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Abstract:We prove a precise formula relating the Bessel period of certain automorphic forms on GSp
4
(AF) to

a central L-value. This is a special case of the refined Gan–Gross–Prasad conjecture for the groups (SO
5
, SO

2
)

as set out by Ichino–Ikeda [12] and Liu [14]. This conjecture is deep and hard to prove in full generality; in

this paper we succeed in proving the conjecture for forms lifted, via automorphic induction, from GL
2
(AE)

where E is a quadratic extension of F. The case where E = F × F has been previously dealt with by Liu [14].
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1 Introduction

The aim of this paper is to prove a special case of a deep conjectural relation between periods of automorphic

forms and central values of L-functions. An early prototype of such a result is due to Waldspurger [21], who

computed toric integrals of automorphic forms on GL
2
to be an ‘Euler-product’ of local integrals scaled by

a global constant of certain L-values. Soon after, Gross–Prasad [8] made a series of fascinating conjectures

relating periods of SOn+1 × SOn-forms along SOn (embedded diagonally) to central L-values – the case n = 2

is implied by the work of Waldspurger. These conjectures were extended to include all classical groups by

Gan–Gross–Prasad [6].

In their original form, the Gross–Prasad conjectures omit a precise description of the factorisation of the

global automorphic period. However, a recent work of Liu [14], extending that of Ichino–Ikeda [12], offers

a refined conjecture by giving a precise conjectural formula for the Bessel period of a wide family of automor-

phic forms in terms of the central values of certain L-functions. In its full generality, Liu’s conjecture appears
out of reach of our current methods, even for specific groups. Nevertheless, one can try to prove special cases

of it; Liu himself proved his conjecture in the case of endoscopic automorphic forms on GSp
4
[14], motivated

by Prasad–Takloo-Bighash [15]. These endoscopic forms are classically known as Yoshida lifts and essen-

tially correspond to lifts from GL
2
× GL

2
.

In this paperweprove sucha formula for thenon-endoscopicYoshida lifts: the automorphic formsonGSp
4

lifted from the non-split orthogonal group GO
4
(that is, the underlying quadratic space defining GO

4
has

non-square discriminant). Making use of exceptional isomorphisms, we see that such forms are obtained by

automorphic induction from GL
2
(E) where E is a quadratic extension of the base field F. (Liu’s result covers

the split case where E = F × F.) For our proof we require both a much finer analysis of the four-dimensional

quadratic spaces governing GO
4
(of non-square discriminant) and a more detailed construction of the
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automorphic representations of this group than that found in [14]. This analysis provides a notable diversion

from Liu’s method, especially in the final deduction of our explicit formula Section 7.

Before describing our results inmore detail we also remark on a conjecture of Böcherer [2] (see also [19]).

In thiswork Böcherer formulates an equality between sums of Fourier coefficients (indexed by ideal classes of

a fixed quadratic field K) of Siegelmodular forms and certain L-values. The present paper considers the Bessel
period of an automorphic formonGSp

4
(A); if the form in question is the adèlisation of a Siegelmodular form,

then (by [4] for example) one computes the Bessel period to be precisely the Fourier coefficients that Böcherer

considered. Thus our result provides a proof of (a refinement of) Böcherer’s conjecture for non-endoscopic

Yoshida lifts.

1.1 The Bessel period

Let F be a (totally real) number field with adèle ring A = AF . We consider the refined Gan–Gross–Prasad

conjecture for the groups (SO
5
, SO

2
). In this case we extend SO

2
to the Bessel subgroup R = U ⋊ SO

2
, with

R í→ SO
5
, where U is a certain unipotent subgroup of SO

5
. The conjecture describes the explicit form of

a period integral of automorphic forms on SO
5
× R along the (diagonally embedded) subgroup R. Our

approach to the problem makes use of the exceptional isomorphisms

SO
5
≅ PGSp

4
and SO

2
≅ ResK/F K×/F×

where K is a quadratic field extension of F.
More specifically, let χ be a unitary Hecke character of A×K, simultaneously thought of as a character of

SO
2
(F)\SO

2
(A), and let π be an irreducible, cuspidal automorphic representation of GSp

4
(A) in the space of

cusp forms Vπ. Impose the central character condition that π ⊗ χ|A× = 1. Additionally, make a (standard and

inconsequential) choice of automorphic character ψ of U so that ψ ⊠ χ is an automorphic character of R. We

then define the χ-Bessel period of φ ∈ Vπ to be the absolutely convergent integral

P(φ, χ) = ∫
A×R(F)\R(A)

φ(g) (ψ ⊠ χ)(g) dg. (1.1)

This integral defines an element of HomR(A)(π ⊗ (ψ ⊠ χ),ℂ). The unrefined conjecture claims that there exists

some vector φ∗
in (the Vogan L-packet of) π such that

P(φ∗
, χ) ̸= 0 ⇐⇒ L(1/2, π ⊠ χ) ̸= 0

where P(φ∗
, χ)may be defined for more general elements φ∗

of the Vogan L-packet in a similar way to (1.1).

It is this unrefined dependence which we make explicit.

To discuss the local side, assume the factorisations π = ⊗vπv; χ = ⊗vχv; ψ = ⊗vψv and suppose that

φ = ⊗vφv. Associated to this data, we follow Liu in defining

α♮(φv , χv) ∈ HomR(Fv)(πv ⊗ (ψv ⊠ χv),ℂ)

at each place v to be an integral over local matrix coefficients (see Section 6). Roughly speaking – up to

a normalisation constant (see (6.1)) – the integral defining α♮(φv , χv) is equal to

∫

F×v \R(Fv)

Bπv (πv(gv)φv , φ̄v) (χv ⊠ ψv)(gv) dgv

where Bπv is a local unitary pairing for πv. The foundation on which Liu is able to generalise the refined

conjecture is the regularisation of these integrals. They are shown to converge absolutely and a natural nor-

malisation is found such that α♮(φv , χv) = 1 for almost all places v (see [14, Theorem 2.1 and 2.2]). We may

thus make sense of the infinite product ∏v α♮(φv , χv). The refined Gan–Gross–Prasad conjecture then asks

for the constant of proportionality between this product of local factors and the square of the absolute value

of the Bessel period.
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1.2 Lifted representations

The representations of SO
5
(A) ≅ PGSp

4
(A) are precisely those representations of GSp

4
(A) with trivial

central character. We consider a class of representations of PGSp
4
(A) which are lifted from representations

of the group GO
4
(A), when GO

4
is non-split, via the theta correspondence for (GO

4
, GSp

4
) – we call such

lifted representations the non-endoscopic Yoshida lifts. The domain of this lift comprises of the representa-

tions of GO
4
(A) (of trivial central character); these are uniquely determined by representations of D×(AE) for

a canonical choice of quadratic extension E/F and quaternion algebra D over F. Thus, via Jacquet–Langlands
transfer, one may view a non-endoscopic Yoshida lift π as being of the form π = AI(π�): the automorphic

induction, to GSp
4
(A), of a representation π� of GL

2
(AE).

1.3 Main result

Werefer the reader to Theorem7.5 for amoreprecise statement of our result. To simplify notationhere assume

the following decompositions for both the Petersson inner product Bπ on π and the Tamagawa measure dg
onA×\R(A):

Bπ = ∏
v
Bπv , dg = ∏

v
dgv (1.2)

whereBπv and dgv are the local factors used to define α♮(φv , χv).

Theorem. Let π = AI(π�) be a non-endoscopic Yoshida lift to PGSp
4
(A), as per Section 1.2, where π� is an irre-

ducible, cuspidal automorphic representation of GL
2
(AE) with trivial central character. Let K be a quadratic

field extension of F such that SO
2
≅ K×/F×. Let χ be a unitary Hecke character of A×K with χ|A× = 1. Then χ is

simultaneously an automorphic character of SO
2
(A). Denote by χK/F the quadratic character associated to K

by class field theory. Assume the choices of (1.2) and that the local integrals α♮(φv , χv) are properly normalised
(as in Definition 7.1). Then for a cusp form φ = ⊗vφv in the space associated to π we have

|P(φ, χ)|2 =
1

4

ζF(2) ζF(4) L(1/2, π ⊠ χ)
L(1, π,Ad) L(1, χK/F)

∏
v
α♮(φv , χv).

1.4 Remarks

The case where E = F × F is dealt with by Liu [14, Section 4]. Liu’s theorem determines the Bessel period

attached to an automorphic form on GSp
4
which is a lift from GL

2
× GL

2
. These lifts are precisely the endo-

scopic representations of GSp
4
. Moreover, Qui has proved a formula for |P(φ, χ)|2 when π is in the nontem-

pered cuspidal spectrum of SO
5
(see [16]). This is achieved by considering the so-called Saito–Kurukawa and

Soudry lifts.

Following these two works, this paper uses the functorial lift from GL
2
(E) to give a wide class of

nonendoscopic, tempered, cuspidal automorphic representations of PGSp
4
that conform to the refined

Gan–Gross–Prasad conjecture. Further works on attempting to prove such a formula in general have been

approached by using tools such as relative trace formulae (see [5] for example).

The assumption that F is a totally real number field is needed only to permit the application of a result

of [7] on the Petersson inner product of a theta lift; they, in turn, only require this assumption to use the

Siegel–Weil formula in their calculation.

Finally, wewould like to highlight the occurrence of the constant 1/4 in our formula, to be comparedwith

the constant 1/8 appearing in [14]. This falls in line with the general conjecture of Liu [14] in that it relates

precisely to the (conjectural) Arthur parameters of π and χ (as first pointed out by Ichino–Ikeda [12, Section2]
and then byGan–Ichino [7, Remark 1.2]). Specifically, the constant should be

1

|Sπ ||Sχ |
where Sπ (resp. Sχ) is the

centraliser of the image of the Arthur parameter of π (resp. χ); note that in our case we trivially have |Sχ| = 2.
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The discrepancy of 1/2 between our result and that of [14] is supported by the observation that

|Sπ| =
{
{
{

4 if E = F × F,
2 if E = F(√e) for some e ̸∈ (F×)2.

It is interesting to see this factor arise naturally due to the structure of the representations of GO
4
(A): in [14]

the Bessel period boils down to twice the period considered by Waldspurger [21] in contrast to the single

occurrence that we observe in our computation.

This paper is set out as follows: after some preliminary definitions regarding the Bessel period (Section 2)

we review the theta correspondence for (GO
4
, GSp

4
) (Section 3) and discuss the representation theory of

GO
4
(Section 4), explaining the lift we use and its domain. We then analyse the global (Section 5) and local

(Section 6) periods before uniting these quantities (Section 7) via a theorem of Waldspurger and proving the

result at hand.

2 Preliminary discussion

2.1 Some conventions

Wework over a fixed number field F which we assume to be totally real. PutO for the ring of integers of F and
A for the ring of F-adèles. Given an extension L ⊃ F letAL = A ⊗F L.

If G is a linear algebraic group defined over F and R is an F-algebra, write G(R) for the R-points of G. At
a place v of F simplify the notation G(Fv) to Gv. Given a function f on G, denote left and right translation by
elements g ∈ G by

L(g)f(x) = f(g−1x) and R(g)f(x) = f(xg).

If S is a finite set of places of F, then introduce the following notation: FS = ∏v∈S Fv and AS = ∏�
v ̸∈S Fv.

Note the compatibility of the products G(FS) = ∏v∈S G(Fv) and G(AS) = ∏�
v ̸∈S G(Fv)meaning that we can for-

mally identify G(A) = G(FS)G(AS).

2.1.1 Measures

For an algebraic group G we fix a Haar measure on G(A) by taking the Tamagawa measure dg (as originally
defined in [22]). Let dgv be a specified choice of local Haar measures on Gv for each v such that ∏v dgv is
a well-defined measure on G(A). By the uniqueness of Haar measures there exists a constant of proportion-

ality C ∈ ℂ such that dg = C∏v dgv. We call such a C Haar measure constant, as in [12].

2.1.2 Automorphic representations and pairings

The space of automorphic (resp. cusp) forms on G(A) shall be denotedA(G) (resp.A
0
(G)). For an irreducible,

cuspidal automorphic representation π of G(A)we denote by Vπ the realisation of π inA
0
(G) and put ωπ for

its central character. One has π ≅ ⊗vπv (and Vπ ≅ ⊗�
vVπv ) where at each place v of F, πv is an irreducible,

admissible, unitary representation of Gv on Vπv . Let π̄ denote the conjugate representation of π realised on

the space

Vπ̄ = { ̄f : f ∈ Vπ}.

There is a canonical bilinear pairingBπ : Vπ ⊗ Vπ̄ → ℂ given by the Petersson inner product

Bπ(f, ̃f ) = ∫
ZG(A)G(F)\G(A)

f(g) ̃f (g) dg
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where ZG is the maximal split torus in the centre of G and dg is the Tamagawa measure on (ZG\G)(A) as
always. In particular, sinceVπ is a complex Hilbert space and π is unitary, one can show that π̄ is isomorphic

to π∨, the contragredient representation of π realised on the space of smooth vectors in the dual space V∨
π

of Vπ. Moreover, any pairing on a unitary Hilbert space representation is unique up to a scalar factor. Both of

these facts are corollaries to the Riesz representation theorem. Throughout, any local, irreducible, admissible

representation of Gv is always considered to be unitary.

2.1.3 L-functions

Given a representation r of the Langlands dual group and an automorphic representation π of G we have the

Langlands L-function L(s, π, r). When r is the standard representation of the dual group, whichwe assume is

a subgroup of GLn(ℂ), we write L(s, π) for L(s, π, r). The notation π1 ⊠ π2 denotes the (external tensor prod-
uct) representation of the direct product G

1
× G

2
, where πi are representations of the groups Gi for i = 1, 2,

respectively.

The most interesting L-function for us is given as follows. Let π be an automorphic representation of

PGSp
4
(A) ≅ SO

5
and let χ be a character of SO

2
(F)\SO

2
(A) corresponding to a Hecke character of A×K as in

the introduction. Then we consider the SO
5
× SO

2
L-function L(s, π ⊠ χ). However, other authors interpret

this L-function as:
∙ the GSp

4
× GL

2
L-function L(s, π ⊠ AI(χ)), where AI(χ) is the automorphic induction of χ from A×K

to GL
2
(A), or

∙ the GSp
4
(K) L-function L(s, BC(π) ⊗ χ), where BC(π) is the base change of π fromGSp

4
(AF) to GSp4(AK).

Each of these representations arises due to a functorial transfer from the original representation π ⊠ χ. The
characteristic property of such a transfer implies that these L-functions are indeed all equal.

Other notation includes: ζF, the Dedekind zeta function for a number field F, and χK/F which always

denotes the quadratic character of K×
given by class field theory. Note that for any Hecke character χ ofA×K,

the adjoint L-function is trivially L(s, χ,Ad) = L(s, χK/F).

2.1.4 Quadratic spaces

Let (V, q) be a quadratic space over F of even dimension 2m (we always assume such a V is non-degenerate).

The quadratic form q corresponds to a symmetric matrix Sq ∈ M

sym

2m (F) such that q(v) = vt Sqv for v ∈ V. One
defines the discriminant of V to be disc V = (−1)m det Sq and the associated discriminant algebra as

KV =
{
{
{

F(√disc V) if disc V ̸∈ (F×)2,
F × F if disc V ∈ (F×)2.

(2.1)

We intend to study the orthogonal similitude group of V:

GO(V) = {g ∈ GL(V) : q(gv) = λ(g)q(v) for all v ∈ V} = {g ∈ GL
2m(F) : gt Sqg = λ(g)Sq}

where λ : GO(V) → F× is the similitude character. One observes that (det g)2 = λ(g)2m, so there is a natural
sign character on GO(V):

sgn : g Ü→ det g/λ(g)m ∈ μ
2

where μ
2
= μ

2
(F).Wedefine the connected component of GO(V) to be the normal subgroupGSO(V) = ker(sgn)

which sits in the exact sequence

1 ÚÚ→ GSO(V) ÚÚ→ GO(V)
sgn

ÚÚ→ μ
2
ÚÚ→ 1.

Similarly, if one defines the classical orthogonal groupO(V) = ker(λ), then the special orthogonal group SO(V)
is found in the exact sequence

1 ÚÚ→ SO(V) ÚÚ→ O(V) det

ÚÚ→ μ
2
ÚÚ→ 1
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where det = sgn here. When dim V = 4, we see later in Section 4.1 that the sign character is surjective andwe

exhibit a natural choice of representatives for GO(V)/GSO(V). In essence, there is a unique element ι ∈ GO(V)
with

λ(ι) = 1, ι2 = 1, det ι = −1. (2.2)

We are then able to fix a splitting such that μ
2
is identified with the subgroup of GO(V) generated by ι. In

particular, we arrive at the decomposition GO(V) = GSO(V) ⋊ μ
2
.

Remark 2.1. For an F-algebra A, the above comments apply more generally to the exact sequence

1 ÚÚ→ GSO(V)(A) ÚÚ→ GO(V)(A)
sgn

ÚÚ→ μ
2
(A) ÚÚ→ 1

where the A points of GSO(V) coincide with the kernel of the sign function on GO(V)(A). In particular, we

have a well-defined notion of μ
2
(A), GSO(V)(A), GSO(V)v and so on.

2.2 The Bessel period and definitions

2.2.1 GSp4(F) in coordinates
LetW = F4 and endowW with an antisymmetric bilinear form ( ⋅ , ⋅ )W so thatW becomes a four-dimensional

symplectic vector space over F. In the coordinates of F4 one may choose

(u, v)W = ut (
0 1

2

−1
2

0

) v

where 1
2
is the 2 × 2 identity matrix. Setting W

1
= F2 then W = W

1
⊕W∨

1

gives a complete polarisation of

W such that W∨
1

is identified with the dual space of W
1
under the form ( ⋅ , ⋅ )W . Recall the definition for the

symplectic similitude group:

GSp
4
(F) = GSp(W) = {g ∈ GL(W) : (gu, gv)W = λ(g)(u, v)W for all u, v ∈ W}

where λ(g) ∈ F×. We use λ for the similitude character of any similitude group.

2.2.2 The torus

Fix a choice of anisotropic, symmetric matrix

S = (
a b/2
b/2 c

) ∈ M

sym

2

(F)

to represent the quadratic form qS(v) = vt Sv for v ∈ W
1
. Then (W

1
, qS) is a two-dimensional quadratic space

over F of (scaled) discriminant

d = −4det S = b2 − 4ac.

By the anisotropy of S (that qS(v) = 0 ⇒ v = 0) it is clear that d is not a square in F. Hence the discriminant

algebra KW
1

= F(√d) is a quadratic field extension of F. Fix the notation K = KW
1

. We consider a maximal,

non-split torus in GL
2
(F) given by the orthogonal group

T = TS = {g ∈ GL
2
(F) : gt Sg = (det g)S} = GSO(W

1
).

One has the isomorphism T ≅ ResK/F K×
of algebraic groups over F. Specifically, one shows that

T(F) = {x + y(b/2 c
−a −b/2

) : x, y ∈ F}
×

and defines an isomorphism T(F) → K× = F(√d )× by

x + y(b/2 c
−a −b/2

) Ü→ x + y
√d
2

.
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2.2.3 The Bessel subgroup

Consider the following subgroups of GSp
4
(F).

∙ Let U be the unipotent radical stabilising the flag {0} ⊂ W
1
⊂ W; explicitly we have

U = {u(A) = (
1
2

A
0 1

2

) : A ∈ M

sym

2

(F)} .

All elements of U have similitude λ(u(A)) = 1. We also identify U with the space of symmetric F-linear
mapsW∨

1

→ W
1
. Taking the standard additive character

ψ : F\A→ ℂ×, (2.3)

we define a character ψM of U(F)\U(A), for a matrix M ∈ M

sym

2

(F), by

ψM(u(A)) = ψ(Tr(MA)). (2.4)

All characters of U arise in this way for some M.

∙ One has an embedding T í→ GSp(W) by mapping g ∈ T to

ĝ = (
g

(det g) gt −1) ∈ GSp(W).

This element has similitude factor λ(ĝ) = det g. Moreover, if u ∈ U, then ug = gu.
∙ The Bessel subgroup of GSp

4
(F) is then the semidirect product

R = U ⋊ T.

2.2.4 The Bessel period

Let π be an automorphic representation of GSp
4
(A). All automorphic representations of the abelian group

T(A) are given by characters
χ : T(F)\T(A) → ℂ× ,

of which we now fix a χ such that ωπ ⋅ χ|A× = 1. We shall simultaneously think of χ as a character of K×\A×K .
For φπ ∈ Vπ, the Bessel period of φπ (with respect to χ) is defined by the period integral

P(φπ , χ) = ∫
A×T(F)\T(A)

∫
U(F)\U(A)

φπ(uĝ)χ(g)ψ−1
S (u) du dg (2.5)

where du and dt are the Tamagawameasures on U(A) andA×\T(A) respectively. We realiseA× as the scalar
matrices in the domain of integrationA×R(F)\R(A).

2.3 Notation for groups

For a fixed four-dimensional quadratic space V over F and the four-dimensional symplectic vector space

W = F4 (from Section 2.2.1) assign the notation

G = GSp(W), H = GO(V), H0 = GSO(V),
G
1
= Sp(W), H

1
= O(V), H0

1

= SO(V)

which will be used freely throughout. Also define the groups

Y = G(Sp(W) × O(V)) = { (g, h) ∈ GSp(W) × GO(V) : λ(g) = λ(h)}

and

G+ = {g ∈ G : λ(g) = λ(h) for some h ∈ H}.
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3 The theta correspondence for (GO4,GSp4)
This section is devoted to constructing certain representations of GSp

4
from representations of GO

4
both

locally and globally.

3.1 The local theta correspondence

Let v be aplace of F andomit the subscript v from thenotation in this section (F = Fv,G = G(Fv),W = W ⊗F Fv
and so on). Define the spaceW = W ⊗ V which is given the symplectic form ( ⋅ , ⋅ )W = ( ⋅ , ⋅ )W ⊗ ( ⋅ , ⋅ )V . Then
groupsG

1
andH

1
forma reductive dual pair as subgroupsof Sp(W). ThepolarisationofW = W

1
⊕W∨

1

induces

a polarisation

W = (W
1
⊗ V) ⊕ (W∨

1

⊗ V)

on which we make some remarks:

∙ Having chosen the natural basis forW we may identifyW∨
1

⊗ V ≅ V2

.

∙ There is an isomorphismW∨
1

⊗ V ≅ HomF(W1
, V).

(These comments are also relevant in the global setting, considering the adèlic points of the above spaces.)

Choose a non-trivial additive character ψ of F by taking it to be a local component of the standard (addi-

tive) adèlic character (2.3). Letω = ωψ be theWeil representation of G
1
× H

1
, with respect toψ, whichmay be

extended to a representation of Y as in [9, p. 82]. We realiseω in the space of Schwartz functions Vω = S(V2)
where Y acts as follows. For (g, h) ∈ G

1
× H

1
and ϕ ∈ S(V2):

ω(1, h)ϕ(x) = ϕ(h−1x),

ω(J
2
, 1)ϕ(x) = γ

4
ϕ̂(x),

ω(u(A), 1)ϕ(x) = ψ(Tr(MxA))ϕ(x),
ω(m(B), 1)ϕ(x) = χV (det B)|det B|2Fϕ(xB) (3.1)

where the elements

J
2
= (

0 1
2

−1
2

0

) , u(A) = (
1
2

A
0 1

2

) , m(B) = (
B 0

0 Bt −1)

generate G
1
= Sp(W) where A ∈ Hom(W∨

1

,W
1
) and B ∈ GL(W

1
). The character χV (det B) is the quadratic

character of F×; it is defined using the Hilbert symbol. The action of the unipotent group U is dependent

on the Gram matrix of x = (x
1
, x

2
)t ∈ V2

defined to be

Mx = ((xi , xj)V)i,j .

We define the character ψS(u(A)) = ψ(Tr(SA)). We also have that γ
4
∈ μ

4
is a certain fourth root of unity and

ϕ̂ is the Fourier transform of the Schwartz function ϕ (see [18, Section 1] for more details on this action). As

in [9], the extended action of ω to Y is obtained by taking (g, h) ∈ Y, ϕ(x) ∈ S(V2) and setting

ω(g, h)ϕ(x) = |λ(h)|−2F ω(g
1
, 1)ϕ(h−1x) (3.2)

where

g
1
= g(12 0

0 λ(g)−11
2

) ∈ G
1
.

We now closely follow [7, Section 5]. Define the induced Weil representation by compact induction:

Ω = Ind

H×G+

R (ω).

If σ is an irreducible, unitary, admissible representation of H and σ̄ is the conjugate representation of σ,
then the maximal σ̄-isotypic quotient of Ω is given by Ω/⋂ ker(Ψ) where Ψ runs over HomH(Ω, σ̄). This is
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a σ̄-isotypic direct sum as an H-representation. Since G+
naturally commutes with H in G+ × H, the space of

Ω / ∩ ker(Ψ) inherits an action of G+
and as a representation of G+ × H thus we may write

Ω /⋂ ker(Ψ) = σ̄ ⊠ Θ+(σ)

where Θ

+(σ) is a smooth representation of G+
. We call Θ

+(σ) the big theta lift of σ to G+
. Whilst Θ

+(σ) may

be zero, it is known that if this is not the case then Θ

+(σ) is of finite length, and hence is admissible, and

has a unique, maximal, irreducible quotient [7, Theorem A.1] which we denote θ+(σ). This allow us to finally

define the (local) theta lift of σ to G as

θ(σ) = Ind

G
G+ (θ+(σ)).

By [7, Lemma 5.2], if σ is non-zero and unitary,¹ then θ(σ) is an irreducible representation of G. We obtain

a unique (up to scalar) Y-equivariant, surjective map

θ : Vσ ⊗ Vω → Vθ(σ). (3.3)

Remark 3.1. That θ+(σ) exists as a unique,maximal, irreducible representation is in fact the statement of the

local Howe conjectures.

3.2 The global theta correspondence

In this sectionwe return to our original notationwhere F is a number field. The following construction follows

[7, Section 7.2].

We have the fixed, non-trivial, additive character ψ = ⊗vψv of A/F (chosen in (2.3)). For each place v
of F we let ωv = ωψv be the Weil representation of Y(Fv), with respect to ψv, realised in the Schwartz space

Vωv = S(V2(Fv)). LetBωv : Vωv ⊗ Vω̄v → ℂ be the canonical pairing defined by

Bωv (ϕ, ϕ̃) = ∫
V2(Fv)

ϕ(x) ϕ̃(x) dx.

The Weil representation of Y(A) is given by ω = ⊗v ωv, and comes equipped with the decomposable unitary

pairingBω = ∏v Bωv . The action ofω in Vω = ⨂v S(V2(Fv)) is applied place-by-place using the local action
in (3.1) and (3.2).

The global theta correspondence, in our setting, provides a cuspidal automorphic form on G(A) from one

on H(A). We define this cusp form now. For a Schwartz function ϕ ∈ Vω we note that the series

∑
x∈V2(F)

ω(g, h)ϕ(x)

is a smooth function on (g, h) ∈ Y(F)\Y(A) of moderate growth.

Definition 3.1. Let σ be an irreducible, cuspidal automorphic representation of H(A) and let ϕ ∈ Vω. Then

for any f ∈ Vσ ⊂ A
0
(H) we define the theta integral

θ(f, ϕ; g) = ∫
H
1
(F)\H

1
(A)

∑
x∈V2(F)

ω(g, hhg)ϕ(x) f(hhg) dh (3.4)

where hg is any element in H(A) such that λ(hg) = λ(g).

This integral is absolutely convergent and independent of the choice hg since all such elements are of the

form hgh0 for h0 ∈ H
1
(A). One computes the central character of θ(f, ϕ) to be equal to ωσ, the central char-

acter of f (since dim V = 4 is even).

By construction, θ(f, ϕ) is a function on G+(F)\G+(A). By the natural inclusion of G+ í→ G we extended

θ(f, ϕ) to a function on G(F)\G(A) by letting it take the value zero outside G+(A). This extension is unique.

1 This is indeed the case when σ is a local component of an irreducible, unitary, cuspidal automorphic representation of H(A)
with a non-zero, cuspidal global theta lift to G(A).
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Remark 3.2. For any h ∈ H = H0 ⋊ μ
2
there is an h

0
∈ H0

with λ(h) = λ(h
0
) since h = h

0
ε for ε ∈ μ

2
≅ ⟨ι⟩

where ι ∈ H is the element defined in (2.2) with λ(ι) = 1. Thus we may interchange H with H0

in the defi-

nition of G+
.

Definition 3.2. Let θ(σ) be the automorphic representation of G(A) realised in the space

Vθ(σ) = {R(g) θ(f, ϕ) : f ∈ Vσ , ϕ ∈ S(V2(A)), g ∈ G(A)}.

We call θ(σ) the (global) theta lift of σ to G(A).

We shall fix assumptions on σ (see Assumption 4.1) under which θ(σ) is cuspidal. Under these conditions
[7, Lemma 7.12] applies so that Vθ(σ) ̸= 0. We then obtain a Y(A)-equivariant, surjective map

θ : Vσ ⊗ Vω → Vθ(σ). (3.5)

We may restrict θ to Vωv ⊗ Vσv at each place v and conclude that, by the uniqueness of the local maps (3.3),

for σ = ⊗v σv,
θ(σ) ≅ ⊗v θ(σv)

and is irreducible [7, Lemma 7.2]. In particular, the local factors θ(σv) are unitary and non-zero at each v.

3.3 Automorphic induction

An alternative description of the theta lift is that it arises due to a functorial transfer of representations from

H�(A) to GSp
4
(A)where H� = ResE/F(GL2) is theWeil restriction of scalars (meaning that H�

is unique in that

H�(F) = GL
2
(E) as algebraic groups) and E is a quadratic extension of F. For simplicity let us consider the

trivial central character interpretation: the automorphic induction transfer between automorphic represen-

tations of the groupsH�
1

= ResE/F SL2 and G1 = Sp
4
. On the one hand, the L-group of G

1
is GL

1
= SO

5
(ℂ) × GF

where GF is the absolute Galois group of F. On the other hand, the L-group of H�
is

HL �
1

≅ ∏
GE\GF

SL
2
(ℂ) ⋊ GF

noting GE\GF ≅ Gal(E/F) acts on the first factor in the product via permutations of the index set. Once again

make note of the isomorphism SO
5
(ℂ) ≅ PGSp

4
(ℂ) which gives rise to an embedding

SL
2
(ℂ) × SL

2
(ℂ) → Sp

4
(ℂ), ((

a b
c d

) ,(
a� b�

c� d�
)) Ü→ (

a b
a� b�

c d
c� d�

)

which in turn induces an L-homomorphism

u : HL �
1

→ GL
1
.

On composing u with a representation r of the Weil–Deligne groupW�
E of E into HL �

1

we obtain a representa-

tion u ∘ r that lands in GL
1
. NotingW�

E ⊂ W�
F, this acquired representation is precisely the induced represen-

tation

u ∘ r = Ind

W�
F

W�
E
r

(on the Galois side). Whilst on the automorphic-side we have an irreducible, cuspidal automorphic represen-

tation AI(π�) of G
1
(A) for each π� on H�

1

(A) = SL
2
(AE). A more general review in support of this exposition

is given in [3].

A characteristic property of such a lift is that the L-function of the representations (AI(π�) and π�) are
equal, thus uniquely characterising the target L-packet. By the work of Roberts [18, Section 8] we find that

this is also the case for the theta lift discussed in the previous two sections. Then, due to an exceptional

isomorphism (see the next section, Section 4.1), wemay realise the group GO
2
as ResE/F(GL2) and hence any

representation given by the above theta lift is functorial in this sense.
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4 Automorphic Representations of GO4

To classify the image of the theta correspondence for (GO
4
, GSp

4
) we provide a thorough review concerning

the domain of the lift: we determine the structure of all four-dimensional quadratic spaces V, giving rise

to GO(V) ≅ GO
4
, and with this analysis we examine the irreducible, cuspidal automorphic representations

of GO(V)(A). The review in this section is largely expository, however it includes new notation and crucial

results which are used freely later on.

4.1 Four-dimensional quadratic spaces and their similitude groups

Any four-dimensional quadratic space is isomorphic to a member of a family of spaces whose structure is

explicit and indexed by two invariants: a quaternion algebra and a square-free integer (corresponding to the

discriminant). For more details we refer to the exposition given in [18, Section 2].

Consider a four-dimensional quadratic space V over F with disc(V) = e. Let E = KV be the discriminant

algebra of V (defined in (2.1)) and put Gal(E/F) = {1, κ}, using both κ(z) and zκ to denote the image of z ∈ E
under κ. The usual norm and trace of E/F are given by

NE/F(z) = zzκ and TrE/F(z) = z + zκ .

Definition 4.1. Let B be an arbitrary F-algebra whose centre is E with an involution x Ü→ x∗ that fixes E. Call
B a quadratic-quaternion algebra over F if there is a quaternion algebra D, over F, contained in B such that the
natural map D ⊗F E → B, given by x ⊗ z Ü→ xz, is an isomorphism of E-algebras and the canonical involution
on D is given by x Ü→ x∗. Choosing a D, there is no loss in generality in considering B = D(E), the E-points of
the F-algebra D. The norm and trace on B are defined respectively as

NB(x) = xx∗ and TrB(x) = x + x∗.

When restricted to D these are the usual reduced norm ND and trace TrD. Endow B with the unique Galois

action (with respect to D) by linearly extending the automorphism κ of E to B, that is κ(xz) = xκ(z) for z ∈ E,
x ∈ D. Denote this Galois action by κ as well. Finally, define a second four-dimensional quadratic space

(over F) by
X = XD,e = {x ∈ D(E) : κ(x) = x∗},

whose quadratic form, denoted NX, is given by the restriction of NB to X. We find that this new space has

disc XD,e = det NX = e upon computing the determinant of NX.

Remark 4.1. A Galois action on B is an F-automorphism a : B → B such that a2 = 1 and a(xz) = a(x)κ(z) for
z ∈ E, x ∈ B. There is a bijection between Galois actions on B and quaternion F-algebras contained in B.

By [18, Proposition 2.7] we have the exact sequence

1 → E× ∆

→ F× × B× ρ
→ GSO(X) → 1 (4.1)

where the injection ∆ : E× → F× × B×
is given by ∆(z) = (NE/F(z), z) and the action of F× × B×

on X is given

by

ρ(s, a)x = s−1axι(a)∗.

In particular, writing ∆E× for Im(∆), we have

F× × B×/∆E× ≅ GSO(X). (4.2)

The similitude factor of an element ρ(s, a) ∈ GSO(X) is given by

λ(ρ(s, a)) = s−2 NE/F(NB(a)).
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We denote by ι the restriction of the Galois action κ to the subspace X ⊂ B (again writing ι(x) and xι for
the image of x under ι). The notation ι rightfully coincides with that already introduced in Section 2.1.4 since
the map ι is precisely the unique element of GO(X) satisfying the properties ι ∈ O(X), ι2 = 1 and det ι = −1
by [18, Proposition 2.5 and 2.7]. We choose this element to fix, once and for all, the splitting

μ
2
(F) ≅ ⟨ι⟩ and GO(X) ≅ GSO(X) ⋊ ⟨ι⟩.

Conjugating an element ρ(s, a) ∈ GSO(X) by ι gives the relation ιρ(s, a)ι = ρ(s, aι); we denote this adjoint of
ι action by

Ad(ι) : ρ(s, a) Ü→ ρ(s, aι). (4.3)

Proposition 4.2. Let V be an arbitrary four-dimensional quadratic space over F of discriminant e. Then there
exists a quaternion algebra D over F and an isomorphism γ : V → XD,e such that the map

cγ : GSO(V) → GSO(XD,e),

given by cγ(g) = γ ∘ g ∘ γ−1, is an isomorphism of similitude groups. There is therefore no loss in generality in
considering the space GSO(XD,e) in place of GSO(V)

Proof. See [18, Proposition 2.8].

From here on in, fix a quaternion algebra D over F and a square free integer e. We shall work with the

four-dimensional quadratic space X = XD,e. Fix notation for: the quadratic extension E = F(√e ) and the

quadratic quaternion algebra B = D(E).We assume the application ofV = X to thenotationsH = GO(V) etc. of
Section 2.3.

4.2 Local representation theory for H(Fv)
In this section let v be a place of F and suppress the subscript v from the notation (for example, F nowdenotes

a local field).We shall systematically discuss the local (and later global) representation theory ofH in terms of

that of H0

. We use this section to fix notation; this material has been previously considered in the expositions

[10, Section 1], [18, Sectiona 2–4] and [7, SectionA] –we advise the reader to look there for details and proof.

In [20], all restrictions in [18] are removed, in particular the quadratic space X may be of any signature.

4.2.1 Admissible representations of H0

In light of the isomorphism in (4.2),

ρ : F× × B×/∆E× ∼
→ H0

,

let (τ,Vτ) be an irreducible, admissible, unitary representation of B× = B×(F) with central character ωτ
(noting ZB× = E×). Further assume that ωτ is Gal(E/F)-invariant; thus we let ν be the unitary character of F×

such that

ωτ = ν−1 ∘ NE/F . (4.4)

Every irreducible, admissible, unitary representation of H0

may then be written in the form σ
0
= σ

0
(ν, τ), for

such a ν and τ, by defining
σ
0
(ρ(s, a)) = ν(s)τ(a).

Both σ
0
and τ are realised in the same space Vσ

0

= Vτ. The requirement on ν (4.4) ensures that σ
0
(ν, τ) is

indeed trivial on ∆E×. We identify the centre ZH0 ≅ F×, through ρ, as the set

{(x−1, 1) : x ∈ F×} ⊂ F× × B×/∆E×,

from which we note that σ
0
has central character

ωσ
0

= ν−1.
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Definition 4.2. Suppose that v is not split in E (so that E = E(Fv) is a field). In this case, we call an irreducible
admissible representation σ

0
of H0 distinguished if

σ
0
= σ

0
(ω−1

ϱ , ϱDE )

for some irreducible admissible representation ϱ of GL
2
(F); denoting by ϱE the base-change lift of ϱ from

GL
2
(F) to GL

2
(E), and appending the superscript D to mean that ϱDE is the Jacquet–Langlands transfer of ϱE

from GL(E) to D×(E) = B×
.

The central character of such a distinguished σ
0
(ω−1

ϱ , ϱDE ) is ωϱ, the central character of ϱ. This follows from
properties of the base-change lift (that ωϱE = ωϱ ∘ NE/F). Distinguished representations are invariant under

the adjoint action of ι on H0

(4.3). Hence a distinguished representation has the property that σ
0
≅ σ

0
∘ Ad(ι)

since we have ϱE ≅ ϱE ∘ ι (see [1, Section 3]).

4.2.2 Admissible representations of H

To describe the irreducible, admissible representations of H it suffices² to consider the induction of some σ
0

as σ
0
varies over the irreducible, admissible representations of H0

. To make this explicit, put σι
0

= σ
0
∘ Ad(ι)

and consider a second representation of H0

in Vσ
0

given by

σι
0

(h)v = σ
0
(ιhι)v forv ∈ Vσ

0

.

Now define the representation (σ̂,Vσ̂) of H by setting Vσ̂ = Vσ
0

⊕ Vσ
0

and letting H act on u ⊕ v by

{
σ̂(h

0
)u ⊕ v = σ

0
(h

0
)u ⊕ σι

0

(h
0
)v,

σ̂(ι)u ⊕ v = v ⊕ u

noting that any h ∈ H may be written uniquely as h = h
0
ε for some h

0
∈ H0

and ε ∈ μ
2
.

On the other hand, recall that Ind

H
H0
(σ

0
) is given by right translation in the space

{f : H → Vσ
0

| f(h
0
h) = σ

0
(h

0
)f(h) for h

0
∈ H0}.

One may check that there is an H-module isomorphism between the representations σ̂ ≅ Ind

H
H0
(σ

0
). We will

use σ̂ as a model for Ind

H
H0
(σ

0
) from now on and proceed by dividing our analysis into two cases.

Definition 4.3. Let σ
0
be an irreducible, admissible representation of H0

.

∙ We say σ
0
is regular if σ̂ ≅ Ind

H
H0
(σ

0
) is irreducible. We find σ̂ ≅ σ̂ ⊗ sgn and, as H0

-representations,

σ
0

̸≅ σι
0

. In this case denote σ+
0

= Ind

H
H0
(σ

0
).

∙ We say σ
0
is invariant if σ̂ ≅ Ind

H
H0
(σ

0
) is reducible. We find σ̂ ̸≅ σ̂ ⊗ sgn and the adjoint action of ι in Vσ

0

is trivial, that is, σ
0
≅ σι

0

. In this case

Ind

H
H0
(σ

0
) ≅ σ+

0

⊕ σ−
0

where σ±
0

are two non-isomorphic irreducible representations of H.

Remark 4.3. If σ
0
is distinguished, then we have already noted that σ

0
is invariant. In this instance exactly

one of σ±
0

occurs in the theta correspondencewith GSp
4
(see [18, Theorem 3.4]), denoting this representation

by σ+
0

. Then for an irreducible, admissible representation σ of H we have that θ(σ) ̸= 0 if and only if σ ̸≅ σ−
0

for some distinguished σ
0
of H0

.

2 Let σ be an irreducible, admissible representation of H. Then either Res

H
H0

(σ) is irreducible, in which case σ is an irreducible

constituent of Ind

H
H0

(ResHH0

(σ)) and we are in the ‘invariant’ case, or

Res

H
H0

(σ) = σ
0,1

⊕ σ
0,2
,

inwhich case σ ≅ Ind

H
H0

(σ
0,i) for either i = 1, 2; this is the ‘regular’ case. Definition 4.3 provides a full explanation of the invariant

and regular cases.
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4.3 Global representation theory and automorphic forms for H(A)
In this sectionwe reinstate F as a number field. Our purpose is now to review the theory of automorphic forms

on H(A). The following sources should be referred to for more detail: [10, Section 1], [18, Sections 5–7] and

[7, Section 2].

4.3.1 Automorphic representations of H0(A)
The exactness of the sequence in (4.1) (taking F = Fv for each place v) implies that

1 → A×E
∆

→ A× × B×(A)
ρ
→ H0(A) → 1

is also exact, where ρ and ∆ operate as in the exact sequence (4.1) at each place. We identify E(A) with AE
and note B×(A) = D×(AE). As subspaces of L2(A× × B×(A)), the tensor product of the spaces of cusp forms

A
0
(F×) ⊗A

0
(B×) is dense inA

0
(F× × B×) and since these are spaces of smooth functions they are isomorphic.

Any function on A× × B×(A)/∆A×E is a function on A× × B×(A) subject to the constraint that it is constant
on equivalence classes modulo ∆A×E = Im(∆). In particular, if ν : F×\A× → ℂ× is a unitary Hecke character

and (τ,Vτ) an irreducible, cuspidal automorphic representation of B×(A) then, given some η ∈ Vτ, we have

that ν ⊗ η ∈ A
0
(F× × B×/∆E×) if and only if

ωτ(z) = ν−1 ∘ NE/F(z) for all z ∈ A×E

where ωτ : E×\A×E → ℂ× is the central character of τ. Hence any irreducible, cuspidal automorphic represen-

tation of H0(A) is of the form σ
0
= σ

0
(ν, τ), for such a ν and τ, where σ

0
is realised in the space of cusp forms

Vσ
0

= {ν ⊗ η : η ∈ Vτ}by σ0(ρ(s, a))ν ⊗ η = ν(s)ν ⊗ τ(a)η. Once again, the central character of σ
0
isωσ

0

= ν−1.

4.3.2 Factorising automorphic representations of B×(AE ) and H0(A)
Consider the isomorphism

E ⊗F Fv ≅ ∏
w|v
Ew (4.5)

where the product is over all places of w of E above v [17, Proposition 4-40]. One deduces

B×(Fv) ≅ ∏
w|v
B×(Ew).

Thus smooth representations of B×(Fv) are of the form τv = ⊗w|vτw where the τw are smooth representations

of B×(Ew) for w|v. If σ0 = σ
0
(ν, τ) is an irreducible, cuspidal automorphic representation of H0(A), as in

Section 4.3.1, then by the tensor product theorem we may assume σ
0
≅ ⊗vσ0,v and ν = ⊗vνv, over places

v of F, and τ ≅ ⊗wτw over places w of E. Then, by the previous remark, these local factors are related by

σ
0,v = σ0,v(νv , τv) where τv = ⊗w|vτw and the space Vσ

0,v = Vτv = ⊗w|vVτw (as per Section 4.2.1).

4.3.3 Automorphic representations of H(A)
Assumption 4.1. Let σ ≅ ⊗vσv be an irreducible, cuspidal automorphic representation of H(A) realised on

the space Vσ ⊂ A
0
(H). For the remainder of this paper we shall assume the following for such a representa-

tion σ.
(1) The Jacquet–Langlands transfer of σ|B×(AE) to GL2(AE) is cuspidal.
(2) There is at least one place v for which σv ≅ σv ⊗ sgn.

(3) If σv ̸≅ σv ⊗ sgn, then σv ̸≅ σ−
0,v for any distinguished (and invariant) admissible representation σ

0,v
of H0(Fv).
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These conditions are imposed in [7], thus ensuring that θ(σ) is both cuspidal (1) and non-zero (3). Condition
(2) is necessary to compute the Petersson inner product of the theta lift θ(σ) in (4.9).

We now determine all such σ by considering their restriction to H0(A). (This top-down approach contrasts

with the bottom-up analysis used in the local setting.) To this end, define a (possibly infinite) subset of the

places of F by
S = {v : σv ≅ σv ⊗ sgn} .

Assumption 4.1 (2) implies S ̸= 0. By the tensor product theorem, fix an isomorphism of H(A)-representa-
tions

Vσ ≅ ⨂
v

�
Vσv = lim

ÚÚ→
S
(⨂
v∈S

Vσv) ⊗ (⨂
v ̸∈S

f ∘v)

whereVσv is the space of σv and, for a sufficiently large set of places S outsidewhich σv is unramified, f ∘v ∈ Vσv
is an H(Ov)-invariant (spherical) vector for v ̸∈ S. By analogy with our local discussion Section 4.2.2, the

restriction of σv to H0

v gives rise to two cases.

∙ If v ∈ S, then σv|H0

v
≅ σ

0,v ⊕ σι
0,v where σ0,v is an irreducible representation of H0

v with σ
0,v ̸≅ σι

0,v.

Earlier, we called such a σ
0,v regular and noted that its induction, σ̂v, was irreducible. The space of

σv decomposes as Vσv = Vσ
0,v ⊕ Vσι

0,v
, realising the space Vσι

0,v
≅ σv(ι)Vσ

0,v . For almost all v ∈ S, the

spherical vector f ∘v = F∘
v + σv(ι)F∘

v ∈ Vσ
0,v ⊕ Vσι

0,v
where F∘

v is an H0(Ov)-invariant vector.
∙ If v ̸∈ S, then σv|H0

v
is irreducible and invariant; we have Vσv = Vσ

0,v and the spherical vector f 0v = F∘
v is

H0(Ov)-invariant. Write σ
0,v = σv|H0

v
in this case.

Let S be a sufficiently large set of places of F and put S� = S ∖ (S ∩S). For each ε = (εv) ∈ μ2(FS∩S) define
Vεσ,S ⊂ Vσ by

Vεσ,S ≅ ( ⨂
v∈S∩S

σv(εv)Vσ
0,v) ⊗ (⨂

v∈S�
Vσ

0,v) ⊗ (⨂
v ̸∈S

f ∘v).

Viewing σ from a different perspective, consider the space of restricted functions

Vσ|H0(A) = {f|H0(A) : f ∈ Vσ}.

By [10, Lemma 2] there exists an irreducible, cuspidal automorphic representation σ
0
of H0(A) realised in

a space of cusp forms Vσ
0

such that

Vσ|H0(A) = Vσ
0

⊕ Vισ
0

, (4.6)

defining Vισ
0

= {f ι = f ∘ Ad(ι) : f ∈ Vσ
0

}, and such that σ
0

̸≅ σι
0

. In this circumstance we shall say σ lies
above σ

0
.

Applying the tensor product theorem and comparing the local components of σ and σ
0
with those σ

0,v
already defined, we may assume that σ

0
≅ ⊗vσ0,v. Moreover, choosing ε = 1, the restriction of the space of

functions V1

σ,S = Vσ
0

.

As a final remark, (4.6) shows that Vεσ,S|H0(A) = {0} unless ε ∈ μ
2
(F) (else contradicting that σ

0
̸≅ σι

0

). In

particular, consider evaluating a function f ∈ V1

σ,S on

H(A) = ⋃
ε∈μ

2
(FS∩S)

H0(A)μ
2
(AS∩S)ε.

For ε ∈ μ
2
(FS∩S)wehaveVεσ,S = σ(ε)V

1

σ,S andhence σ(ε)f = 0unless ε ∈ μ2(F).We then obtain [7, Lemma2.2]

supp(f) ⊂ H0(A)μ
2
(AS∩S) ∪ H0(A)μ

2
(AS∩S)ι. (4.7)

4.4 Explicit unitary pairings and the Petersson inner product

The unique (up to scalar) unitary pairings Bσ
0,v : Vσ0,v ⊗ Vσ̄

0,v → ℂ associated to the local components

σ
0,v = σ0,v(νv , τv) of σ0(ν, τ), as in Section 4.3.2, are precisely the pairings on Vτv ⊗ Vτ̄v since Vσ

0,v = Vτv
and νv is unitary.

We therefrom assume that, whenever Bτv is specified, by Bσ
0,v we always mean the pairing Bσ

0,v = Bτv .

The possible splitting of v in E must also be accounted for in our choice of pairing: we make the convention
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that ifBτw is a specified pairing on Vτw (for each place w of E lying above v), then

Bτv = ⨂
w|v

Bτw

is the fixed pairing on (⊗w|vVτw ) ⊗ (⊗w|vVτ̄w ) and hence also on Vσ
0,v ⊗ Vσ̄

0,v .

If Vσ
0,v carries a pairing Bσ

0,v and σv is an irreducible, admissible representation above σ
0,v, then we

choose to consider a specific pairing on Vσv :

∙ If v ∈ S, then Vσv |H0

v
= Vσ

0,v ⊕ Vσι
0,v
is irreducible; take the pairing

Bσv : (Vσ0,v ⊕ Vσι
0,v
) ⊗ (Vσ̄

0,v ⊕ Vσ̄ι
0,v
) → ℂ

given byBσv ((x + σv(ι)y), (x̃ + σ̄v(ι)ỹ)) = 1

2

(Bσ
0,v (x, x̃) +Bσ

0,v (y, ỹ)).
∙ If v ̸∈ S, then Vσv |H0

v
= Vσ

0,v is irreducible; takeBσv = Bσ
0,v .

This pairing is chosen carefully so that we may factorise the Petersson inner products Bσ and Bσ
0

when

σ = ⊗vσv is an automorphic representation ofH(A) that lies above σ
0
= ⊗vσ0,v. As before, fix an isomorphism

for the conjugate representation σ̄ ≅ ⊗v σ̄v,

Vσ̄ ≅ ⨂
v

Vσ̄v = lim

ÚÚ→
S
(⨂
v∈S

Vσ̄v) ⊗ (⨂
v ̸∈S

̃f ∘v)

where, for a sufficiently large set of places S outside which σ̄v is unramified,
̃f ∘v ∈ Vσv is an H(Ov)-invariant

(spherical) vector for v ̸∈ S. If v ∈ S, then
̃f ∘v = F̃∘

v + σv(ι)F̃∘
v where F̃

∘
v is anH0(Ov)-invariant vector and if v ̸∈ S

then
̃f 0v = F̃∘

v is H0(Ov)-invariant.

Lemma 4.4. For almost all v suppose that Bσ
0,v is normalised by Bσ

0,v (F
∘
v , F̃

∘
v) = 1. Then, if the pairings Bσ

0,v

are normalised so that the Petersson inner product may be factorised as Bσ
0

= ∏v Bσ
0,v , we additionally have

the following decomposition:
Bσ = ∏

v
Bσv .

Proof. See [7, Lemma 2.3].

The Petersson inner products for both the automorphic representations σ
0
= σ

0
(ν, τ) and τ agree: if we have

(η, η̃) ∈ Vτ ⊗ Vτ and f0 = ν ⊗ η, ̃f
0
= ν̄ ⊗ η̃, then

Bσ
0

(f
0
,
̃f
0
) = Bτ(η, η̃).

The Petersson inner product associated to the unitary Hecke character χ ofA×K (trivially) coincides with
the Tamagawa number of F×\K×

, given by Vol(A×K×\A×K) = 2 (see [14, p. 44]). Underlying our calculations

we choose local pairingsBχv = 1 at all v.

4.5 The Petersson inner product for theta lifts

Gan–Ichino prove a decomposition of the Petersson inner product for the theta lift θ(σ)with respect to some

specified pairings for the local factors θ(σv). This result assumes that F is a totally real number field and

that σ = ⊗vσv is an irreducible, cuspidal automorphic representation of H(A) satisfying Assumption 4.1. In

particular, in this assumption, conditions (2) and (3) are used explicitly in the proof of this formula whereas

the totally real assumption is required for an application of the Siegel–Weil formula.

Fix a choice of local pairings Bσ
0,v such that Bσ

0

= ∏v Bσ
0,v and consider the pairings Bσv , defined in

Section 4.4. For (f, ̃f ) ∈ Vσ ⊗ Vσ̄ and Schwartz functions (ϕv , ϕ̃v) ∈ Vωv ⊗ Vω̄v define

Bθ(σv)(θ(fv , ϕv), θ( ̃fv , ϕ̃v)) =
ζFv (2)ζFv (4)
L(std, σv , 1)

∫
H
1
(Fv)

Bωv (ωv(hv)ϕv , ϕ̃v)Bσv (σv(hv)fv , ̃fv) dhv (4.8)

where the Haar measures dhv on H1,v are those determined by a differential form (of top degree) on H
1
and

the self-dual Haarmeasure on F×v (with respect toψv) – these in fact give the Tamagawameasure dh = ∏v dhv
of H

1
(A) (as constructed in [22]).
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Gan–Ichino take care in deriving the constant of proportionality between the Petersson inner product for

θ(σ) and∏v Bθ(σv). With Assumption 4.1 we have [7, Proposition 7.13]

Bθ(σ) =
L(std, σ, 1)
ζF(2)ζF(4)

∏
v
Bθ(σv). (4.9)

5 Global calculation: The Bessel period

Preliminary remarks aside, we use this section to determine the form of the Bessel period (2.5) for the theta

integral (3.4). First of all we explicitly highlight any running assumptions and notations (in addition to those

in Assumption 4.1).

5.1 Hypotheses and variables

We have fixed the (base) number field F to be totally real. This assumption permits the use of the Siegel–Weil

formula (or rather its corollary; the Rallis inner product formula) in a calculation made in [7] whereby the

Petersson inner product for a theta lift is computed in terms of local pairings (see Proposition 4.9).

In Section 4.1 we acquired the following notation an assumptions: V is a four-dimensional quadratic

space (over F) of discriminant disc V = e; we assume that e is not a square in F× (since the case when e is
a square has been settled by Liu); Proposition 4.2 implies that it suffices to fix such an e ∈ F× and a (possibly
split) quaternion algebra D over F and consider instead the space X = XD,e – we do this and apply V = X to

the notations H = GO(V) etc. of Section 2.3; fix once and for all E = F(√e) and B = D(E) ≅ D ⊗F E.
Our result is concerned with irreducible, cuspidal automorphic representations of GSp

4
(A) lifted from

GO(V)(A) by the theta correspondence (Section 3).

Assumption 5.1. We only consider representations of PGSp
4
(A) ≅ SO

5
(A); these are precisely the represen-

tations of GSp
4
(A) with trivial central character.

Note that the theta lift θ(σ)has central characterωθ(σ) = ωσ soweassumeωσ = 1. If σ lies above σ
0
= σ

0
(ν, τ),

as in (4.6), then ν = ω−1
σ = 1. For the remainder of this paper, we keep in mind a fixed irreducible, cuspidal

automorphic representation σ ≅ ⊗vσv of H(A) (in the space Vσ) lying above σ0 = σ
0
(1, τ) where τ ≅ ⊗wτw

is an irreducible, cuspidal automorphic representation of B×(A) whose central character ωτ = 1. Also fix

a factorisation for the conjugate representation σ̄ ≅ ⊗v σ̄v. There exists a set of placesS = {v : σv ≅ σv ⊗ sgn}
which determine σ uniquely given σ

0
(see Section 4.3.3).

Let f = ⊗v fv ∈ Vσ be a pure tensor, fixing this choice throughout the remainder of this paper. We identify

a factorisation for the conjugate of f by
̄f = ⊗v ̄fv (5.1)

so that it makes sense to talk about a specific
̄fv corresponding to a local factor fv of f . Similarly, we fix fac-

torisations for the Schwartz functions ϕ = ⊗vϕv ∈ Vω and ϕ̄ = ⊗vϕ̄v ∈ Vω̄.

Choose a series of local unitary pairingsBτw on Vτw ⊗ Vτ̄w , for each place w of E, such that the Petersson
pairinghas the factorisationBτ = ∏w Bτw . Due to the choices of Section4.4,we then automatically obtain the

pairingsBσ
0,v andBσv for σ0,v and σv, respectively. Note that these depend on the place v of F. The Petersson

pairings will satisfy a similar factorisation

Bσ
0

= ∏
v
Bσ

0,v and Bσ = ∏
v
Bσv . (5.2)

Fix another non-square element d ∈ F×. Let K = F(√d) and define a Hecke character χ : K×\A×K → ℂ×.
Then K and χ index a unique Bessel period (see Section 2.2.4). We impose the following assumption, which

is essentially the trivial central character assumption when considering χ as a representation of GSO(X).

Assumption 5.2. Suppose that χ is unitary and satisfies χ|A×F = 1.
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5.2 Explicit vectors

We shall consider vectors φ = θ(f, ϕ) for f ∈ Vσ and ϕ ∈ Vω such that φ = ⊗vφv is a pure tensor. The global
map θ of (3.5) is linear in each variable andhenceφ is a pure tensorwhenboth f = ⊗v fv andϕ = ⊗vϕv are pure
tensors (as we have assumed).We fix the notation φv = θ(fv , ϕv) for the local components in the factorisation

of θ(f, ϕ) (noting that this is necessary as each local map θ (3.3) is only unique up to a scalar constant).
Our choice of local vectors

̄fv ∈ Vσ̄v (see (5.1)) and ϕ̄v ∈ Vω̄v give rise to the factors in φ̄ = ⊗vφ̄v in the

sense that

φ̄v = θ(fv , ϕv) = θ( ̄fv , ϕ̄v) (5.3)

by the uniqueness of (3.3) and (3.5), the choice of vectors φv = θ(fv , ϕv) and then applying [7, Proposi-

tion 5.5].

Lemma 5.1. Define f ι(h) = f(hι). One has θ(f, ϕ) = θ(f ι ,ω(ι)ϕ).

Proof. We compute

θ(f ι ,ω(ι)ϕ; g) = ∫
H
1
(F)\H

1
(A)

∑
x∈X2(F)

ω(g, hhg ι)ϕ(x)f(ιhhg ι) dh

= ∫
H
1
(F)\H

1
(A)

∑
ιx∈X2(F)

ω(g, ιhιh�g)ϕ(ιx)f(ιhιh�g) dh

= θ(f, ϕ; g)

where h�g = ιhg ι has λ(h�g) = λ(g). Here we use the automorphy of f under ι ∈ μ
2
(F) and rearrange the sum-

mation by x Ü→ ιx. The Tamagawa measure dh is invariant under the transformation h Ü→ ιhι.

Since an arbitrary element f ofVσ is of the form f = f
1
+ f ι

2

for some f
1
, f

2
∈ V1

σ,S (by (4.6)), Lemma5.1 implies

θ(f
1
+ f ι

2

, ϕ) = θ(f
1
, ϕ) + θ(f

2
,ω(ι)ϕ).

There is then no loss in generality in restricting our choice of f ∈ Vσ to the following.

Assumption 5.3. For a fixed, finite set S, assume that f = ⊗v fv ∈ V1

σ,S is a pure tensor. Such an f satisfies the
property that f|H0(A) ∈ Vσ

0,v .

Recalling that τ is the automorphic representation of B×(A) such that σ
0
= σ

0
(1, τ), we denote by

η = ⊗wηw ∈ Vτ

(decomposed over places w of E) the function such that

f(ρ(s, a)) = η(a).

The local factors of these functions are identified by fv = ⊗w|vηw (see Section 4.3.2). Note that f ι = σ(ι)f , and
since θ(f, ϕ) = ⊗vθ(fv , ϕv), Lemma 5.1 implies that for each v

θ(fv , ϕv) = θ(σv(ι)fv ,ωv(ι)ϕv).

5.3 A calculation in terms of the variant theta integral

To simplify matters (overall) we introduce the variant theta integral (to be compared with (3.4)):

θ0(f, ϕ; g) = ∫

H0

1

(F)\H0

1

(A)

∑
x∈X2(F)

ω(g, h
0
hg)ϕ(x)f(h0hg) dh0

where the domain is defined in terms of the connected, index-two subgroup H0

1

of H
1
. For this function we

also have

θ0(f, ϕ) = θ0(f ι ,ω(ι)ϕ) (5.4)

by a computation identical to Lemma 5.1. Observe how θ0(f, ϕ) is related to θ(f, ϕ).
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Lemma 5.2. For any integrable function Φ on H
1
(F)\H

1
(A) we have

∫
H
1
(F)\H

1
(A)

Φ(h) dh = ∫
μ
2
(F)\μ

2
(A)

∫

H0

1

(F)\H0

1

(A)

Φ(h
0
ε) dh

0
dε

where dε is the Tamagawa measure on μ
2
(A).

Since θ0(f, ϕ; g) is independent of a particular choice of hg, we may apply Lemma 5.2 and substitute

hg Ü→ εhgε (as λ(ε) = 1) to find

θ(f, ϕ; g) = ∫
μ
2
(F)\μ

2
(A)

θ0(σ(ε)f,ω(ε)ϕ; g) dε. (5.5)

This relation permits one to consider the refined quantity P(θ0(f, ϕ), χ).

5.4 Unfolding the Weil representation

By definition (see (2.5)) we have

P(θ0(f, ϕ), χ) = ∫
A×T(F)\T(A)

∫
U(F)\U(A)

θ0(f, ϕ; uĝ)χ(g)ψ−1
S (u) du dg

so we start out by computing

θ0(f, ϕ; uĝ) = ∫

H0

1

(F)\H0

1

(A)

∑
x∈X2(F)

ω(uĝ, h
0
hg)ϕ(x)f(h0hg) dh0.

Applying the action of ω to ϕ = ⊗vϕv (place-by-place) we find that

ω(uĝ, h
0
hg)ϕ(x) = (∏

v
χV,v(det(gv))|λ(gv)|−2v |det gv|2v)ψMx (u)ϕ(h−1g h−10 xg) = ψMx (u)ϕ(h−1g h−10 xg),

recalling ∏v χV,v(det(gv)) = 1 (by quadratic reciprocity) and ψMx is the character of U defined in (2.4). On

removing the factor containing the integral over U(F)\U(A) we obtain

P(θ0(f, ϕ), χ) = ∫
A×T(F)\T(A)

∫

H0

1

(F)\H0

1

(A)

∑
x∈X2(F)

ϕ(h−1g h−10 xg)f(h0hg)Φ(x) dh
0
dg

where we have introduced the notation

Φ(x) = ∫
U(F)\U(A)

ψMx (u)ψ−1
S (u) du.

This integral of orthogonal characters simply boils down to

Φ(x) =
{
{
{

Vol(U(F)\U(A)), ψMx = ψS ,
0, otherwise.

(5.6)

The group U is abelian (and hence unimodular) so the Tamagawa number Vol(U(F)\U(A)) = 1 (see [22]).

Writing u = u(A) for A ∈ M

sym

2

(A) we then have

Φ(x) = 1 ⇐⇒ ψ(Tr(SA −MxA)) = 1 ⇐⇒ Mx = S.

ThusΦ(x) is an indicator function allowing only those x ∈ X2(F)withMx = S to contribute non-zero terms to

the summation in P(θ0(f, ϕ), χ). Define

X2S = {x ∈ X2 : Mx = S}

so that

P(θ0(f, ϕ), χ) = ∫
A×T(F)\T(A)

∫

H0

1

(F)\H0

1

(A)

∑
x∈X2S (F)

ϕ(h−1g h−1xg)f(hhg) dh dg. (5.7)
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We are interested in decomposing the algebra B ≅ D ⊗ E into its subalgebras, in particular the role played
by the field L ≅ K ⊗ E. Hence we make the following observation.

Proposition 5.3. If L does not embed into B as a subalgebra, then X2S(F) = 0 and consequently

P(θ0(f, ϕ), χ) = 0.

Proof. Suppose L ̸í→ B and assume the contrary: there exists ξ ∈ X2S(F) with ξ ̸= 0. Then ξ gives a realisa-
tion of W

1
as a quadratic subspace of X and we have X = W

1
⊕W⊥

1

as before. Since E ∩ X = F, we have that
X ⊗ E ≅ B, so we may decompose B as

B = (W
1
⊗ E) ⊕ (W⊥

1

⊗ E).

But Lemma 5.4 gives us thatW
1
= Kw for any w ∈ W

1
. Noting that 1 ∈ X we proceed by checking two cases:

Firstly, if 1 ∈ W
1
, we may take w = 1 so that W

1
= K. Then W

1
⊗ E = L and B = L ⊕ L⊥. Thus L í→ B as

a quadratic subalgebra (over E), a contradiction. Secondly, if 1 ̸∈ W
1
, then J = W⊥

1

⊗ E is a field and subalge-
bra ofB. In fact, this fieldhas tobe L: for any j ∈ J⊥ = W

1
⊗ Ewemaywrite J⊥ = Jj butW

1
= Kw implies Jj = Lw

for any w ∈ W
1
⊂ J⊥. Taking j = w gives J = L and thus, once again, we have the contradiction L í→ B.

Assumption 5.4. Without loss in generality we assume that X2S(F) ̸= 0.

Indeed it is clear from (5.6) that X2S(F) = 0 impliesP(θ0(f, ϕ), χ) = 0. Under Assumption 5.4 wemay conclude

that, byProposition5.3, onehas analgebra-embedding L í→ B and subsequently thatK í→ D as a subalgebra
too. Note that this assumption is truly on the choice of K (or equivalently d) since E has been fixed in advance.

We continue by expressing X2S in terms of the group SO(X) acting on it, reconsidering points of X2S via
the isomorphism X2(F) ≅ HomF(W1

, X). Fix a base point ξ ∈ X2S(F), to be considered as an F-homomorphism

ξ : W
1
→ X satisfying the properties:

(1) ξ is injective (since the Grammmatrix Mξ = S is invertible).
(2) ξ is an isometry onto its image in X.
We briefly justify (2). Recall that (Section 2.2.2) W

1
is endowed with the quadratic form qS; a simple cal-

culation shows that for w ∈ W
1
we have qS(w) = qMξ (w) = NX(ξ(w)). Thus W1

is identified with a quadratic

subspace of X via ξ . (We abuse notation and call this subspaceW
1
too.) Consider the orthogonal decomposi-

tion

X = W
1
⊕W⊥

1

.

Lemma 5.4. The image ofW
1
in X is a one-dimensional K-vector space: for any w ∈ W

1
we haveW

1
= Kw. In

particular, there is an F-vector space isomorphismW
1
≅ K.

Proof. Recall Mξ = S and fix

S = (
a b/2
b/2 c

) ∈ M

sym

2

(F)

so that d = −4det S = b2 − 4ac. Fix a basis {e
1
, e

2
} of W

1
and let ξi = ξ(ei) for i = 1, 2. We show that any

two vectors inW
1
are linearly dependant over K. Note that the polynomial p(X) = X2 − bX + ac has the root

ξ
2
ξ∗
1

= 1

2

(b −√δ). Multiplying each side by ξ
1
, and noting a = NX(ξ1) by assumption, we see that

ξ
2
=

1

2a
(b −√δ)ξ

1
∈ Kξ

1
.

Since ξ is injective, ξ
1
and ξ

2
constitute a basis forW

1
⊂ X over F. Hence the K-span of any vector w ∈ W

1
is

equal toW
1
as F-vector spaces.

We proceed by continuing to exploit the base point ξ . The group SO(X) acts transitively on X2S(F) in which the
stabiliser of ξ is SO(W⊥

1

) by construction. Then after some calculation the isomorphism

X2S(F) ≅ SO(W⊥
1

)\SO(X)

permits the following reformulation of (5.7):

P(θ0(f, ϕ), χ) = ∫

SO(W⊥
1

)(A)\SO(X)(A)

ϕ(h−1
0

ξ)Λξ (R(h0)f, χ) dh0,
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by defining

Λξ (f, χ) = ∫

A×G(SO(W⊥
1

)×SO(W
1
))\G(SO(W⊥

1

)×SO(W
1
))(A)

χ(g)f(yghg) dyg dg

where hg ∈ H0(A) is any element such that

λ(hg) = λ(g)

with the additional constraints that hg(ξ(v)) = ξ(g(v)) for v ∈ W1
and hg(w) = w when w ∈ W⊥

1

. The variable

of integration (yg , g) is an element of G(SO(W⊥
1

) × SO(W
1
))(A) whence λ(yg) = λ(g).

5.5 Exploiting exceptional isomorphisms

In this section we analyse the domain of Λξ (f, χ) and apply the representation theory of H to rewrite this

integral as a period of automorphic forms on B×(A). By the decomposition X = W
1
⊕W⊥

1

, we look to reinter-

pret the subgroup G(SO(W⊥
1

) × SO(W
1
)) ⩽ GSO(X) (featured in Λξ (f, χ)) as a subgroup of F× × B×/∆E× via the

isomorphism ρ of (4.2).

5.5.1 Structural decomposition of quadratic spaces

Since K í→ D, the standard involution ∗
on D restricts to the non-trivial Galois automorphism of K. We may

write

D = K ⊕ Kj

for any j ∈ K⊥
since for such a jwe have K⊥ = Kj. Extending this decomposition to B ≅ D ⊗ E (where ∗

extends

to a Galois action on B, trivial on E, as in Section 4.1) define

L = K(E) ≅ K ⊗F E.

Then L = E(√d) is a quadratic extension of E such that we have an embedding L í→ B. The standard invo-

lution on B (given by x Ü→ x∗) restricts to the non-trivial Galois involution on L. Then, for the same j ∈ K⊥
as

before, we have B = L ⊕ Lj.
Focusing now on the subspace X ⊂ B define

XL = {x ∈ L : ι(x) = x∗}.

Both XL ⊂ X and 1 ∈ XL. Moreover, wemay realise XL as a quadratic extension of F. Under the quadratic form
NX we have the orthogonal decomposition X = XL ⊕ X⊥

L which is described by the following lemma.

Lemma 5.5. For any z
0
∈ E with TrE/F(z0) = 0 we have the orthogonal decomposition

X = XL ⊕ z0Kj.

Proof. The orthogonal complement X⊥
L is given by X ∩ Lj (otherwise XL ∩ X⊥

L ̸= 0). Hence X⊥
L contains ele-

ments xj where x ∈ L such that ι(xj) = (xj)∗; these are the elements x ∈ L such that x + ι(x) = 0 since j and x
are orthogonal under NX. Fix some z

0
∈ E with TrE/F(z0) = 0 then for any k ∈ K we have ι(z

0
k) = −z

0
k. Hence

z
0
Kj ⊆ X⊥

L , and since both are two-dimensional F-vector spaces we have equality.

Lemma 5.4 gave us an interpretation ofW
1
⊂ X as the spaceW

1
≅ K. Combining this with Lemma 5.5 allows

one to deduce the following (F-vector space) isomorphisms:

W
1
≅ X⊥

L and W⊥
1

≅ XL .

Consequently, we have the reinterpretation of the orthogonal groups

GSO(X⊥
L ) ≅ GSO(W

1
) ≅ K×

and GSO(XL) ≅ GSO(W⊥
1

),
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justifying our conclusion that

G(SO(XL) × SO(X⊥
L )) ≅ G(SO(W⊥

1

) × SO(W
1
)). (5.8)

Proposition 5.6. There is an F-isomorphism of algebraic groups

Φ : F× × L×/∆E× ∼
→ G(SO(W⊥

1

) × SO(W
1
))

where the projection onto the second component is given by (s, k) Ü→ s−1kkι ∈ K× (whereby K× acts onW
1
≅ K

by left multiplication).

Proof. By the isomorphism (5.8), it suffices to find an isomorphism Φ such that the following diagram com-

mutes:

F× × B×/∆E×
ρ

ÚÚ→ GSO(X) = GSO(XL ⊕ X⊥
L )

∪ ∪
F× × L×/∆E× Φ

ÚÚ→ G(SO(XL) × SO(X⊥
L )).

(5.9)

We consider the surjective map

Φ : F× × L× → {(s−1kι(k)∗, s−1kι(k)) : s ∈ F×, k ∈ L×}.

One can check that the projections of Im(Φ), onto the first and second components, act on XL and X⊥
L , respec-

tively, by left multiplication. Noting that the similitude factors of each component in the image are equal,

hence we may extend Φ to a mapping into G(SO(XL) × SO(X⊥
L )). Since the kernel of Φ is ∆E×, we have an

injection

Φ : F× × L×/∆E× í→ G(SO(XL) × SO(X⊥
L )).

To demonstrate the surjectivity of Φ we need only check that diagram (5.9) commutes. Observe that, for

(s, k) ∈ F× × L×,

ρ(s, k)(XL ⊕ X⊥
L ) = s

−1k(XL ⊕ X⊥
L )ι(k)

∗ = s−1kι(k)∗XL ⊕ s−1kι(k)X⊥
L = Φ(s, k)(XL ⊕ X⊥

L ).

Thus meaning that, up to an automorphism of XL ⊕ X⊥
L , ρ|F××L× = Φ. Since ρ is one-to-one then Φ must also

be surjective.

5.5.2 Interpretation of the integral Λξ(f, χ)
Considering the domain of Λξ (f, χ), one uses Proposition 5.6 to deduce the isomorphism

A×G(SO(W⊥
1

) × SO(W
1
))\G(SO(W⊥

1

) × SO(W
1
))(A) ≅ A×EL

×\A×L .

The application of this isomorphism to Λξ (f, χ) requires a change of integration variable. This is accom-

plished by substituting (yg , g) Ü→ ρ(1, k) where k ∈ A×EL
×\A×L . For this we note that the original variables

hg ∈ GSO(W
1
)(A) and (yg , g) ∈ G(SO(W⊥

1

) × SO(W
1
))(A) satisfy:

∙ hg ∈ GSO(W
1
)(A) fixesW⊥

1

(A) and acts as g onW
1
(A),

∙ yg ∈ GSO(W⊥
1

)(A) fixesW
1
(A) and acts as yg onW⊥

1

(A),
∙ λ(hg) = λ(yg).
Hence the product yghg, corresponding to (yg , g), is substituted with ρ(1, k) and element g ∈ GSO(W

1
)(A),

the projection of (yg , g) onto its second factor, is substitutedwith kkι (as in Proposition 5.6). This substitution
returns

Λξ (f, χ) = ∫

A×EL×\A
×
L

χ(kkι)f(ρ(1, k)) dk.

For any k ∈ A×L we have kk
ι ∈ A×K so we have a character Ω : L×\A×L → ℂ× by defining

Ω(k) = χ(kkι) (5.10)
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such that upon restricting Ω to A×E we have Ω|A×E = χ ∘ NE/F . Since we have chosen f ∈ V1

σ,S to correspond to

some η ∈ Vτ such that f|H0(A)(ρ(s, a)) = η(a), the integral above becomes

Λξ (f, χ) = ∫

A×EL×\A
×
L

Ω(k)η(k) dk. (5.11)

6 Local calculation: Integrals over matrix coefficients

We will ultimately show that |P(θ(f, ϕ), χ)|2 factorises into a product of special L-values and a finite number

of local integrals. In this section we follow [14] in defining these local integrals andmake use of the excellent

results proved by Liu to rearrange them for our purposes. Throughout this section we work locally at a place

v of F suppressing the subscript v form the notation (so that F = Fv, σ denotes one local component in the

tensor product ⊗vσv and so on).

6.1 Local integrals

To provide a complete picture, we define the local integrals in full generality for any (local) irreducible,

admissible representation π of G. The definition is divided into a non-archimedean and an archimedean case;

this is due to the nature of the analysis in [14, Section 3] in ‘regularising’ these integrals. Immediately after

this definition we specialise to choosing π = θ(σ), the (local) theta lift of σ, and unify the integrals from each

case since theyhave the same form in this specialisation.Wepoint out that such a π = θ(σ) is always tempered

and thus the regularisation results of [14] apply.

6.1.1 The non-archimedean case

Suppose that F is a non-archimedean local field.We consider the notion of a stable integral as defined in [13].

We refer the reader to there for more information since it is not of central importance to our discussion.

Definition 6.1 (The non-archimedean local factors). Given φ ∈ Vπ, φ̃ ∈ Vπ̄ and a unitary paring

Bπ : Vπ ⊗ Vπ̄ → ℂ

we define

α(φ, φ̃; χ) = ∫
F×\T

st

∫
U

Bπ(π(ug)φ, φ̃)χ(g)ψ−1
S (u) du dg

where the integral over U is called a stable integral (see [13, Definition 2.1]) and is evaluated on a certain

compact open subgroup N ⊂ U. This N is chosen to be ‘maximally’ in the sense that if N�
is another compact

open subgroup with N ⊂ N� ⊂ U, then the integral over N�
equals the integral over N. The product of Haar

measures dudg is again a Haar measure on the Bessel subgroup F×\R.

Indeed it is not obvious that the integrals of Definition 6.1 converge, nor should such an N exist, but Liu

proves these facts in [14, Theorem 2.1] and [14, Lemma 3.2], respectively.

6.1.2 The archimedean case

Let F be an archimedean local field. The method of regularisation here is to consider the Fourier transform of

certain matrix coefficients in a so-called regular subset of U.
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Recall that the abelian unipotent groupU ≅ M

sym

2

(F) is self-dual and all its characters are given byψM, for
someM ∈ M

sym

2

(F), as in (2.4).We denote byM

sym

2

(F)reg the open and dense subset of non-singular symmetric

matrices in M

sym

2

(F) and define its image in U as

Ureg ≅ M

sym

2

(F)reg.

Definition 6.2 (The archimedean local factors). Given φ ∈ Vπ, φ̃ ∈ Vπ̄ and a unitary paring

Bπ : Vπ ⊗ Vπ̄ → ℂ

we define

α(φ, φ̃; χ) = ∫
F×\T

∫
Ureg

Bπ(π(ug)φ, φ̃)χ(g)ψ−1
S (u) du dg.

Here, for a fixed g ∈ T, the map

ψS Ü→ ∫
Ureg

Bπ(π(ug)ϕ, ϕ̃)ψ−1
S (u) du

is the Fourier transform (in Ureg

) of the function u Ü→ Bπ(π(ug)θ(f, ϕ), θ( ̃f , ϕ̃)).

Once again, Liu proves that this integral converges absolutely in [14, Theorem 2.1].

6.1.3 Normalisation of local integrals

In his paper [14], Liu goes on to show that there exists a specified set of good places, which exclude a finite
number of places of the base number field (including the archimedean ones), for which the local integrals

may be computed as follows (see [14, p. 7] for details).

Proposition 6.1. If v is a good place of the base number field, then for the local vectors φ ∈ Vπ, φ̃ ∈ Vπ̄ one has

α(φ, φ̃; χ) = ζF(2)ζF(4)L(1/2, π ⊠ χ)
L(1, π,Ad)L(1, χK/F)

.

Hence we normalise the local factors by setting

α♮(φ, φ̃; χ) =
L(1, π,Ad)L(1, χK/F)
ζF(2)ζF(4)L(1/2, π ⊠ χ)

α(φ, φ̃; χ) (6.1)

so that α♮(φ, φ̃; χ) = 1 for almost all v.
Given any place v, if, instead of considering an arbitrary vector φ̃ ∈ Vπ̄, we take the local vector φ̃ = φ̄ –

in the context of being local factors of functions on adèle groups as in (5.3) – then we define the notation

α(φ, χ) = α(φ, φ̄; χ) and α♮(φ, χ) = α♮(φ, φ̄; χ). (6.2)

As well as absolute convergence, [14, Theorem 2.1] states that whenever such a π is tempered, we have the

positivity result

α(φ, χ) ≥ 0.

Remark 6.2. The integrals defining α(φ, φ̃; χ) have a unipotent part (over U) which is given by either

a stable integral (over a compact open N ⊂ U) or a Fourier transform (with respect to Ureg ⊂ U) when v
is non-archimedean or archimedean, respectively. We consider these integrals for π tempered. The choices

of regularisation for these integrals are justified by noting that when π is square integrable we may take the

entire space U in each definition. That is, for any v, when π is square integrable we have

α(φ, φ̃; χ) = ∫
F×\T

∫
U

Bπ(π(ug)φ, φ̃)χ(g)ψ−1
S (u) du dg,

by [14, Propositions 3.5 and 3.15].
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6.1.4 A unified result for theta lifts

Let us specialise now by assuming π = θ(σ) is the theta lift of σ, a local factor of the fixed representation

in Section 5.1. We select the pairing Bπ to be defined as in (4.8); this depends on a choice of Bσ which we

made in (5.2). Retaining some generality in what follows, we note that by [7, Proposition 5.5] the conjugate

representation π̄ is generated by elements θ( ̃f , ϕ̃) for ̃f ∈ Vσ̄ and ϕ̃ ∈ Vω̄.

Proposition 6.3. In either the non-archimedean or archimedean cases, if θ(f, ϕ) ∈ Vπ and θ( ̃f , ϕ̃) ∈ Vπ̄ then
the local integrals become

α(θ(f, ϕ), θ( ̃f , ϕ̃); χ)

=
ζF(2)ζF(4)
L(1, σ, std) ∫

F×\GSO(W
1
)

∫
O(X)

∫

SO(W⊥
1

)\SO(X)

ϕ(h−1g h−1h−11 ξg)ϕ̃(h
−1
1

ξ)Bσ(σ(hhg)f, ̃f ) dh
1
dh dg

where hg ∈ H0(A) is any element such that λ(hg) = λ(g) with the additional constraints that hg(ξ(v)) = ξ(g(v))
for v ∈ W

1
and hg(w) = w when w ∈ W⊥

1

(for comparison see Section 5.4); the element ξ ∈ X2S is the base point
chosen in Section 5.4; dh is the Haar measure forO(X) fixed in the definition forBθ(σ), see (4.8); and finally dh1
is the Siegel–Weil measure on SO(W⊥

1

)\SO(X).

Proof. This follows immediately from [14, Lemma 4.2].

Remark 6.4. The product of local Siegel–Weil measures is precisely the Tamagawa measure on the adèlic

points of the group in question (see [14, Remark 3.18]).

6.2 Explicit local factors for theta lifts

We analyse the terms α♮(θ(f, ϕ), θ( ̃f , ϕ̃); χ) where θ(f, ϕ) ∈ Vπ and θ( ̃f , ϕ̃) ∈ Vπ̄ are as before. We point out

again that, even though the subscripts are removed, everything is local here. We will determine the quantity

(
ζF(2)ζF(4)
L(1, σ, std))

−1
α(θ(f, ϕ), θ( ̃f , ϕ̃); χ)

= ∫
F×\GSO(W

1
)

∫
O(X)

∫

SO(W⊥
1

)\SO(X)

(ω(h)ϕ)(ξ)(ω̄(h
1
)ϕ̃)(ξ)Bσ(σ(h−1

1

hgh)f, ̃f )χ(g) dh
1
dh dg

after making the substitution h Ü→ h−1
1

hghh−1g and recalling that ξg = hgξ , by definition. We decompose the

integral over O(X) in terms of its connected component SO(X) and replace the measure dh with

dh
2
= 2dh|

SO(X)

so that the volumes

Vol(O(X), dh) = Vol(SO(X), dh
2
).

Then we find that the above quantity is equal to

1

2

∑
ε∈μ

2
(F)

∫
F×\GSO(W

1
)

∫
SO(X)

∫

SO(W⊥
1

)\SO(X)

(ω(h
2
ε)ϕ)(ξ)(ω̄(h

1
)ϕ̃)(ξ)Bσ(σ(h−1

1

hgh2ε)f, ̃f )χ(g) dh
1
dh

2
dg.

To simplify further, note that

SO(X) ≅ (SO(W⊥
1

)\SO(X)) × SO(W⊥
1

)

where we substitute h
2
Ü→ (h

2
, y), with measure dh

2
Ü→ dh

2
dy, so that

(
ζF(2)ζF(4)
L(1, σ, std))

−1
α(θ(f, ϕ), θ( ̃f , ϕ̃); χ)

=
1

2

∑
ε∈μ

2
(F)

∫
F×\GSO(W

1
)

∫

SO(W⊥
1

)

∫

(SO(W⊥
1

)\SO(X))2

(ω(h
2
ε)ϕ)(ξ)(ω̄(h

1
)ϕ̃)(ξ)Bσ(σ(h−1

1

yhgh2ε)f, ̃f )χ(g) dh
1
dh

2
dy dg,
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recalling that y ∈ SO(W⊥
1

) stabilises ξ and commutes with hg. Using that σ is unitary under Bσ we finally

obtain

α(θ(f, ϕ), θ( ̃f , ϕ̃); χ)

=
1

2

ζF(2)ζF(4)
L(1, σ, std) ∑

ε∈μ
2
(F)

∫

(SO(W⊥
1

)\SO(X))2

(ω(h
2
ε)ϕ)(ξ)(ω̄(h

1
)ϕ̃)(ξ)Γξ,v(σ(h2ε)f, σ̄(h1) ̃f ; χ) dh

1
dh

2

by defining

Γξ,v(f, ̃f ; χ) = ∫
F×\GSO(W

1
)

∫

SO(W⊥
1

)

Bσ(σ(yhg)f, ̃f )χ(g) dy dg.

7 The result: Local and global assembly

This section concludeswith the unification of the global period in Section 5 and the rearranged local integrals

in Section 6. The connection is facilitated by the work ofWaldspurger [21] who, in 1985, gave the pioneering

example of refined Gan–Gross–Prasad conjecture: a proof for the pair (SO
3
, SO

2
). We apply his formula to

our calculation.

7.1 A theorem of Waldspurger

Let B be a (possibly split) quaternion algebra over E. Let L be a quadratic extension of a number field E such
that there exists an embedding L í→ B and let Ω be a Hecke character ofA×L . Let τ = ⊗wτw be an irreducible,
cuspidal automorphic representation of B×(AE), realised inVτ, such that ωτ ⋅ Ω|A×E = 1. For η ∈ Vτ define the

global period integral

Q(η, Ω) = ∫

A×EL×\A
×
L

Ω(k)η(k) dk.

For each place w of E let Bτw be a unitary pairing on Vτw ⊗ Vτ̄w . For each ηw ∈ Vτw and η̃w ∈ Vτ̄w define the

local integrals

βw(ηw , η̃w;Ωw) = ∫

E×w\L×w

Bτw (τw(kw)ηw , η̃w)Ωw(kw) dkw

and their natural normalisation,

β♮w(ηw , η̃w;Ωw) =
L(1, τw ,Ad)L(1, χLw/Ew )
ζEw (2)L(1/2, τL,w ⊗ Ωw)

βw(ηw , η̃w;Ωw)

where τL,w is the base change lift of τw to B×(Lw).
The following theorem was originally given in [21, Section III.3] (and then stated in terms of the re-

fined Gan–Gross–Prasad conjecture in [12, Section 6]). Fix a choice of Haar measures dkw such that the

Tamagawameasure on (E×\L×)(A) decomposes as dk = ∏w dkw, and a choice of local paringsBτw such that

the Petersson inner product decomposes asBτ = ∏w Bτw .

Theorem 7.1 (Waldspurger). The integrals βw(ηw , η̃w;Ωw) are absolutely convergent and

β♮w(ηw , η̃w;Ωw) = 1

for almost all places w of E. If, in addition, τ has trivial central character, ωτ = 1, and Ω is unitary, then

Q(η, Ω)Q(η̃, Ω̄) = 1

2

ζE(2)L(1/2, τ�L ⊗ Ω)
L(1, τ,Ad)L(1, χL/E)

∏
w
β♮w(ηw , η̃w;Ωw)

where τL denotes the base change lift of τ to B×(AL) and τ�L is the Jacquet–Langlands transfer of τL toGL2(AL).

We remark that the L-function L(1/2, τ�L ⊗ Ω)may be interpreted in various ways due to the low-dimensional

isomorphisms that occur (see Section 2.1.3).
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7.2 Application of Waldspurger

Let the arbitrary notation introduced in Section 7.1 now assume the running meanings that we assigned in

Section5.1 (for the representation τ = ⊗wτw and thepairingsBτw ) andSection5.5 (for the algebrasB ≅ D ⊗ E,
L ≅ K ⊗ E). We draw special attention to the assumption that f ∈ V1

σ,S with f|H0(A) ∘ ρ = η. The setS contains

those places of F such that σv ≅ σv ⊗ sgn and S is the fixed, finite set of places of F outside which fv = f ∘v
is H(Ov)-invariant (see Section 4.3.3). We choose η = ⊗wηw, implying f = ⊗v fv with fv = ⊗w|vηw as in Sec-

tion 4.3.2. The pairingsBτw , for w|v, determine the pairingsBσ
0,v andBσv (as in Section 4.4) which are used

to define the local integrals (Section 6).

Lemma 7.2. The global period integral in Waldspurger’s formula satisfies

Λξ (f, χ) = Q(η, Ω).

Proof. Weonly need to remark thatΩ|A×E = χ ∘ NE/F implying the conditionΩ|A×E = 1 is satisfied since χ|A× = 1

(Assumption 5.2). Moreover, Ω is unitary because χ is assumed so. We then have that the form of Λξ (f, χ) in
(5.11) is given precisely by Q(η, Ω).

In a similar manner, we identify the local period integrals in Waldspurger’s formula with our own terms

Γξ,v(fv , ̃fv; χv). The following lemma is a local analogue of the analysis of Λξ (f, χ) in Section 5.5.

Lemma 7.3. Let v be a place of F. Then, for fv ∈ Vσv and ̃fv ∈ Vσ̄v as above,

Γξ,v(fv , ̃fv; χv) =
1

2
cv ∏

w|v
βw(ηw , η̃w;Ωw)

where

cv =
{
{
{

1 if v ∈ S ∩ S,
0 otherwise.

Proof. Analogous to the global setting (discussed in Section 5.5.2) we have

F×v \GSO(W1
)v × SO(W⊥

1

)v ≅ F×v \G(SO(W⊥
1

) × SO(W
1
))v

so that

Γξ,v(fv , ̃fv; χv) = ∫

F×v \G(SO(W⊥
1

)×SO(W
1
))v

Bσv (σv(yhg)fv , ̃fv)χv(g) dyg dg (7.1)

where hg ∈ H0

v is any element such that

λ(hg) = λ(g)

with the additional constraints that hg(ξ(v)) = ξ(g(v)) for v ∈ W1,v and hg(w) = w when w ∈ W⊥
1,v. The vari-

able of integration (yg , g) is an element of G(SO(W⊥
1

) × SO(W
1
))v whence λ(yg) = λ(g). By Proposition 5.6

there is an Fv-isomorphism

F×v \G(SO(W⊥
1

) × SO(W
1
))v ≅ (E×\L×)(Fv).

Applying this isomorphism to (7.1) (checking Section 5.5.2 for comparison), we substitute the element yghg,
which corresponds to (yg , g) by definition, with ρ(1, k) where k ∈ (E×\L×)(Fv). The element g ∈ GSO(W

1
)v

is the projection of (yg , g) onto its second factor; as in Proposition 5.6, this projection corresponds to

ρ(1, k) Ü→ kkι. This substitution returns

Γξ,v(fv , ̃fv; χv) = ∫
(E×\L×)(Fv)

Bσv (σv(ρ(1, kv))fv , ̃fv)χv(kvkιv) dkv .

The automorphic character Ω = ⊗wΩw of (5.10), factorised over places of E, may be divided into factors

corresponding to each place v of F by Ωv = ⊗w|vΩw. These factors coincide with the factorisation of χ = ⊗vχv
in that Ωv : kv Ü→ χv(kvkιv).
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The measures dkv are chosen so that the Tamagawa measure dk on (E×\L×)(AE) factorises as

dk = ∏
w
dkw ,

over places of E, with dkv = ∏w|v dkw. The dkv are precisely the measures dh
1,v of H1,v in (4.8) (defin-

ingBθ(σv)). We now express the domain in terms of places w of E. By (4.5) we have

(E×\L×)(Fv) ≅ ∏
w|v
E×w\L×w .

Our calculation now depends on whether or not v ∈ S. With the vectors fv = ⊗w|vηw and
̃fv = ⊗w|v η̃w we

have

Bσv (fv , ̃fv) =
1

2
cv
Bσ

0,v (fv , ̃fv) =
1

2
cv ∏

w|v
Bτw (ηw , η̃w).

This is clear from the definition of the pairingBσv in Section 4.4 if v ̸∈ S or v ̸∈ S. If v ∈ S ∩S, then

fv = fv + 0 ∈ Vσ
0,v ⊕ Vσι

0,v

so we pick up the factor of 1/2cv = 1/2.
At last we obtain

Γξ,v(fv , ̃fv; χv) = ∫

∏w|v E×w\L×w

1

2
cv ∏

w|v
Bτw (τw(kw)ηw , η̃w)Ωw(kw) dkw

=
1

2
cv ∏

w|v
βw(ηw , η̃w;Ωw).

Combining the previous two lemmas allows Waldspurger’s formula to be rewritten in terms of the integrals

defining Λξ and Γξ . Recall the notation S� = S ∖ (S ∩S) and introduce

s = |S ∩S| and s� = |S�|.

Proposition 7.4. For all pure tensors f = ⊗v fv ∈ V1

σ,S and ̃f = ⊗v ̃fv ∈ V1

σ̄,S we have

Λξ (f, χ)Λξ ( ̃f , χ̄) = 2

s−1∏
v
Γξ,v(fv , ̃fv; χv).

7.3 The explicit formula

Applying the definition of the variant theta integral (5.5) we begin computing the Bessel period’s square:

|P(θ(f, ϕ), χ)|2 = ∫
μ
2
(F)\μ

2
(A)

∫
μ
2
(F)\μ

2
(A)

P(θ0(σ(δ)f,ω(δ)ϕ), χ)P(θ0(σ(ε)f,ω(ε)ϕ), χ) dδ dε.

As μ
2
(F) is of index two in μ

2
(A), we rearrange so that the above integral equals

1

4

∫
μ
2
(A)

∫
μ
2
(A)

P(θ0(σ(δ)f,ω(δ)ϕ), χ)P(θ0(σ(ε)f,ω(ε)ϕ), χ) dδ dε

=
1

4
1+s+s� ∑

μ
2
(FS)

∑
μ
2
(FS)

P(θ0(σ(δ)f,ω(δ)ϕ), χ)P(θ0(σ(ε)f,ω(ε)ϕ), χ). (7.2)

This equality follows since, as εv ∈ H(Ov), the integrals for v ̸∈ S fix the integrand and elsewhere we have the
(normalised) counting Haar measure. We further reduce the sum by noting that, for h

0
∈ H0(A),

σ(ε)f(h
0
) = f(h

0
ε) = 0
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unless ε ∈ μ
2
(AS∩S){1, ι} (by (4.7) or [7, Lemma 2.2]). Hence (7.2) equals

1

4
1+s+s� ∑

μ
2
(FS� )

∑
μ
2
(FS� )

(P(θ0(σ(δ)f,ω(δ)ϕ), χ) + P(θ0(σ(δι)f,ω(δι)ϕ), χ))

× (P(θ0(σ(ε)f,ω(ε)ϕ), χ) + P(θ0(σ(ει)f,ω(ει)ϕ), χ)).

The invariance under ι, noted in (5.4), implies we have the equality

|P(θ(f, ϕ), χ)|2 =
1

4
s+s� ∑

μ
2
(FS� )

∑
μ
2
(FS� )

P(θ0(σ(δ)f,ω(δ)ϕ), χ)P(θ0(σ(ε)f,ω(ε)ϕ), χ).

Hence it suffices to proceed by considering the summands

P(θ0(σ(δ)f,ω(δ)ϕ), χ)P(θ0(σ(ε)f,ω(ε)ϕ), χ)

= ∫ ∫

((SO(W⊥
1

)\SO(X))(A))2

(ω(h
2
δ)ϕ)(ξ)(ω(h

1
ε)ϕ)(ξ)Λξ (σ(h2δ)f), χ)Λξ (σ(h1ε)f, χ) dh1 dh2.

We have Λξ (σ(h1ε)f, χ) = Λξ (σ̄(h1ε) ̄f , χ̄) where ̄f = ⊗v ̄fv ∈ V1

σ̄,S and the vectors

σ(h
1
ε)f = ⊗vσv(h1,vεv)fv ∈ V1

σ,S and σ̄(h
1
ε) ̄f = ⊗v σ̄v(h1,vεv) ̄fv ∈ V1

σ̄,S

are pure tensors. Thus the hypotheses of Proposition 7.4 are satisfied; we have

Λξ (σ(h2δ)f), χ)Λξ (σ(h1ε)f, χ) = 2

s−1∏
v
Γξ,v(σv(h2,vδv)fv , σ̄v(h1,vεv) ̄fv; χv).

Subsequently,

P(θ0(σ(δ)f,ω(δ)ϕ), χ)P(θ0(σ(ε)f,ω(ε)ϕ), χ)

= 2

s−1∏
v
∫ ∫

(SO(W⊥
1

)v\SO(X)v)2

(ωv(h2,vδv)ϕv)(ξ)(ω̄v(h1,vεv)ϕ̄v)(ξ)

× Γξ,v(σv(h2,vδv)fv , σ̄v(h1,vεv) ̄fv; χv) dh1,v dh2,v .

In summary, we have the following formula:

|P(θ(f, ϕ), χ)|2 =
1

4
s+s� 2

s−1 ∑
δ∈μ

2
(FS� )

∑
ε∈μ

2
(FS� )

∏
v
Iv(δv , εv) (7.3)

for which we have introduced the place-holder notation

Iv(δv , εv) = ∫ ∫

(SO(W⊥
1

)v\SO(X)v)2

(ωv(h2,vδv)ϕv)(ξ)(ω̄v(h1,vεv)ϕ̄v)(ξ)

× Γξ,v(σv(h2,vδv)fv , σ̄v(h1,vεv) ̄fv; χv)dh1,vdh2,v .

The Iv(δv , εv) are connected to the local integrals of Section 6.2 by

α(θ(fv , ϕv), χv) =
1

2

ζFv (2)ζFv (4)
L(1, σv , std)

∑
ϱv∈μ2(Fv)

Iv(ϱv , 1),

recalling α(θ(fv , ϕv), χv) = α(θ(fv , ϕv), θ( ̄fv , ϕ̄v); χv).Wenowseparate the sum in (7.3) according to the repre-

sentation σv at v. The index set for the double summation runs over δ, ε ∈ μ
2
(FS� ), with δ = (δv) and ε = (εv),

where δv = εv = 1 if v ∈ S or v ̸∈ S.
∙ If v ̸∈ S, then, since ϱv ∈ H(Ov), Iv(ϱv , 1) = Iv(1, 1)meaning

Iv(1, 1) =
1

2

∑
ϱv∈μ2(Fv)

Iv(ϱv , 1) =
L(1, σv , std)
ζFv (2)ζFv (4)

α(θ(fv , ϕv), χv).
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∙ If v ∈ S ∩S, then Iv(ι, 1) = 0. Indeed, for f = f + 0 ∈ Vσ
0,v ⊕ Vσι

0,v
we have

Bσv (σv(ι)fv , ̄fv) =
1

2

(Bσ
0,v (0, ̄fv) +Bσ

0,v (fv , 0)) = 0 + 0.

The remaining term is

Iv(1, 1) = 2(
L(1, σv , std)
ζFv (2)ζFv (4)

)α(θ(fv , ϕv), χv).

∙ If v ∈ S�, we have a four-term summation. Using that Iv(ι, ι) = Iv(1, 1) we find

∑∑
δv ,εv∈μ2(Fv)

Iv(δv , εv) = 2 ∑
ϱv∈μ2(Fv)

Iv(ϱv , 1) = 4(
L(1, σv , std)
ζFv (2)ζFv (4)

)α(θ(fv , ϕv), χv).

Together, these three points prove that (7.3) becomes

|P(θ(f, ϕ), χ)|2 =
1

4
s+s� 2

s−1
2

s
4

s�(
L(1, σ, std)
ζF(2)ζF(4)

)∏
v
α(θ(fv , ϕv), χv)

=
1

2

(
L(1, σ, std)
ζF(2)ζF(4)

)
ζF(2)ζF(4)L(π, χ, 1/2)
L(Ad, π, 1)L(χK/F , 1)

∏
v
α♮(θ(fv , ϕv), χv).

Finally, for our formula to be independent of choice of local pairings (see Remark 7.7) we normalise the

Bessel period and instead calculate

|P(φ, χ)|2

Bθ(σ)(φ, φ̄)Bχ(χ, χ̄)
(7.4)

for φ ∈ Vθ(σ). The Petersson pairing for the one-dimensional representation χ is trivially constant in this case
and is easily seen to equal the Tamagawa number

Bχ(χ, χ̄) = Bχ(1, 1) = Vol(A×K×\A×K) = 2.

The Petersson pairing for the theta lift θ(σ) is dealt with by the formula of Gan–Ichino (4.9) which states that

the Petersson inner product for θ(σ) equals

Bθ(σ) =
L(1, σ, std)
ζF(2)ζF(4)

∏
v
Bθ(σv).

Combining these final comments gives the main result.

Theorem 7.5. Let (π,Vπ) be an irreducible, cuspidal automorphic representation of PGSp4(A) lifted, via the
theta correspondence in Section 3, from (the Jacquet–Langlands transfer of) a cuspidal automorphic represen-
tation ofGL

2
(AE)with trivial central character. Let K be a quadratic field extension of F such that SO2

≅ K×/F×.
Let χ be a unitary Hecke character of A×K such that χ|A× = 1; such a χ may also be viewed as an automor-
phic representation of SO

2
(A). For the cusp forms φ = ⊗vφv ∈ Vπ and φ̄ = ⊗vφ̄v ∈ Vπ̄ define the local integrals

α♮(φv , χv) as in Section 6: we have α♮(φv , χv) = 1 for almost all v. For any choice of local Haar measures defin-
ing α♮(φv , χv) let C ∈ ℂ be the Haar measure constant (the constant of proportionality given by the ratio of the
Tamagawameasure divided by the product of local measures). For each v, letBπv be any choice of local unitary
pairing. We have proved that

|P(φ, χ)|2

Bπ(φ, φ̄)Bχ(χ, χ̄)
=
C
4

ζF(2)ζF(4)L(1/2, π ⊠ χ)
L(1, π,Ad)L(1, χK/F)

∏
v

α♮(φv , χv)
Bπv (φv , φ̄v)

.

Definition 7.1. We define the local integrals to be properly normalised in the following way: choose local

unitary pairings Bχv on each one-dimensional space Vχv ⊗ Vχ̄v such that the Petersson pairing decomposes

asBχ = ∏v Bχv . We then take the normalised quantity

Bχv (χv , χ̄v)α♮(φv , χv)

in place of the local integrals in the formula of Theorem 7.5. Note that in the original definition of the local

integrals (Section 6.1) we implicitly take Bχv = 1 for each v, as per Section 4.4, and we found the decompo-

sitionBχ = 2∏v Bχv .
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Corollary 7.6. Assuming C = 1, Bπ = ∏v Bπv and that the local integrals α♮(φv , χv) are properly normalised
(as in Definition 7.1), Theorem 7.5 becomes

|P(φ, χ)|2 =
1

4

ζF(2)ζF(4)L(1/2, π ⊠ χ)
L(1, π,Ad)L(1, χK/F)

∏
v
α♮(φv , χv).

Remark 7.7. In amore general setting, the representation χ need not be one-dimensional (when considering

other groups). Normalising the left-hand-side of the equation in Theorem 7.5 by the Petersson pairings for π
and χ, and including the Haar measure constant, ensures that the local choices of pairings andmeasures are

independent of the global setting. These objects may be chosen andmay be chosen arbitrarily without affect-

ing the formula and, in particular, the local integrals are independent of such choices (see [11, Remark 1.3]).

Our normalisationsmay seemadhoc at first, due to the trivial pairings on χ, howeverwe state our theorem
in this way so that it sits in the more general framework of Liu’s conjecture. In Liu’s work one sees that the

issue of normalisation appears in a natural setting and we invite the reader to check [14, Conjecture 2.5] for

consolidation.
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