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ABSTRACT 

Evolutionary Algorithms (EAs) have been employed for the 

optimisation of both theoretical and real-world problems for 

decades. These methods although capable of producing near-

optimal solutions, often fail to meet real-world application 

requirements due to considerations which are hard to define in an 

objective function. One solution is to employ an Interactive 

Evolutionary Algorithm (IEA), involving an expert human 

practitioner in the optimisation process to help guide the algorithm 

to a solution more suited to real-world implementation. This 

approach requires the practitioner to make thousands of decisions 

during an optimisation, potentially leading to user fatigue and 

diminishing the algorithm’s search ability. This work proposes a 

method for capturing engineering expertise through machine 

learning techniques and integrating the resultant heuristic into an 

EA through its mutation operator. The human-derived heuristic 

based mutation is assessed on a range of water distribution network 

design problems from the literature and shown to often outperform 

traditional EA approaches. These developments open up the 

potential for more effective interaction between human expert and 

evolutionary techniques and with potential application to a much 

larger and diverse set of problems beyond the field of water systems 

engineering.  

CCS CONCEPTS 

• Theory of computation → Design and analysis of algorithm      

KEYWORDS 

Evolutionary Algorithm, Machine Learning, Human-computer 
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1 INTRODUCTION 

Evolutionary Algorithms (EAs) have been used for the 

optimization of a wide range of both theoretical and real-world 

problems spanning many fields, including water systems 

engineering. It is often difficult to generate solutions using an EA 

that are suitable for real-world application in this field without 

substantial intervention on the part of an expert. This is due in part 

to the difficulty of defining every consideration an engineer needs 

to take into account when designing a complex system such as a 

water distribution network (WDN) and expressing this 

mathematically as an objective function or constraint.   

This paper proposes a method for the capture and integration of 

engineering expertise into an EA through the use of interactive 

visualization and machine learning techniques with the aim to 

create more optimal and engineering feasible solutions from an EA. 

1.1 Knowledge Guided Search 

The EA has proven to be a versatile process for solving a large 

variety of optimization problems spanning many fields and 

disciplines. The strength of the approach comes from the ability it 

has to traverse large search spaces, avoiding local optima and 

therefore can be viewed as a truly global search technique. The 

performance and versatility of the EA can be attributed partly to the 

independence it has over the problem being undertaken. Although 

seen as an asset, this problem independence can have a detrimental 

effect on performance in the case where the algorithm has not been 

tuned to a great enough extent to solve the problem at hand.   

For the problem of WDN design the EA often relies on 

operators such as crossover and mutation to alter the configuration 

of the network. These operators however are blind to the direct 

effect any changes made to elements of the network have on the 

overall performance of the resultant solution. For example, from 

the perspective of the EA, a change in the diameter of a pipe has no 
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bearing on the hydraulic behavior of connected elements until the 

resultant design is evaluated, although an engineer would know that 

the pressure at adjacent junctions would be affected. The 

performance of a newly created network is only known following 

solution decoding and hydraulic simulation and although this 

abstraction is partly why EAs can be applied to many different 

water system design problems, there is clear scope for the 

integration of problem specific knowledge, something that has 

started to be explored in the literature [1]–[3].  

There have been several approaches in the literature which use 

knowledge of the problem or search space to aid the search of an 

EA. One such method is Guided Local Search (GLS) [4], a 

metaheuristic technique bearing similarities to tabu search and 

simulated annealing. GLS has displayed good performance on a 

number of combinatorial optimization problems [5]–[8] as it helps 

prevent the search from becoming stuck in a local minima. GLS 

functions by penalizing certain solution features that it deems 

would not occur in near optimal solutions through the use of 

weighted penalties. Another approach is Guided Mutation (GM) 

[9], an offspring generating operator for EAs which is considered a 

combination between an EA’s standard mutation operator and the 

offspring generating method of an Estimation of Distribution 

Algorithm [10]. GM works on the notion that good solutions have 

a similar structure and new offspring should be generated close to 

the good solutions already found during the search and are fully 

automated techniques.    

1.2 Interactive Evolution 

Interactive Evolution (IE) [11] aims to incorporate knowledge 

through human interaction with an EA which requires input from a 

user during the search process. User interaction is commonly used 

to assess a solution’s fitness; however, the user can also be involved 

during the variation and selection phases of the algorithm. A 

common issue when applying an EA to a problem, especially in a 

real-world setting, is there are often non-explicit conditions that are 

very difficult to define. Various design approaches require the 

human to make subjective decisions based on human intuition, such 

as the ability to judge a design’s aesthetic qualities in the case of 

art or furniture design [12]. The fitness criterion in cases such as 

these cannot be explicitly formulated and often require case-by-

case comparison to effectively assess a solution. The interaction of 

a human user can also be employed to more effectively guide an 

algorithm’s search of the solution space with the view to speed up 

convergence and prevent local optima trappings. 

Water resources design and management problems are complex 

to solve; not only from a mathematical perspective, but also from 

political, sociological, and other subjective viewpoints. The 

majority of research in the field of water resources concentrates on 

the improvement of simulation models and their incorporation with 

optimization techniques such as evolutionary algorithms. The 

problem lies in real life cases where the optimization technique 

employed returns a mathematically optimal solution, however the 

solution may become infeasible when considering subjective 

preferences [13]. Recently, researchers in the field of water 

resources have developed methods for the calibration of models 

through the use of interactive evolution which enables the 

incorporation of unmodeled objectives in the search procedure 

[14]. The field of interactive evolution is a rapidly growing area of 

research; with the aim to utilize the subjective responses from 

human users to guide the search of evolutionary algorithms [11]. 

Singh et al. [14] used an elitist non-dominated sorting genetic 

algorithm (NSGA-II) [15] and human responses to find optimal 

solutions for groundwater problems which were both 

mathematically optimal and feasible. This was achieved through 

the consideration of human responses as one of the multiple criteria 

for the computation of the solution fitness. Although the interaction 

element of the process was simple (solution ranking) the results of 

the study were successful in generating superior solutions than non-

interactive optimization runs of NSGA-II.  

1.3 Machine Learning 

Any approach that seeks to embed human expertise into an EA 

must have a mechanism to learn from the user.  In previous research 

this has been achieved through the expression of ‘rules of thumb’ 

which are embedded into the EA through heuristics.  However, this 

is difficult to achieve in reality as most decisions made by an expert 

user will be based on intuition and ‘feel’ rather than explicit rules.  

Therefore, in this paper we introduce the use of machine learning 

as a mechanism to learn user behavior from interaction and to 

embed knowledge within the EA. Machine learning is a data 

analytics technique that teaches computers to achieve what comes 

naturally to humans and learn from experience [16]. Machine 

learning algorithms use computational methods to learn knowledge 

directly from data without depending on equations as model. These 

algorithms, in particular, neural networks and decisions trees have 

been used in water distribution network applications such as 

leakage detection, calibration models, demand forecasting models 

and pipe deterioration modelling. A decision tree algorithm, used 

in this work, describes a class of methods to cope with model 

classification and regression problems in machine learning. The 

main benefits of decision trees are their simplicity and 

computational efficiency, both in terms of creating the tree as well 

as applying it to decision-making [17]. Also, decision trees are easy 

to understand, able to handle large data, and the resulting trees can 

directly be visualized and interpreted. 

1.4 Multi-objective Water Distribution Network 

Design 

Different criteria such as cost, reliability and water quality are 

used to find the optimal solutions in real-world WDN design 

problems. Thus, many existing studies focus on multi-objective (in 

particular two-objective) optimal design of WDN. The first 

objective normally involves minimizing the total cost of the 

network, whilst the second objective involves maximization of 

network benefits [18]. 

In this work, the total cost (i.e., first objective criteria), denoted 

by CN (Eq. 1), includes the initial capital expenditure for pipes. The 

network benefits (i.e., second objective criteria) is measured 

through network resilience index (RI) (Eq. 2). RI has been shown 

to be a promising measure in comparison to others available 
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measures in the literature [19]. Further, RI considered both excess 

pressure head at each demand node and the uniformity of pipes 

connected to that demand node.  Thus, the operation of a network 

with more pressure than a consumer requires (i.e., surplus pressure) 

can provide additional resilience in the event of failure such as 

bursts or fire flows. The above dual-objective problem can be 

expressed mathematically as follows: 

 

 

1

1

1 1 1

1

( ) (1)

(2)

(3)
max{ }

np

k k k

k

nn
avl req

n n n n

n

npunr nn
p avl req

r r n n

r p n

npn

kn

k
n

kn

Min CN U D L

C Q P P

Max RI
P

Q P Q P

D

C
npn D







  



 




 

  
 








  



 

 

Where Uk(Dk)= unit cost of a pipe of a given diameter; 

Lk=length of pipe k; np= number of pipes in a given network; nn= 

number of demand nodes in a given network; Qn= demand at node 

n; avl

nP = available pressure head at node n; req

nP = required pressure 

head at node n; Qr= supply at reservoir r; Pr= elevation head at 

reservoir r; nr= number of reservoirs in given network; npu= 

number of pumps in a given network; Pp=power of pump p; γ= 

specific weight of water; Cn= uniformity at node n; npn= the 

number of pipes connected to node n; and Dkn = the diameter of 

pipe k connected to node n. 

A generated solution to the above problem is represented by a 

vector of integers, in which each element is the value of a pipe 

diameter in that solution. The value of the vector ranges from one 

up to the number of commercially available diameters. The quality 

of the generated solution is evaluated under two objective functions 

given in Eqs. 1 and 2. 

The above design problem is subject to the hydraulic 

constraints. These involve satisfying continuity at each demand 

node, conserving energy in loops and ensuring that available 

pressure head at each node is always equal to or above the required 

pressure head. The above constraints require solving conservation 

of mass and energy equations to determine the nodal pressure 

heads, flows in pipes for a given network, and are automatically 

satisfied by using the well-known EPANET2.0 [20] hydraulic 

solver. 

Three benchmark WDNs from the literature were selected to 

assess the capabilities of Human Derived Heuristic (HDH) based 

methods presented in this paper. The networks range in size, 

complexity, and network features providing different levels of 

challenge for both engineer and algorithm. The first WDN is Hanoi 

[21], a representation of s single water source (i.e. reservoir) 

network consisting of three loops, based upon the trunk main layout 

for the city of Hanoi, Vietnam. It consists of 34 decision pipes and 

6 available pipe diameters. The second test network is Blacksburg 

[22], a representation of a single source network consisting of 

multiple loops and branches. It consists of 35 pipes 23 of which are 

decision variables and 14 available pipe diameters. The final WDN 

on test is Modena [23], a representation of the water supply system 

of the city of Modena, Italy. The network consists of four sources 

and 317 decision pipes with 13 available pipe diameters to choose 

from. 

2 EXPERIMENTAL SETUP 

The experimentation presented in this paper is comprised of 

three separate parts; interaction capture, human-derived heuristic 

learning, and the integration of human-derived heuristics into EAs. 

As previously stated, the aim of this work is to develop a method 

for integrating expert engineering knowledge into an EA with the 

ultimate view of creating an algorithm which automatically learns 

from its interactions with a human expert. 

The following approach was demonstrated on three WDN 

design problems of varying size and complexity from the literature; 

Hanoi, Blacksburg and Modena.  

2.1 Engineering Interaction Capture 

A software framework for WDN optimization (HOWS 

framework[24], [25]) was developed for the interactive 

optimization of WDN design and operation problems. The 

framework employs a server-client architecture, where the server 

manages the configuration and automatic optimization of the 

problem and the client is tasked with visualization and user 

interaction capture operations. The client presents the user with a 

three-dimensional representation of a WDN. Various visualization 

techniques are used to convey topographical, hydraulic, and 

optimization information to aid the user in decision making.  Figure 

1 shows the Blacksburg network in the interactive visualization 

client. The most prevalent components in a WDN are junctions and 

pipes, these are represented as spheres and cylinders respectively. 

In this configuration of the client, the diameter of a cylinder is 

proportional to the diameter of its respective pipe, enabling the user 

to quickly identify diameters without necessarily interactively 

inspecting the pipe in question. The network topology is primarily 

defined by the position of the junctions in 3D space providing the 

engineer with an idea of distance and elevation change throughout 

the network. In this configuration, the hydraulic head deficit values 

are show at each junction using a linear color scale where green 

indicates head constraint satisfaction and yellow to red (red being 

maximum head deficit) specifies varying degrees of head constraint 

violation, allowing the user to quickly identify areas of the network 

violating problem constraints.  
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Figure 1: HOWS Framework Interactive Visualization Client 

Additional hydraulic information is displayed to the user with 

‘pipe fins’, these run the length of each pipe and can be used to 

show a variety of variables simultaneously. For this set of 

experiments, the height at each end represents hydraulic head at the 

adjoining junctions, this value is reinforced using a color gradient 

where green is high, and red is low. The vertical lines which can be 

seen running the length of the fins are moved in the direction of 

flow with a speed relative to velocity of water in the pipe. The 

inclusion of the pipe fins in this experiment allows the engineer to 

gain greater insight into the performance of a network with the view 

to helping them make more informed decisions without the need to 

constantly alter the visualization settings, which could potentially 

slow the decision-making process and reduce collection volume of 

interaction data. 

For this set of experiments the user is first presented with a 

randomly generated solution to the problem and instructed to 

manually optimize the network, reducing network infrastructure 

cost whilst meeting the basic pressure constraints of the problem. 

These values are displayed to the user in the top left of the screen. 

The user interacts with the network by clicking on the components 

of the network. Selecting a junction will display its constraint 

information, highlighting the amount of hydraulic head deficit or 

excess. Selecting a pipe will bring up a dialog displaying a list of 

available diameters and their associated cost. The user can then 

select a new diameter. After the user changes the diameter of a pipe, 

the change is sent to the server which logs the change and runs a 

hydraulic simulation on the new network configuration and 

computes the new objective and constraint values. This information 

is then sent back to the client which updates the representation of 

the network to reflect the updated information. 

2.2 Learning Human-derived Heuristics 

This work builds upon previous work [26] that used decision 

trees to model human knowledge when optimizing a WDN design 

problem. The results of that study indicated that there was scope for 

the capture of expert water systems knowledge and its integration 

into an EA. The approach however, relied heavily on training the 

models using the entire network state, resulting in a very large 

number of model features (the diameters of all pipes and pressures 

at every junction). The approach presented here was developed 

with a view of reducing the number of model features required as a 

step towards developing a more generalizable method for water 

system knowledge-based model generation.  

The task of the model presented here is to predict the diameter 

of a randomly selected pipe a human would choose given the 

network’s current state. It was decided that a decision tree-based 

learning approach would again be employed in this work due the 

ability to visualize and interpret the generated models; aiding in 

analysis of the effectiveness of the generated models.  

Decision trees require a fixed input schema.  In this approach 

four input features, local to the selected pipe are considered; the 

current diameter, water velocity, upstream head deficit, and 

downstream head deficit. These parameters were chosen as they are 

thought to be the primary considerations of the engineer when 

selecting a new diameter. The algorithm used to generate the 

decision trees is an optimized version [27] of the Classification and 

Regression Trees (CART) algorithm [28]. Following generation, 

the models are assessed using explained variance and the leave-

one-out cross validation method. Given a set of K recorded 

interactions made by the user, the model is trained on K-1 of the 

observations, and then tested on the remaining unseen observation. 

This procedure is repeated K times, such that each observation is 

the test case exactly once. For the first two networks, Hanoi and 

Blacksburg, interactions were recorded for three users, each of 

which optimized each network multiple times. For the Modena 

network one user optimized the network twice.  

2.3 Integrating Heuristics into EAs 

The trained and validated decision tree model is integrating into 

an EA through the mutation operator. The HDH mutation operator 

is designed to take the place of an EAs standard mutation 

procedure. The HDH mutation firstly decodes the chromosome and 

randomly selects a pipe in the network, then the selected pipe’s 

diameter, upstream head deficit, downstream head deficit and 

velocity are applied to the HDH model which predicts the new 

diameter for the pipe. This value is compared with the available 

diameters for that pipe and the closest diameter is applied to the 

selected pipe. 

An important consideration when integrating problem-specific 

knowledge into an EA is computational efficiency. The most 

computationally demanding operations are solution evaluations 

and in the case of water distribution design problems this comes in 

the form of the hydraulic simulations. Therefore, it is important not 

to incur any additional objective function evaluations where 

possible. Due to the dependency the HDH mutation operator has on 

a solution’s pressure and velocity information, mutation cannot be 

applied post crossover without the need to re-evaluate the hydraulic 

network of resultant solutions. Therefore, the mutation operator 

needs to precede the crossover operator in order to preserve the 

hydraulic information gained from the hydraulic simulation of the 

original solution. 

Through initial experimentation it was found that completely 

replacing standard bit-flip mutation with HDH mutation resulted in 

the premature convergence of the algorithm, therefore it was 

important to implement a method to control the application strength 
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of the HDH, essentially mixing HDH and bit-flip mutation. The 

first set of optimization experiments presented in this paper show 

the effect different application strengths of the HDH have on the 

algorithm search performance. 

The EAs employed in this set of experiments are NSGAII and 

the Strength Pareto EA 2 (SPEA2) algorithm. Both algorithms have 

been shown to perform well on this problem type [18], [29].  

3 RESULTS AND DISCUSSION 

The experimental results in this paper are presented in two 

sections. The first being the analysis of the decision trees generated 

from the user interactions with each WDN problem. The final 

section details the application of human derived models in two EAs 

and the performance is assessed.  

3.1 Decision Tree Analysis 

For each WDN a separate decision tree was trained using the 

interaction data gained from the HOWS platform detailed in the 

previous section. 

Figure 2 shows the trimmed decision tree generated from the 

cumulative user interaction sessions. It can be observed that in 

general, lower velocity values result in smaller diameters being 

selected. High velocity in a pipe can indicate large head-loss which 

reduces pressures downstream. This is something that the designer 

normally wants to avoid and will look to smooth out velocities in a 

network. The model seems to have captured some basic rules that 

water system engineers often employ, for example, when a pipe has 

high downstream deficit and upstream excess the diameter of the 

pipe is increased, thus working towards eliminating bottlenecks in 

a pipe series. 

The effectiveness of the models was then assessed using the 

leave-one-out cross validation method using explained variance to 

score the model’s accuracy. Table 1 shows the results of the cross-

validation experiments for each network model. The explained 

variance metric gives an indicator as to how well the model fits the 

data, where 1 is 100% accuracy. 

 

 

 

 

Table 1: Cross Validation Results 

  
Explained 

Variance 

Standard 

Deviation 

Hanoi 0.6 0.11 

Blacksburg 0.31 0.13 

Modena 0.43 0.13 

 

The model trained on the Hanoi problem obtains the highest 

accuracy with the Blacksburg model achieving the lowest. The 

lower accuracy of Blacksburg and Modena could indicate that the 

features considered by the model only partially capture the 

decisions making of the engineering interactions. An additional 

consideration is that the Blacksburg and Modena problems have a 

much higher density of available pipe diameters (14 and 13 

respectively) when compared to the Hanoi problem (6 diameters). 

This could go some way to explaining the reduced performance of 

the two models. 

3.2 Optimization of WDN Using HDH 

For each problem presented in this section, the base algorithm 

(NSGAII and SPEA2) parameters remain constant. Population size 

of 100, single-point crossover and a bit mutation probability = 1/n 

where n in the number of bits in the chromosome. 

The first set of experimental results presented explore the 

impact varying the HDH application strength has on NSGAII’s 

performance on the Hanoi problem. The experiment involved 

standard NSGAII and four variants of NSGAII with HDH mutation 

(NSGAII - HDH) operating with a probability of HDH application 

at 0.25 intervals. Each algorithm was run 30 times with a 

termination criterion on 500,000 fitness evaluations. Figure 3 

shows the average hypervolume [30] of NSGAII and the NSGAII-

HDH variants over the search. The primary finding from these 

results is that if the HDH is applied exclusively, the algorithm 

prematurely converges at a sub-optimal solution compared to the 

standard configuration of NSGAII. This result is perhaps expected 

given that the human heuristics lack the explorative capability of a 

standard random mutation. The remaining NSGAII - HDH variants 

however all ultimately perform better than NSGA-II, with a 50% 

probability of HDH application exhibiting the best performance. 

Figure 2: Decision Tree for the Hanoi Problem 
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The core finding of these results is that the algorithm requires some 

random, in this case bit-flip, mutation to fully explore the search 

space and prevent premature convergence.  

 

Figure 3: Mean Hypervolume for the Hanoi Problem -

NSGAII - HDH Application Probability Results  

Following these results, it was decided that the NSGAII variants 

would apply the HDH with 25% and 50% probability. Due to the 

decreased overall performance of SPEA2 on all test cases, HDH 

application strength tuning was deemed unnecessary to gauge HDH 

impact therefore HDH is applied with a 50% probability for all 

problems. Both NSGAII and SPEA2, including their HDH variants 

are applied to the Hanoi problem. Figure 4 shows the average 

hypervolume of the algorithms over 500,000 evaluations. In the 

case of NSGAII, the addition of the human trained model boosts 

performance as the search progresses, ultimately achieving a better 

spread of solutions. Interestingly SPEA2 only sees benefit from the 

HDH in the early stages of the search, with SPEA2 eventually 

surpassing SPEA2-HDH at approximately 120,000 evaluations. 

 

Figure 4: Mean Hypervolume for the Hanoi Problem – 

NSGAII, NSGAII – HDH, SPEA2 & SPEA2 – HDH 

Figure 5 shows the final hypervolume results (30 runs) for each 

of the algorithms on test. Comparing the NSGAII results shows the 

human trained model has a positive impact on the solution quality 

of the algorithm’s final populations. Not only is mean hypervolume 

increased but variance is drastically decreased in the case of 50% 

HDH mutation. The difference between the SPEA2 results is less 

pronounced however, SPEA2 marginally achieves a better mean 

hypervolume than SPEA2-HDH at the cost of a high standard 

deviation. Statistical testing (Mann-Whitney U [31]) indicates the 

NSGAII and NSGAII-HDH results are significantly different, 

however there is no statistically significant difference between the 

final populations generated between SPEA2 and SPEA2-HDH. 

These results give a clear indication that the use of the HDH 

mutation tends to reduce variation in the performance of the 

algorithms, resulting in higher consistency. 

 

Figure 5: Hypervolume Results for the Hanoi Problem – 

NSGAII, NSGAII – HDH, SPEA2 & SPEA2 – HDH 

The following set of experiments are for the Blacksburg 

problem, as with the Hanoi problem, each algorithm was run for 

500,000 evaluations for 30 runs. Figure 6 shows the mean 

hypervolume of the algorithms over the runs. It can be observed 

that NSGAII-HDH (P(M)=0.25) exhibits slightly more aggressive 

convergence that its standard counterpart however the algorithms 

match performance after 250,000 evaluations. Interestingly when 

the HDH is applied to a greater extent (NSGAII-HDH (P(M)=0.5)) 

algorithm performance is diminished, resulting in slightly poorer 

performance. The performance of the SPEA2 based algorithms on 

the other hand differ greatly from the NSGAII based algorithms 

when compared to each other SPEA2 significantly outperform 

SPEA2-HDH throughout the search. 
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Figure 6: Mean Hypervolume for the Blacksburg Problem – 

NSGAII, NSGAII – HDH, SPEA2 & SPEA2 – HDH 

Figure 7 illustrates very little distinction between the three 

NSGAII based algorithms, in fact, there is no statistically 

significant difference between the results. The difference between 

the SPEA2 based algorithms is more pronounced in this case, with 

the standard algorithm achieving a higher mean hypervolume and 

lower variance, a statistically significant result. The poor accuracy 

(31%) of the human derived model in this case is clearly having a 

detrimental effect on the performance of the algorithms, an effect 

more pronounced with SPEA2 than NSGAII.   

 

 

Figure 7: Hypervolume Results for the Blacksburg Problem – 

NSGAII, NSGAII – HDH, SPEA2 & SPEA2 - HDH 

The final set of experiments were conducted on the Modena 

problem. In this case each algorithm was run 10 times for 500,000 

fitness evaluations due to the greater computational cost of the 

hydraulic simulation for this network. Figure 8 shows the mean 

hypervolume of the algorithms’ populations over the allotted 

evaluations. From this figure NSGA-HDH (P(M)=0.5) can be seen 

to outperform NSGAII for the first 150,000 evaluations, displaying 

faster convergence. NSGAII then continues to gradually achieve a 

better hypervolume. However, NSGAII-HDH (P(M)=0.25) is 

shown to dominate NSGAII throughout the entirety of the search. 

SPEA2-HDH (P(M)=0.5) exhibits good performance in the early 

stages of the search compared with SPEA2, however SPEA2 

surpasses the HDH variant at approximately 180,000 evaluations. 

 

 

Figure 8 Mean Hypervolume for the Modena Problem – 

NSGAII, NSGAII – HDH, SPEA2 & SPEA2 – HDH 

Figure 9 displays the final hypervolume results (10) for each of 

the algorithms. It can be seen that NSGAII-HDH (P(M)=0.25) 

achieves a better mean hypervolume with equal or lower variance 

compared with NSGAII and NSGAII-HDH (P(M)=0.5). Statistical 

analysis shows there is significant difference between NSGA-II-

HDH (P(M)=0.5) and the other algorithms, however there is no 

significance between NSGAII and NSGAII-HDH (P(M)=0.25). 

SPEA2 achieves a slightly better mean hypervolume to NSHGAII-

HDH (P(M)=0.5) with a lower variance.  
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Figure 9: Hypervolume Results for the Modena Problem – 

NSGAII, NSGAII – HDH, SPEA2 & SPEA2 – HDH 

From this set of experiments there seems to be a clear 

correlation between human derived model accuracy and the 

performance of the hybrid algorithms. The use of lower accuracy 

models, that are less capable of representing the human engineer 

with substantial accurately has been shown to have a detrimental 

effect on the search capabilities of an EA. It would appear that 

capturing heuristics from the larger models is more difficult where 

there are a greater number of potential inputs to consider.  In this 

study, we have considered factors that are reasonably local to the 

selected pipe, however for larger networks the user may be making 

use of information from the extremities of the network outside of 

this locale. However even in the case of the Blacksburg and 

Modena problems there is no statistically significant performance 

decrease for NSGAII even though the models used in this study had 

an accuracy of below 50%. Furthermore, with careful parameter 

selection of HDH deployment, performance improvement on the 

large-scale Modena problem is possible throughout the 

optimization. 

4 CONCLUSIONS 

This paper demonstrates the potential for an EA to utilize human 

derived heuristics to improve performance when optimizing water 

distribution network design problems. The derived heuristics are 

automatically generated from the interactions of an engineer’s 

manual alterations on a WDN and integrated into an EA through 

the mutation operator. The results show that the performance on an 

EA can be improved through the integration of domain specific 

expert knowledge. It is clear however that model accuracy is crucial 

to the effectiveness of the human-derived heuristics. As discussed, 

the human engineer is taking many features into account when 

making changes to a network, of which a number are not 

necessarily local to the pipe being manipulated. It is therefore 

important to take into account other network information when 

developing new machine learning input schema. This however is a 

difficult task, not only in identifying the relevant information to 

feed the machine learning model but also to make it generalizable, 

so that a generic model can be trained and applied on multiple 

networks. Another consideration is which pipe to select given the 

current state of the network. It has been shown [32] that as the 

search of an EA progresses, the pipes close to the source(s) remain 

reasonably constant and the algorithm concentrates on the pipes 

closer to the extremities of the network. One of the key 

characteristics of a water distribution network is that the diameters 

of pipes close to the water source have a greater hydraulic influence 

over the whole system.  

The findings presented in this paper describe an IEA that learns 

from its interactions with human experts, capturing knowledge and 

applying it to the process. With the development of a more 

generalizable input schema it is envisaged that knowledge gained 

on smaller networks like the ones presented in this paper could then 

be applied to very large WDN problems.  

The developments presented in this paper open up the potential 

for more effective interaction between human expert and 

evolutionary algorithm resulting in better, more engineering 

feasible solutions to real-world problems. With further 

development the potential application of this approach could 

expand to a much larger and diverse set of problems beyond the 

field of water systems engineering. 
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