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Research Highlights 

 Ninety-five children were randomly allocated to receive working memory training, 

working memory and metacognitive strategy training, or adaptive visual search 

training (control group) after-school 

 Working memory performance significantly improved in both training groups relative 

to the adaptive control group and was maintained three months later 

 Improvements in maths were also observed immediately after training, suggesting that 

working memory training may improve children’s academic outcomes when provided 

in addition to school 

 The addition of metacognitive strategy training was associated with greater 

improvements in working memory performance at three months compared to working 

memory training alone  

 

Abstract 

Working memory training has been shown to improve performance on untrained 

working memory tasks in typically developing children, at least when compared to non-

adaptive training; however, there is little evidence that it improves academic outcomes. The 

lack of transfer to academic outcomes may be because children are only learning skills and 

strategies in a very narrow context, which they are unable to apply to other tasks. 

Metacognitive strategy interventions, which promote metacognitive awareness and teach 

children general strategies that can be used on a variety of tasks, may be a crucial missing 

link in this regard. In this double-blind randomised controlled trial, 95 typically developing 

children aged 9-14 years were allocated to three cognitive training programmes that were 

conducted daily after-school. One group received Cogmed working memory training, another 

group received concurrent Cogmed and metacognitive strategy training, and the control group 

received adaptive visual search training, which better controls for expectancy and motivation 

than non-adaptive training. Children were assessed on four working memory tasks, reading 

comprehension, and mathematical reasoning before, immediately after, and three months 

after training. Working memory training improved working memory and mathematical 

reasoning relative to the control group. The improvements in working memory were 

maintained three months later and these were significantly greater for the group that received 

metacognitive strategy training, compared to working memory training alone. Working 

memory training is a potentially effective educational intervention when provided in addition 

to school; however, future research will need to investigate ways to maintain academic 

improvements long-term and to optimise metacognitive strategy training to promote far-

transfer. 



 

Introduction 

Working memory is a promising target for cognitive training because it is related to a 

wide range of cognitive functions (Barrett, Tugade, & Engle, 2004). It is a system for 

retaining and manipulating information over a few seconds (Baddeley & Hitch, 1994), which 

is involved in reading (Daneman & Carpenter, 1980), mathematics (Peng et al., 2015), and 

reasoning (Kane et al., 2004). Furthermore, studies have shown that working memory 

capacity predicts children’s academic achievement (Alloway & Alloway, 2010; Gathercole, 

Pickering, Knight, & Stegmann, 2004), and those that leave school with better qualifications 

have higher rates of employment and income (Office for National Statistics, 2013). Thus, if 

working memory capacity can be increased through training, it could have far-reaching 

impact by improving children’s cognitive abilities, academic achievement, and future life 

outcomes. 

Working memory training programmes, such as Cogmed (Klingberg et al., 2005), n-

back and dual n-back training (Jaeggi et al., 2010; Jaeggi, Buschkuehl, Jonides, & Perrig, 

2008), simple- and complex-span training (Harrison et al., 2013), and binding training (De 

Simoni & von Bastian, 2018), typically involve intensive and prolonged practice on one or 

multiple tasks that adapt in difficulty. A recent meta-analysis of these programmes in 

typically developing children (including 26 studies and 1601 children aged 3-16 years) 

showed significant improvements on untrained working memory tasks, i.e. near-transfer, 

which were maintained three to six months later (Sala & Gobet, 2017). Regarding far-transfer 

to other domains, significant immediate improvements were reported for mathematics, but 

not reading, science, fluid intelligence, crystallised intelligence, or cognitive control. 

However, interpretation of these findings is limited because the analyses included studies 

with passive, i.e. no intervention, control groups (e.g. Witt, 2011), which do not control for 

possible placebo, Hawthorne, or demand effects (Shipstead, Redick, & Engle, 2010) or non-

specific effects of the training on children’s motivation and attentional capacity (Shipstead, 

Hicks, & Engle, 2012). In order to make strong inferences regarding the effectiveness of 

working memory training it is, therefore, essential that an active control group is employed 

that will engage children in some form of training, which is similar in terms of expectancy, 

motivation, and demands on sustained attention. 

 When only considering studies with active control groups, Sala and Gobet’s (2017) 

meta-analysis revealed a significant near-transfer effect in the short-term and no evidence of 

far-transfer effects. No such analysis was performed for long-term near-transfer due to a 

paucity of studies, which have currently provided mixed evidence (Henry, Messer, & Nash, 

2014; Hitchcock & Westwell, 2017; Karbach, Strobach, & Schubert, 2015; Studer-Luethi, 

Bauer, & Perrig, 2016). Another meta-analysis showed that working memory training may 

improve self- or parent-reported inattention symptoms (Spencer-Smith & Klingberg, 2015). 

In typically developing children, training has been found to improve maths ability compared 

to education as usual (St Clair-Thompson et al., 2010; Witt, 2011), but not when compared to 

an active control (Henry et al., 2014). Similarly, Cogmed has been associated with 

improvements in maths and reading in typically developing children when compared to 

education as usual (Söderqvist & Bergman-Nutley, 2015). However, the only randomised 

controlled trial of Cogmed in typically developing children to date found no evidence of far-

transfer to mathematics or reading comprehension compared to non-adaptive Cogmed, where 

the difficulty of training remained at a low level (Hitchcock & Westwell, 2017). Overall, 



 

these findings suggest that training can improve working memory; however, it is unclear if 

these effects are maintained long-term and there is little evidence of far-transfer to other 

domains, when expectancy and motivation are appropriately controlled for. 

One possible reason for the lack of far-transfer effects in studies with active control 

groups may be because working memory training primarily promotes the acquisition of 

highly task-specific strategies (Dunning & Holmes, 2014; Randall & Tyldesley, 2016). For 

example, Cogmed has been shown to increase the use of grouping strategies and performance 

on near-transfer tasks that are structurally similar to the training tasks (Dunning & Holmes, 

2014), but not on structurally different tasks such as the n-back (Ang, Lee, Cheam, Poon, & 

Koh, 2015). Far-transfer may be limited because working memory strategies do not afford 

performance on other tasks, such as reading comprehension (Bailey, Dunlosky, & Kane, 

2008; Dunlosky & Kane, 2007) or reasoning (Bailey, Dunlosky, & Kane, 2011; Dunlosky & 

Kane, 2007). 

Alternatively, working memory training may primarily increase capacity (Klingberg, 

2010; Lövdén et al., 2010), but children may be unable to intuitively apply this to other 

cognitive or academic tasks. One theory suggests that high working memory capacity affords 

the production and implementation of effortful and effective strategies on cognitively 

demanding tasks (Dunlosky & Kane, 2007). However, children may require specific 

instruction and guidance on how to apply their newly acquired additional capacity in other 

situations (Partanen, Jansson, Lisspers, & Sundin, 2015), particularly as children’s ability to 

generate and utilise strategies is still developing (Bjorklund, Dukes, & Brown, 2008). Far-

transfer may depend upon metacognition to mindfully abstract something learnt in one 

context and apply it to a new context (Salomon & Perkins, 1989). Self-regulated learning is 

thought to be achieved through planning, monitoring, and evaluating (Pintrich, 2000; 

Zimmerman, 2002), and these domain-general strategies are typically taught in metacognitive 

strategy interventions (Fisher, 1998), which are recommended as one of the most impactful 

educational interventions (Higgins et al., 2016). Such interventions have been shown to 

improve children’s academic performance (Dignath & Büttner, 2008) and generalise to 

attainment in untrained school subjects, compared to education as usual (Adey & Shayer, 

1993). Concurrent working memory and metacognitive training may, therefore, facilitate 

children’s performance across a range of tasks by increasing cognitive capacity, 

metacognitive awareness, and utilisation of general strategies. 

The academic outcomes of Cogmed with metacognitive strategy training have 

previously been investigated in children with special educational needs, in comparison to 

Cogmed alone and education as usual (Partanen et al., 2015). Metacognitive strategy training 

was provided in three additional sessions each week that focused on labelling elements of the 

training tasks, formulating goals, identifying strategies and pitfalls, sharing planning and 

execution strategies, and relating the training tasks to school or leisure time. Cogmed and 

metacognitive strategy training was found to improve visuospatial working memory, which 

was maintained six months later; but this was only in comparison to education as usual and 

there was no evidence of far-transfer to mental arithmetic, reading comprehension, writing, or 

nonverbal reasoning. No improvements were observed in the group that received Cogmed 

alone, which led to the suggestion that training children’s metacognitive skills and strategies 

might be an important prerequisite for transfer in children with special educational needs. 

However, this effect was confounded by the additional contact time that the metacognitive 



 

group received and, as discussed earlier, improvements relative to a passive control group 

should be treated with caution.  

The academic outcomes of working memory and metacognitive strategy training in 

typically developing children have been more promising, but only one study has been 

conducted to date (Carretti, Caldarola, Tencati, & Cornoldi, 2014). Children practised on 

three working memory tasks of increasing difficulty and were taught metacognitive strategies 

in the context of reading comprehension in 22 biweekly sessions, each lasting one hour. 

Specifically, children were taught how to identify goals, monitor their comprehension, and 

predict the content of the reading based on the genre. In addition, children were taught 

reading strategies and how to integrate information between texts and pictures. Compared to 

controls who practised reading comprehension exercises for the same amount of time, the 

intervention was found to significantly improve working memory and reading 

comprehension. This suggests that concurrent working memory and metacognitive training 

may improve academic outcomes. However, it is unclear whether the improvement in reading 

comprehension was an effect of working memory training, metacognitive strategy training, 

instruction in specific reading strategies, training in integration skills, or a combination of 

these. There is extensive evidence that instruction in reading strategies improves children’s 

comprehension (Higgins et al., 2016); however, it is unlikely that these benefits would 

generalise further (Lustig, Shah, Seidler, & Reuter-Lorenz, 2009). It is, therefore, important 

to determine the specific effects of metacognitive strategy training in addition to working 

memory training, as this may be crucial to promote far-transfer to academic outcomes. 

 

Adaptive Control Groups 

As mentioned previously, a common discussion in the cognitive training literature 

concerns what constitutes an appropriate control group (Simons et al., 2016). Although most 

recent studies have used active rather than passive control groups, the vast majority have used 

a non-adaptive variant of the training programme, where the difficulty remains at a low level 

and users receive no feedback. This may not sufficiently control for expectancy and 

motivation because users receiving adaptive training are constantly challenged and receive 

feedback on their improvements, which may bias their performance at outcome (Shipstead et 

al., 2012). Many recent reviews have consequently recommended using an adaptive control 

group that effectively trains a capacity unrelated to working memory (Boot, Simons, Stothart, 

& Stutts, 2013; Green, Strobach, & Schubert, 2014; Noack, Lovden, & Schmiedek, 2014; 

Shipstead et al., 2012; Simons et al., 2016). Individuals in an adaptive control group should 

be challenged, see improvements during training, and, therefore, have similar expectancy and 

motivation at assessment.  

Only one published investigation of working memory training in children has used an 

adaptive control group (Jaeggi, Buschkuehl, Jonides, & Shah, 2011). The control group 

received adaptive knowledge training, which involved answering questions in a multiple-

choice quiz format. Each training session consisted of 10 one minute blocks that adapted in 

difficulty by presenting more difficult questions when there were fewer than four errors and 

easier questions when there were four or more errors. Furthermore, new or previously 



 

incorrectly answered questions were presented at each session. Only children who made large 

improvements on the n-back training task showed improvements in fluid intelligence relative 

to the control group. Whilst these results are intriguing, there was no direct measure of 

working memory performance or far-transfer to academic outcomes. Furthermore, the 

difficulty of questions was somewhat subjective and the training did not place demands on 

visuospatial attention, which is typically controlled for in non-adaptive training (Klingberg et 

al., 2005). Adaptive visual search training has been used as a control group in multiple 

working memory training studies in adults (Covey, Shucard, & Shucard, 2019; Harrison et 

al., 2013; Redick et al., 2013) but not yet in children. This approach may be a more suitable 

control for the visuospatial and attentional demands of working memory training in children. 

In addition, the difficulty of the task adapts in a more objective manner, by increasing or 

decreasing the number of distracters in the search array according to performance. 

 

The Present Study 

In summary, whilst there is some suggestive evidence that working memory training 

can improve children’s working memory performance, the limitations of the control tasks 

used in most of these studies mean that such a conclusion needs to be taken with caution. 

Furthermore, there is currently very little evidence indicating that working memory training, 

on its own, can improve children’s academic outcomes. Our review of the literature has 

indicated that there is not only a clear need for more developmental studies utilising effective 

adaptive control tasks, but also that a priority should be to explore whether combining 

working memory training with other training methods is more effective than working 

memory training alone. For this latter issue, there appear to be compelling theoretical reasons 

why metacognitive training may facilitate far-transfer of working memory training and there 

is some preliminary support from a single study that this is indeed the case (Carretti et al., 

2014). However, whilst Carretti et al.’s study makes a valuable contribution to the field, the 

inferences that can be made about what is driving their observed effect are limited. Further 

investigation is necessary to determine whether there is a sound scientific basis for the 

widespread use of working memory training regimes within schools and at home. The present 

study aims to provide an important next step in addressing these outstanding issues, the 

resolution of which would not only have important theoretical implications but could also 

have a substantial beneficial impact on future educational training programmes. 

To this end, the present study aimed to: i) investigate the immediate and three month 

outcomes of working memory training in typically developing children when compared to an 

adaptive control group; and ii) investigate whether combined working memory and 

metacognitive strategy training facilitates far-transfer to academic outcomes compared to 

working memory training alone and an adaptive control group. To address these aims, a 

double-blind randomised controlled trial was conducted with typically developing children 

(aged 9-14 years) who were randomly assigned to receive either Cogmed, Cogmed and 

metacognitive strategy training (‘MetaCogmed’), or adaptive visual search training (Control). 

The primary outcomes were average performance on four working memory tasks, 

mathematical reasoning, and reading comprehension. We also examined the extent of near-



 

transfer to the individual working memory tasks in consideration of the similarities and 

differences to the Cogmed training tasks. 

Cogmed was selected as a suitable working memory training programme because it is 

widely used and has been associated with large near-transfer effects in typically developing 

children (Astle, Barnes, Baker, Colclough, & Woolrich, 2015) and across populations 

(Melby-Lervåg & Hulme, 2013). We note that Cogmed includes training on both short-term 

memory and working memory tasks, i.e. tasks that just require storage and tasks that require 

processing and storage. Accordingly, we measured near-transfer to short-term and working 

memory tasks. For the purposes of this investigation we treat short-term memory as a facet of 

working memory, as is the case in some models (Baddeley & Hitch, 1974). The MetaCogmed 

group received the standard Cogmed protocol combined with a novel metacognitive strategy 

workbook developed from the education literature (Fisher, 1998). The workbook taught 

children how to plan, monitor, and evaluate whilst completing the Cogmed training tasks, 

reading comprehension exercises, and word-based maths problems. Children in the other two 

training groups received placebo workbooks without the metacognitive content. All training 

was provided after-school, as previous evidence indicates that training in lieu of school 

lessons is detrimental to long-term academic outcomes (Roberts et al., 2016). A three month 

follow-up was included to examine long-term academic outcomes and whether near-transfer 

effects are maintained, as previous studies have provided mixed evidence of long-term near-

transfer. 

 

Method 

Participants 

Initially, 142 parents/guardians expressed interest in their children taking part in the 

study. After exclusions and withdrawals of interest (see Figure 1 for participant flow), 95 

typically developing children aged 9-14 years (M = 12.51, SD = 1.18) were recruited from 

four public schools in Devon, England between September 2016 and June 2017. The sample 

included 45 girls (47.4%) and 50 boys (52.6%), who were primarily white British. Seven 

children were recruited from one primary school and 88 children from three secondary 

schools. Children were excluded if they had a diagnosis of a developmental disorder, 

acquired brain injury, or uncorrected visual, hearing, or motor impairment that might hinder 

their engagement with the training. All participating children provided written assent and 

their parent/guardian provided written consent. The study was approved by the University of 

Exeter Ethics Committee (Ref: 2016/1288). 

 

Design 

This study utilised a double-blind randomised controlled trial where the intervention 

and data collection were conducted in participating schools. Participants in each school were 

randomly allocated 1:1:1 to three training conditions: Cogmed, MetaCogmed, and Control. 

Randomisation was completed by researchers who were not involved in conducting outcome 



 

assessments at that particular school. Numbers were randomly generated on a computer and 

repeated until group sizes were equal or differed by one.  

 

Procedure 

Children and parents/guardians were informed that the aim of the study was to 

compare two computerised cognitive training programmes and two workbooks, which would 

be randomly assigned to participating children. The MetaCogmed and Cogmed groups 

completed the Cogmed RoboMemo programme (see https://www.cogmed.com/rm for full 

details) and the Control group received adaptive visual search training. In addition, the 

MetaCogmed group received a metacognitive workbook and the Cogmed and Control groups 

received a placebo workbook. All materials and data are publicly available at 

https://osf.io/kxyf3/. The training was conducted as an afterschool club, where children 

trained together in one of the school’s computer rooms for approximately one hour following 

the end of the normal school day. The afterschool club ran every day for six to seven weeks, 

and all training groups were instructed to complete 20-25 training sessions in that time, in 

accordance with the Cogmed protocol. The sessions were supervised by one to three 

members of the research team who were certified Cogmed coaches. The coaches provided 

technical support, clarification, and encouragement to all participating children who 

otherwise trained independently. Parents and guardians were contacted weekly with updates 

on their child’s progress and any difficulties with their child’s compliance to the training 

protocol were discussed. Children were rewarded with a £1 Amazon voucher or item of 

stationery every time they completed four training sessions, and a £15 Amazon voucher when 

they completed 20 training sessions. At the end of the study, children who were assigned to 

the control group were offered a free license to use Cogmed in their own time.  

Standardised assessments were administered by trained researchers who were 

unaware of children’s group assignment. Baseline assessments of working memory, IQ, 

reading comprehension, and mathematical reasoning were conducted at each school 0-21 

days before training (M = 7.59, SD = 5.41). Children were reassessed on the working 

memory, reading comprehension, and mathematical reasoning tasks 1-17 days after 

completing the training programme (M = 3.87, SD = 3.63) and again at least three months 

later (M = 14.42 weeks after training, SD = 1.06).  

 

Cogmed Working Memory Training 

Cogmed RoboMemo included a battery of 11 short-term and working memory tasks 

with visuospatial and verbal stimuli (Klingberg et al., 2005). The tasks required recalling a 

sequence of spatial locations in order, tracking and recalling a sequence of moving spatial 

locations or objects, reordering and recalling a sequence of spatial locations, recalling a 

sequence of digits in reverse order, and recognising a sequence of letters. Each session lasted 

approximately 45 minutes with breaks and involved training on eight tasks for approximately 

15 trials each. The difficulty of the training tasks adapted on a trial-by-trial basis according to 



 

the individual’s performance. The complexity of the stimulus sequence or the number of 

items to remember would increase following successful responses, whereas they would 

decrease following incorrect responses. To control for time spent training, the number of 

trials adapted to an individual’s processing time and current span level, where fewer trials 

were presented for children training at a higher span and more trials were presented for 

children training at a lower span. Cogmed included a difficulty level meter, high scores, 

audio and verbal feedback, and a reward game ‘Robo Racing’. At the end of each session 

performance was converted into lives that children could use to play Robo Racing for a few 

minutes, depending on how many lives they had accrued during training. Children used the 

arrow keys to move a robot left, right, and up in the air to collect stars and race against the 

clock.  

 

Adaptive visual search training  

Adaptive visual search training has recently been shown to be an excellent control for 

subjective expectations and is unlikely to produce transfer effects because performance is 

only very weakly correlated with working memory and other executive functions (De Simoni 

& von Bastian, 2018). We developed an adaptive visual search training programme in 

OpenSesame 3.1 (Mathôt, Schreij, & Theeuwes, 2012) called ‘Codebreak’, which was based 

on a previous paradigm (Redick et al., 2013). A narrative, colour scheme, motivational 

feedback, and high scores were added to make this more engaging for children. The training 

involved adaptive practice on a visual search task where each session consisted of 24 blocks 

of 24 trials, lasting approximately 45 minutes with breaks. Children searched for the target 

letter ‘F’ amongst an array of distracter letters which consisted of ‘E’s or ‘t’s. The letters 

could either face to the right, as normal, or to the left, as mirror images. Each trial began with 

a fixation dot presented for 500ms, followed by an array for 500ms, and then a mask for 

2500ms. Children had to report the orientation of the target by pressing the right arrow when 

the ‘F’ was facing to the right, or left arrow when it was facing to the left. Feedback was 

given on each trial in the form of a tone presented for 200ms; a high tone indicated a correct 

response and a low tone indicated an incorrect response. If no response was made during the 

presentation of the array or mask the trial was considered incorrect.  

Similar to Cogmed, the visual search training adapted in difficulty and provided 

feedback on performance. The search array began at 2x2 and adapted at the end of each 

block. If accuracy was greater than 87.5% the difficulty was increased by adding a row or 

column to the array, if accuracy was between 75% and 87.5% the difficulty remained the 

same, and if accuracy was less than 75% the difficulty was reduced by removing a row or 

column from the array. A difficulty level of one indicated a 2x1 array, a difficulty level of 

two indicated a 2x2 array, a difficulty level of three indicated a 3x2 array, and so on. Verbal 

and audio feedback was provided at the end of each block and each session. As in Cogmed, 

children would start a new session at the same difficulty level they had ended on in the 

previous session. 

 



 

Metacognitive workbook 

The metacognitive workbook trained children on three strategies: planning, 

monitoring, and evaluating, which are commonly used in educational interventions (Fisher, 

1998). Children first completed three reflection exercises, which encouraged them to think 

about their thinking as they completed a Cogmed training task, a reading comprehension 

exercise, and a word-based maths problem. They were then introduced to planning, 

monitoring, evaluating, and specific metacognitive strategies that serve to self-motivate and 

refocus. The motivation and focus strategies were adopted from paediatric neurorehabilitation 

programmes that combine training of attention and memory with instruction in metacognitive 

strategies (Butler & Copeland, 2002; Sohlberg, Harn, MacPherson, & Wade, 2014). Whilst 

completing the Cogmed training tasks, reading comprehension exercises, and word-based 

maths problems, questions prompted children to plan before starting the task, reminded them 

to monitor their thoughts during the task, and required them to evaluate their thinking after 

the task (see Supplementary File). The questions particularly focused on the goal of the task 

itself, generation of task-specific strategies which might aid performance, steps needed to 

complete the task, and strategies to improve motivation and focus. As children progressed 

through the workbook, the questions were replaced with prompts to encourage children to 

remember how to plan, monitor, and evaluate. Children were not instructed to use any task-

specific mnemonic, reading, mathematical, or problem-solving strategies, but were instead 

encouraged to generate and implement their own cognitive strategies. In addition, the 

children wrote down how to use, when to use, and why to use these strategies in their 

‘Personal Strategy Guide’ (Schraw, 1998), which was available throughout training. 

Children in the Cogmed and Codebreak groups received a placebo workbook, which 

was designed to have face-validity and to hold children’s attention for a similar amount of 

time to the metacognitive workbook. In place of the metacognitive content, the placebo 

workbook contained word searches that were related to the readings, number searches linked 

to the maths problems, and questions pertaining to the acceptability of the training (see 

Supplementary File).  

The metacognitive and placebo workbooks consisted of written information, 

illustrations, and exercises, including six reading comprehension exercises and six word-

based maths problems. The workbooks were divided into 25 sections that each took 10-15 

minutes to complete. Children independently completed one section after each session of 

their computerised training. The coaches checked the workbooks during and after each 

session to ensure that children had completed the appropriate section and in sufficient detail. 

To ensure that the language and difficulty of the exercises were age-appropriate, two versions 

of the workbooks were developed. One was designed for primary school children aged 9-11 

years and the other for secondary school children aged 11-14 years.  

  



 

Measures 

IQ was assessed to characterise the sample at baseline using the two sub-tests version 

(FSIQ-2) of the Wechsler Abbreviated Scale of Intelligence-II (WASI-II; Wechsler, 2011). 

This includes a measure of crystallised intelligence (Vocabulary) and a measure of fluid 

intelligence (Matrix Reasoning). The FSIQ-2 has excellent internal consistency (α = 0.93), 

test-retest reliability (r = 0.87-95), and interrater reliability (McCrimmon & Smith, 2013).  

Working memory was assessed at baseline, immediate outcome, and the three month 

outcome using four tasks from the Automated Working Memory Assessment (Alloway, 

2007). Children were required to recall sequences of numbers in forwards (Digit Recall) and 

reverse order (Backwards Digit Recall), spatial locations on a 4x4 grid (Dot Matrix), and 

spatial locations at three points of a triangle whilst performing a secondary task, which 

required children to mentally rotate an object to identify whether it was the same or mirror 

image of another object (Spatial Span). These measures have good test-retest reliability (r = 

0.64-84) in children (Alloway, Gathercole, & Pickering, 2006). There is high agreement 

between simple and backward/complex span tasks in children (r = 0.85 Alloway et al., 2006), 

suggesting that they measure the same underlying sub-processes (see Unsworth & Engle, 

2007). Therefore, performance on the four AWMA tasks was averaged to form a composite 

score of overall working memory ability, as in previous studies (Astle et al., 2015). The 

extent of near-transfer to the individual tasks was also investigated in relation to its similarity 

with the training tasks, but these findings should be treated with some caution due to the 

larger number of comparisons. Greater transfer was expected on the Dot Matrix and 

Backwards Digit Recall tasks because they had similar structure and material to the Visual 

Data Link and Input Module training tasks, whereas the forwards Digit Recall and Spatial 

Span differed to the training tasks.  

Academic achievement was assessed at baseline, immediate outcome, and the three 

month outcome using the Reading Comprehension and Mathematical Reasoning subtests 

from the Wechsler Individual Achievement Test-II (Wechsler, 2005). The Reading 

Comprehension subtest includes questions that examine comprehension of written passages 

and sentences. It has excellent internal consistency for ages 9-14 (r = 0.94-96), excellent test-

retest reliability (r = 0.93), and has reasonable convergent validity with other measures of 

reading achievement (r = 0.45-70). All responses were scored by the principal investigator 

(J.J.) to reduce subjective variability. The Mathematical Reasoning subtest predominantly 

includes single and multi-step word problems relating to whole numbers, fractions or 

decimals, interpreting graphs, identifying patterns, rotating shapes, and probability. It has 

excellent internal consistency for ages 9-14 (r = 0.92-95), excellent test-retest reliability (r = 

0.94), and good convergent validity with other measures of Maths achievement (r = 0.59-67). 

   

 



 

Data Analyses 

We analysed whether MetaCogmed and Cogmed significantly improved working 

memory, mathematical reasoning, and reading comprehension relative to the Control group, 

and whether the MetaCogmed group improved significantly more relative to the Cogmed 

group. All analyses were intention-to-treat (ITT) based, treating missing data as missing at 

least at random assumption. Baseline score adjusted Analysis of Covariance (ANCOVA) 

models were developed to compare group differences at the immediate and three month 

outcomes. Further, multi-level mixed models were developed to examine group differences in 

the time related change from baseline to immediate outcome and baseline to three month 

outcome. The ANCOVA models included data on a complete case basis, whereas the mixed 

models also included data from participants with missing outcome data. The results of both 

analyses are reported for consistency. The ANCOVA results were preferred for the 

immediate effects because it is a common and recommended analysis method in randomised 

controlled trials with two time points (Van Breukelen, 2006). The mixed model results were 

preferred for the time related change at three months, where the additional follow-up 

measurements added more power to the analyses compared to ANCOVA (Guo, Logan, 

Glueck, & Muller, 2013). All analyses were carried out using Stata statistical analytical 

software (StataCorp, 2017). 

 

Results 

Baseline Characteristics 

Baseline data were collected for all participants at the point of randomisation (N = 

95). The number of data points (N), means, standard deviations (SD), and group differences 

(Δ) with 95% confidence intervals (CI) are presented for all variables in Table 1. Between-

group differences were analysed using t-tests for all continuous variables and chi-square tests 

for gender. There were no significant differences across the three groups (all p > 0.05), 

suggesting that the randomisation was effective. The only exception was for IQ, which was 

higher for the MetaCogmed group compared to the control group at borderline significance (p 

= 0.044). However, controlling for this factor did not significantly contribute to the 

regression models and, therefore, it was not added to the model results presented in the 

following sections. 

 

Training Adherence 

Across the whole sample of 95 children, there were no significant differences (all p > 

0.05) in the number of training sessions completed by the MetaCogmed (M = 17.8, SD = 

5.42), Cogmed (M = 16.03, SD = 6.98), or Control groups (M = 18.15, SD = 5.83). Eighteen 

children withdrew during training and no further data were collected at the immediate or 

three month outcomes. This included three children from the Control group, six from the 

MetaCogmed group, and nine from the Cogmed group. Drop-out did not significantly differ 



 

across the groups, χ2 (2, N = 95) = 3.49, p = 0.175. A total of 77 children completed the 

training programme: 28 children in the Control group, 26 in the MetaCogmed group, and 23 

in the Cogmed group (see Figure 1 for flow diagram). Outcome data were collected for all 77 

children at the immediate and three month assessments. The majority of these children 

completed at least 20 training sessions (90.9%, M = 20.03, SD = 0.76) within six weeks 

(92.2%, M = 4.99, SD = 0.68) and there were no significant group differences in the number 

of training sessions completed (all p > 0.05): MetaCogmed (M = 20.12, SD = 0.91), Cogmed 

(M = 19.96, SD = 0.21), and Control (M = 20, SD = 0.9).  

 

Immediate Outcomes 

The results of the ANCOVAs, baseline adjusted group means, 95% CIs, and mean 

differences (Δ) at the immediate and three month outcome are presented in Table 2. The 

adjusted means and CIs for each group are plotted in Figure 2. Compared to the Control 

group, scores on the AWMA were significantly higher in the MetaCogmed (p < 0.001) and 

Cogmed groups (p < 0.001) at the immediate outcome. Average scores on Mathematical 

Reasoning were higher for the MetaCogmed and Cogmed groups compared to the Control 

group at immediate outcome. This difference was statistically significant for the Cogmed 

group (p = 0.019) and borderline significant for the MetaCogmed group (p = 0.059). There 

were no significant group differences in Reading Comprehension at the immediate outcome 

(all p > 0.05). The multi-level models produced very similar results (see Table 3 and Figure 

3); although, the effect of Cogmed on Mathematical Reasoning was borderline significant (p 

= 0.068). 

To investigate possible mechanisms of working memory training, the extent of near-

transfer was examined by comparing performance on the individual working memory tasks 

between the groups. If children only learn highly specific skills and strategies, then Cogmed 

may only improve performance on the Dot Matrix and Backwards Digit Recall tasks, which 

are structurally similar to the training tasks. The results of the ANCOVAs, baseline adjusted 

group means, 95% CIs, and mean differences (Δ) are presented in Table 4. At the immediate 

outcome, the MetaCogmed group had significantly higher scores on the Dot Matrix (p = 

0.009), Digit Recall (p = 0.001), Backwards Digit Recall (p < 0.001), and Spatial Span tasks 

(p = 0.006) compared to the Control group. Similarly, the Cogmed group had significantly 

higher scores on the Dot Matrix (p = 0.001), Digit Recall (p < 0.001), and Backwards Digit 

Recall tasks (p = 0.001), but not the Spatial Span task (p = 0.682) compared to the Control 

group. The MetaCogmed group also performed significantly higher on the Spatial Span task 

compared to the Cogmed group at the immediate outcome (p = 0.027). The multi-level 

models produced very similar results (see Table 5); although performance on the Spatial Span 

task did not significantly differ between the MetaCogmed and Cogmed groups (p = 0.103).  

 



 

Three Month Outcomes 

Random intercept models were developed for each of the outcome variables to 

account for the variance due to repeated measures. The log likelihood ratio (LR) tests 

revealed that all models were highly significant compared to a single level model (Working 

Memory: χ2 = 83.34, p < 0.001; Maths: χ2 = 131.12, p < 0.001; Reading: χ2 = 91.03, p < 

0.001), indicating a substantial amount of variance attributable at the individual/upper level. 

The resulting coefficients and 95% confidence intervals from the random intercept models 

are presented in Table 3. The estimated means and CIs for each group are plotted in Figure 3. 

The mixed models indicated that scores on the AWMA increased significantly more 

in the MetaCogmed (p < 0.001) and Cogmed groups (p = 0.040) compared to the Control 

group at the three month outcome. Furthermore, improvements on the AWMA were 

significantly greater in the MetaCogmed group compared to the Cogmed group at the three 

month outcome (p = 0.030). Relative to the Control group, there was no significant 

improvement in Maths scores for the MetaCogmed (p = 0.285) or Cogmed groups (p = 0.340) 

at the three month outcome. Similarly, there was no significant improvement in Reading 

scores for the MetaCogmed (p = 0.488) or Cogmed groups (p = 0.188) compared to the 

Control group at the three month outcome. The ANCOVAs produced very similar results (see 

Table 2 and Figure 2); although, the greater improvement in working memory performance in 

the MetaCogmed group compared to the Cogmed group was borderline significant (p = 0.06). 

Concerning the extent of near-transfer at three months, the coefficients and CIs from 

the mixed models are presented for each task in Table 5. At the three month outcome, 

MetaCogmed significantly improved performance on the Digit Recall task compared to the 

Control group (p = 0.002) and on the Backwards Digit Recall task compared to the Control (p 

< 0.001) and Cogmed groups (p < 0.001). Cogmed only significantly improved performance 

on the Digit Recall task compared to the Control group (p = 0.045). The ANCOVAs 

confirmed these findings and revealed two additional effects that were borderline significant 

(see Table 4). This included the difference between the MetaCogmed and Control groups on 

the Spatial Span task (p = 0.055) and the difference between the Cogmed and Control groups 

on the Backwards Digit Recall task (p = 0.063).  

 

Discussion 

We examined whether working memory training (Cogmed) and a novel combination 

of working memory and metacognitive strategy training (MetaCogmed) improved children’s 

working memory and academic outcomes immediately and three months after training, 

relative to an adaptive control group. Overall, the results suggested that both interventions 

improved working memory performance at the immediate and three month outcome. 

Furthermore, near-transfer was greater in the MetaCogmed group compared to the Cogmed 

group at the three month outcome. Regarding far-transfer, both interventions improved 

mathematical reasoning relative to the control group, but this was only statistically significant 

for the Cogmed group and was not maintained at the three month outcome. Neither 



 

intervention improved reading comprehension relative to the control group at either time 

point. Finally, there were no differences in mathematical reasoning or reading comprehension 

between the two working memory training groups. We discuss each of the main findings in 

turn. 

 

Near Transfer 

The present study was the first to investigate and find near-transfer from working 

memory training in children relative to an adaptive control group. For both the Cogmed and 

MetaCogmed groups this improvement in working memory performance was observed not 

only at the immediate outcome but also at the three month outcome, which indicates that the 

effect of working memory training can be long-lasting. These findings extend upon previous 

developmental working memory training studies that have reported near-transfer effects in 

comparison to a non-adaptive or other active control group (Astle et al., 2015; Henry et al., 

2014; Roberts et al., 2016), which may have been confounded by effects on expectancy and 

motivation (Shipstead et al., 2012). Furthermore, our results are broadly consistent with adult 

working memory training studies that have reported near-transfer when compared to adaptive 

visual search training (Covey et al., 2019; Harrison et al., 2013) and adaptive general 

knowledge training (Anguera et al., 2012). The repeated and demanding activation of 

working memory at current capacity limits during training may have induced neuroplastic 

changes, affording increased capacity, and/or led to the development of task-specific 

strategies, automatisation of basic processes, and chunk learning that make more efficient use 

of capacity (Lövdén et al., 2010; von Bastian & Oberauer, 2014). These processes are not 

necessarily mutually exclusive and an important avenue for future research will be to 

determine to what extent training-related improvements in working memory reflect increases 

in capacity, which may be more likely to support far-transfer (Lövdén et al., 2010). 

We examined the extent and mechanisms of near-transfer by analysing whether 

performance gains on the individual working memory tasks differed between the groups. As 

expected, Cogmed and MetaCogmed significantly improved performance on the Dot Matrix 

and Backwards Digit Recall tasks. These tasks are similar to multiple Cogmed training tasks 

and, therefore, may have afforded the same strategies (Dunning & Holmes, 2014). Cogmed 

and MetaCogmed also improved performance on the forwards Digit Recall task, showing 

generalisation to a different task. Finally, compared to both the Control and Cogmed groups, 

only MetaCogmed improved performance on the Spatial Span task, which was the least 

similar to the Cogmed training tasks. These findings broadly correspond with recent meta-

analyses that have shown large or moderate near-transfer on tasks that are very similar to the 

training and small, but significant, effects on less similar tasks (Aksayli, Sala, & Gobet, 2018; 

Melby-Lervåg, Redick, & Hulme, 2016; Soveri, Antfolk, Karlsson, Salo, & Laine, 2017). 

Near-transfer may depend on whether the training and transfer tasks share the same high-

order cognitive routine (Gathercole, Dunning, Holmes, & Norris, 2019); however, the 

contribution of improvements in capacity or more general cognitive resources is still a matter 

of debate (von Bastian & Oberauer, 2014).   



 

 

Far Transfer 

To our knowledge, this is the first evidence that working memory training improves 

children’s maths ability in the short-term, compared to an active control group. This was 

statistically significant for the Cogmed group and borderline significant for the MetaCogmed 

group. Short-term improvement in maths has previously been reported in a meta-analysis of 

11 working memory training studies in typically developing children (Sala & Gobet, 2017). 

However, this effect was not significant for the meta-analysis of the six studies that used 

active control groups. This may be because expectancy and motivation were better controlled 

for, but it may reflect a lack of power due to the limited number of studies and the use of 

maths training as a control in two studies (Kuhn & Holling, 2014; Passolunghi & Costa, 

2016). The only previous randomised controlled trial of Cogmed in typically developing 

children reported no improvement on a mixed assessment of maths ability (Hitchcock & 

Westwell, 2017). Although somewhat contrary to our findings, it may be possible that 

working memory training particularly improves mathematical reasoning, as a previous study 

showed specific improvements in word-problem solving (Kuhn & Holling, 2014), which is 

more strongly associated with working memory capacity than other maths abilities (Peng et 

al., 2015). It is also important to acknowledge that training was provided in addition to 

school, as previous evidence indicates that replacing school lessons with working memory 

training leads to worse maths outcomes in the long-term (Roberts et al., 2016). 

Whilst our finding of far transfer to maths is promising and noteworthy, this effect 

was not maintained at the three month outcome. This immediate effect may indicate that 

working memory training directly improved children’s mathematical reasoning ability, rather 

than their capacity to learn and maths attainment, which would be more evident long-term 

(Söderqvist & Bergman-Nutley, 2015). Clearly for any intervention to be of important 

educational impact it is necessary for the effect to be long-lasting. A possible development 

for future research may be to investigate whether lower intensity "top up" training sessions 

delivered after the initial training are beneficial to maintain improvements in mathematical 

reasoning long-term. 

Although working memory training appears to be a promising method for improving 

mathematical reasoning ability, the academic benefits of Cogmed did not generalise to 

reading comprehension. The absence of an improvement in reading comprehension is 

consistent with the only other randomised controlled trial of Cogmed in typically developing 

children (Hitchcock & Westwell, 2017) and a meta-analysis of 12 working memory training 

studies that found no benefits to reading, more generally (Sala & Gobet, 2017). Working 

memory training does not appear to benefit children’s reading abilities and our study suggests 

that this is the case even when there are large improvements in working memory 

performance.  

 



 

Concurrent Working Memory and Metacognitive Strategy Training 

The comparison between MetaCogmed and Cogmed allowed us to examine whether 

metacognitive strategy training led to increased benefit relative to Cogmed training on its 

own. Importantly, the placebo workbook controlled for possible non-specific effects of 

metacognitive strategy training, allowing stronger inferences to be made than previous 

investigations (Partanen et al., 2015). The metacognitive booklet was shown to be effective to 

some extent because MetaCogmed was associated with greater near-transfer, relative to 

Cogmed. This was the case for performance on the Spatial Span task at the immediate 

outcome, notably the task least similar to Cogmed, and average performance across the four 

working memory tasks at the three month outcome. Metacognitive training may have 

increased children’s awareness of which strategies were most effective, resulting in broader 

transfer to the Spatial Span task and better consolidation of these strategies for retrieval at the 

three month outcome. Previously, working memory and metacognitive strategy training has 

been shown to improve children’s working memory immediately (Carretti et al., 2014) and 

six months after training (Partanen et al., 2015), compared to reading comprehension practice 

or education as usual. However, this is the first time that working memory and metacognitive 

strategy training has been shown to have an additional near-transfer effect in children, 

compared to working memory training alone.  

Although MetaCogmed led to immediate improvements in mathematical reasoning 

relative to the control group, metacognitive strategy training did not provide any additional 

benefits to maths or reading comprehension compared to Cogmed alone. This may be 

because Cogmed did not increase working memory capacity per se, or because the 

metacognitive training was ineffective at promoting generalisation of the newly acquired 

capacity to the maths and reading tasks. This finding was consistent with a previous study in 

children with special educational needs (Partanen et al., 2015). Although working memory 

and metacognitive training has previously been shown to improve children’s reading 

comprehension compared to reading comprehension practice (Carretti et al., 2014), this may 

have been because children were also taught specific reading strategies (Higgins et al., 2016; 

National Reading Panel, 2000). Working memory and metacognitive training interventions 

are still in their infancy and unlikely to be optimal without further research and development; 

yet MetaCogmed shows promise at maintaining improvements in working memory long-

term. 

 

Strengths, Limitations, and Future Directions 

MetaCogmed is a standard, inexpensive, and timely intervention that can be delivered 

to a whole classroom by a single teacher and would be feasible for schools to implement, if it 

was found to be effective. However, the metacognitive intervention may have been too short 

and the exercises may have been too narrow to facilitate generalisable improvements across 

different domains, compared to existing interventions (Adey & Shayer, 1993). Incorporating 

teacher guidance, more diverse tasks, and interactive group work within our metacognitive 



 

workbook over a more extended time period may have greater potential to foster 

metacognition and facilitate far-transfer. 

A major strength and improvement upon much of the extant literature was the use of 

an adaptive control group and placebo workbook to control for the effects of expectancy and 

motivation. Adaptive visual search training has previously been shown to be an excellent 

control for subjective expectations in young adults (De Simoni & von Bastian, 2018). We 

also found no significant differences in drop-out and completed training sessions, suggesting 

that engagement was similar across the groups. While these are objective measures, they are 

also a fairly indirect indicator of engagement. One could potentially argue that they could 

have been supplemented with self-report measures; however, children’s self-reports can be 

inaccurate (Goodman, Hinden, & Khandelwal, 2000) and may be limited by immature 

introspection and metacognition (Lyons & Zelazo, 2011).   

One limitation of our study was that we were unable to ascertain whether the 

metacognitive workbook was effective at fostering metacognitive awareness and strategies. 

This may be achieved in future by utilising existing self-report (Schraw & Dennison, 1994), 

parent-report (Gioia & Isquith, 2011), or task-based measures (Krasny-Pacini et al., 2015) of 

metacognition. More general limitations include the relatively small sample size compared to 

some previous investigations (Roberts et al., 2016) and considerable drop-out, although this 

is comparable to other working memory training studies with children (Chacko et al., 2014; 

Hitchcock & Westwell, 2017). 

 

Conclusion 

The present study revealed that working memory training increases working memory 

performance in typically developing children both immediately and after a three-month delay. 

Short-term improvements in mathematical reasoning highlight the potential educational 

impact of working memory training when provided in addition to school as usual. However, 

future work will need to examine whether these improvements can be maintained longer term 

and whether they generalise to other academic outcomes. Metacognitive strategy training in 

addition to working memory training facilitated greater near-transfer three months after 

training relative to working memory training alone, suggesting that it may be an effective 

addition to cognitive skill-based training programmes to maintain long-term effects. 

Nevertheless, to fully realise its potential, children may require more practice applying 

metacognitive strategies to maths and reading exercises, and more diverse and interactive 

exercises to promote generalisable improvements in academic outcomes.  
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Tables 

Table 1.  

Baseline characteristics and tests of differences across groups. 

  

Variables Control MetaCogmed Cogmed 

Δ Control vs. 

MetaCogmed 

(95% CI) 

Δ Control vs.  

Cogmed  

(95% CI) 

Δ MetaCogmed vs. 

Cogmed 

(95% CI) 

Randomised (N = 95, 100%) 31 (33%) 32 (34%) 32 (34%) –– –– –– 

Gender: Control vs. MetaCogmed (N) 31 32 32 –– –– –– 

Male: N 16 18 16 –– –– –– 

Female: N 15 14 16 –– –– –– 

Other variables: (N) 31 32 32 –– –– –– 

Age: mean (± SD) 12.52 (±0.96) 12.38 (±1.14) 12.63 (±1.25) -0.14 (-0.67 to 0.39) 0.12 (-0.45 to 0.68) -0.26 (-0.85 to 0.34) 

IQ: mean (± SD) 103.97 (±11.47) 109.81 (±10.74) 107.72 (±11.76) 5.84* (0.25 to 11.44) 3.75 (-2.10 to 9.61) 2.09 (-3.53 to 7.72) 

Primary outcome variables: (N) 31 32 32 –– ––   

Maths: mean (± SD) 101.52 (±9.31) 104.06 (±11.14) 104.09 (±11.62) 2.55 (-2.64 to 7.73) 2.58 (-2.74 to 7.89) -0.03 (-5.72 to 5.66) 

Reading: mean (± SD) 101.65 (±9.14) 106.59 (±10.51) 103.81 (±11.93) 4.95 (-0.02 to 9.92) 2.17 (-3.20 to 7.54) 2.78 (-2.84 to 8.40) 

Working memory: mean (± SD) 103.46 (±9.82) 104.89 (±9.22) 105.12 (±9.11) 1.43 (-3.37 to 6.22) 1.66 (-3.11 to 6.43) -0.23 (-4.81 to 4.35) 

Near-transfer variables: (N) 31 32 32 –– –– –– 

Digit recall (± SD) 100.81 (±11.69) 102.64 (±14.53) 100.88 (±13.35) 1.83 (-4.83 to 8.49) 0.07 (-6.25 to 6.40) 1.76 (-5.22 to 8.73) 

Back digit (± SD) 101.24 (±14.27) 101.91 (±15.06) 107.64 (±14.03) 0.67 (-6.72 to 8.06) 6.40 (-0.73 to 13.52) -5.73 (-13.00 to 1.55) 

Dot matrix (± SD) 103.27 (±12.18) 103.98 (±14.24) 103.66 (±11.17) 0.72 (-5.97 to 7.40) 0.39 (-5.49 to 6.28) 0.33 (-6.07 to 6.72) 

Spatial span (± SD) 108.53 (±16.93) 111.02 (±11.85) 108.29 (±14.90) 2.49 (-4.85 to 9.83) -0.23 (-8.26 to 7.79) 2.72 (-4.00 to 9.45) 

*denotes p<0.05       



 

Table 2.  

Results of the ANCOVAs of primary near- and far-transfer outcomes. 

 

 

  

Outcome  

variables 
Time1 N 

Control MetaCogmed Cogmed 
Δ Control vs. 

MetaCogmed 

Δ Control vs. 

Cogmed 

Δ MetaCogmed 

vs. Cogmed 

Mean (95% CI) Mean (95% CI) Mean (95% CI) 

Working 

memory 

2 77 
106.30  

(103.70 to 108.90) 
117.17  

(114.46 to 119.87) 
116.00  

(113.12 to 118.87) 
10.86***  

(7.11 to 14.61) 
9.69***  

(5.82 to 13.57) 
1.17  

(-2.78 to 5.12) 

3 77 
107.64  

(105.04 to 110.24) 

115.64  

(112.94 to 118.34) 

111.91  

(109.03 to 114.78) 

8.00*** 

(4.25 to 11.75) 

4.27*  

(0.39 to 8.14) 

3.73  

(-0.22 to 7.68) 

Maths 

2 77 
102.96  

(100.55 to 105.38) 
106.32  

(103.81 to 108.82) 
107.29  

(104.63 to 109.96) 
3.35  

(-0.13 to 6.83) 
4.33*  

(0.73 to 7.93) 
-0.98  

(-4.63 to 2.68) 

3 77 
104.94  

(102.13 to 107.76) 

107.60  

(104.68 to 110.52) 

107.43  

(104.33 to 110.54) 

2.66  

(-1.40 to 6.71) 

2.49  

(-1.70 to 6.68) 

0.17  

(-4.10 to 4.43) 

Reading  

2 77 
107.39  

(104.88 to 109.91) 
108.92  

(106.32 to 111.53) 
106.66  

(103.89 to 109.42) 
1.53  

(-2.10 to 5.16) 
-0.74  

(-4.48 to 3.01) 
2.26  

(-1.53 to 6.06) 

3 77 
109.63  

(107.26 to 112.00) 

110.88  

(108.42 to 113.34) 

107.89  

(105.28 to 110.50) 

1.25  

(-2.18 to 4.67) 

-1.74  

(-5.27 to 1.79) 

2.99  

(-0.59 to 6.57) 

1Time:2=Immediate, 3=3month; *denotes p<0.05, **p<0.01, ***p<0.001 



 

Table 3.  

Results from the primary mixed models linear random intercept regressions. 

Variables 
AWMA: 

Coefficient (CI) 

Maths: 

Coefficient (CI) 

Reading: 

Coefficient (CI) 

Time: (ref: Baseline-Time1) –– –– –– 

1Time-2 2.21 (-0.22 to 4.64) 0.34 (-2.33 to 3.01) 4.01** (1.33 to 6.66) 

Time-3  3.55** (1.12 to 5.98) 2.27 (-0.40 to 4.94) 6.43*** (3.76 to 9.09) 

Randomised (ref: Control) –– –– –– 

MetaCogmed  1.43 (-3.58 to 6.44) 2.55 (-2.67 to 7.76) 4.95* (0.15 to 9.74) 

Cogmed 1.66 (-3.35 to 6.67) 2.58 (-2.64 to 7.79) 2.17 (-2.63 to 6.96) 

Interaction (ref: Baseline x Control) –– –– –– 

Time-2 x MetaCogmed 10.66*** (7.17 to 14.15) 2.71 (-1.12 to 6.55) 0.07 (-3.76 to 3.91) 

Time-2 x Cogmed 9.22*** (5.62 to 12.81) 3.68 (-0.27 to 7.63) -1.40 (-5.34 to 2.55) 

Time-3 x MetaCogmed 7.82*** (4.33 to 11.31) 2.09 (-1.74 to 5.93) -0.55 (-4.38 to 3.28) 

Time-3 x Cogmed 3.76* (0.17 to 7.36) 1.92 (-2.03 to 5.87) -2.65 (-6.59 to 1.29) 

Interaction (ref: Baseline x Cogmed)    

Time-2 x MetaCogmed 1.45 (-2.21 to 5.10) -0.97 (-4.97 to 3.04) 1.47 (-2.53 to 5.47) 

Time-3 x MetaCogmed 4.06* (0.40 to 7.71) 0.17 (-3.84 to 4.18) 2.10 (-1.90 to 6.10) 

1Time:2=Immediate, 3=3month; *denotes p<0.05, **p<0.01, ***p<0.001 

 

  



 

Table 4.  

The results of the ANCOVAs on the individual near-transfer task outcomes. 

Outcome 

variables 
Time1 N 

Control MetaCogmed Cogmed 

Δ Control vs. 

MetaCogmed 

Δ Control vs. 

Cogmed 

Δ MetaCogmed 

vs. Cogmed Mean  

(95% CI) 

Mean  

(95% CI) 

Mean  

(95% CI) 

Dot 

matrix 

2 77 
108.27 

(103 to 114) 

118.97 

(113 to 125) 

122.11 

(116 to 128) 

10.71** 

(3 to 19) 

13.85** 

(6 to 22) 

-3.14 

(-12 to 5) 

3 77 
114.54 

(108 to 121) 

117.15 

(111 to 124) 

114.25 

(107 to 121) 

2.61 

(-6 to 11) 

-0.29 

(-9 to 9) 

2.90 

(-6 to 12) 

Back 

digit 

2 77 
102.22 

(98 to 106) 

116.91 

(113 to 121) 

112.51 

(108 to 117) 

14.69*** 

(9 to 21) 

10.29** 

(4 to 16) 

4.40 

(-2 to 11) 

3 77 
102.53 

(98 to 107) 

117.72 

(113 to 122) 

108.82 

(104 to 114) 

15.19*** 

(9 to 22) 

6.29 

(0 to 13) 

8.90** 

(2 to 16) 

Spatial 

span 

2 77 
113.27 

(109 to 118) 

121.89 

(118 to 126) 

114.59 

(110 to 119) 

8.62** 

(3 to 15) 

1.32 

(-5 to 8) 

7.30* 

(1 to 14) 

3 77 
111.37 

(107 to 116) 

117.97 

(113 to 123) 

116.72 

(112 to 122) 

6.60 

(0 to 13) 

5.34 

(-2 to 12) 

1.26 

(-6 to 8) 

Digit 

recall 

2 77 
101.98 

(98 to 106) 

111.41  

(107 to 115) 

113.55 

(109 to 118) 

9.43*** 

(4 to 15) 

11.57*** 

(6 to 17) 

-2.14 

(-8 to 4) 

3 77 
102.17 

(99 to 106) 

109.92  

(106 to 113) 

107.52 

(104 to 111) 

7.75** 

(3 to 13) 

5.35* 

(0 to 10) 

2.40 

(-3 to 8) 

1Time:2=Immediate, 3=3month; *denotes p<0.05, **p<0.01, ***p<0.001 

 

  



 

Table 5.  

Mixed model results for outcomes on the individual near-transfer tasks. 

Variables 
Dot Matrix: 

coefficient (CI) 

Back Digit: 

coefficient (CI) 

Spatial Span: 

coefficient (CI) 

Digit Recall: 

coefficient (CI) 

Time: (ref: Baseline-Time1) –– –– –– –– 
1Time-2  4.52 (-1 to 10) 0.02 (-4 to 4) 4.47 (0 to 9) 0.56 (-3 to 4) 

Time-3  10.8*** (5 to 16) 0.58 (-4 to 5) 2.78 (-2 to 8) 0.76 (-3 to 4) 

Randomized (ref: Control) –– –– –– –– 

MetaCogmed  0.72 (-7 to 8) 0.67 (-6 to 8) 2.49 (-5 to 10) 1.83 (-5 to 9) 

Cogmed-group 0.39 (-7 to 8) 6.4 (-1 to 14) -0.23 (-7 to 7) 0.07 (-7 to 7) 

Interaction (ref: Baseline x Control) –– –– –– –– 

Time-2 x MetaCogmed 10.7** (3 to 19) 14.47*** (8 to 21) 7.65* (1 to 14) 9.4*** (5 to 14) 

Time-2 x Cogmed 13.18** (5 to 22) 8.54** (2 to 15) 1.74 (-5 to 9) 11.36*** (6 to 16) 

Time-3 x MetaCogmed 2.66 (-5 to 11) 14.97*** (9 to 21) 5.54 (-1 to 12) 7.69** (3 to 13) 

Time-3 x Cogmed -1.03 (-9 to 7) 3.69 (-3 to 10) 5.2 (-2 to 12) 5.15* (0 to 10) 

Interaction (ref: Baseline x Cogmed)     

Time-2 x MetaCogmed -2.48 (-11 to 6) 5.92 (-1 to 12) 5.91 (-1 to 13) -1.97 (-7 to 3) 

Time-3 x MetaCogmed 3.69 (-5 to 12) 11.28*** (5 to 18) 0.33 (-7 to 7) 2.53 (-3 to 8) 

 

  



 

Figures 

Figure 1. CONSORT flow diagram.  

Figure 2. Baseline-adjusted group means at immediate and three month outcomes 

(ANCOVA) 

Figure 3. Plots of estimated means and 95% confidence intervals (mixed models) 
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Figure 2. Baseline-adjusted group means at immediate and three month outcomes 

(ANCOVA) 

 
  



 

Figure 3. Plots of estimated means and 95% confidence intervals (mixed models) 

 
 


