, SO,). We apply his formula to
our calculation.

7.1 Atheorem of Waldspurger

Let B be a (possibly split) quaternion algebra over E. Let L be a quadratic extension of a number field E such
that there exists an embedding L — B and let Q be a Hecke character of Af. Let T = ®, T, be an irreducible,
cuspidal automorphic representation of B*(Af), realised in V, such that w; - Q| AX = 1.Forn € V; define the
global period integral
om0 = | adon@ dk.
AZLX\AS

For each place w of E let B;, be a unitary pairing on V;, ® V. For each ny, € V;, and f},, € Vz, define the
local integrals

ﬁw(’?w; flw§ Qy) = J- BTW (Tw(kw)rlw’ flw)Qw(kw) dky
EW\Ly,
and their natural normalisation,
L(l, Tw, Ad)L(lsXLw/EW)
(e, (2)L(1/2, TL,w ® Qu)
where 7, is the base change lift of 7,, to B*(Ly,).

The following theorem was originally given in [21, Section III.3] (and then stated in terms of the re-
fined Gan—Gross—Prasad conjecture in [12, Section 6]). Fix a choice of Haar measures dk,, such that the
Tamagawa measure on (E*\L*)(A) decomposes as dk = [,, dk., and a choice of local parings B, such that
the Petersson inner product decomposes as B = [],, B+, .

Bev(rlw, Nw; Qw) = Bw@Mw, ws Qw)

Theorem 7.1 (Waldspurger). The integrals By (1w, flw; Qw) are absolutely convergent and
ﬁEv(rlw’ Aw; Qw) = 1
for almost all places w of E. If, in addition, T has trivial central character, w; = 1, and Q is unitary, then

1 (e(Q)L(1/2, 1,2 Q)
2 L(1, 7, Ad)L(1, x1/£)

9, W7, Q) = [T 8% ws ftws Qw)

where 1, denotes the base change lift of T to B*(A ) and 77 is the Jacquet-Langlands transfer of Ty, to GLy(Ap).

We remark that the L-function L(1/2, T} ® Q) may be interpreted in various ways due to the low-dimensional
isomorphisms that occur (see Section 2.1.3).
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7.2 Application of Waldspurger

Let the arbitrary notation introduced in Section 7.1 now assume the running meanings that we assigned in
Section 5.1 (for the representation 7 = ®,, 7 and the pairings B;,,) and Section 5.5 (for thealgebras B = D ® E,
L = K ® E). We draw special attention to the assumption that f € Véy s With flgo(a) e p = 1. The set & contains
those places of F such that 0, = 0, ® sgn and S is the fixed, finite set of places of F outside which f, = f;
is H(Oy)-invariant (see Section 4.3.3). We choose 1 = ® 1y, implying f = ®,f, with f, = ®,y1w as in Sec-
tion 4.3.2. The pairings B, , for w|v, determine the pairings B, , and B, (as in Section 4.4) which are used
to define the local integrals (Section 6).

Lemma 7.2. The global period integral in Waldspurger’s formula satisfies

Ae(f, x) = Qn, Q).

Proof. We only need to remark that Q| Ap=Xe NE/r implying the condition Q| ar=1 is satisfied since y|4x = 1
(Assumption 5.2). Moreover, Q is unitary because x is assumed so. We then have that the form of A¢(f, ) in
(5.11) is given precisely by Q(n, Q). O

In a similar manner, we identify the local period integrals in Waldspurger’s formula with our own terms
Cev(fy, fv: xv). The following lemma is a local analogue of the analysis of A¢(f, x) in Section 5.5.

Lemma 7.3. Letv be a place of F. Then, for f,, € V, and fo e Vs, as above,

- 1 5
F{,v(fVa foixv) = E H,Bw(rIWy Nws Qw)
wlv
where
Cy =

{1 ifvesns,

0 otherwise.

Proof. Analogous to the global setting (discussed in Section 5.5.2) we have
FX\GSO(W1), x SO(W7), = FS\G(SO(W7) x SO(W1))y

so that
r.{,v(fv,fv;)(v) = J Bov(gv(yhg)fv,fv))(v(g) d)/g dg (7.1)
FA\G(SO(W3)xSO(W1))y

where hg € HY is any element such that
A(hg) = A(g)

with the additional constraints that hg(&(v)) = &(g(v)) for v € Wy, and hg(w) = w when w € Wf’ - The vari-
able of integration (y,, g) is an element of G(SO(W;") x SO(W;)), whence A(y,) = A(g). By Proposition 5.6
there is an F,-isomorphism

Fy\G(SO(W7) x SO(W1)), = (E*\L*)(Fy).

Applying this isomorphism to (7.1) (checking Section 5.5.2 for comparison), we substitute the element y,hy,
which corresponds to (yg, g) by definition, with p(1, k) where k € (E*\L*)(F,). The element g € GSO(W1),
is the projection of (yg, g) onto its second factor; as in Proposition 5.6, this projection corresponds to
p(1, k) — ki'. This substitution returns

r.{,v(fv,fvﬁ(v) = J BUV(UV(p(ly kv))fv,fv))(v(kvk:/) dky.
(EX\L*)(Fy)

The automorphic character Q = ®,,Q,, of (5.10), factorised over places of E, may be divided into factors
corresponding to each place v of F by Q, = ®,Qy. These factors coincide with the factorisation of y = ®,y,
in that Q, : k, — xv(k/k}).

Brought to you by | MPI fuer Mathematik
Authenticated
Download Date | 4/30/17 2:40 PM



86 —— A.).Corbett, The refined Gan—-Gross—Prasad conjecture for non-endoscopic Yoshida lifts DE GRUYTER

The measures dk, are chosen so that the Tamagawa measure dk on (E*\L*)(AE) factorises as
dk = [ | dky,
w

over places of E, with dk, = lev dky. The dk, are precisely the measures dh;,, of Hy, in (4.8) (defin-
ing Bg(s,)). We now express the domain in terms of places w of E. By (4.5) we have

(E\L)(Fy) = [ [ E3\L}-

wlv

Our calculation now depends on whether or not v € &. With the vectors f, = ®ynw and fo = Qwlvllw We
have

- 1 . 1 -
Bgv(fv’fv) = EBUO‘V(fv,fv) = E HBTW(VIW, ’lw)-

wlv

This is clear from the definition of the pairing B, in Section 4.4ifv ¢ Sorv ¢ S.1If v e SN &, then
fr=Ffr+0eVs, &V

so we pick up the factor of 1/2¢ = 1/2.
At last we obtain

. 1 -
r{,v(fv, fv§Xv) = J E H ‘BTW(Tw(kw)rlw, ﬂw)Qw(kw) dky

HW|VE:/\</\LE le
1 ~
- 2€v HBW(UW’ rlw;Qw). -
wlv

Combining the previous two lemmas allows Waldspurger’s formula to be rewritten in terms of the integrals
defining A¢ and T'¢. Recall the notation S’ = S~ (S N &) and introduce

s=|SNS| and s’ =15].

Proposition 7.4. For all pure tensors f = ®,f, € V; s and f = &,f, € V. s we have

Ne(f )N (Fo ) = 257 [ [ Tew (s Fus o)

7.3 The explicit formula

Applying the definition of the variant theta integral (5.5) we begin computing the Bessel period’s square:

PO, ), )12 = j j P6°(a(5)f, w(6)$), PO (0(e)f, w(E)P), x) d6 de.
12 (F)\p2(A) po (F)\pu2(A)

As i, (F) is of index two in y,(A), we rearrange so that the above integral equals

i || 20w 0@, 0E6ET wed), 0 ds de
H2(A) pa(A)
=41# Y. D P06, w(8)), NPE°(0(e)f, w(€)D), ). (7.2)

M2(Fs) pa(Fs)

This equality follows since, as €, € H(O,), the integrals for v ¢ S fix the integrand and elsewhere we have the
(normalised) counting Haar measure. We further reduce the sum by noting that, for hy € H°(A),

o(e)f(ho) = flhoe) = 0
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unless € € uy(AS"S){1, 1} (by (4.7) or [7, Lemma 2.2]). Hence (7.2) equals
1

flts+s!

Y Y (P66, w®)), x) + PO°((80f, w(50$), X))

ﬂZ(Fs’)ﬂz(Fs’)

x (P(6°(0(e)f, w(©)P), X) + P(E(0(e0f, w(en D), X) )-

The invariance under ¢, noted in (5.4), implies we have the equality

PO, ), I = — Y Y PO, wd)9), )P (a(e)f, w(e)d), x).

s+s’
A Fa) 1o (B

Hence it suffices to proceed by considering the summands

P(6°(0(5)f, w(8)h), Y PO (), WE)), 1)
- j j (@(h28)P) (O @M1 &) P) DA (0(h28)), Y)Ae(a(hie)f, x) dhy dhs.

((SO(W)\SO(X))(A))?
We have A¢(0(hie)f, x) = Ag(5(h1€)f, §) where f = ®,f, € \7},’ 5 and the vectors

o(hie)f = @yov(hive)fy € Vg s and  G(hie)f = @0y (hiven)fy € Vg
are pure tensors. Thus the hypotheses of Proposition 7.4 are satisfied; we have

A,g(O'(hz@)f),X)A{(O’(hy‘:)f,)() = 25_1 H r{,v(ov(hz,v5v)fw 6v(h1,v£v)fv§Xv)-

Subsequently,

PE°(a()f, w(8)¢), Y P(E°(a(e)f, w(€)), X)
2] [ @hea8)8)@ @ e d@

(SO(W7),\SO(X),)? -
X F{,v(av(hz,v6v)fw 6v(h1,v5v)fv;)(v) dhyy th,v-

In summary, we have the following formula:

PO 0P = —251 Y Y [[(6ne) (7.3)

4s+s’
8euy(Fgr) e€pia(Fgr) v

for which we have introduced the place-holder notation

98y £) = j j (@, (h2.y8,) D) )@y (h1.0E))P1) (&)
(SO(W7),\SO(X),)? _
X rf,V(UV(hZ,V(SV)fV’ av(hl,vgv)fv§Xv)dhl,vth,v-

The J,(6,, &,) are connected to the local integrals of Section 6.2 by

1 ¢, (2)CF, (4) Z

a(0(fy, Pv), xv) = 2L, 0,,std)

Jy(ov, 1),
ovepa(Fy)

recalling a(0(f,, dv), xv) = a(6(fy, ¢v), 0, (i)v);)(,,). We now separate the sumin (7.3) according to the repre-
sentation g, at v. The index set for the double summation runs over 6, € € u»(Fg), with § = (§,) and € = (&),
where §, = ¢, =1ifve Sorv¢S.

o Ifv ¢S, then, since g, € H(O,), Jy(0v, 1) = J,(1, 1) meaning

L(1, oy, std)

1
WLD=3 ) dlen) = Fes

oveua(Fy)

a(0(fy, dv), xv)-
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e IfveSn&,thenl,(1,1) =0.Indeed, forf=f+0 €V, , & Vo, We have

_ 1 _
B, (0v(Ofv, fv) = E(BUO,V(O,fv) +Bg,, (fr,0)) =0+0.

The remaining term is

L(1,0y,std)

{r, (2)¢F, (4)

. IfveS', wehave afour-term summation. Using that J,(t, 1) = J,(1, 1) we find

L(1, oy, std)
Jv(by, &) =2 Jv(ov, 1) =4 7—5——~ 0(fv, dv)s Xv)-
6v,§e;§m (08 QVE}JZZ:(FV) D ((FV(Z)(FVM) )a( (frs Pv)s xv)

3,1, 1) = 2( )a(0(fis d), x0).

Together, these three points prove that (7.3) becomes

L(1, o, std)
4s+s’ m)l:[a(e(fw ®v)s Xv)

B _(L(l, o, std) ) {r(2)¢r(4)L(mt, x, 1/2)
Cr(2)Cr(4)

Finally, for our formula to be independent of choice of local pairings (see Remark 7.7) we normalise the
Bessel period and instead calculate

PO, $), 0)I* =

28 12543 (

i
TOAd, m, L0, 1) 112 O @0 x0)-

1P, )12
Boo) (@, @)By (x5 X)

for ¢ € Vg(s). The Petersson pairing for the one-dimensional representation y is trivially constant in this case
and is easily seen to equal the Tamagawa number

By(X> 1) = By(1, 1) = VOI(AXKX\AY) = 2

(7.4)

The Petersson pairing for the theta lift 6(0) is dealt with by the formula of Gan-Ichino (4.9) which states that
the Petersson inner product for (o) equals

_ L(1, 0,std)
Bow = 2 ygeta L] Boen-

Combining these final comments gives the main result.

Theorem 7.5. Let (71, V) be an irreducible, cuspidal automorphic representation of PGSp,(A) lifted, via the
theta correspondence in Section 3, from (the Jacquet-Langlands transfer of) a cuspidal automorphic represen-
tation of GL, (A ) with trivial central character. Let K be a quadratic field extension of F such that SO, = K*/F*.
Let x be a unitary Hecke character of Ay such that x|a~ = 1; such a x may also be viewed as an automor-
phic representation of SO, (A). For the cusp forms ¢ = ®,¢, € V; and p = ®,(p, € Vi define the local integrals
a%(py, xv) as in Section 6: we have a" (@, x) = 1 for almost all v. For any choice of local Haar measures defin-
ing a%(¢y, xv) let C € C be the Haar measure constant (the constant of proportionality given by the ratio of the
Tamagawa measure divided by the product of local measures). For each v, let B, be any choice of local unitary
pairing. We have proved that

1P (g, X)I? ZQCF(Z)(F(4)L(1/2,H®){)1—[ a*(@v, Xv)
Ba(p, ®)By(X,X) 4 L(1, 7, AA)L(L, xxp) 4 B, (@, @v)

Definition 7.1. We define the local integrals to be properly normalised in the following way: choose local
unitary pairings By, on each one-dimensional space V,, ® Vy, such that the Petersson pairing decomposes
as By =[], By,. We then take the normalised quantity

BXV(XV!XV)an(¢V9XV)

in place of the local integrals in the formula of Theorem 7.5. Note that in the original definition of the local
integrals (Section 6.1) we implicitly take By, = 1 for each v, as per Section 4.4, and we found the decompo-
sition By = 2], By, .
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Corollary 7.6. Assuming C =1, B, =[], B, and that the local integrals al(@y, xv) are properly normalised
(as in Definition 7.1), Theorem 7.5 becomes

_1r@)GF(ALA/2, mRX) 11
4 L1, n, Ad)L(l,XK/F) 1_[“ (@vs Xv).

14

1P, 1P

Remark 7.7. Ina more general setting, the representation y need not be one-dimensional (when considering
other groups). Normalising the left-hand-side of the equation in Theorem 7.5 by the Petersson pairings for
and y, and including the Haar measure constant, ensures that the local choices of pairings and measures are
independent of the global setting. These objects may be chosen and may be chosen arbitrarily without affect-
ing the formula and, in particular, the local integrals are independent of such choices (see [11, Remark 1.3]).

Our normalisations may seem ad hoc at first, due to the trivial pairings on y, however we state our theorem
in this way so that it sits in the more general framework of Liu’s conjecture. In Liu’s work one sees that the
issue of normalisation appears in a natural setting and we invite the reader to check [14, Conjecture 2.5] for
consolidation.

Acknowledgment: The author would like to offer sincere thanks to both Yifeng Liu, for his helpful comments
and discussions, and Abhishek Saha, for his valuable guidance. Thanks are also due to Katharine Thornton
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