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Abstract—The magnetic fields produced by defects in magnetic flux leakage (MFL) enable the non-contact and non-

destructive detection and characterisation of defects in magnetic structures for health and condition monitoring. The 

frequency response and bandwidth of the leakage magnetic fields have not been derived from physical field 

descriptions, which is fundamental for accurate sizing of defects from measured signals and for the appropriate design 

of MFL detection channels. In this letter, the Fourier transforms of the leakage fields from a two-dimensional surface 

defect are evaluated to produce analytical expressions for the frequency response of magnetic flux leakage (MFL) 

signals for flux sensitive elements. The derived expressions explicitly show the correlation between the spectral 

response of the leakage fields and defect dimensions and sensing element lift-off spacing, in the form of a product of 

frequency dependent defect width loss function, spacing loss function, and thickness enhancement function. The lower 

and upper bandedges of the band-limited leakage magnetic fields are theoretically identified. A spectral based method 

for sizing of defects is also proposed based on the frequency response derivation. 

 
Index Terms—Electromagnetics, frequency response, magnetic flux leakage  

 

 

I.  INTRODUCTION 

Magnetic flux leakage (MFL) inspection is a valuable non-

destructive and non-contact technique for the detection of defects in 

magnetic structures for health and condition monitoring. The method 

involves applying a magnetising field in close proximity to the 

inspected magnetic medium and measuring the resulting leakage 

magnetic fields from defects, which are key for detection and 

characterisation of defects [Bray and Stanley 1997]. 

 

The physics of leakage fields are conventionally modelled 

analytically assuming simplified rectilinear defect geometry 

[Zatsepin and Shcherbinin 1966, Shcherbinin and Pashagin 1972] or 

cylindrical defect geometry [Mandache and Clapham 2003, Dutta et 

al. 2009], with magnetic charge sheets for the defect surfaces (under 

the assumption of constant material permeability) as sources for the 

stray magnetostatic fields. More detailed finite-element modelling of 

MFL fields from the solution of the quasi-static vector magnetic 

potential is also carried out to include the magnetizers, the nonlinear 

magnetic properties of the inspected material and to study eddy 

current effects (for example [Hwang and Lord 1975, Shin 1997]). 

 

The derived leakage fields distributions using the magnetic charge 

sheet method provide good agreement with measured MFL signals 
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(see cited references hitherto), and can be used in qualitative and 

quantitative methods to estimate physical defect dimensions from 

measured signals. However, the bandwidth and in particular the 

frequency response of the leakage fields in MFL is not known and 

has not been derived. The frequency response is fundamental to 

understand the correlation between the harmonic content of the 

leakage fields and physical defect dimensions and sensor/medium 

interface parameters. Moreover, the frequency response of the 

leakage fields is necessary for the optimal design of the MFL 

detection channel and accurate estimation of defect dimensions for 

the different scan speeds and defect feature sizes.  

 

The Fourier transform is applied in this letter to derive 

analytically the frequency response of the leakage magnetic fields 

from a simplified two-dimensional, semi-infinite defect structure 

moving at a constant speed with respect to a fixed flux-sensitive 

sensing element. This approach has been previously used for the 

analysis of the harmonic content of fields from gapped magnetic 

recording heads (for example [Mallinson 1974, Lindholm 1975]). A 

spectral method is also proposed here for the sizing of defects based 

on the frequency response derivation. For simplicity and to keep the 

theory analytical, the geometry analysed is two-dimensional and 

ignores the presence of any permeable structures that modify the 

leakage fields in the vicinity of the sensing element (such as shields 

or flux concentrators). Moreover, the theory does not include 

transient phenomena including fields generated by eddy currents. 

The relative motion of the inspected medium with respect to the 
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constant magnetizing field produce eddy current offset fields which 

are normally filtered out (electronically or through shielding). The 

inspected magnetic medium is assumed linear with constant 

permeability and ignores saturation effects, which are reduced in 

practice through control of the magnetizing field to avoid significant 

reductions in the local permeability in the defect region and altering 

the effective defect dimensions. Although the theoretical 

development here assumes flux-sensitive elements for sensing the 

leakage magnetic fields, the developed expressions can be easily 

differentiated to produce the frequency response in the case of 

inductive sensing elements. 

 

II. THEORY 

The theory presented here is for the two-dimensional, semi-

infinite structure described in Fig. 1 for simplicity, which is 

applicable to defects with large extent in the z-direction compared to 

the other dimensions. The inspected medium (including the defect) 

is moving at a constant speed v relative to the fixed coordinate 

system shown in Fig. 1. The centre of this coordinate system 

corresponds to the fixed position of the flux-sensitive element, 

located at a distance d from the surface of the inspected medium. 

The defect has half-width a and depth b. 
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Fig. 1 Two-dimensional geometry used in the theory with a defect 

moving at velocity v with respect to the reference coordinate system 

corresponding to the fixed position of the flux-sensitive sensing 

element. 

 

The two-dimensional magnetostatic fields beyond the defect 

surface, due to the application of the constant magnetizing field H0 

in Fig. 1, can be evaluated assuming that the two parallel surfaces of 

the defect are magnetic charge sheets. The magnetic fields due to a 

single charge sheet a distance y = d from the reference coordinate 

system with uniform charge density σs and extending to infinity in 

the z-direction can be written as: 
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where i and j are unit vectors in the x and y directions respectively. 

Carrying out the integration for two parallel charge sheets located at 

±a from the centre of the defect with charge densities ±σs and using 

superposition yields: 
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where vtx ='  defines the displacement of the centre of the defect 

from the centre of the reference coordinate system due to movement 

at constant velocity v at time t. Assuming the flux-sensitive element 

is located at the centre of the coordinate system (x = y = 0) reduces 

the two-dimensional defect fields to: 
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The influence of the magnetizing field H0 in the inspected 

medium of relative permeability µr may be included by expressing 

the surface charge density in terms of H0 for an equivalent semi-

elliptic cylindrical cavity following Edwards et al. [1986]: 
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where )/( babN a +=  is the demagnetising factor of the elliptic 

cylinder along the direction of the applied field, and n = b/a is 

elliptical cavity aspect ratio. The elliptical cavity approximation was 

adopted here to yield simple analytical expressions for the field 

spectra, and provided good agreement with experimental MFL 

measurements [Edwards et al. 1986, Förster 1986]. A discussion on 

equivalent ellipsoid approximations and associated corrections is 

provided by Beleggia et al. [2006]. 

 

The normalised two-dimensional leakage field components are 

plotted in Fig. 2 for sensor-medium separation d = 2a and when µr > 

n. The longitudinal field component Hx is even with peak at the 

centre of the sensing element, while the vertical field component Hy 

is odd with peaks near the defect corners. Increasing the defect depth 

while keeping its width constant (with b ≥ a) increases the 

magnitude of the leakage fields due to the increase of surface charge 

contribution with increasing depth. 
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Fig. 2  Longitudinal (solid lines) and vertical (dashed lines) leakage 

field components for d = 2a and µr >> n. 

 

The frequency response of the two-dimensional fields can be 

derived from evaluating their Fourier transform in the direction of 

movement. The Fourier transform of function g(t) defined in terms 

of the angular frequency ω is: 
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Using vtx =' yields the spatial Fourier transform G(k) with 

wavenumber k = ω/v = 2π/λ where λ is the wavelength: 
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which is more conveniently used to determine the 

frequency/wavelength response of the two-dimensional defect 

leakage fields next.   

 

Applying the spatial Fourier transform to Hx in (3) [Mansuripur 

1998] noting that the arctangent function is odd and utilising the 

translation property of the Fourier transform [Brigham 1988], the 

Fourier integral may be evaluated exactly using [Gradshteyn and 

Ryzhik 2015] to yield the frequency response:   
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which is real since Hx is even (see Fig. 2). The Fourier transform of 

Hy can be determined directly from (7) noting the orthogonal nature 

of two-dimensional magnetostatic fields beyond semi-infinite 

surfaces [Bertram 1994], which are shifted in phase by ±π/2. Hence 

the Fourier transform of the vertical field component is given by: 

 

)()sgn()( kHkjkH xy ±=    (8) 

 

where sgn(k) is the Signum function, and the spectrum in (8) is 

imaginary due to the odd symmetry of the vertical defect field as 

shown in Fig. 2. 

 

III. RESULTS AND DISCUSSION 

The terms in square brackets in the Fourier transform of the 

leakage field in (7) provide direct correlation between the 

losses/enhancement in the MFL signal and the physical dimensions 

of the defect and interface parameters. The first term is a sinc 

function responsible for producing nulls in the spectrum at integer 

multiples of the wavenumber k = π/a (or wavelength λ = 2a) and 

represent the defect width loss in the MFL spectrum. Hence the first 

null practically defines the upper bandedge of the leakage signal at 

ω = πv/a. The second term in square brackets )exp( kd−  is the 

spacing loss term responsible for the exponential field attenuation 

with increasing separation d per wavelength from the defect surface. 

The final term in square brackets describes the signal enhancement 

with increasing defect depth b. For a constant defect depth b this 

term approaches unity at high frequencies therefore affecting mainly 

the low frequency (wavenumber) part of the MFL spectrum. It is 

interesting to note that the frequency response in (7) share similar 

features to the readout spectrum in magnetic recording, which also 

involves the detection of spatial changes of the recorded 

magnetisation in the moving recording medium with a gapped head 

structure [Bertram 1994].  

 

The normalised magnitude of the leakage field spectrum of Hx in 

(7) is plotted in Fig. 3 for increasing defect depth (and constant 

defect width). This plot shows the first three nulls in the spectrum at 

integer multiples of the wavenumber π/a, and illustrates the 

enhancement in leakage field magnitude with increasing defect 

depth b at low frequencies. Fig. 4 illustrates the effect of the spacing 

loss term in increasing the roll-off of the MFL spectrum at high 

frequencies (large wavenumbers) with increasing distance from the 

inspected medium surface. 

 

10
-10

10
-8

10
-6

10
-4

10
-2

0.0001 0.001 0.01 0.1 1

ka/π

|H
x
(k

)|
 /

 H
0

n = 4

n = 2

n = 1

 
Fig. 3  Spectrum of two-dimensional leakage field determined using 

(7) for d = 2a, µr >> n and constant defect width for different defect 

depths. 
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Fig. 4  Two-dimensional spectrum of leakage field determined using 

(7) for b = 4a and µr >> n for different surface separations d. 

 

The frequency response expressions in (7) and (8) are in the form 

of products of frequency dependent surface field terms (related to 

defect dimensions) multiplied by the spacing loss term. The spacing 

loss term is a natural outcome to the solution to Laplace's equation 

for potentials or fields beyond semi-infinite surfaces in two-

dimensions and therefore a common term for any defect shape. Thus 

the leakage fields can be written as the convolution of the magnetic 

fields at the surface of the inspected medium, which are directly 

related to the physical defect dimensions, and the spacing loss kernel 

in the from: 
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This form allows the spacing loss term to be factored out from MFL 

measurements, and enable the application of spectral methods (such 

as inverse filtering [Wells 1985]) to extract the spatial distribution of 

the surface fields of defects from MFL measurements and estimating 

defect sizes [Lukyanets et al. 2003]. 

 

At low frequencies or wavenumbers, the leakage field spectrum in 

(7) can be expanded for small values of k to first-order to yield: 
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which is zero at DC, linear with k (or ω/v) and with slope 

determined by the defect dimensions. Thus the spectrum of the 

defect leakage field is band-pass with the lower bandedge governed 

by the defect dimension a and b, and the upper bandedge controlled 

by the defect width a in the first spectral null.  

 

The band-pass nature of the spectrum of the two-dimensional 

leakage fields and the explicit dependence of the bandedges on 

defect dimensions suggest a method of extraction of defect 

dimension from measured MFL spectra. The first null in the MFL 

spectrum enable estimation of the defect width according to 

nullka /~ π . The defect depth can then be estimated from the slope 

of the spectrum at low frequencies from (10) where 

dkkdHab s /)()/(1~ σ , using knowledge of the surface charge 

density. Further work is needed to validate this proposed sizing 

approach and its sensitivity to the assumed surface charge density 

(for example in (5)). Alternatively, the slope of the spectrum at long 

wavelengths can be normalised by the peak field in (3), Hx(x' = 0), to 

eliminate σs and solve the resulting transcendental equation for b 

using knowledge of the lift-off distance d.  

 

The leakage fields in (1) and (2) were derived assuming uniform 

magnetic charge distributions on the inner defect surfaces (normal to 

the in-plane magnetization). This approximation yielded good 

agreement with MFL measurements at practical distances from the 

defect surface (for example [Zatsepin and Shcherbinin 1966, 

Edwards et al. 1986]). The charge distribution on the defect surfaces 

is however not uniform and becomes very large near to the corners 

[Bertram 1994]. Rigorous Fourier series solution of Laplace's 

equation for the two-dimensional gapped semi-infinite structure 

(equivalent to the defect structure considered here), with non-

uniform surface charges, indicated enhancement of the magnetic 

fields near the corners of the structure at close separations from the 

surface of the defect [Middleton et al. 2000]. At increasing 

separations, the fields become identical to the uniform charge 

solutions. The non-uniform surface charge in this case cause slight 

shifting of the defect width (gap) nulls in the field spectrum towards 

longer wavelengths (lower frequencies) in comparison to uniform 

charge case. Thus the frequency response developed in this article is 

expected to be applicable to a wide class of two-dimensional 

symmetrical defect shapes with similar magnetic charge 

concentrations near the defect corners, producing spectral nulls at 

integer multiples of k = π/a [Aziz et al. 2016a]. Asymmetrical 

(tilted) defects with small tilt angles can still produce detectable 

width nulls in the leakage field spectrum due to the large 

concentration of charges in the corner regions. However large tilt 

angles can lead to reduction of the effective defect width and 

smearing of the nulls in the frequency response [Aziz et al. 2016b]. 

Further investigation is needed to understand the dependence of the 

frequency response of the leakage fields from asymmetrical defects 

with finite depth and realistic charge distribution on the tilt angle.  

       

 

IV. CONCLUSION 

The frequency response of the leakage fields for a two-

dimensional defect moving at constant speed is derived analytically 

in this letter. The derived expressions show explicitly the relation 

between the spectral content of the defect fields and physical defect 

dimensions and lift-off distance. The bandwidth and bandedges of 

the MFL spectrum were also identified as functions of the defect 

dimensions. A method is proposed for the sizing of defects using the 

frequency response derivation. 
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