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In this paper, we propose a panel data semiparametric varying-coefficient model

in which covariates (variables affecting the coefficients) are purely categorical. This

model has two features: first, fixed effects are included to allow for correlation be-
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model by analyzing the effects of state-level banking regulations on the returns to

scale of commercial banks in the U.S.. Our empirical results suggest that returns to

scale is higher in more regulated states than in less regulated states.
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1 Introduction

Varying-coefficient models have attracted considerable attention in the past two decades. This is

particularly true for both cross-sectional and time series varying-coefficient models. For instance,

Li et al. (2002) propose a semiparametric varying-coefficient model in a cross-sectional setting,

where covariates (i.e., variables affecting the coefficients) are assumed to be continuous in nature.

Li and Racine (2010) extend Li et al. (2002) to a more general set-up, which admits both

quantitative and qualitative covariates. More recently, Li et al. (2013) extend the cross-sectional

varying-coefficient model literature further by proposing a semiparametric varying-coefficient

with purely categorical covariates. Similarly, considerable work has also been done on time

series varying-coefficient models. For example, Gao and Phillips (2013a) investigate the varying-

coefficient model by allowing for the existence of nonstationarity. More references along this

latter line can be found in Cai (2007) and Cai et al. (2009).

However, less progress has been made with panel data varying-coefficient models, primarily

because of the difficulty involved in dealing with fixed effects. For example, Cai and Li (2008)

propose a varying-coefficient dynamic panel data model, where they get around this difficulty by

dropping fixed effects. Sun et al. (2009) propose a panel data varying-coefficient model, where

they overcome the difficulty associated with fixed effects by imposing a widely-used identification

restriction such that the sum of the fixed effects is zero (c.f. Su and Ullah (2011) and Chen et al.

(2013)). Rodriguez-Poo and Soberon (2014) propose to use the first difference to remove the

fixed effects by allowing N to increase to ∞ with fixed T . It is worth noting that in both of the

latter two studies, covariates are assumed to be purely continuous and asymptotic theories are

established accordingly.

The purpose of this paper is to contribute to this literature by extending Li et al. (2013)’s

cross-sectional varying-coefficient model to a panel data context. To allow for unobserved indi-

vidual heterogeneity, fixed effects are included in our model. As is well known, the inclusion of

fixed effects has the advantage of allowing unobserved individual heterogeneity to be arbitrarily

correlated with any other variables. With regards to the nature of the covariates, we follow Li

et al. (2013) and only consider the case where all covariates are categorical. To remove fixed

effects, we take advantage of the categorical nature of our covariates and implement a modified

within transformation. The demeaned model can then be estimated using Li et al. (2013)’s semi-

parametric kernel estimation method. In addition, we establish the asymptotic properties of our

estimator. It is worth noting that our asymptotic properties is established under large N and T ,

because it is much more challenging to establish asymptotic properties under (N, T )→ (∞,∞)

for panel data models. We further show in Section 2.4 that our modified within transformation

is also valid for the case where T is fixed.

Another feature of our model is that it allows for cross-sectional dependence, an important
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issue that has received considerable attention in the recent panel data literature (c.f. Andrews

(2005), Pesaran (2006) and Bai (2009)). There are two well-known approaches to modeling

cross-sectional dependence. The first approach, due to Pesaran (2006) and Bai (2009), is to use

a factor structure to capture strong correlation between individuals. The second approach is

to use a spatial error structure to model weak correlation between individuals. Excellent works

adopting the second approach include, but are not limited to, Pesaran and Tosetti (2011), Chen

et al. (2012a) and Chen et al. (2012b). In this paper, we adopt the second approach. Specifically,

as shown in Assumption A.4 in Appendix A, we impose a general spatial correlation structure

to link the cross-sectional dependence and stationary mixing condition together. The use of this

structure enables our model to capture the type of cross-sectional dependence discussed by Chen

et al. (2012b) and Dong et al. (2015).

We apply our panel data categorical varying-coefficient model by analyzing the effects of

branch banking regimes on the returns to scale of commercial banks in the U.S. over the period

1986-2005. Until the middle of the 1970’s banking in the U.S. was heavily regulated at the state

level: in some states banks were prohibited from branching at all (unit banking regime), in some

states they were restricted to branch within a portion of the state (limited branching banking

regime), and in other states they were permitted to branch statewide (statewide branching

banking regime). In the mid-1980s individual states began to remove restrictions on intrastate

branching. This deregulation process culminated in the passage of the Riegle-Neal Interstate

Banking and Branching Efficiency Act of 1994, which permitted nationwide branching as of June

1997 (nationwide branching banking regime). Since banking regime is an important factor in

determining production technology, we use it as a categorical argument (covariate) of the varying

coefficient. Specifically, we consider a categorical varying-coefficient translog cost function. Our

results show that returns to scale is higher in more regulated states than in less regulated states.

Our results also indicate that the majority of the banks face increasing returns to scale, a small

percentage face decreasing returns to scale, and an even smaller percentage face constant returns

to scale. This finding is potentially important as increasing returns to scale is often used to justify

bank mergers and in policy debates on regulations limiting the size of banks.

The rest of this paper is organized as follows. Section 2 presents the panel data varying-

coefficient model and derives the estimator of the model and the associated asymptotic results:

(1) Sections 2.1 and 2.2 consider the relevant and irrelevant covariate cases, respectively; (2)

then, based on these results, in Section 2.3 we propose a variable selection procedure to identify

significant elements from regressors; (3) finally, Section 2.4 discusses some extensions. In Section

3, we conduct a Monte Carlo study investigating the finite sample properties of our methodology.

Section 4 presents the application of our model and methodology to the U.S. commercial bank

data. Section 5 concludes. Note that the assumptions and pertinent discussions needed for
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deriving the asymptotic results are given in Appendix A at the end of this paper, while the

proofs are provided in Appendix B in the supplementary document of this paper.

Before proceeding to Section 2, it is convenient to introduce some notations that will be used

throughout this paper. 1(A) denotes an indicator function, i.e. 1(A) = 1 if A is true, otherwise

1(A) = 0; ‖ · ‖ denotes the Frobenius norm; →P denotes converging in probability; →D denotes

converging in distribution.

2 Model Specification

We consider the following panel data model.

Yit = X ′itβ(Zit) + wi + uit, i = 1, . . . , N and t = 1, . . . , T, (2.1)

where uit is a random error term; Xit = (Xit,1, . . . , Xit,q)
′ is a q-dimensional vector of regressors;

β(·) is a q-dimensional vector of unknown coefficient function; Zit = (Zit,1, . . . , Zit,r)
′ is an r-

dimensional vector of discrete covariates; wi is a fixed effect and can be arbitrarily correlated

with any other variables. To distinguish between Xit and Zit, they are respectively referred to

as regressors and covariates hereafter. For an r-dimensional vector z, we use zs to denote the sth

component of z, and assume that zs takes cs different values in {0, 1, . . . , cs−1} and 2 ≤ cs <∞
for s = 1, . . . , r. When showing the asymptotic properties of our model and estimator below, we

follow Li et al. (2013) and distinguish between the case where β(z) is not a constant function

with respect to zs for s = 1, 2, . . . , r, and the case where some elements of zs do not have impacts

on β(·) and are independent of all other variables. The former case is referred to as “relevant

covariate case” and will be discussed in details in Section 2.1, while the latter one is referred to

as “irrelevant covariate case” and will be discussed in details in Section 2.2.

The model (2.1) extends the cross-sectional varying-coefficient model of Li et al. (2013) to a

panel data setting. As in Li et al. (2013), we focus on the case where Zit is purely categorical.

Therefore, we also adopt the kernel function of Aitchison and Aitken (1976) for unordered

covariate below:

l(Zit,s, zs, λs) =

 1, if Zit,s = zs

λs, otherwise
, (2.2)

where the range of λs is [0, 1] for s = 1, . . . , r. It is easy to see that λs = 0 leads to an indicator

function and λs = 1 gives a uniform weight function. Note that (2.2) allows one to extend the

kernel density estimation technique to multivariate discrete spaces. With (2.2), we can construct

a product kernel function as follows.
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L(Zit, z, λ) =
r∏
s=1

l(Zit,s, zs, λs) =
r∏
s=1

λ1(Zit,s 6=zs)
s , (2.3)

where λ = (λ1, . . . , λr)
′.

We now discuss how to deal with the fixed effects in (2.1) (i.e., wi) before proceeding further.

To remove the impacts of fixed effects, some studies assume that
∑N

i=1wi = 0 (c.f. Sun et al.

(2009), Su and Ullah (2011) and Chen et al. (2013)); some studies propose to take the first

difference (c.f. Rodriguez-Poo and Soberon (2014)); and others assume that wi has mean 0 and

is uncorrelated with any other variables (c.f. Blundell and Bond (1998)). In this paper, we

take a different approach by implementing a within transformation to remove the fixed effects.2

However, we cannot follow the common practice of subtracting the simple average across t from

both sides of (2.1), because β(Zit) varies over t. To overcome this problem, we implement

a modified within transformation that involves the use of the kernel function in (2.3). Our

modified within transformation is very effective in that it enables us to deal with the fixed

effects for both the case where both N and T are large and the case where N is large and T

is small. Due to space limitations, we focus on the former case in what follows. For the latter

case, it is easy to show that the estimator and associated asymptotic properties derived for the

former case remain valid, by making some minor modifications to the proof for the former case.

Specifically, let Ljs,it = L(Zjs, Zit, λ) for 1 ≤ i, j ≤ N and 1 ≤ t, s ≤ T and let Tit =∑T
s=1 L

p
is,it, where p ≥ 2 is a finite positive integer and chosen arbitrarily. In practice, the choice

of p = 2 is enough. Let Ỹit = Yit − 1
Tit

∑T
s=1 YisL

p
is,it, and X̃it and ũit are defined in the same

fashion. With these notations, our modified within transformation3 can be written as

Ỹit = X ′itβ(Zit) + wi + uit −
1

Tit

T∑
s=1

(X ′isβ(Zis) + wi + uis)L
p
is,it

= X ′itβ(Zit)−
1

Tit

T∑
s=1

X ′isL
p
is,itβ(Zit) +

1

Tit

T∑
s=1

X ′isL
p
is,itβ(Zit)−

1

Tit

T∑
s=1

X ′isβ(Zis)L
p
is,it + ũit

= X̃ ′itβ(Zit) + γit + ũit, (2.4)

where γit = 1
Tit

∑T
s=1 X

′
is (β(Zit)− β(Zis))L

p
is,it. Note that the kernel function (2.3) can also be

2The advantages of using within transformation have been well documented in Hsiao (2003).
3In an earlier version, we subtracted 1

Tit

∑T
s=1 Yit1(Zis = Zit) with Tit =

∑T
s=1 1(Zis = Zit) in the within

transformation. However, it is very likely that some Tit’s will be zero when T is relatively small compared
to the cardinality of the support of Zit. The Associate Editor suggested subtracting 1

Tit

∑T
s=1 YitLjs,it with

Tit =
∑T

s=1 Lis,it. Then, for (2.6) below, we would get (β(Zit)− β(Zis))Lis,it = OP (‖λ‖) instead, which would
affect the rate of convergence developed in Theorem 2.1.1. Motivated by this suggestion, we then consider (2.4).
We gratefully thank the Associate Editor for this constructive suggestion.
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expressed as

L(Zit, z, λ) =
r∏
s=1

{1(Zit,s = zs) + λs1(Zit,s 6= zs)}

=
r∏
s=1

1(Zit,s = zs) +
r∑
s=1

λs1s,Zit=z + · · ·+
r∏
s=1

λs1(Zit,s 6= zs)

= 1(Zit = z) +
r∑
s=1

λs1s,Zit=z + · · ·+
r∏
s=1

λs1(Zit,s 6= zs), (2.5)

where 1s,Zit=z = 1(Zit,s 6= zs)
∏r

n=1,n6=s 1(Zit,n = zn) for simplicity. Due to the fact that

(β(Zit)− β(Zis)) 1(Zit = Zis) = 0, if λ is sufficiently small, then we obtain

(β(Zit)− β(Zis))L
p
is,it = O(‖λ‖p) (2.6)

uniformly. Hence, the truncation residual γit is controlled by the bandwidth λ only. In what

follows, we will show that the optimal bandwidth selected below is indeed sufficiently small.

Using our modified within transformation in (2.4), we can estimate β(z) for ∀z ∈ D as

follows:

β̂(z) =

(
N∑
i=1

T∑
t=1

X̃itX̃
′
itL(Zit, z, λ̂)

)−1 N∑
i=1

T∑
t=1

X̃itỸitL(Zit, z, λ̂), (2.7)

where λ̂ is obtained by minimizing the following cross-validation (CV) criterion function

CV (λ) =
1

NT

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̂−it(Zit)

)2

; (2.8)

and β̂−it(Zit) is the leave-one-out estimator for β(Zit)

β̂−it(Zit) =

( ∑
js,js 6=it

X̃jsX̃
′
jsL(Zjs, Zit, λ)

)−1 ∑
js,js 6=it

X̃jsỸjsL(Zjs, Zit, λ). (2.9)

Having shown how to estimate our panel data categorical varying-coefficient model in (2.1),

in what follows we will show the asymptotic properties for our estimator. As noted previously, we

first discuss the asymptotic results for the relevant covariate case in Section 2.1 and then discuss

the asymptotic results for the irrelevant covariate case in Section 2.2. In Section 2.3, we present

a variable selection procedure for selecting significant variables from Xit, which completes our

proofs of the asymptotic properties of our estimator. Due to space limitations, all assumptions

needed for the proofs of the lemmas and theorems presented in Sections 2.1-2.3 are provided

in Appendix A, while the proofs themselves are provided in Appendix B of the supplementary

document of the paper.
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2.1 Relevant Covariate Case

We start with the simple case where all elements of Zit are assumed to be relevant. When

deriving the asymptotic results for this case, we first show that minimizing the cross-validation

criterion function ensures that λ̂ = (λ̂1, . . . , λ̂r)
′ = oP (1) in Lemma 2.1.1, then use this property

to further investigate CV (λ) and show that the rate of convergence is λ̂ = OP

(
1
NT

)
in Theorem

2.1.1, and then show the asymptotic normality in Theorem 2.1.2 based on the result of Theorem

2.1.1.

Lemma 2.1.1. Under Assumption A, as (N, T ) go to (∞,∞) jointly, λ̂ = oP (1).

This lemma states that λ̂ converges to 0 as the sample size increases. Then it is reasonable

to assume that λ, when deriving Theorem 2.1.1, is sufficiently small and close to 0r×1. Thus,

the product kernel function (2.5) can be simplified as follows.

L(Zjs, Zit, λ) = 1js,it +
r∑

m=1

λm1m,jsit +O(‖λ‖2),

where 1m,jsit = 1(Zjs,m 6= Zit,m)
∏r

n=1,n 6=m 1(Zjs,n = Zit,n).

Theorem 2.1.1. Under Assumption A, as (N, T ) go to (∞,∞) jointly, λ̂ = OP

(
1
NT

)
.

Theorem 2.1.1 gives the rate of convergence for λ̂, which is consistent with the rate shown by

Li et al. (2013) for the cross-sectional case. This result is useful for establishing the asymptotic

normality for β̂(z), because it significantly simplifies our proof by allowing us to use the frequency

estimator (i.e., let λ = 0r×1 in (2.7)). More details are given in the Appendix B.

Theorem 2.1.2. Under Assumption A, as (N, T ) go to (∞,∞) jointly, for z ∈ D,

√
NT (β̂(z)− β(z))→D N(0,Ξ1(z)−1Ξ0(z)Ξ1(z)−1),

where

Ξ0(z) = lim
N,T→∞

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E [uitujs(Xit − µX(z))(Xjs − µX(z))′1(Zit = z)1(Zjs = z)] ,

Ξ1(z) = p(z) (ΣX(z)− µX(z)µX(z)′) , p(z) = Pr(Zit = z), ΣX(z) = E[XitX
′
it|Zit = z],

µX(z) = E[Xit|Zit = z].

We now discuss how to conduct the hypothesis test based on Theorem 2.1.2. By (5) of

Lemma B.2, it is easy to know

Ξ̂1(z) =
1

NT

N∑
i=1

T∑
t=1

X̃itX̃
′
it1(Zit = z)→P Ξ1(z). (2.10)
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To consistently estimate Ξ0(z), we need to impose a stronger restriction, i.e. uit is i.i.d. over i

and t. This restriction is in line with the spirit of Corollary 3.1.ii and Theorem 3.3 of Gao and

Phillips (2013b). Relevant discussions can also be found in Section 2.2.2 of Fan and Yao (2003).

With this restriction, Ξ0(z) reduces to Ξ0(z) = p(z)σ2
u (ΣX(z)− µX(z)µX(z)′) = σ2

uΞ1(z), so all

we need is a consistent estimator for σ2
u. For this purpose, we intuitively define

σ̂2
u =

1

NT

N∑
i=1

T∑
t=1

(Ỹit − X̃ ′itβ̂(Zit))
2. (2.11)

Then the next result follows immediately.

Corollary 2.1.1. Under Assumption A, suppose further that uit is i.i.d. over i and t. As (N, T )

go to (∞,∞) jointly, for z ∈ D,

√
NT

(
σ̂−2
u Ξ̂1(z)

)1/2

(β̂(z)− β(z))→D N(0, Iq),

where σ̂2
u and Ξ̂1(z) are defined in (2.11) and (2.10) respectively.

It is worth noting that Corollary 2.1.1 can be used for testing if all variables in Xit are

significant, when β(z) is set to a vector of zeros. We note that the assumption on uit (i.e., i.i.d.

over i and t) is restrictive for situations where cross-dependence among uit’s is present. In such

situations, the variable selection procedure proposed in Section 2.3 can be used instead.

2.2 Irrelevant Covariate Case

In this subsection, we consider the case where some of the covariates are irrelevant in the sense

that they are independent of all other variables in the model. Without losing generality, suppose

the first r1 (1 ≤ r1 < r) elements of Zit are relevant while the remaining r2 = r − r1 elements

of Zit are irrelevant. For notational simplicity, let Z̄it = (Zit,1, . . . , Zit,r1)′ denote the r1 relevant

elements and let Z̃it = (Zit,r1+1, . . . , Zit,r)
′ be the r2 irrelevant elements. Conformably, we par-

tition λ as follows λ = (λ̄′, λ̃′)′, where λ̄ = (λ1, . . . , λr1)′ and λ̃ = (λr1+1, . . . , λr)
′. Let D̄ and D̃

denote the sets that λ̄ and λ̃ belong to respectively (i.e., D = D̄ × D̃).

As in Section 2.1, we start by stating our asymptotic results.

Lemma 2.2.1. Under Assumptions A.1-A.4 and Assumption B, as (N, T ) go to (∞,∞) jointly,

λ̂s = oP (1) for s = 1, . . . , r1.

Like Assumption 3 of Li et al. (2013), this lemma ensures that the CV (λ) selected smoothing

parameters associated with the relevant covariates will converge to 0. Using this lemma, we can

further investigate CV (λ) and rate of convergence, as follows.
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Theorem 2.2.1. Under Assumptions A.1-A.4 and Assumption B, as (N, T ) go to (∞,∞)

jointly,

1. λ̂s = OP

(
1√
NT

)
for s = 1, . . . , r1;

2. Pr
(
λ̂r1+1 = 1, . . . , λ̂r = 1

)
≥ ρ for some ρ ∈ (0, 1).

Note that the rate of convergence of λ̂ for the irrelevant case is much slower compared to

that given in Theorem 2.1.1, due to the presence of irrelevant covariates. The second result of

Theorem 2.2.1 reveals that the estimates of λ̂s for s = r1 + 1, . . . , r are not always equal to 1.

Due to cross-sectional dependence among the error terms and weak correlation between different

time periods, the possible value of ρ becomes more complicated compared to that in Li et al.

(2013). This theorem can be considered as a variable selection procedure for the covariates, but

one cannot always remove all irrelevant covariates.

Theorem 2.2.2. Under Assumptions A.1-A.4 and Assumption B, as (N, T ) go to (∞,∞)

jointly, for z ∈ D, β̂(z)− β(z̄) = OP

(
1√
NT

)
.

Using Theorem 2.2.1, it is straightforward to show Theorem 2.2.2. However, we still cannot

obtain the asymptotic distribution for the irrelevant covariate case. To deal with this prob-

lem, one can follow Li et al. (2013) and use bootstrapping techniques to obtain finite sample

distributions for variables of interest.

2.3 Variable Selection on Xit

As is well-known, including spurious regressors can degrade estimation efficiency substantially

(Wang and Xia, 2009). Unfortunately, this problem of spurious regressors may also happen

to the panel data varying-coefficient model in (2.1). To avoid this potential problem, in this

subsection we propose a variable selection procedure to identify significant regressors for the

model. Compared to the significance test provided by Corollary 2.1.1, it is worth noting that

this procedure does not require the assumption that uit is i.i.d. over i and t.

To begin with, we assume that all detected irrelevant covariates (i.e., those with λ̂s = 1) have

been removed and that the vector of remaining covariates is still denoted by Zit = (Z̄ ′it, Z̃
′
it)
′ as

above (note here that Z̃it can be an empty vector). The purpose of this assumption is to

reduce the total number of distinct realizations of z from our samples {Zit, 1 ≤ i ≤ N, 1 ≤ t ≤
T}, denoted by m in this subsection. Note that m is always observable and converges to the

cardinality of the support of Zit in probability with non-degenerate probability imposed on Zit

as the sample size is sufficiently large. In addition, we relax the restriction on r1 by assuming

that 1 ≤ r1 ≤ r with r1 remaining unknown. This latter assumption ensures that both relevant

and irrelevant cases are covered in what follows.
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We further assume there exists an unknown set A ⊆ {1, . . . , q} satisfying that E|βj(Z̄it)|2 = 0

if and only if j ∈ A, where βj(Z̄it) denotes the jth element of β(Z̄it). For notational simplicity,

we assume that in the true model, A = {q∗ + 1, . . . , q} for some positive integer 1 ≤ q∗ ≤ q. In

other words, only the first q∗ variables in Xi have nonzero coefficients and our goal is to find

this unknown A.

Since m is observable, our parameters of interest can be denoted by an m × q matrix B.

Correspondingly, its underlying, true coefficient function can also be denoted by an m × q

matrix B0. Formally,

B
m×q

= {bjs}m×q = (β1, . . . , βm)′ = (b1, . . . , bq),

βj
q×1

= (bj1, . . . , bjq)
′ for j = 1, . . . ,m,

bs
m×1

= (b1s, . . . , bms)
′ for s = 1, . . . , q,

B0
m×q

= (β(z̄1), . . . , β(z̄m))′ = (b01, . . . , b0q∗ , 0, . . . , 0),

b0s
m×1

= (βs(z̄
1), . . . , βs(z̄

m))′ for s = 1, . . . , q∗, (2.12)

where βs(·) denotes the sth element of β(·); z̄j is an r1 × 1 vector including the first r1 elements

of zj; and zj denotes the jth different realization by observing {Zit, 1 ≤ i ≤ N, 1 ≤ t ≤ T}. It is

easy to see that β(z̄j) will reduce to β(zj) when r1 = r. However, r1 is unknown in general.

Note that the last q − q∗ columns of B0 are zeros implying that B0 has a group sparsity

structure. In other words, entries in each column of B0 form a group. Then selecting regressors

becomes identifying those 0 columns in the matrix B0. Following the spirit of Yuan and Lin

(2006), we consider the following regularized least squares estimator:

B̂τ = {b̂τ,js}m×q = (β̂τ,1, . . . , β̂τ,m)′ = (b̂τ,1, . . . , b̂τ,q) = argmin
B∈Rm×q

Qτ (B) (2.13)

and

Qτ (B) =
m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβj

)2

L(Zit, z
j, λ̂) +

q∑
s=1

τs‖bs‖, (2.14)

where λ̂ is obtained by minimizing (2.8); the term
∑q

s=1 τs‖bs‖ is the group-wise regularizer and

is defined as the weighted sum of the `2 norms of all the column vectors in B with the weight

τ = (τ1, . . . , τq)
′ controlling the regularizer.4

Under the above setting, we present our first result on variable selection as follows:

4In the literature of group LASSO analysis, one usually allows both q and r to diverge to infinity (e.g. Lounici
et al. (2011)). However, to our best knowledge, how to select optimal bandwidths for model (2.1) remains an
unresolved issue for high dimensional cases. Given that the purpose of this study is to develop a panel data
varying-coefficient model for the finite dimension case, we will not discuss the case where both q and r diverge
to infinity.
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Theorem 2.3.1. Under Assumptions A.1-A.4, B and C, let 1 ≤ r1 ≤ r. As (N, T )→ (∞,∞),

1. Let τ ∗ = (τ1, . . . , τq∗)′ and ‖τ∗‖√
NT
→ ω1, where ω1 is a constant satisfying that 0 ≤ ω1 <∞.

Then

∥∥∥β̂τ,j − β(z̄j)
∥∥∥ = OP

(
1√
NT

)
for j = 1, . . . ,m,

where z̄j = (zj1, . . . , z
j
r1

)′.

2. Let 1√
NT

mins∈{q∗+1,...,q} τs ≥ ω2, where ω2 is sufficiently large. Then

Pr(‖b̂τ,j‖ = 0)→ 1 for j = q∗ + 1, . . . , q.

The first result of Theorem 2.3.1 says if the regularizer weight is not too large, we always

have optimal
√
NT consistency for our estimator. The second result implies that when the

regularizer weight is at level
√
NT , we can successfully get rid of those unimportant coefficients

in our estimator and select a sub-model of the true model. A natural and simple choice of τ ,

which satisfies assumptions of both results, is that all the elements of τ are at level
√
NT . With a

more careful data-driven choice of τ , we can further achieve the asymptotic normality whenever

there is no irrelevant covariate by use of the following oracle5 property for our estimator (2.13).

Theorem 2.3.2. Under the conditions of Theorem 2.3.1,

∥∥∥β̂τ,jU − β̂ora(z̄j)∥∥∥ = OP

(
‖τ ∗‖
NT

)

for j = 1, . . . ,m, where β̂ora(z̄
j) is denoted by (2.7) with assuming that the true set A is known;

β̂τ,jU = (b̂τ,j1, . . . , b̂τ,jq∗)′; b̂τ,js for j = 1, . . . ,m and s = 1, . . . , q∗ are elements of {b̂τ,js}m×q
denoted in (2.13); and τ ∗ is denoted in Theorem 2.3.1.

In order to achieve asymptotic normality for the selected model (i.e., only using the regressors

selected by Theorem 2.3.1), the rate of convergence of β̂τ,jU to β̂ora(z̄
j) should be much faster than

1√
NT

. The oracle property in Theorem 2.3.2 implies such a result as long as ‖τ ∗‖ is much smaller

than
√
NT . Therefore the simple choice of

√
NT level for τ suggested above is not sufficient

to achieve an asymptotic normality. Thus, in what follows we propose a data-driven procedure

for choosing τ , which yields a much faster rate of convergence (OP

(
1
NT

)
) to the oracle and then

achieve the desired asymptotic normality property. From now on, we assume that whenever

5Notice that the word “oracle” refers to the same estimator as given in (2.7) but by assuming we know the
true set A. Here we completely ignore the inefficiency caused by the irrelevant covariates Z̃it. The asymptotically
efficient estimator is obtained when we know both the set A and all the irrelevant covariates. However, this can
only be done at a certain probability based on Theorem 2.2.1.
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b0s 6= 0 for s = 1, . . . , q∗, its `2 norm is larger than some universal constant ‖b0s‖ ≥ α0 > 0. This

assumption is natural in the current fixed dimension setting.

As in Wang and Xia (2009), we use the following data-driven regularizer weight

τ = τ̃
(
‖b̃1‖−1, . . . , ‖b̃q‖−1

)′
, (2.15)

where τ̃ is a scalar, b̃s is the sth column of the unregularized estimator B̃, and B̃ is obtained

from (2.14) by simply choosing τ1 = · · · = τq = 0. Using Assumption C and the first result of

Theorem 2.3.1, it is easy to verify that ‖b̃s‖−1 = OP (1) for s = 1, . . . , q∗ and ‖b̃s‖ = OP

(
1√
NT

)
for s = q∗ + 1, . . . , q. In (2.15), the unregularized estimator B̃ is just the desired (

√
NT )

consistent estimator. Given B̃, it is straightforward to tell which column of B0 is likely to be

zero or not. Specifically, a smaller ‖b̃s‖ implies that the sth column is more likely to be zero and

hence suggests a larger regularizer on ‖bs‖. Given the form of τ in (2.15), a selection on the

vector τ becomes a selection on the scalar τ̃ . Note that the properties of ‖b̃s‖−1 for s = 1, . . . , q

imply that a large enough constant τ̃ would satisfy all the technical conditions on τ needed for

the above theorems with
∥∥∥β̂τ,jU − β̂ora(z̄j)∥∥∥ = OP

(
1
NT

)
. More specifically, we select the constant

τ̃ by the following modified BIC-type (MBIC) criterion.

BICτ̃ = lnRSSτ̃ + dfτ̃ ·
ln(NT )

NT
,

where dfτ̃ is simply the number of nonzero coefficients identified by B̂τ̃ ; B̂τ̃ is obtained by using

(2.13) and (2.15), i.e. B̂τ̃ = (β̂τ̃ ,1, . . . , β̂τ̃ ,m)′ = (b̂τ̃ ,1, . . . , b̂τ̃ ,q); and RSSτ̃ is defined as

RSSτ̃ =
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̂τ̃ ,j

)2

L(Zit, z
j, λ̂).

The optimal weight parameter can then be obtained by

ˆ̃τ = argmin
τ̃

BICτ̃ . (2.16)

Recall that the true set of nonzero coefficients is denoted by Ac = {1, . . . , p∗}. Let Sˆ̃τ = {j :

‖β̂ˆ̃τ,j‖ > 0, 1 ≤ j ≤ q} denote the variables selected using the regularized estimator B̂ˆ̃τ , where

the tuning parameter is obtained using (2.16). With these notations, we present our next result

as follows.

Theorem 2.3.3. Under conditions of Theorem 2.3.1, as (N, T )→ (∞,∞), the weight parameter

selected by the modified BIC-type criterion (2.16) can:

1. Identify the true model consistently, i.e. Pr(Sˆ̃τ = Ac)→ 1;

11



2. For the relevant covariate case, achieve the asymptotic normality, i.e.

√
NT (β̂ˆ̃τ,jU − βU(zj))→D N(0,Ξ∗1(zj)−1Ξ∗0(zj)Ξ∗1(zj)−1) (2.17)

for j = 1, . . . ,m, where βU(zj) = (β1(zj), . . . , βq∗(zj))′; Ξ∗0(zj) and Ξ∗1(zj) are the q∗ × q∗

principal sub-matrices of Ξ0(zj) and Ξ1(zj) denoted in Theorem 2.1.2 respectively; and

βU(zj) denotes the first q∗ elements of β(zj).

3. For the irrelevant covariate case,

β̂ˆ̃τ,jU − βU(z̄j) = OP

(
1√
NT

)
(2.18)

for j = 1, . . . ,m, where βU(z̄j) = (β1(z̄j), . . . , βq∗(z̄j))′.

Having derived the asymptotic results for the finite dimension case in Sections 2.1-2.3, in the

following subsection we will briefly discuss some extensions.

2.4 Extensions

In this subsection we will briefly show that our modified within transformation remains valid for

the case where T is small, by using
∑T

s=1 uisL
p
is,it/

∑T
s=1 L

p
is,it as an example.

In (2.5), we have shown that

L(Zit, z, λ) = 1(Zit = z) +
r∑

m=1

λm1m,Zit=z + · · ·+
r∏

m=1

λm1(Zit,m 6= zm).

For sufficiently small λ,

• If
∑T

s=1 1(Zis = Zit) 6= 0, it is obvious that limλ→0r×1

∑T
s=1 uisL

p
is,it/

∑T
s=1 L

p
is,it exists.

• If
∑T

s=1 1(Zis = Zit) = 0, we just need to focus on the limit of limλ→0r×1 f(λ)/g(λ), where

f(λ) =
T∑
s=1

uis

(
r∑

m=1

λm1m,Zis=Zit + · · ·+
r∏

m=1

λm1(Zis,m 6= Zit,m)

)p

,

g(λ) =
T∑
s=1

(
r∑

m=1

λm1m,Zis=Zit + · · ·+
r∏

m=1

λm1(Zis,m 6= Zit,m)

)p

.

Since both f(λ) and g(λ) are the polynomial functions of the elements of λ, it is easy to

show that limλ→0r×1 f(λ)/g(λ) does exist.

Note that the existence of the above limit is uniform in i and t. Hence, for simplicity, one just

needs to denote that Au,it = limλ→0r×1

∑T
s=1 uisL

p
is,it/

∑T
s=1 L

p
is,it. Then we know that the within
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transformation does make sense for the small T case. The rest of the derivation follows the same

lines as for the large N and T case. In our Monte Carlo study in the following section, we will

demonstrate that our methodology works for the fixed T case as well.

For the cases where some of the discrete covariates are ordinal, the above kernel function

(2.2) can be changed to

l(Zit,s, zs, λs) =

 1, if Zit,s = zs

λ
|Zit,s−zs|
s , otherwise

, (2.19)

which has been well documented in the literature (see Li and Racine (2010) and Li et al. (2013)

for details). Then, it is straightforward to show that the asymptotic results established in

Sections 2.1-2.3 remain valid.

3 Monte Carlo Study

In this section, we perform a Monte Carlo study to investigate the finite sample properties of

our model and estimator.6 The data generating process (DGP) is as follows.

Yit = X ′itβ(Zit) + wi + uit and Xit = Hit + Vit. (3.1)

Let Zit = (Zit,1, · · · , Zit,r)′, where for ∀j = 1, . . . , r, Zit,j is i.i.d. over i and t; and Zit is chosen

from {0, 1} with the same probability every time, i.e. Pr(Zit,j = 0) = Pr(Zit,j = 1) = 0.5. Vit

is i.i.d. over i and t and follows a normal distribution N(Zit,1/2 · iq,
√
Zit,1 + 1 · Iq), where iq

is a q × 1 one vector and Iq is a q-dimensional identity matrix. Hit = (Hit,1, . . . , Hit,q)
′. For

∀j = 1, . . . , q, Hit,j is generated as Hit,j = ρ(j)Hit−1,j+i.i.d. N(0, 1) and ρ(j) = 0.1∗b9 ·U(0, 1)c,
where U(0, 1) denotes the uniform distribution; bac denotes rounding the element of a to the

nearest integer greater than or equal to that element, i.e. a ≤ bac. Thus, for ∀j = 1, . . . , q, Hit,j

is independent in the cross-sectional dimension and a stationary AR(1) process in the time-series

dimension with the coefficient ρ(j) being randomly chosen from the set {0.1, 0.2, . . . , 0.9}.
The fixed effects are generated using wi = 1

Tq

∑T
t=1

∑q
j=1Xit,j to ensure that it is correlated

with the regressors and covariates. To introduce cross-sectional dependence, the error terms (de-

noted by ut = (u1t, . . . , uNt)) are generated using ut = 0.5ut−1 +εt, where εt ∼ i.i.d. N(0N×1,Σu)

and for i, j = 1, . . . , N the (i, j)th element of Σu is 0.5|i−j|.

When conducting Monte Carlo simulation, we consider both relevant and irrelevant cases.

Formally, these two cases are generated as follows:

• Relevant covariate case: βj(Zit) = j/2 ·
∑r

k=1 Zit,k + 1,

6The Matlab codes are available upon request, and will be published on authors’ website soon.
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• Irrelevant covariate case: βj(Zit) = j/2 · Zit,1 + 1,

where βj(Zit) denotes the jth element of the coefficient function β(z) for ∀j = 1, . . . , q.

More specifically, we consider the following four sub-cases:

1. Relevant covariate case with q = 3, r = 2,

2. Irrelevant covariate case with q = 3, r = 2,

3. Relevant covariate case with q = 5, r = 2, q∗ = 2 (i.e., βj(z) = 0 for j ≥ 3),

4. Irrelevant covariate case with q = 5, r = 2, q∗ = 2 (i.e., βj(z) = 0 for j ≥ 3),

where the variable p used for implementing the within transformation is always chosen as 5.

For sub-cases 1 and 2, we estimate the model in (3.1) using (2.7) for each generated data

set.7 For notational convenience, this method is referred to as the “DMK” model, where DM

stands for demeaned variables (i.e., variables formed using the modified within transformation)

and K means that the estimates are obtained using the the kernel function. For comparison

purpose, we also estimate a variant of (2.7), where every kernel function is replaced with the

indicator function. This method is referred to as “DMI”.

For each generated data set and the corresponding estimate on β(z), we calculate the squared

error (SE) as follows.

SE =
∑
z∈D

p(z)
(
β̂j(z)− βj(z)

)2

, (3.2)

where, for j = 1, . . . , q, β̂j(z) denotes the jth element of β̂(z). We then replicate the above

procedure 1000 times and report mean squared errors (MSE) for sub-cases 1 and 2 respectively

in Table 1, where NA indicates the value can not be calculated, because the denominator (Tit)

becomes 0. As can be seen from Table 1, when T is small (i.e., T = 5 or 7) relative to the

cardinality of the support of Zit, the use of the DMI model results in many NAs in both the

relevant and irrelevant covariate cases. This is because the denominator of the DMI model (i.e.,

Tit) tends to be zero when T is small. When N and T are large, both DMK and DMI yield

very small MSEs regardless of the nature of the covariates. However, we note that the DMK

model outperforms the DMI model in the irrelevant covariate case in that the former model

yields smaller MSEs.

For sub-cases 3 and 4, our estimates of β(z) are expected to have three columns of zero.

For each generated data set, we estimate B̂τ by (2.13).8 To evaluate alternative estimators, we

7As explained previously, p = 2 is enough in (2.4) in practice. We choose p = 2 for the simulated and real
data studies in this paper. We have experimented a variety of choices on p, where the results are almost identical
and the differences happen after the fourth decimal for both Monte Carlo study and the application to U.S.
commercial banks provided in the next section.

8The algorithm is provided in Appendix B.
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Table 1: MSEs for Sub-cases 1 and 2 (q = 3 and r = 2)

DMK DMI

T \N 50 100 200 50 100 200

Relevant β̂1(z) 5 0.02174 0.00986 0.00457 NA NA NA

7 0.01001 0.00488 0.00241 NA NA NA

20 0.00188 0.00094 0.00045 0.00189 0.00094 0.00045

40 0.00079 0.00039 0.00019 0.00079 0.00039 0.00019

β̂2(z) 5 0.02286 0.00972 0.00464 NA NA NA

7 0.01021 0.00516 0.00235 NA NA NA

20 0.00182 0.00092 0.00047 0.00183 0.00093 0.00047

40 0.00079 0.00041 0.00020 0.00079 0.00041 0.00020

β̂3(z) 5 0.02290 0.00966 0.00482 NA NA NA

7 0.01051 0.00504 0.00245 NA NA NA

20 0.00183 0.00089 0.00044 0.00182 0.00089 0.00044

40 0.00081 0.00040 0.00020 0.00081 0.00040 0.00020

Irrelevant β̂1(z) 5 0.01407 0.00645 0.00308 NA NA NA

7 0.00628 0.00318 0.00156 NA NA NA

20 0.00116 0.00060 0.00028 0.00189 0.00093 0.00045

40 0.00049 0.00024 0.00012 0.00079 0.00039 0.00019

β̂2(z) 5 0.01426 0.00645 0.00318 NA NA NA

7 0.00639 0.00336 0.00152 NA NA NA

20 0.00113 0.00057 0.00030 0.00182 0.00093 0.00048

40 0.00046 0.00025 0.00012 0.00079 0.00041 0.00020

β̂3(z) 5 0.01479 0.00637 0.00318 NA NA NA

7 0.00660 0.00322 0.00159 NA NA NA

20 0.00115 0.00056 0.00029 0.00184 0.00089 0.00044

40 0.00050 0.00025 0.00012 0.00081 0.00040 0.00020

1. β̂j(z) denotes the jth element of β̂(z).

2. NA indicates the value can not be calculated, because the denominator (Tit) becomes 0.

compute a modified measure of squared error (SE1). Specifically, we calculate the conventional

squared error for each element of B̂τ in each replication, store them in matrix MB, and then

sum up the elements of MB as follows to get SE1:

SE1 =
1

q

q∑
s=1

m∑
j=1

p(zj)MBjs, (3.3)

where MBjs represent the (j, s)th element of MB; m and zj are denoted in (2.14). We then

replicate the above procedure 1000 times and report the mean of SE1 (MSE1). For comparison,

we also estimate the model in (3.1) using the unregularized estimator and the oracle estimator

respectively. For each of these two estimators, we report its associated MSE1’s as defined in

(3.3). The results are summarized in Table 2. As can be seen, the oracle estimator has smaller

MES1’s compared with the regularized and unregularized estimators. This is not surprising,

because oracle estimator uses full information when implementing the regression. In addition,

we note that the regularized estimator produces lower MES1’s than the unregularized estimator.

As N and T are sufficiently large, the MSE1’s from the regularized estimator are very close to

those from the oracle estimator.

In sum, our Monte Carlo study suggests that our methodology works well for large N and

small T , and large N and T cases. To further show the usefulness of our methodology in solving
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Table 2: MSE1 of Sub-cases 3 and 4 (with q = 5, r = 2, q∗ = 2)

Relevant Irrelevant

T \N 50 100 200 50 100 200

Regularized 5 0.01576 0.00518 0.00220 0.01239 0.00360 0.00149

7 0.00583 0.00236 0.00102 0.00395 0.00157 0.00067

20 0.00081 0.00038 0.00019 0.00049 0.00023 0.00011

40 0.00031 0.00016 0.00008 0.00018 0.00009 0.00005

Unregularized 5 0.02284 0.00975 0.00465 0.01527 0.00629 0.00300

7 0.01045 0.00498 0.00237 0.00649 0.00317 0.00149

20 0.00189 0.00091 0.00045 0.00112 0.00056 0.00028

40 0.00076 0.00039 0.00020 0.00044 0.00023 0.00012

Oracle 5 0.00825 0.00378 0.00185 0.00562 0.00246 0.00121

7 0.00422 0.00200 0.00094 0.00259 0.00127 0.00060

20 0.00075 0.00037 0.00018 0.00045 0.00022 0.00011

40 0.00030 0.00015 0.00008 0.00018 0.00009 0.00005

real-world problems, in the following section we provide an application to commercial banks in

the U.S..

4 An Application to U.S. Commercial Banks

In this section we provide an application of the varying-coefficient model proposed in Section 2

to the analysis of the effects of geographical deregulation on the returns to scale of commercial

banks in the U.S.. Until the middle of the 1970’s banking in the U.S. was heavily regulated at

the state level. Generally, there were three different types of state regulation on bank branching:

“unit banking”, where banks were only permitted to operate in one location; “limited branch-

ing”, where the branching abilities of individual banks were limited to a portion of the state;

and “statewide banking” where individual banks were permitted to branch statewide. In the

mid-1980s individual states began to loosen regulations on intrastate branching, often moving

from unit banking to limited branching and then to statewide banking. It is worth noting that

different states changed their regulatory restrictions on expansion at different times. This dereg-

ulation process eventually culminated in the passage of the Riegle-Neal Interstate Banking and

Branching Efficiency of 1994, which permitted nationwide branching as of June 1997 (Jayaratne

and Strahan, 1997). In sum, commercial banks in the U.S. undergone four branch banking

regimes in the 1980s and 1990s: (1) unit banking, (2) limited branching, (3) statewide banking,

and (4) full interstate branching, thus offering researchers a unique opportunity to study the

effects of geographical deregulation on the returns to scale of commercial banks in the U.S..

The data used in this application are obtained from the Reports of Income and Condition

(Call Reports) published by the Federal Reserve Bank of Chicago. The sample covers the

period 1986-2005, a period that includes the four policy regimes. We examine only continuously

operating large banks with assets of at least $1 billion (in 1986 dollars) to avoid the impact

of entry and exit and to focus on the performance of a core of healthy, surviving institutions.
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This gives a total of 466 banks over 20 years (i.e. 80 quarters, so N = 466 and T = 80). To

select the relevant variables, we follow the commonly-accepted intermediation approach (Sealey

and Lindley, 1977). On the input side, three inputs are included: (1) the quantity of labor; (2)

the quantity of purchased funds and deposits; and (3) the quantity of physical capital, which

includes premises and other fixed assets. On the output side, three outputs are specified: (1)

consumer loans; (2) securities, which includes all non-loan financial assets; and (3) non-consumer

loans, which is composed of industrial, commercial, and real estate loans. All the quantities are

constructed as in Berger and Mester (2003). These quantities are also deflated by the GDP

deflator to the base year 1986, except for the quantity of labor.

4.1 The Varying-Coefficient Translog Cost Function

We use a varying-coefficient translog cost function, which has the standard form of the varying-

coefficient model described in Section 2, to represent the production technology of commercial

banks in the U.S.. A primary feature of this function is that its coefficients are allowed to vary

depending on the banking regime under which a bank operates, because there is considerable

evidence that branch banking regime affects production technology (Mason, 2013; Mester, 2005).

Specifically, this function is written as9

lnC = α0(Z) +
N̄∑
j=1

αj(Z) lnWj +
M̄∑
m=1

γm(Z) lnYm + τ(Z)t+
1

2
δ(Z)t2

+
1

2

N̄∑
j=1

N̄∑
k=1

βjk(Z) lnWj lnWk +
1

2

M̄∑
m=1

M̄∑
n=1

ρmn(Z) lnYm lnYn

+
N̄∑
j=1

M̄∑
m=1

ψjm(Z) lnWj lnYm +
N̄∑
j=1

φj(Z)t lnWj +
M̄∑
m=1

ϕm(Z)t lnYm, (4.1)

where C is total cost; t is a time trend; Ym for m = 1, . . . , M̄ is a variable representing output;

and Wj for j = 1, . . . , N̄ is a variable representing input price. In our case, N̄ = M̄ = 3.

Z is specified to be a four-category variable indicating different branch banking regimes that

existed during our sample period. Specifically, we set Z = 0 for banks operating in unit banking

states, Z = 1 for banks operating in limited branching states, Z = 2 for banks operating in

statewide banking states, and Z = 3 for banks operating in nationwide branching states. As

previously noted, different states changed their regulatory restrictions on expansion at different

times, indicating that Z varies in both the cross-sectional and time series dimensions.

The usual symmetry restrictions require βjk(Z) = βkj(Z) for j, k = 1, . . . , N̄ and ρmn(Z) =

9The variable selection method outlined in Section 2.3 is not needed here, because microeconomic theory
provides clear guidance on what variables should be included in cost functions (see, for example, Diewert and
Wales (1987)). In addition, the translog functional form is commonly used in the literature, since it provides a
second order approximation to the underlying true cost function (Christensen et al., 1975).
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ρnm(Z) for m,n = 1, . . . , M̄ . Moreover, to ensure linear homogeneity of the cost function in

input prices, the following restrictions are imposed

N̄∑
j=1

αj(Z) = 1,
N̄∑
j=1

βjk(Z) =
N̄∑
j=1

ψjm(Z) =
N̄∑
j=1

φj(Z) = 0. (4.2)

To impose the linear homogeneity restrictions in (4.2), we follow Griffiths et al. (2000) and

normalize the cost and input prices in (4.1) by one of the input prices (say, WN̄)

ln
C

WN̄

= α0(Z) +
N̄−1∑
j=1

αj(Z) ln
Wj

WN̄

+
M̄∑
m=1

γm(Z) lnYm + τ(Z)t+
1

2
δ(Z)t2

+
1

2

N̄−1∑
j=1

N̄−1∑
k=1

βjk(Z) ln
Wj

WN̄

ln
Wk

WN̄

+
1

2

M̄∑
m=1

M̄∑
n=1

ρmn(Z) lnYm lnYn

+
N̄−1∑
j=1

M̄∑
m=1

ψjm(Z) ln
Wj

WN̄

lnYm +
N̄−1∑
j=1

φj(Z)t ln
Wj

WN̄

+
M̄∑
m=1

ϕm(Z)t lnYm. (4.3)

In matrix notations, the normalized varying-coefficient translog cost function in (4.3), after

appending a fixed effect term and a random error term, can be written as (2.1), where the

dependent variable is ln C
WN̄

; the regressors are a vector comprising all the variables which appear

on the right hand side of (4.3); and β(·) is the corresponding vector of coefficients of the translog

function. Note that after the within transformation α0(Z) will disappear along with the fixed

effect. However, this does not affect our empirical results.

Given the estimated parameters of (4.3)10, it is possible to compute returns to scale as

RTS =
(∑M̄

m=1 εcYm

)−1

, where for m = 1, . . . , M̄

εcYm =
∂ lnC

∂ lnYm
= γm(Z) +

M̄∑
n=1

ρmn(Z) lnYn +
N̄∑
j=1

ψjm(Z) lnWj + ϕm(Z)t

is the cost elasticity of the jth output.

For comparison purposes, we also consider a fully parametric translog cost function, in which

three binary variables are used to control for the different branch banking regimes. Specifically,

(i) UNIT equals to 1 for banks operating in unit banking states (0 otherwise); (ii) LIMITED

equals to 1 for banks operating in limited branching states (0 otherwise); and (iii) STATEWIDE

equals to 1 for banks operating in statewide banking states (0 otherwise). Specifically, the

normalized fully parametric translog cost function is written as

10There are two methods to estimate this cost function: one is to estimate it directly and the other is to estimate
it together with its share equations. From an economic theoretical perspective, both methods are correct although
the second one has better statistical efficiency (see, for example, Feng and Serletis (2008)). However, to better
illustrate our single equation panel data varying-coefficient model, we use the first method in this paper.

18



ln
C

WN̄

= α0 +
N̄−1∑
j=1

αj ln
Wj

WN̄

+
M̄∑
m=1

γm lnYm + τt+
1

2
δt2 +

1

2

N̄−1∑
j=1

N̄−1∑
k=1

βjk ln
Wj

WN̄

ln
Wk

WN̄

+
1

2

M̄∑
m=1

M̄∑
n=1

ρmn lnYm lnYn +
N̄−1∑
j=1

M̄∑
m=1

ψjm ln
Wj

WN̄

lnYm +
N̄−1∑
j=1

φjt ln
Wj

WN̄

+
M̄∑
m=1

ϕmt lnYm + ξ1UNIT + ξ2LIMITED + ξ3STATEWIDE, (4.4)

where symmetry requires βjk = βkj and ρmn = ρnm. In matrix notations, (4.4), after appending

a fixed effect term and a random error term, can be written as

Yit = X ′itβ0 + wi + uit, (4.5)

where Xit is a vector comprising all the variables which appear on the right hand side of (4.4); and

β0 is the corresponding vector of coefficients of the translog function (including the intercept).

4.2 Empirical Results

We estimate the normalized varying-coefficient translog cost function in (4.3), using the panel

data varying-coefficient estimator in (2.7). Parameter estimates and standard errors asso-

ciated with this function are reported in Panel A of Table 3. We also estimate the nor-

malized fully translog cost function in (4.4) and report its parameter estimates and stan-

dard errors in Panel B of Table 3. To compare the performance of these two competing

models, we perform a test using the procedure proposed by Li et al. (2013). If we treat

(α0 + ξ1UNIT + ξ2LIMITED + ξ3STATEWIDE) in the fully parametric translog cost function

as the coefficient for the constant term, it is easy to see that the fully parametric translog cost

function in (4.4) is a special case of the varying-coefficient translog cost function in (4.3). With

this in mind, then, testing if the varying-coefficient translog cost function outperforms the fully

parametric translog cost function is equivalent to testing if the latter model has the same specifi-

cation as the former model, or more specifically, if the latter model has the same set of coefficients

as the former model. To test parameter constancy, we extend the bootstrap-based procedure

outlined in Li et al. (2013) to a panel data setting. Detailed description of the procedure can be

found therein. For our case, the test statistic is 0.4968, well above the critical value of 0.0876 at

1% level of significance, suggesting strongly that the null hypothesis is rejected. In other words,

the varying-coefficient translog cost function is preferred to the fully parametric translog cost

function.

It is also of interest to compare results from the varying-coefficient translog cost function

where the bandwidth (λ) is optimally selected using (2.8) with results from the same cost function

but with λ set to zero a priori. The latter function can be obtained by replacing the kernel
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functions in (2.7) by indicator functions. This comparison is interesting because the estimation

of the latter function is equivalent to estimating four separate fixed-coefficient translog cost

functions with one for each branch bank regime. Parameter estimates and standard errors

associated with the former function are reported in Panel A of Table 3 (as discussed previously),

while those associated with the later function are reported in panel C of the same table. A

comparison of these two panels reveals that parameter estimates from both functions are rather

close for all four banking regimes with the exception of unit banking regime, further confirming

that branch banking regime has a strong impact on the production technology of the commercial

banks. Besides, we also find that standard errors from the case where λ is optimally selected are

generally smaller than their counterparts from the case where λ = 0, because the former case

allows borrowing information across branch banking regimes.

Table 4: Results on Return to Scales (RTS)

Panel A Panel B: Average RTS under Different Banking Regimes

Overall Average RTS UNIT LIMITED STATEWIDE NATIONWIDE

Year RTS std RTS std RTS std RTS std RTS std

1986 1.0526 0.0060 1.0995 0.0228 1.0407 0.0055 1.0361 0.0050 NA NA

1987 1.0528 0.0059 1.0995 0.0226 1.0405 0.0055 1.0377 0.0050 NA NA

1988 1.0458 0.0043 1.0962 0.0205 1.0410 0.0053 1.0413 0.0050 NA NA

1989 1.0469 0.0038 1.0986 0.0198 1.0383 0.0052 1.0492 0.0050 NA NA

1990 1.0503 0.0036 1.1022 0.0197 1.0405 0.0052 1.0522 0.0050 NA NA

1991 1.0508 0.0038 1.0981 0.0218 1.0400 0.0053 1.0573 0.0052 NA NA

1992 1.0531 0.0040 NA NA 1.0395 0.0054 1.0594 0.0052 NA NA

1993 1.0533 0.0040 NA NA 1.0380 0.0055 1.0605 0.0053 NA NA

1994 1.0559 0.0043 NA NA 1.0332 0.0056 1.0621 0.0053 NA NA

1995 1.0563 0.0042 NA NA 1.0323 0.0054 1.0629 0.0052 NA NA

1996 1.0616 0.0043 NA NA 1.0365 0.0054 1.0685 0.0052 NA NA

1997 1.0649 0.0044 NA NA 1.0391 0.0054 1.0709 0.0052 NA NA

1998 1.0564 0.0065 NA NA NA NA 1.0818 0.0059 1.0550 0.0069

1999 1.0585 0.0064 NA NA NA NA 1.0854 0.0059 1.0569 0.0068

2000 1.0590 0.0064 NA NA NA NA 1.0872 0.0058 1.0577 0.0067

2001 1.0621 0.0064 NA NA NA NA 1.0912 0.0058 1.0607 0.0067

2002 1.0644 0.0067 NA NA NA NA NA NA 1.0644 0.0067

2003 1.0667 0.0067 NA NA NA NA NA NA 1.0667 0.0067

2004 1.0682 0.0066 NA NA NA NA NA NA 1.0682 0.0066

2005 1.0688 0.0066 NA NA NA NA NA NA 1.0688 0.0066

Average 1.0576 0.0034 1.0995 0.0213 1.0390 0.0052 1.0605 0.0051 1.0625 0.0067

Having established the superority of the varying-coefficient translog cost function over the

fully parametric translog cost function, in what follows we focus on empirical results from the

former function. Panel A of Table 4 presents the annual average returns to scale (RTS) estimate

for each year, obtained by averaging over all sampled banks in that year. As can be seen, it

is greater than one for all years, ranging from 1.037 to 1.056, suggesting that on average the

commercial banks exhibit increasing returns to scale. This finding is consistent with Wheelock

and Wilson (2012), who, using a non-parametric local-linear estimator to estimate the cost

relationship for commercial banks in the U.S. over the period 1984-2006, find that U.S. banks

operated under increasing returns to scale.
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It is also of interest to compare the estimates of RTS across different regimes. For this

purpose, we calculate the average RTS for each banking regime in each year by averaging within

each regime in that year. The results are reported in Panel B, Table 4, where “NA” indicates

that the corresponding policy regime doesn’t exist or expires in that year. We see that average

RTS is generally higher in more regulated states than in less regulated states for a given year.

Taking 1986 for example, average RTS is 1.0995 for unit banking states, as compared to 1.0407

for limited branching states and 1.0361 for statewide branching states. This result suggest that

banks in more regulated states are forced to operate at scales further below their optimal scales

than those in less regulated states. It is worth noting at this point that optimal scales in less

regulated states are much higher than those in more regulated states. To illustrate this point, we

calculate the optimal scale for each banking regime in 1986 by averaging total assets across banks

under that regime that face constant returns to scale. Our result shows that the optimal scale for

statewide branching states is $1.177 billion, as compared to $1 million for unit banking states and

4 million for limited branching states. This result suggests that geographical deregulation greatly

changes banking production technology in the U.S. Another interesting finding that emerges from

Table 4 is that average RTS have increased over time for both statewide and national branching

regimes. A possible explanation is that as banks grow bigger under less regulated regimes, they

are more likely to afford new technologies. The adoption of new technologies further increases

the banks’ optimal scales over time, which results in higher RTS for given bundles of inputs.

Table 5: Returns To Scale at Individual Bank Level

Year DRS CRS IRS

1986 13.52% 11.59% 74.89%

1987 11.59% 12.23% 76.18%

1988 13.09% 7.94% 78.97%

1989 13.09% 5.36% 81.55%

1990 9.23% 3.86% 86.91%

1991 5.79% 3.65% 90.56%

1992 5.36% 3.00% 91.63%

1993 5.79% 2.58% 91.63%

1994 4.51% 2.15% 93.35%

1995 4.72% 1.50% 93.78%

1996 3.65% 1.50% 94.85%

1997 3.65% 0.43% 95.92%

1998 2.58% 2.58% 94.85%

1999 2.58% 2.36% 95.06%

2000 2.79% 1.50% 95.71%

2001 1.93% 2.58% 95.49%

2002 1.93% 1.29% 96.78%

2003 1.93% 0.86% 97.21%

2004 2.15% 0.86% 97.00%

2005 2.15% 1.29% 96.57%

Average 5.34% 3.36% 91.30%

DRS: decreasing returns to scale

CRS: constant returns to scale

IRS: increasing returns to scale

In addition to the annual average RTS estimates, we are also interested in RTS estimates
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at individual bank level. We compute the percentage of banks facing increasing, constant, or

decreasing returns to scale for each year. This computation is performed by counting the number

of cases where the 95% credible intervals are strictly less than 1.0 (indicating decreasing returns

to scale, i.e., DRS), contain 1.0 (indicating constant returns to scale, i.e., CRS), or strictly

greater than 1.0 (indicating increasing returns to scale, i.e., IRS). The results are presented

in Table 5. Two findings emerge from this table. First, on average the majority (91.30%) of

the banks face increasing returns to scale, a small percentage (5.34%) face decreasing returns

to scale, and an even smaller percentage (3.36%) face constant returns to scale. Second, the

percentage of banks facing increasing returns to scale shows a “first increase and then stabilize”

pattern, the percentage of banks facing decreasing returns to scale shows a “first decrease and

then stabilize” pattern, and the percentage of banks facing constant returns to scale also shows a

“first decrease and then stabilize” pattern. Specifically, the percentage of banks facing increasing

returns to scale increases markedly from 74.89% in 1986 to 96.76% in 2002 and then stabilizes

at around that level for the rest of the sample period; the percentage of banks facing decreasing

returns to scale decreases noticeably from 13.52% in 1986 to 1.93% in 2001 and then stabilizes

at around that level afterwards (with the exception of the last year when the percentage goes

up to 8.22%); and the percentage of banks facing constant returns to scale falls consistently

from 11.59% in 1986 to 1.29% in 2002 stabilizes at around that level afterwards. This result

is consistent with our previous discussion that both geographical deregulation and subsequent

technological adoptions increase the bank’s optimal scales over time, leaving more and more

banks operating under increasing returns to scale.

5 Conclusion

In this paper, we extend Li et al. (2013)’s cross-sectional varying-coefficient model to a panel

data context, where fixed effects are included to allow for correlation between individual unob-

served heterogeneity and the regressors. In dealing with the fixed effects, we do not impose any

identification restriction as done in previous studies. Instead, we take advantage of the fact that

our covariates are categorical, and use a modified within transformation. We show the exact

asymptotic properties of our estimator for the relevant covariate case and the irrelevant covariate

case. To avoid including spurious regressors in our panel data varying-coefficient model, we also

provide a variable selection procedure for selecting significant regressors. We further conduct a

Monte Carlo study to investigate the finite sample properties of our estimator.

Finally, we show how our model and methodology can be used by analyzing the effects of

state-level banking regulations on the returns to scale of commercial banks in the U.S. over the

period 1986-2005. Specifically, we estimate a varying-coefficient translog cost function, where
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branch banking regime is used as a covariate of the varying coefficient. We compare this cost

function with a fully parametric cost function where branch banking regimes are treated as binary

variable. Our tests reject the latter cost function in favor of the former one. Our empirical results

from the varying-coefficient translog cost function show that returns to scale is higher in more

regulated states than in less regulated states. Our results also indicate that the majority of the

banks face increasing returns to scale, a small percentage face decreasing returns to scale, and

an even smaller percentage face constant returns to scale.

Appendix A: Assumptions with Discussions

Assumption A:

1. β(z) is not a constant function with respect to z and uniformly bounded on the support D of

z, i.e. maxz∈D ‖β(z)‖ < ∞. For z = (z1, . . . , zr)
′ ∈ D, zs takes cs different integer values in

{0, 1, . . . , cs − 1} and cs ≥ 2 for s = 1, . . . , r. Moreover, r is finite and max1≤s≤r cs < ∞. Let

p(z) = Pr(Zit = z) > 0 for ∀z ∈ D.

2. Suppose that Zit is independent and identically distributed (i.i.d.) over i and t. Moreover,

{Xi1, . . . , XiT } is independent across i.

3. ∀z ∈ D, i = 1, . . . , N and t = 1, . . . , T , E[Xit|Zit = z] = µX(z), E[XitX
′
it|Zit = z] = ΣX(z),

where ‖µX(z)‖ and ‖ΣX(z)‖ are uniformly bounded in z. Xit is independent of Zjs for (i, t) 6=

(j, s). Xt = (X1t, . . . , XNt)
′ is strictly stationary and α-mixing with E‖Xit‖4 <∞. Suppose the

following results hold:

max
1≤i≤N

max
z∈D, λ∈[0,1]r

∣∣∣∣∣ 1

T

T∑
s=1

XisL
p(Zis, z, λ)−∆2(z, λ)

∣∣∣∣∣→P 0,

max
1≤i≤N

max
z∈D, λ∈[0,1]r

∣∣∣∣∣ 1

T

T∑
s=1

X ′isβ(Zis)L
p(Zis, z, λ)−∆2β(z, λ)

∣∣∣∣∣→P 0,

where ∆2(z, λ) = E[XitL
p(Zit, z, λ)|z, λ] and ∆2β(z, λ) = E[Xitβ(Zit)L

p(Zit, z, λ)|z, λ].

4. ut = (u1t, . . . , uNt)
′ is strictly stationary and α-mixing. Denote X = {(Xjs, Zjs), 1 ≤ j ≤ N, 1 ≤

s ≤ T}. E[uit|X ] = 0 and E[u2
it|X ] = σ2

u for 1 ≤ i ≤ N and 1 ≤ t ≤ T . Conditional on X ,

let αu,ij(|t − s|) denote the α-mixing coefficient between uit and ujs, such that for a δ2 > 0,∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1(αu,ij(|t − s|))

δ2
4+δ2 = O(NT ). For the same δ2, E[|uit|4+δ2 |X ] ≤ c1 < ∞

uniformly, where c1 is a constant. For the time dimension, let max1≤i≤N
∑T

t=1

∑T
s=1 |E[uituis|X ]| =

O(T ).

5. λs ∈ [0, 1] for s = 1, . . . , r. Define

CV0(λ) =
∑
z∈D

p(z)(β(z)− η(z, λ))′Ω(z, λ)(β(z)− η(z, λ)),
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+
∑
z∈D

p(z)
(
∆3β(z, λ)−∆3(z, λ)′β(z)

)2
+2
∑
z∈D

p(z)(µX(z)−∆3(z, λ))′(β(z)− η(z, λ))
(
∆3β(z, λ)−∆3(z, λ)′β(z)

)
,

where

∆1(z, λ) = E[Lp(Zit, z, λ)|z, λ],

∆3(z, λ) = ∆2(z, λ)/∆1(z, λ),

∆3β(z, λ) = ∆2β(z, λ)/∆1(z, λ),

Ω(z, λ) = ΣX(z) + ∆3(z, λ)∆3(z, λ)′ −∆3(z, λ)µX(z)′ − µX(z)∆3(z, λ),

ΣXX(z, λ) = E [Ω(Zit, λ)L(Zit, z, λ)|z, λ] ,

ΣXXβ(z, λ) = E [Ω(Zit, λ)β(Zit)L(Zit, z, λ)|z, λ] ,

η(z, λ) = Σ−1
XX(z, λ)ΣXXβ(z, λ).

CV0(λ) = 0 holds only when λ = (λ1, . . . , λr)
′ = 0r×1.

Assumption A.1 is standard and the same as Assumption 1.1 of Li et al. (2013). In order to deal

with the case where the cardinality of D is infinite, one workaround is as follows.

• Suppose that r = 1. Zit ∈ {0, 1, 2, . . . , ν(N,T )− 1}, where ν(N,T )→∞ and ν(N,T )/(NT )→ c

for 0 ≤ c <∞ as (N,T )→ (∞,∞). In this case, the following model can be considered

Yit = X ′itβ(Zit/ν(N,T )) + wi + uit, i = 1, . . . , N and t = 1, . . . , T (A.1)

Here we can treat β(·) as a function with continuous covariates. (A.1) then becomes the model

proposed by Sun et al. (2009). This normalization technique is similar to the one employed by

Cai (2007) and Chen et al. (2012b) in dealing with time varying-coefficient models.

Although optimal bandwidth selection has been fully investigated in an i.i.d. cross-sectional setting in

the literature (see Li and Racine (2010) and Li et al. (2013) for details), little work has been done for

panel data models (c.f. Sun et al. (2009) and Chen et al. (2012b)). For example, optimal bandwidth

selection remains an unresolved issue for the panel data model considered in Sun et al. (2009). This

issue is even more daunting for varying-coefficient panel data models with mixed covariates.

Assumption A.2 is standard in the literature (c.f. Assumption A1 of Cai and Li (2008); Assumption

1 of Sun et al. (2009); Assumption A1 of Chen et al. (2013); Assumption 1.1 of Li et al. (2013) and

Assumption 3.1 of Rodriguez-Poo and Soberon (2014)). Due to the use of conditional expectation, we

are not able to impose certain weak cross-sectional dependence on Xit and Zit as we do for uit. When

all elements of Zit are continuous, one certainly can allow Zit to be α-mixing in the same way as Zit

can be assumed to be alpha-maxing as in Sun et al. (2009) and Rodriguez-Poo and Soberon (2014).

However, since Zit is purely discrete in this study, we assume that Zit is independent over i and t. In

the literature of time series, Andrews (1984) has shown that even the process xt+1 = 0.5xt + εt is not
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α-mixing when εt has a binomial distribution. More details and relevant discussions can be found in

Fan and Yao (2003). Thus, we believe Assumption 2 is reasonable.

Alternatively, we can assume that Z = {Zit, 1 ≤ i ≤ T, 1 ≤ t ≤ T} are pre-determined. Therefore,

conditional on Z, we can impose certain weak cross-sectional dependence on Xit. Accordingly, we need

to adjust our assumptions and analysis, but the consistency and asymptotic normality remain valid.

In an even more extreme case, we can assume that all Zit’s are pre-determined to be z and λ = 0 (or

1). Then the model (2.1) will reduce to the classic panel data model with fixed effects. In this extreme

case, the assumptions and analysis can be significantly simplified.

By construction of Lp(Zit, z, λ), it is easy to show

max
z∈D, λ∈[0,1]r

∣∣∣∣∣ 1

T

T∑
s=1

XisL
p(Zis, z, λ)−∆2(z, λ)

∣∣∣∣∣→P 0,

max
z∈D, λ∈[0,1]r

∣∣∣∣∣ 1

T

T∑
s=1

X ′isβ(Zis)L
p(Zis, z, λ)−∆2β(z, λ)

∣∣∣∣∣→P 0. (A.2)

Due to the within transformation, we have to assume that (A.2) holds uniformly across i in Assumption

A.3, which is in the same spirit of Assumption A1 of Su et al. (2014), Assumption A1 of Chen et al.

(2013) and Assumption C of Bai (2009). Below we provide an example to demonstrate why this

assumption is reasonable.

• For simplicity, suppose that all variables are scalars and consider the data generating process as

Xit = Hit + εit and εit ∼ N(Zit, Zit + 1), where Hit = 0.5 · Hi,t−1 + vit is an AR(1) process;

vit ∼ N(0, 1) is i.i.d. over i and t; Zit = 0 with probability 0.4 and Zit = 1 with probability

0.6. In this example, the requirements of Assumption A.3 are certainly satisfied. Moreover, this

example particularly implies that the choice of Zit affects only the value of Xit, but does not

affect the value of Xjs for (j, s) 6= (i, t).

Assumption A.4 is the same as that in Arellano (1987) and in the same spirit as Assumption C of

Bai (2009), Assumptions A2 and A4 of Chen et al. (2012b) and Assumption 1 of Dong et al. (2015).

Two examples are given below to demonstrate this assumption is reasonable:

• It can be easily seen that Assumption A.4 holds if uit is i.i.d. over i and t.

• We now use a factor model structure as an example to show that Assumption A.4 is verifiable.

Suppose that uit = γift + εit, where all variables are scalars and εit is i.i.d. over i and t with

mean zero. Simple algebra shows that the coefficient αu,ij(|t − s|) reduces to αij · b(|t − s|), in

which αij = E[γiγj ] and b(|t−s|) is the α-mixing coefficient of the factor time series {f1, . . . , fT }.

If ft is a strictly stationary α-mixing process and αij converges to 0 at a certain rate as |i − j|

increases, Assumption A.4 can easily be verified. More details and useful empirical examples can

be found in Chen et al. (2012b).

Moreover, if we assume that every variable is i.i.d. over i and t (alternatively, we can employ a

random effects setting without using the within transformation), we can allow for heteroskedasticity
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by assuming E[u2
it|Xit, Zit] = σu(Xit, Zit) (c.f. Li et al. (2013)). However, when deriving asymptotic

results in a panel data setting with serial coloration and cross-sectional dependence, one normally

deals with E[uitujsXitX
′
js|Zit, Zjs, Xit, Xjs]. In this case, we could assume that ν(Xit, Xjs, Zit, Zjs) =

E[uitujsXitX
′
js|Zit, Zjs, Xit, Xjs] and further impose restrictions on ν(Xit, Xjs, Zit, Zjs). However, this

would make our analysis much more complicated. In addition, heteroskedasticity is not the main focus

of this paper. We would like to point out that one way of imposing both heteroskedasticity and cross-

sectional dependence is to follow Robinson (2011) and Lee and Robinson (2013). More details are given

as follows.

• Assume that uit = σ(Xit, Zit)eit and eit =
∑∞

h=1

∑∞
l=0 aihlεh,t−l, where εi,j is i.i.d. with mean

0 and variance 1 over (i, j) and aihl’s are constants. Simple algebra shows E[u2
it|Xit, Zit] =

σ2(Xit, Zit)
∑∞

h=1

∑∞
l=0 aihl. When (Xit, Zit) is i.i.d. across i and

∑∞
h=1

∑∞
l=0 aihl is the same for

all 1 ≤ i ≤ N , we can show that the error terms are i.i.d. across i. Otherwise, heteroskedasticity

will occur. With this setting, more restrictions are needed for developing asymptotic results.

Robinson (2011) and Lee and Robinson (2013) have used this technique to revisit some cross-

sectional data models. However, more work will be needed to extend this technique to panel data

models.

Assumption A.5 is a panel data version of Assumption 2 of Li et al. (2013) and ensures that CV0(λ)

is uniquely minimized at 0. By Theorem 2.1 of Newey and McFadden (1994), this assumption implies

that λ̂ obtained by minimizing (2.8) converges to 0r×1. In order to further explain why this assumption

is reasonable, we expand the product form of L(Zit, z, λ) as a summation form:

L(Zit, z, λ) =
r∏
s=1

{1(Zit,s = zs) + λs1(Zit,s 6= zs)}

=

r∏
s=1

1(Zit,s = zs) +

r∑
s=1

λs1s,Zit=z + · · ·+
r∏
s=1

λs1(Zit,s 6= zs)

= 1(Zit = z) +
r∑
s=1

λs1s,Zit=z + · · ·+
r∏
s=1

λs1(Zit,s 6= zs),

where 1s,Zit=z = 1(Zit,s 6= zs)
∏r
n=1,n 6=s 1(Zit,n = zn) for simplicity. Then, we can further rewrite the

following expectations:

∆1(z, λ) = E[Lp(Zit, z, λ)|z, λ] = p(z) + δ1(z, λ),

∆2(z, λ) = E[XitL
p(Zit, z, λ)|z, λ] = p(z)µX(z) + δ2(z, λ),

∆2β(z, λ) = E[Xitβ(Zit)L
p(Zis, z, λ)|z, λ] = p(z)µX(z)′β(z) + δ3(z, λ), (A.3)

where δ1(z, λ), δ2(z, λ) and δ2β(z, λ) can be expressed as

δ1(z, λ) = λδ∗1(z, λ), δ2(z, λ) = λδ∗2(z, λ), δ3(z, λ) = λδ∗3(z, λ).
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Thus, it is easy to know that δ1(z, 0) = δ2(z, 0) = δ2β(z, 0) = 0. Moreover, when λ = 0, ∆3(z, λ) and

∆3β(z, λ) will reduce to µX(z) and µX(z)′β(z) respectively.

Before proceeding to Assumption B, denote

p(z) = p(z̄) · p(z̃), p(z̄) = Pr(Z̄it = z̄), p(z̃) = Pr(Z̃it = z̃),

L(Zit, z, λ) = L(Z̄it, z̄, λ̄) · L(Z̃it, z̃, λ̃),

L(Z̄it, z̄, λ̄) =

r1∏
s=1

λ
1(Zit,s 6=zs)
s , L(Z̃it, z̃, λ̃) =

r∏
s=r1+1

λ
1(Zit,s 6=zs)
s ,

where z̄ = (z1, . . . , zr1)′ and z̃ = (zr1+1, . . . , zr)
′. Also, β(z), µX(z), ΣX(z), η(z, λ), ∆3(z, λ), ∆3β(z, λ)

and Ω(z, λ) denoted in Assumption A.5 will respectively reduce to β(z̄), µX(z̄), ΣX(z̄), η(z̄, λ̄), ∆3(z̄, λ̄),

∆3β(z̄, λ̄) and Ω(z̄, λ̄) with z̄ ∈ D̄ for the irrelevant covariate case.

Assumption B:

1. The irrelevant covariates Z̃it’s for i = 1, . . . , N and t = 1, . . . , T are independent of all the other

variables.

2. λs ∈ [0, 1] for s = 1, . . . , r1, r1 + 1, . . . , r. Define

CV ∗0 (λ̄) =
∑
z̄∈D̄

p(z̄)(β(z̄)− η(z̄, λ̄))′Ω(z̄, λ̄)(β(z̄)− η(z̄, λ̄)),

+
∑
z̄∈D̄

p(z̄)
(
∆3β(z̄, λ̄)−∆3(z̄, λ̄)′β(z̄)

)2
+2
∑
z̄∈D̄

p(z̄)(µX(z̄)−∆3(z̄, λ̄))′(β(z̄)− η(z̄, λ̄))
(
∆3β(z̄, λ̄)−∆3(z̄, λ̄)′β(z̄)

)
.

CV ∗0 (λ̄) = 0 holds only when λ̄ = (λ1, . . . , λr1)′ = 0r1×1.

Assumption B is a panel data version of Assumption 3 of Li et al. (2013). Ideally, one can assume

conditional independence instead of independence in Assumption B.1. However, the former is trouble-

some even for i.i.d. data (Li et al., 2013). In view of this, we adopt the assumption of unconditional

independence in this paper. All discussions for Assumption A.5 also apply to Assumption B.2.

Assumption C:

1. For a random variable Z̄it ∈ D̄ and β(Z̄it) = (β1(Z̄it), . . . , βq(Z̄it))
′, suppose there exists a positive

integer 1 ≤ q∗ ≤ q such that 0 < E|βj(Z̄it)|2 < ∞ for j = 1, . . . , q∗ and E|βj(Z̄it)|2 = 0 for

j = q∗ + 1, . . . , q.

2. For z̄ ∈ D̄, let Σ1(z̄) = ΣX(z̄)− µX(z̄)µX(z̄)′. Suppose that

0 < ρ1 ≤ min
z̄∈D̄

ρmin(Σ1(z̄)) ≤ max
z̄∈D̄

ρmax(Σ1(z̄)) ≤ ρ2 <∞,

where ρmin(Σ1(z̄)) and ρmax(Σ1(z̄)) denote the minimum and maximum eigenvalues of Σ1(z̄)

respectively.
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Assumption C.1 defines the sparsity structure for the coefficient function. It indicates that one ele-

ment of the coefficient function is removed only when it does not have an impact on all β(z̄1), . . . , β(z̄m).

Note that Σ1(z̄) is essentially a covariance matrix, implying Assumption C.2 is reasonable.
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Appendix B

In this file, we provide the algorithm for the variable selection procedure and the proofs of the asymptotic

results.

B.1 Algorithm

The procedure for obtaining regularized estimates is described as follows:

1. Minimize the cross-validation criterion function (2.8) in order to choose λ̂.

2. Select τ̃ defined in (2.15) from a sufficient large set, say [1, 4
√
NT ], by using a grid search. For

each choice of τ̃ , estimate (2.13) using a similar procedure as proposed in Hunter and Li (2005)

and Wang and Xia (2009). Define

B̂
(n)
τ̃ = (β̂

(n)
τ̃ ,1 , . . . , β̂

(n)
τ̃ ,m)′ = (b̂

(n)
τ̃ ,1 , . . . , b̂

(n)
τ̃ ,q ) (B.1)

to be the estimate obtained in the nth iteration. Then the loss function given above can be locally

approximated by

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβj

)2
L(Zi, z

j , λ̂) +

q∑
s=1

τ̃s
‖bs‖2

‖b̂(n)
τ̃ ,s‖

=
m∑
j=1

(
N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβj

)2
L(Zi, z

j , λ̂) +

q∑
s=1

τ̃s
β2
j,s

‖b̂(n)
τ̃ ,s‖

)
. (B.2)

The minimizer of (B.2) is given by B̂
(n+1)
τ̃ = (β̂

(n+1)
τ̃ ,1 , . . . , β̂

(n+1)
τ̃ ,m )′, where for j = 1, . . . ,m

β̂
(n+1)
τ̃ ,j =

(
N∑
i=1

T∑
t=1

X̃itX̃
′
itL(Zi, z

j , λ̂) +D(n)

)−1 N∑
i=1

T∑
t=1

X̃itỸitL(Zi, z
j , λ̂), (B.3)

and D(n) = diag
(
‖b̂(n)
τ̃ ,1‖−1τ̃1, . . . , ‖b̂(n)

τ,q ‖−1τ̃q

)
. Repeat this procedure until ‖B̂(n+1)

τ̃ − B̂(n)
τ̃ ‖ <

tolerance, where tolerance is a sufficiently small number (say, 10−8).

3. Select the optimal estimator based on the modified BIC-type criterion.
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Computer codes for implementing this procedure are available upon request and will be available in

authors’ website soon for general use.

B.2 Proofs

For notational simplicity, let β̂it = β̂−it(Zit), βit = β(Zit), 1js,it = 1(Zjs = Zit) and Z = {Zit : 1 ≤ i ≤

N, 1 ≤ t ≤ T}. Recall that we have defined CV0(λ), η(z), ΣXX(z) and ΣXXβ(z) in Assumption A.5. In

the following proof, we will use these notations without defining them again. Also, in this note O(1)’s

are some constants which may be different at each appearance.

Lemma B.1. For two square matrices A and B with the same dimensions, suppose that A is non-

singular and
∥∥A−1B

∥∥ < 1. Then we have the following expansion:

(A+B)−1 = A−1 −A−1BA−1 +A−1BA−1BA−1 −A−1BA−1BA−1BA−1 + · · ·

The proof of Lemma B.1 is straightforward and thus omitted.

Lemma B.2. Under Assumption A, as (N,T )→ (∞,∞) jointly

1. 1
NT

∑N
i=1

∑T
t=1 ũ

2
it →P σ

2
u;

2. 1
NT

∑N
i=1

∑T
t=1 X̃itX̃

′
itL(Zit, z, λ)− ΣXX(z)→P 0;

3. 1
NT

∑N
i=1

∑T
t=1 X̃itX̃

′
itβ(Zit)L(Zit, z, λ)− ΣXXβ(z)→P 0;

4. 1
NT

∑N
i=1

∑T
t=1 X̃itX̃

′
it − E[Ω(Zit, λ)|λ]→P 0;

5. 1
NT

∑N
i=1

∑T
t=1 X̃itX̃

′
it1(Zit = z)− p(z)Ω(z, λ)→P 0;

6. 1
NT

∑N
i=1

∑T
t=1 X̃itX̃

′
itβ(Zit)− E[Ω(Zit, λ)β(Zit)]→P 0;

7. 1
NT

∑N
i=1

∑T
t=1 X̃itũit1(Zit = z) = OP

(
1√
NT

)
;

8. 1
NT

∑N
i=1

∑T
t=1 X̃itũitL(Zit, z, λ) = OP

(
1√
NT

)
;

9. 1
NT

∑N
i=1

∑T
t=1 X̃itũit = OP

(
1√
NT

)
.

Proof of Lemma B.2:

1). We begin by expanding 1
NT

∑N
i=1

∑T
t=1 ũ

2
it as follows:

1

NT

N∑
i=1

T∑
t=1

ũ2
it =

1

NT

N∑
i=1

T∑
t=1

(
uit −

1

Tit

T∑
s=1

uisL
p
is,it

)(
uit −

1

Tit

T∑
s=1

uisL
p
is,it

)

=
1

NT

N∑
i=1

T∑
t=1

u2
it +

1

NT

N∑
i=1

T∑
t=1

1

Tit

T∑
s1=1

uis1L
p
is1,it

1

Tit

T∑
s2=1

uis2L
p
is2,it

− 2

NT

N∑
i=1

T∑
t=1

1

Tit

T∑
s=1

uituisL
p
is,it (B.4)
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For the first term on RHS of (B.4), write

E

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

u2
it − σ2

u

∣∣∣∣∣
2

≤ 1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

cδ2 (αu,ij(|t− s|))δ2/(4+δ2)
(
E[u4+δ2

it |X ] · E[u4+δ2
js |X ]

)2/(4+δ2)

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αu,ij(|t− s|))δ2/(4+δ2) = O

(
1

NT

)
,

where cδ2 = 2(4+2δ2)/(4+δ2) ·(4+δ2)/δ2; the first inequality is by the Davydov inequality (c.f. pages 19-20

in Bosq (1996) and the supplement of Su and Jin (2012)); and the last line follows from Assumption

A.4.

For the third term on right hand side of (B.4),

1

NT

N∑
i=1

T∑
t=1

1

Tit

T∑
s=1

uituisL
2
is,it ≤

1

NT

N∑
i=1

T∑
t=1

|uit|
∣∣∣∣ TTit

∣∣∣∣
∣∣∣∣∣ 1

T

T∑
s=1

uisL
p
is,it

∣∣∣∣∣
≤ OP

(
1√
T

)
1

NT

N∑
i=1

T∑
t=1

|uit| = OP

(
1√
T

)
,

where the second inequality follows from Assumption A.4.

Similarly, 1
NT

∑N
i=1

∑T
t=1

1
Tit

∑T
s1=1 uis1L

2
is1,it

1
Tit

∑T
s2=1 uis2L

2
is2,it

= OP
(

1
T

)
, which completes the

proof of the first result of this lemma. �

2). We start by rewriting (2) of Lemma B.2 as follows:

1

NT

N∑
i=1

T∑
t=1

X̃itX̃
′
itL(Zit, z, λ)

=
1

NT

N∑
i=1

T∑
t=1

(
Xit −

1

Tit

T∑
s=1

XisL
p
is,it

)(
Xit −

1

Tit

T∑
s=1

XisL
p
is,it

)′
L(Zit, z, λ)

=
1

NT

N∑
i=1

T∑
t=1

XitX
′
itL(Zit, z, λ) +

1

NT

N∑
i=1

T∑
t=1

1

T 2
it

T∑
s1=1

T∑
s2=1

Xis1L
p
is1,it

X ′is2L
p
is2,it

L(Zit, z, λ)

− 1

NT

N∑
i=1

T∑
t=1

1

Tit

T∑
s=1

XisL
p
is,itX

′
itL(Zit, z, λ)

− 1

NT

N∑
i=1

T∑
t=1

Xit
1

Tit

T∑
s=1

X ′isL
p
is,itL(Zit, z, λ). (B.5)

We now consider each term on RHS of (B.5) respectively. We start with the first term on RHS of

(B.5) as follows:

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

XitX
′
itL(Zit, z, λ)− E[ΣX(Zit)L(Zit, z, λ)]

∥∥∥∥∥
2


=
1

N2T 2

q∑
m=1

q∑
n=1

N∑
i=1

T∑
t=1

T∑
s=1

E
[

(Xit,mXit,nL(Zit, z, λ)− E[ΣX,mn(Zlk)L(Zlk, z, λ)])

3



· (Xis,mXis,nL(Zis, z, λ)− E[ΣX,mn(Zlk)L(Zlk, z, λ)])
]

≤ 1

N2T 2

q∑
m=1

q∑
n=1

N∑
i=1

T∑
t=1

T∑
s=1

{
E
[
|Xit,mXit,nL(Zit, z, λ)|2

]
E
[
|Xis,mXis,nL(Zit, z, λ)|2

]}1/2

≤ O(1)
1

N2T 2

N∑
i=1

T∑
t=1

T∑
s=1

{
E
[
‖Xit‖4

]
E
[
‖Xis‖4

]}1/2
= O

(
1

N

)
, (B.6)

where Xit,m denotes the mth element of Xit for m = 1, . . . , q; ΣX,mn(z) denotes the (m,n)th element of

ΣX(z) for m,n = 1, . . . , q; the first inequality follows from Cauchy-Schwarz inequality; and the second

inequality follows from L(Zit, z, λ) being bounded uniformly. It thus implies that

1

NT

N∑
i=1

T∑
t=1

XitX
′
itL(Zit, z, λ)− E[ΣX(Zit)L(Zit, z, λ)]→P 0.

For the second term on RHS of (B.5), by Assumption A.3, we can write

1

NT

N∑
i=1

T∑
t=1

1

T 2
it

T∑
s1=1

T∑
s2=1

Xis1L
p
is1,it

X ′is2L
p
is2,it

L(Zit, z, λ)

=
1

NT

N∑
i=1

T∑
t=1

∆3(Zit, λ)∆3(Zit, λ)′L(Zit, z, λ) + oP (1)

→P E[∆3(Zit, λ)∆3(Zit, λ)′L(Zit, z, λ)], (B.7)

where the last line follows from the same procedure as used in (B.6).

Similarly, for the last two terms on RHS of (B.5),

1

NT

N∑
i=1

T∑
t=1

1

Tit

T∑
s=1

XisL
p
is,itX

′
itL(Zit, z, λ) =

1

NT

N∑
i=1

T∑
t=1

∆3(Zit, λ)X ′itL(Zit, z, λ) + oP (1)

→P E[∆3(Zit, λ)X ′itL(Zit, z, λ)] = E[∆3(Zit, λ)µX(Zit)
′L(Zit, z, λ)].

With the above discussions, the result follows. �

3)-6). These four results follow by applying a similar procedure as used for proving the second

result of this lemma. �

7). We begin by expanding the left hand term of (7) of this lemma:

1

NT

N∑
i=1

T∑
t=1

X̃itũit1(Zit = z)

=
1

NT

N∑
i=1

T∑
t=1

(
Xit −

1

Tit

T∑
s=1

XisL
p
is,it

)(
uit −

1

Tit

T∑
s=1

uisL
p
is,it

)
1(Zit = z)

=
1

NT

N∑
i=1

T∑
t=1

(Xit −∆3(Zit, λ))

(
uit −

1

Tit

T∑
s=1

uisL
p
is,it

)
1(Zit = z)

− 1

NT

N∑
i=1

T∑
t=1

(
1

Tit

T∑
s=1

XisL
p
is,it −∆3(Zit, λ)

)(
uit −

1

Tit

T∑
s=1

uisL
p
is,it

)
1(Zit = z). (B.8)
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Firstly, we consider the second term on RHS of (B.8).

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
1

Tit

T∑
s=1

XisL
p
is,it −∆3(Zit, λ)

)
uit1(Zit = z)

∥∥∥∥∥
2


≤ o(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

|E[uit1ujt2 |X ]|

≤ o(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

cδ2 (αu,ij(|t1 − t2|))δ2/(4+δ2)

·
(
E[|uit1 |

2+δ2/2 |X ]
)2/(4+δ2) (

E[|ujt2 |
2+δ2/2 |X ]

)2/(4+δ2)

≤ o(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

(αu,ij(|t1 − t2|))δ2/(4+δ2) = oP

(
1

NT

)
, (B.9)

where cδ2 = 2(4+2δ2)/(4+δ2) · (4 + δ2)/δ2; the first equality follows from Assumptions A.3-A.4; the second

inequality follows from Davydov inequality; and the last line follows from Assumption A.4.

Similarly, we can obtain

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
1

Tit

T∑
s=1

XisL
p
is,it −∆3(Zit, λ)

)
1

Tit

T∑
s=1

uisL
2
is,it1(Zit = z)

∥∥∥∥∥
2
 = oP

(
1

NT

)
,

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(Xit −∆3(Zit, λ))
1

Tit

T∑
s=1

uisL
p
is,it1(Zit = z)

∥∥∥∥∥
2
 = oP

(
1

NT

)
.

We therefore can further write

1

NT

N∑
i=1

T∑
t=1

X̃itũit1(Zit = z) =
1

NT

N∑
i=1

T∑
t=1

(Xit −∆3(Zit,λ)uit1(Zit = z)

=
1

NT

N∑
i=1

T∑
t=1

(Xit − µX(z)))uit1(Zit = z) + oP

(
1√
NT

)
. (B.10)

For the term on RHS of (B.10), write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(Xit − µX(z))uit1(Zit = z)

∥∥∥∥∥
2


≤ 1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

∣∣E[(Xit − µX(z))′ (Xjs − µX(z))uitujs1(Zit = z)1(Zjs = z)]
∣∣

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[uitujs|X ]| = O

(
1

NT

)
,

where the last equality follows from the proof of (B.9).

With the above discussions, the result follows. �

8)-9) These two results follow by applying a similar procedure used for proving the seventh result

of this lemma. �

5



Note that the finite sample property of the leave-one-out estimator is different from the estimator

in (2.7) provided in the main file which uses the whole sample, but they are interchangeable in the

following analysis due to the assumption that both N and T are sufficiently large. Therefore, we

express β̂it as the estimator which uses the whole sample in what follows. A similar technique is also

used in Li et al. (2013, p. 569).

β̂it − βit =

 N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL(Zjs, Zit, λ)

−1
N∑
j=1

T∑
s=1

X̃jsX̃
′
js(βjs − βit)L(Zjs, Zit, λ)

+

 N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL(Zjs, Zit, λ)

−1
N∑
j=1

T∑
s=1

X̃jsũjsL(Zjs, Zit, λ), (B.11)

where we define βit = β(Zit) for notational simplicity.

Proof of Lemma 2.1.1:

We use Theorem 2.1 of Newey and McFadden (1994) to verify that λ̂ = oP (1). By Assumption

A.5, CV0(λ) is uniquely minimized at λ = (λ1, . . . , λr)
′ = 0. Here, λ belongs to a compact set [0, 1]r,

and CV0(λ) is continuous on [0, 1]r. Then we need only to show that CV (λ) converges uniformly in

probability to CV0(λ) + c below, where c is a positive constant uniformly in λ. For this purpose, write

CV (λ) =
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(βit − β̂it) + γit

)2
+

2

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(βit − β̂it) + γit

)
ũit +

1

NT

N∑
i=1

T∑
t=1

ũ2
it

≡ CV1(λ) + CV2(λ) + CV3, (B.12)

where γit = 1
Tit

∑T
s=1X

′
is (β(Zis)− β(Zit))L

p
is,it.

The result (1) of Lemma B.2 implies 1
NT

∑N
i=1

∑T
t=1 ũ

2
it →P σ

2
u uniformly in λ. Thus, we just need

to focus on CV1(λ) and CV2(λ) below. Before proceeding further, we first investigate β̂it − βit and γit.

By results (2), (3) and (8) of Lemma B.2, we can further write

β̂it − βit = Σ−1
XX(Zit, λ)ΣXXβ(Zit, λ)− β(Zit) + oP (1) = η(Zit, λ)− β(Zit) + oP (1),

γit = ∆3β(Zit, λ)−∆3(Zit, λ)′β(Zit) + oP (1). (B.13)

By (B.13), CV1(λ) can be rewritten as

CV1(λ) =
1

NT

N∑
i=1

T∑
t=1

(
(Xit −∆3(Zit, λ))′(β(Zit)− η(Zit, λ)) + ∆3β(Zit, λ)−∆3(Zit, λ)′β(Zit)

)2
+ oP (1).

Then by Assumptions A.2-A.3, it is easy to show that CV1(λ)→P CV0(λ). Similarly, we can show that

CV2(λ) = oP (1) uniformly in λ.

Therefore, we have shown that CV (λ)→P CV0(λ)+σ2
u. Thus, all the conditions needed for Theorem

2.1 of Newey and McFadden (1994) are satisfied. Then the result follows. �

Proof of Theorem 2.1.1:

6



In Lemma 2.1.1, we have shown λ̂ = oP (1), so it is reasonable to assume that λ, in proving this

theorem, is sufficiently small and close to 0r×1. We now investigate the cross-validation criterion

function and write

CV (λ) =
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(βit − β̂it)

)2
+

2

NT

N∑
i=1

T∑
t=1

X̃ ′it(βit − β̂it)ũit +
1

NT

N∑
i=1

T∑
t=1

ũ2
it

+
2

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(βit − β̂it) + ũit

)
γit +

1

NT

N∑
i=1

T∑
t=1

γ2
it

≡ CV1(λ) + CV2(λ) + CV3 + CV4(λ) + CV5(λ), (B.14)

where γit = 1
Tit

∑T
s=1X

′
is (β(Zit)− β(Zis))L

p
is,it.

In (2.6), we have shown that γit = O (‖λ‖p) uniformly when λ is sufficiently small. In connection

with the construction of CV4(λ) and CV5(λ), and Lemma B.2, we are able to obtain that CV4(λ) =

OP (‖λ‖p) and CV5(λ) = O
(
‖λ‖2p

)
. By (1) of Lemma B.2, CV3 = 1

NT

∑N
i=1

∑T
t=1 ũ

2
it →P σ2

u and is

independent of λ, so we focus on CV1(λ) and CV2(λ) below. To facilitate our analysis, we need to

further consider β̂it − βit. By Lemma 2.1.1, we can express the the kernel function as

L(Zjs, Zit, λ) = 1js,it +

r∑
m=1

λm1m,jsit +O(‖λ‖2), (B.15)

where 1m,jsit = 1(Zjs,m 6= Zit,m)
∏r
n=1,n6=m 1(Zjs,n = Zit,n).

In what follows, we substitute (B.15) into each term on RHS of (B.11). Firstly,

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL(Zjs, Zit, λ)

=
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js1js,it +

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js

r∑
m=1

λm1m,jsit +OP (‖λ‖2)

≡ A1it +A2itλ +OP (‖λ‖2), (B.16)

where the first equality is due to result (4) of Lemma B.2.

Secondly,

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(βjs − βit)L(Zjs, Zit, λ)

=
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(βjs − βit)1js,it +

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(βjs − βit)

r∑
m=1

λm1m,jsit +OP (‖λ‖2)

≡ 0 +B2itλ +OP (‖λ‖2), (B.17)

where the first equality is due to (4) and (6) of Lemma B.2 and the uniform bound on β(z); and the

zero term of the last line is due to (βjs − βit)1js,it = 0.

Thirdly,

1

NT

N∑
j=1

T∑
s=1

X̃jsũjsL(Zjs, Zit, λ)

7



=
1

NT

N∑
j=1

T∑
s=1

X̃jsũjs1js,it +
1

NT

N∑
j=1

T∑
s=1

X̃jsũjs

r∑
m=1

λm1m,jsit +OP

(
‖λ‖2√
NT

)

≡ C1it + C2itλ +OP

(
‖λ‖2√
NT

)
, (B.18)

where the first equality is due to (9) of Lemma B.2.

For the terms on RHS of (B.16)-(B.18), by Lemma B.2, it is straightforward to obtain

A−1
1it = OP (1), A2itλ = OP (‖λ‖) , B2itλ = OP (‖λ‖),

C1it = OP

(
1√
NT

)
, C2itλ = OP

(
‖λ‖√
NT

)
. (B.19)

By (B.16), using Lemma B.1 twice gives the following expression. 1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL(Zjs, Zit, λ)

−1

=
(
A1it +A2itλ +OP (‖λ‖2)

)−1

= (A1it +A2itλ)−1 +OP (‖λ‖2) = A−1
1it −A

−1
1itA2itλA

−1
1it +OP (‖λ‖2) (B.20)

We then use (B.19) and (B.20) to further simplify (B.11) as follows.

β̂it = βit +
(
A−1

1it −A
−1
1itA2itλA

−1
1it

)
(B2itλ + C1it + C2itλ) +OP

(
‖λ‖2√
NT

)
+OP

(
‖λ‖3

)
(B.21)

We are now ready to further analyze CV1(λ) and CV2(λ) by using (B.19) and (B.21).

CV1(λ) =
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(βit − β̂it)

)2

=
1

NT

N∑
i=1

T∑
t=1

{
X̃ ′it

(
A−1

1itA2itλA
−1
1it −A

−1
1it

)
(B2itλ + C1it + C2itλ)

}2
+OP

(
‖λ‖2√
NT

)
+OP

(
‖λ‖3

)
=

1

NT

N∑
i=1

T∑
t=1

(
D2

3it − 2D1itD2it + 2D2itD3it

)
+OP

(
‖λ‖2√
NT

)
+OP

(
‖λ‖3

)
+ terms independent of λ,

where D1it = X̃ ′itA
−1
1it

(
A2itλA

−1
1itC1it − C2itλ

)
, D2it = X̃ ′itA

−1
1itC1it and D3it = X̃ ′itA

−1
1itB2itλ.

CV2(λ) =
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
it(βit − β̂it)

=
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itA2itλA

−1
1it (B2itλ + C1it + C2itλ)

− 2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1it (B2itλ + C1it + C2itλ) +OP

(
‖λ‖2

NT

)
+OP

(
‖λ‖3√
NT

)

=
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itA2itλA

−1
1itC1,it −

2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itB2itλ −

2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itC2itλ
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+OP

(
‖λ‖2√
NT

)
+ terms independent of λ,

where the first equality follows from (9) of Lemma B.2 and (B.21); and the second equality follows from

(9) of Lemma B.2 and (B.19).

Note that

2

NT

N∑
i=1

T∑
t=1

D2itD3it =
2

NT

N∑
i=1

T∑
t=1

X̃ ′itA
−1
1itC1itX̃

′
itA
−1
1itB2itλ

=
2

N3T 3

r∑
m=1

λm

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

N∑
k=1

T∑
r=1

X̃ ′itA
−1
1itX̃jsũjs1js,itX̃

′
itA
−1
1itX̃krX̃

′
kr(βkr − βit)1m,krit

=
2

N3T 3

r∑
m=1

λm

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

N∑
k=1

T∑
r=1

X̃ ′krA
−1
1krX̃itũit1it,krX̃

′
krA

−1
1krX̃jsX̃

′
js(βjs − βkr)1m,jskr

=
2

N3T 3

r∑
m=1

λm

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

N∑
k=1

T∑
r=1

X̃ ′itA
−1
1itX̃krũit1it,krX̃

′
krA

−1
1itX̃jsX̃

′
js(βjs − βit)1m,jsit

=
2

N2T 2

r∑
m=1

λm

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

X̃ ′itA
−1
1it ũitX̃jsX̃

′
js(βjs − βit)1m,jsit

=
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itB2itλ,

where the third equality follows from changing the index (it, js, kr) to (kr, it, js); the fourth equality

follows from the definition of 1it,kr; and the fifth equality follows from the definition of A1it. Note that

the term on RHS of the above equation can be canceled out by the leading term of CV2(λ).

Thus, we are now able to further write

CV (λ) =
1

NT

N∑
i=1

T∑
t=1

(
D2

3it − 2D1itD2it

)
+

2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itA2itλA

−1
1itC1,it

− 2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itC2itλ +OP

(
‖λ‖2√
NT

)
+OP

(
‖λ‖3

)
+ terms independent of λ. (B.22)

Moreover, by (B.19) and some tedious algebra, we can show

1

NT

N∑
i=1

T∑
t=1

D3it = OP
(
‖λ‖2

)
,

2

NT

N∑
i=1

T∑
t=1

D1itD2it = OP

(
‖λ‖
NT

)
,

2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itA2itλA

−1
1itC1,it = OP

(
‖λ‖
NT

)
,

2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itC2itλ = OP

(
‖λ‖
NT

)
.

Based on the above discussions, (B.22) can be further simplified as follows.

CV (λ) = OP

(
‖λ‖
NT

)
+OP (‖λ‖2) + terms independent of λ, (B.23)
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which immediately implies that λ̂ = OP
(

1
NT

)
. �

Proof of Theorem 2.1.2:

Denote

Ťit =
T∑
s=1

1(Zis = Zit), Y̌it = Yit −
1

Ťit

T∑
s=1

Yis1is,it,

X̌it = Xit −
1

Ťit

T∑
s=1

Xis1is,it, ǔit = uit −
1

Ťit

T∑
s=1

uis1is,it.

Note that for the large N and small T case, 1
Ťit

∑T
s=1 uis1is,it should be replaced by

Au,it = lim
λ→0r×1

T∑
s=1

uisL
p
is,it/

T∑
s=1

Lpis,it

as discussed in Section 2.4. 1
Ťit

∑T
s=1 Yis1is,it and 1

Ťit

∑T
s=1Xis1is,it should be changed in a similar

fashion.

Expanding all kernel functions in (2.7) by using (B.15) easily leads to β̂(z) = β̌(z) + OP
(

1
NT

)
by

Lemma B.1 and Theorem 2.1.1, where β̌(z)

β̌(z) =

(
N∑
i=1

T∑
t=1

X̌itX̌
′
it1(Zit = z)

)−1 N∑
i=1

T∑
t=1

X̌itY̌
′
it1(Zit = z).

Thus, it is straightforward to obtain
√
NT (β̂(z)− β(z)) =

√
NT (β̌(z)− β(z)) +OP

(
1√
NT

)
. Below we

just need to focus on
√
NT (β̌(z)− β(z)), so write

√
NT (β̌(z)− β(z))

=
√
NT

(
N∑
i=1

T∑
t=1

X̌itX̌
′
it1(Zit = z)

)−1 N∑
i=1

T∑
t=1

X̌it

(
X̌ ′it(β(Zit)− β(z)) + ǔit

)
1(Zit = z)

=
√
NT

(
N∑
i=1

T∑
t=1

X̌itX̌
′
it1(Zit = z)

)−1 N∑
i=1

T∑
t=1

X̌itǔit1(Zit = z),

where the second equality is due to (β(Zit)− β(z))1(Zit = z) = 0.

As with (5) of Lemma B.2, it is easy to show that

1

NT

N∑
i=1

T∑
t=1

X̌itX̌
′
it1(Zit = z)→P p(z)

(
ΣX(z)− µX(z)µX(z)′

)
= Ξ1(z).

Therefore, we need only to focus on 1√
NT

∑N
i=1

∑T
t=1 X̌itǔit1(Zit = z). As with the proof for (7) of

Lemma B.2, we can show that

1√
NT

N∑
i=1

T∑
t=1

X̌itǔit1(Zit = z) =
1√
NT

N∑
i=1

T∑
t=1

(Xit − µX(z))uit1(Zit = z) + oP (1).

Thus, we focus on 1√
NT

∑N
i=1

∑T
t=1Xituit1(Zit = z) below. For notational simplicity, denote that

10



1√
NT

N∑
i=1

T∑
t=1

(Xit − µX(z))uit1(Zit = z) =
T∑
t=1

VT,N (t),

where VT,N (t) = 1√
NT

∑N
i=1 (Xit − µX(z))uit1(Zit = z). By the construction of VT,N (t) and Assump-

tions A.2-A.4, VT,N (t) is stationary and α-mixing. We can then apply the large-block and small-block

technique to show the normality below (c.f. Theorem 2.21 in Fan and Yao (2003); Lemma A.1 in

Gao (2007); Lemma A.1 in Chen et al. (2012)). For this purpose, we partition the set {1, . . . , T} into

2kT + 1 subsets with a large block of size lT , a small block of size sT and the remaining set of size

T − kT (lT + sT ), where, for any λ > 2, lT = bT (λ−1)/λc, sT = bT 1/λc and kT = bT/(lT + sT )c. Denote

that for n = 1, . . . , kT

Ṽn =

nlT+(n−1)sT∑
t=(n−1)(lT+sT )+1

VT,N (t), V̄n =

n(lT+sT )∑
t=nlT+(n−1)sT+1

VT,N (t) and V̂ =
T∑

t=kT (lT+sT )+1

VT,N (t).

By the properties of α-mixing process and a procedure similar to A.6 and A.7 in Chen et al. (2012),

we obtain that E
∥∥∥∑kT

n=1 V̄n

∥∥∥2
= O

(
kT sT
T

)
= o(1) and E

∥∥∥V̂ ∥∥∥2
= O

(
T−kT lT

T

)
= o(1). Thus, we just

need to focus on
∑kT

n=1 Ṽn below. Using Proposition 2.6 in Fan and Yao (2003) and the condition on

the α-mixing coefficient, we have∣∣∣∣∣E
[

exp

{
kT∑
n=1

‖Ṽn‖

}]
−

kT∏
n=1

E
[
exp

{
‖Ṽn‖

}]∣∣∣∣∣ ≤ C(kT − 1)α(sT )→ 0,

where C is a constant; α(·) denotes the upper bound of the α-mixing coefficients provided in Assumption

A and is achievable in the same way as Assumption A.4 of Chen et al. (2012). Then we obtain that Ṽn

for n = 1, . . . , kT are asymptotically independent. Furthermore, as in the proof of Theorem 2.21.(ii) in

Fan and Yao (2003), we have Cov
[
Ṽ1

]
= lT

T Ξ0(z)(Iq + o(1)), where

Ξ0(z) = lim
N,T→∞

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
uitujs(Xit − µX(z))(Xjs − µX(z))′1(Zit = z)1(Zjs = z)

]
.

It further implies that

kT∑
n=1

Cov
[
Ṽn

]
= kT · Cov

[
Ṽ1

]
=
kT lT
T

Ξ0 (Iq + o (1))→ Ξ0,

which indicates the Feller condition is satisfied.

Moreover, by Cauchy-Schwarz inequality, we have

E

[∥∥∥Ṽn∥∥∥2
· I {‖Vn‖ ≥ ε}

]
≤
{
E
∥∥∥Ṽn∥∥∥3

}2/3

·
{
P
(∥∥∥Ṽn∥∥∥ ≥ ε)}1/3

≤ C
{
E
∥∥∥Ṽn∥∥∥3

}2/3

·
{
E
∥∥∥Ṽn∥∥∥2

}1/3

and by Lemma B.2 in Chen et al. (2012)

E
∥∥∥Ṽn∥∥∥3

≤
(
lT
T

)3/2
E

∥∥∥∥∥ 1√
N

N∑
i=1

(Xi1 − µX(z))ui11(Zi1 = z)

∥∥∥∥∥
4


3/4

<∞.
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Therefore, E
∥∥∥Ṽn∥∥∥3

= O

((
lT
T

)3/2
)

, which implies that

E

[∥∥∥Ṽn∥∥∥2
· I {‖Vn‖ ≥ ε}

]
≤ O

((
lT
T

)4/3
)

= o

(
lT
T

)
.

Consequently,
∑kT

n=1E

[∥∥∥Ṽn∥∥∥2
· I {‖Vn‖ ≥ ε}

]
= o

(
kT lT
T

)
= o (1). Therefore, the Lindeberg condition

is satisfied. Based on the above discussions,
√
NT (β̌(z)−β(z))→D N(0,Ξ1(z)−1Ξ0(z)Ξ1(z)−1), which

completes the proof. �

Proof of Corollary 2.1.1:

All we need to show is that σ̂2
u →P σ

2
u. We start by writing

σ̂2
u =

1

NT

N∑
i=1

T∑
t=1

(X̃ ′it(β(Zit)− β̂(Zit)) + ũit + γit)
2 = A1 +A2 + 2A3 + 2A4 +A5,

where

A1 =
1

NT

N∑
i=1

T∑
t=1

(X̃ ′it(β(Zit)− β̂(Zit)))
2, A2 =

1

NT

N∑
i=1

T∑
t=1

ũ2
it,

A3 =
1

NT

N∑
i=1

T∑
t=1

X̃ ′it(β(Zit)− β̂(Zit))ũit, A4 =
1

NT

N∑
i=1

T∑
t=1

X̃ ′it(β(Zit)− β̂(Zit) + ũit)γit,

A5 =
1

NT

N∑
i=1

T∑
t=1

γ2
it.

For A1, we have

|A1| ≤
1

NT

N∑
i=1

T∑
t=1

∥∥∥X̃it

∥∥∥2 ∥∥∥β(Zit)− β̂(Zit)
∥∥∥2
≤ OP

(
1

NT

)
1

NT

N∑
i=1

T∑
t=1

∥∥∥X̃it

∥∥∥2
= OP

(
1

NT

)
,

where the second inequality follows from Theorem 2.1.2. Thus, A1 →P 0. Similarly, we can show

that A3 →P 0. By (1) of Lemma B.2, A2 →P σ2
u. Moreover, we have shown A4 = OP (‖λ̂‖p) and

A5 = OP (‖λ̂‖2p) in proving Theorem 2.1.1. Therefore, the result follows. �

Note that if we replace Assumption A.5 with Assumption B, we can still show that Lemma B.2

holds by making some slight modifications to the proof. Specifically, for (2)-(3) of Lemma B.2, ΣXX(z)

and ΣXXβ(z) become ΣXX(z̄) ·E[L(Z̃it, z̃, λ̃)] and ΣXXβ(z̄) ·E[L(Z̃it, z̃, λ̃)] for ∀z ∈ D, respectvely; for

(4)-(6) of Lemma B.2, Ω(z, λ), p(z) and β(z) reduce to Ω(z̄, λ̄), p(z̄) and β(z̄), respectively; (1) and

(7)-(9) of Lemma B.2 hold without requiring any modification. Thus, when establishing asymptotic

results for the irrelevant case in what follows, we will still use the basic results proved in Lemma B.2.

Proof of Lemma 2.2.1:

By Assumption B, CV ∗0 (λ̄) is uniquely minimized at λ̄ = (λ1, . . . , λr1)′ = 0 and λ̄ belongs to a

compact set [0, 1]r1 . Also, CV ∗0 (λ̄) is continuous on [0, 1]r1 . Then we need only to show that CV (λ)

converges uniformly in probability to CV ∗0 (λ̄) + c below, where c is a positive constant. Note that λs
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for s = r1 + 1, . . . , r associated with the irrelevant covariates get canceled in the asymptotic results,

so they do not play a role when we minimize the cross-validation criterion function. Without loss of

generality, λs for s = r1 + 1, . . . , r can be considered as arbitrary constants. The following procedure

holds uniformly in λs for s = r1 + 1, . . . , r.

Note also that for the irrelevant case the coefficient function reduces to β(z̄). Thus, write

CV (λ) =
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(β̄it − β̂it) + γit

)2
+

2

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(β̄it − β̂it) + γit

)
ũit +

1

NT

N∑
i=1

T∑
t=1

ũ2
it

≡ CV1(λ) + CV2(λ) + CV3,

where β̄it = β(Z̄it) and γit = 1
Tit

∑T
s=1X

′
is

(
β(Z̄is)− β(Z̄it)

)
Lpis,it.

By result (1) of Lemma B.2, 1
NT

∑N
i=1

∑T
t=1 ũ

2
it →P σ

2
u uniformly in λ. Thus, we just need to focus

on CV1(λ) and CV2(λ) below. Recall that L(Zjs, z, λ) = L(Z̄js, z̄, λ̄)L(Z̃js, z̃, λ̃). As discussed before,

Lemma B.2 holds if Assumption A.5 is replaced with Assumption B. Thus, it is easy to know that

1
NT

∑N
j=1

∑T
s=1 X̃jsũjsL(Zjs, z, λ)→P 0. Moreover, for ∀z ∈ D,

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL(Zjs, z, λ)→P ΣXX(z̄, λ̄) · E[L(Z̃js, z̃, λ̃)] (B.24)

and

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
jsβ(Z̄js)L(Zjs, z, λ)→P ΣXXβ(z̄, λ̄) · E[L(Z̃js, z̃, λ̃)]. (B.25)

Note that E[L(Z̃js, z̃, λ̃)] gets canceled after we substitute (B.24) and (B.25) into (B.11). We thus

write

β̂it − β̄it = Σ−1
XX(Z̄it, λ̄)ΣXXβ(Z̄it, λ̄)− β(Z̄it) + oP (1) = η(Z̄it, λ̄)− β(Z̄it) + oP (1),

γit = ∆3β(Z̄it, λ̄)−∆3(Z̄it, λ̄)′β(Z̄it) + oP (1). (B.26)

By (B.26), CV1(λ) can be rewritten as

CV1(λ) =
1

NT

N∑
i=1

T∑
t=1

(
(Xit −∆3(Z̄it, λ̄))′(β(Z̄it)− η(Z̄it, λ̄)) + ∆3β(Z̄it, λ̄)−∆3(Z̄it, λ̄)′β(Z̄it)

)2
+ oP (1).

Then by Assumptions A.2-A.3, it is easy to know that CV1(λ)→P CV
∗

0 (λ̄).

Similarly, we can show that CV2(λ) = oP (1). With the above discussions, it is easy to see CV (λ)→P

CV ∗0 (λ̄) + σ2
u uniformly in λ̃ ∈ D̃. Thus, all the conditions needed for Theorem 2.1 of Newey and

McFadden (1994) are satisfied. Then the result follows. �

Proof of Theorem 2.2.1:

1). Note that we have shown that λ̂s = oP (1) for s = 1, . . . , r1 in Lemma 2.2.1. Therefore, it is

reasonable to assume that λ̄ used in proving this theorem is sufficiently small and close to 0r1×1. For

simplicity, define 1̄itjs = 1(Z̄it = Z̄js) and 1̄n,itjs = 1(Zit,n 6= Zjs,n)
∏r1
m=1,m 6=n 1(Zit,m = Zjs,m) for
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n = 1, . . . , r1. Let L̄jsit,λ̄ = L(Z̄js, Z̄it, λ̄) and L̃jsit,λ̃ = L(Z̃js, Z̃it, λ̃). Using the kernel function of

Aitchison and Aitken (1976) and the expansion technique used in (B.15), we can write

L(Zjs, Zit, λ) = L̄jsit,λ̄L̃jsit,λ̃ =

(
1̄jsit +

r1∑
n=1

λn1̄n,jsit +O(‖λ̄‖2)

)
L̃jsit,λ̃. (B.27)

Before investigating the cross-validation criterion function, we further simplify β̂it − β̄it. Write

β̂it − β̄it =

 1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL̄jsit,λ̄L̃jsit,λ̃

−1

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β̄js − β̄it)L̄jsit,λ̄L̃jsit,λ̃

+

 1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
jsL̄jsit,λ̄L̃jsit,λ̃

−1

1

NT

N∑
j=1

T∑
s=1

X̃jsũjsL̄jsit,λ̄L̃jsit,λ̃

=
(
A1it +A2itλ +OP (‖λ̄‖2)

)−1
(Bit + Cit) , (B.28)

where the term OP (‖λ̄‖2) in the last line follows from (B.27) and (4) of Lemma B.2; and

A1it =
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js1̄jsitL̃jsit,λ̃

A2itλ =
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js

r1∑
n=1

λn1̄n,jsitL̃jsit,λ̃

Bit =
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β̄js − β̄it)L̄jsit,λ̄L̃jsit,λ̃

Cit =
1

NT

N∑
j=1

T∑
s=1

X̃jsũjsL̄jsit,λ̄L̃jsit,λ̃.

Applying a similar procedure as used for proving (2) of Lemma B.2 to A1it and A2itλ, we obtain

A1it = OP (1) and A2itλ = OP (‖λ̄‖). Applying the same procedure to Bit, we have

Bit =
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β̄js − β̄it)

(
1̄jsit +

r1∑
n=1

λn1̄n,jsit +O(‖λ̄‖2)

)
L̃jsit,λ̃

= 0 +B2itλ +OP (‖λ̄‖2),

where the zero term follows from (β̄js − β̄it)1̄jsit = 0 and

B2itλ =
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β̄js − β̄it)

r1∑
n=1

λn1̄n,jsitL̃jsit,λ̃

=

r1∑
n=1

λn
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β̄js − β̄it)1̄n,jsitL̃jsit,λ̃ = OP

(
‖λ̄‖
)
.

Using a similar procedure as used for proving (7) of Lemma B.2 to Cit, we obtain

Cit =
1

NT

N∑
j=1

T∑
s=1

X̃jsũjs

(
1̄jsit +

r1∑
n=1

λn1̄n,jsit +O(‖λ̄‖2)

)
L̃jsit,λ̃
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= C1it + C2itλ +OP

(
‖λ̄‖2√
NT

)
,

where

C1it =
1

NT

N∑
j=1

T∑
s=1

X̃jsũjs1̄jsitL̃jsit,λ̃ = OP

(
1√
NT

)
,

C2itλ =
1

NT

N∑
j=1

T∑
s=1

X̃jsũjs

r1∑
n=1

λn1̄n,jsitL̃jsit,λ̃ = OP

(
‖λ̄‖√
NT

)
.

Based on the above discussions, applying Lemma B.1 twice to the term on RHS of (B.28) gives

β̂it − β̄it =
(
A−1

1it −A
−1
1itA2itλA

−1
1it

)
(B2itλ + C1it + C2itλ) +OP

(
‖λ̄‖2√
NT

)
+OP

(
‖λ̄‖3

)
. (B.29)

Write

CV (λ) =
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(β̄it − β̂it)

)2
+

2

NT

N∑
i=1

T∑
t=1

X̃ ′it(β̄it − β̂it)ũit +
1

NT

N∑
i=1

T∑
t=1

ũ2
it

+
2

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(β̄it − β̂it) + ũit

)
γit +

1

NT

N∑
i=1

T∑
t=1

γ2
it

≡ CV1(λ) + CV2(λ) + CV3 + CV4(λ) + CV5(λ),

where γit = 1
Tit

∑T
s=1X

′
is (β(Zis)− β(Zit))L

p
is,it. In connection with the construction of γit, we are able

to obtain that CV4(λ) = OP
(
‖λ̄‖p

)
and CV5(λ) = O

(
‖λ̄‖2p

)
. Replacing β̂it− β̄it with (B.29) in CV1(λ)

and CV2(λ) gives

CV1(λ) =
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′it(β̂it − β̄it)

)2

=
1

NT

N∑
i=1

T∑
t=1

{
X̃ ′it

(
A−1

1itA2itλA
−1
1it −A

−1
1it

)
(B2itλ + C1it + C2itλ)

}2
+OP

(
‖λ̄‖2√
NT

)
+OP

(
‖λ̄‖3

)
=

1

NT

N∑
i=1

T∑
t=1

(
D2

3it − 2D1itD2it + 2D2itD3it

)
+OP

(
‖λ̄‖2√
NT

)
+OP

(
‖λ̄‖3

)
+ terms independent of λ,

where D1it = X̃ ′itA
−1
1it

(
A2itλA

−1
1itC1it − C2itλ

)
, D2it = X̃ ′itA

−1
1itC1it and D3it = X̃ ′itA

−1
1itB2itλ.

CV2(λ) =
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
it(β̄it − β̂it)

=
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itA2it,λA

−1
1it (B2it,λ + C1it + C2it,λ)

− 2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1it (B2it,λ + C1it + C2it,λ) +OP

(
‖λ̄‖2

NT

)
+OP

(
‖λ̄‖3√
NT

)
.

Then it is easy to know that the leading term of CV2(λ) is
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− 2

NT

N∑
i=1

T∑
t=1

uitX
′
itA
−1
1itB2it,λ = OP

(
‖λ̄‖√
NT

)
.

For CV1(λ), the leading terms are

2

NT

N∑
i=1

T∑
t=1

D2itD3it = OP

(
‖λ̄‖√
NT

)
and

1

NT

N∑
i=1

T∑
t=1

D2
3it = OP

(
‖λ̄‖2

)
.

Note that the two leading terms 2
NT

∑N
i=1

∑T
t=1D2itD3it and − 2

NT

∑N
i=1

∑T
t=1 ũitX̃

′
itA
−1
1itB2it,λ cannot

cancel each other as in proving Theorem 2.1 in the presence of irrelevant covariates. Thus, the first

result of this theorem follows.

2). We now investigate the asymptotic behaviour of λ̂s for s = r1 + 1, . . . , r. Based on the first

result of this theorem, we know that

CV1(λ) =
1

NT

N∑
i=1

T∑
t=1

(D1it −D2it −D3it)
2 +OP

(
‖λ̄‖2√
NT

)
+OP

(
‖λ̄‖3

)
=

1

NT

N∑
i=1

T∑
t=1

(D1it −D2it −D3it)
2 + oP

(
1

NT

)
.

For simplicity, let Ψ(Z̄it) = p(Z̄it)(ΣX(Z̄it)−µX(Z̄it)µX(Z̄it)
′). We first consider 1

NT

∑N
i=1

∑T
t=1D

2
3it.

1

NT

N∑
i=1

T∑
t=1

D2
3it =

1

NT

N∑
i=1

T∑
t=1

(
X̃ ′itA

−1
1itB2itλ

)2

=
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′itΨ

−1(Z̄it)E[L̃jsit,λ̃|Z̃it]
−1B2itλ

)2
+ oP (‖λ̄‖2)

=
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′itΨ

−1(Z̄it)E[L̃jsit,λ̃|Z̃it]
−1

·
r1∑
n=1

λnE[XjsX
′
js(β(Z̄js)− β(Z̄it))1̄n,jsit|Z̄it] · E[L̃jsit,λ̃|Z̃it]

)2
+ oP (‖λ̄‖2)

=
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′itΨ

−1(Z̄it) ·
r1∑
n=1

λnE[XjsX
′
js(β(Z̄js)− β(Z̄it))1̄n,jsit|Z̄it]

)2
+ oP (‖λ̄‖2)

=
1

NT

N∑
i=1

T∑
t=1

(
X̃ ′itΨ

−1(Z̄it) ·
r1∑
n=1

λnE[XjsX
′
js(β(Z̄js)− β(Z̄it))1̄n,jsit|Z̄it]

)2
+ oP

(
1

NT

)

where the second equality follows from (2) of Lemma B.2, Assumption B and B2itλ = OP (‖λ̄‖2); the

third equality follows from a similar procedure as used for proving (2) of Lemma B.2 and Assumption

B; the fifth equality follows from the first result of this theorem. Note that E[L̃jsit,λ̃|Z̃it] gets canceled

above. Therefore, the leading term on RHS of the above equation is unrelated with λ̃ and the remaining

terms have an order of magnitude of oP
(

1
NT

)
. Also we know that D2

1it = oP
(

1
NT

)
, D1itD2it = oP

(
1
NT

)
and D1itD3it = oP

(
1
NT

)
due to the first result of this theorem. Then we can further write

CV1(λ) =
1

NT

N∑
i=1

T∑
t=1

(
2D2itD3it +D2

2it

)
+ oP

(
1

NT

)
+ terms unrelated to λ̃.
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Note that both of 2D2itD3it and D2
2it have an order of magnitude of OP

(
1
NT

)
.

We now further investigate the leading terms of CV1(λ).

1

NT

N∑
i=1

T∑
t=1

D2
2it =

1

NT

N∑
i=1

T∑
t=1

X̃ ′itA
−1
1itC1itC

′
1itA

−1
1itX̃it

=
1

NT

N∑
i=1

T∑
t=1

X̃ ′itΨ
−1(Z̄it)C1itC

′
1itΨ

−1(Z̄it)X̃itE[L̃jsit,λ̃|Z̃it]
−2 + oP

(
1

NT

)
=

1

N3T 3

∑
i,t

∑
j,s

∑
k,r

X̃ ′itΨ
−1(Z̄it)X̃jsũjs1̄jsitL̃jsit,λ̃X̃

′
krũkr1̄kritL̃krit,λ̃Ψ−1(Z̄it)X̃itE[L̃jsit,λ̃|Z̃it]

−2

+oP

(
1

NT

)
= oP

(
1

NT

)
+

1

N3T 3

∑
i,t

∑
j,s

X̃ ′itΨ
−1(Z̄it)X̃jsX̃

′
jsũ

2
js1̄jsitL̃

2
jsit,λ̃

Ψ−1(Z̄it)X̃itE[L̃jsit,λ̃|Z̃it]
−2

+
1

N3T 3

∑
i,t

∑
j,s

∑
k,r 6=j,s

X̃ ′itΨ
−1(Z̄it)X̃jsũjs1̄jsitL̃jsit,λ̃X̃

′
krũkr1̄kritL̃krit,λ̃Ψ−1(Z̄it)X̃itE[L̃jsit,λ̃|Z̃it]

−2

≡ H1,NT +H2,NT + oP

(
1

NT

)
,

where the second equality follows from (2) of Lemma B.2, Assumption B and C1it = OP

(
1√
NT

)
.

Applying a similar procedure as used for deriving CV1(λ) in Lemma 2.1.1, we can obtain

H1,NT =
1

NT
C · E

[
E[L̃2

jsit,λ̃
|Z̃it] · E[L̃jsit,λ̃|Z̃it]

−2
]

+ oP

(
1

NT

)
, (B.30)

where by the construction of H1,NT it is easy to know that C is a positive constant. Note that

E[L̃2
jsit,λ̃
|Z̃it] ≥ E[L̃jsit,λ̃|Z̃it]

2, where the equality holds if and only if λs = 1 for all s = r1 + 1, . . . , r.

Hence, H1,NT is minimized at the upper bound values for λs = 1 for all s = r1 + 1, . . . , r.

For the term 2
NT

∑N
i=1

∑T
t=1D2itD3it = OP

(
1
NT

)
, denote H3,NT = 2

NT

∑N
i=1

∑T
t=1D2itD3it.

For the term CV2, by the first result of this theorem we further write

CV2(λ) =
2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itA2it,λA

−1
1it (B2it,λ + C1it + C2it,λ)

− 2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1it (B2it,λ + C1it + C2it,λ) +OP

(
‖λ̄‖2

NT

)
+OP

(
‖λ̄‖3√
NT

)

= − 2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itB2it,λ −

2

NT

N∑
i=1

T∑
t=1

ũitX̃
′
itA
−1
1itC1it + oP

(
1

NT

)
= H4,NT +H5,NT + oP

(
1

NT

)
.

Therefore,

CV (λ) = H1,NT +H2,NT +H3,NT +H4,NT +H5,NT + oP

(
1

NT

)
, (B.31)

where H1,NT to H5,NT all contain λ̃. Moreover, based on the first result of this theorem, it is easy

to know that H1,NT to H5,NT all have an order of magnitude of OP
(

1
NT

)
and H1,NT is minimized at
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λs = 1 for all s = r1 + 1, . . . , r. By a similar argument as in Li et al. (2013, p. 578), the second result

of this theorem holds. �

Proof of Theorem 2.2.2:

The kernel functions for the relevant and irrelevant covariates are given as follows.

L̄jsλ̄ =

r1∏
s=1

λ̂
1(Zit,s 6=zs)
s and L̃jsλ̃ =

r∏
s=r1+1

λ
1(Zit,s 6=zs)
s ,

where λ̂s for s = 1, . . . , r1 is the estimate of λs by minimizing the CV criterion function; and λs for

s = r1 + 1, . . . , r is any arbitrary constant belonging to [0, 1].

Denote that ˆ̄λ = (λ̂1, . . . , λ̂r1)′, 1̄Z̄it,z̄ = 1(Z̄it = z̄) and 1̄n,Z̄js,z̄ = 1(Zit,n 6= zn)
∏r1
m=1,m 6=n 1(Zit,m =

zm) for n = 1, . . . , r1. Thus, write

β̂(z)− β(z̄) = A−1
0,NT

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β(Z̄js)− β(z̄))L̄jsλ̄L̃itλ̃

+A−1
0,NT

1

NT

N∑
j=1

T∑
s=1

X̃jsũjsL̄jsλ̄L̃itλ̃

+A−1
0,NT

1

NT

N∑
j=1

T∑
s=1

X̃jsγjsL̄jsλ̄L̃itλ̃,

where A0,NT = 1
NT

∑N
j=1

∑T
s=1 X̃jsX̃

′
jsL̄jsλ̄L̃itλ̃.

By the proof of Theorem 2.2.1, A−1
0,NT = OP (1), 1

NT

∑N
j=1

∑T
s=1 X̃jsũjsL̄jsλ̄L̃itλ̃ = OP

(
1√
NT

)
and

1
NT

∑N
j=1

∑T
s=1 X̃jsγjsL̄jsλ̄L̃itλ̃ = OP

(
‖ˆ̄λ‖p

)
. Thus, we need only to focus on the second term on the

RHS of the above equation:

1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β(Z̄js)− β(z̄))

(
1̄Z̄js,z̄ +

r1∑
n=1

λ̂n1̄n,Z̄js,z̄ +O(‖ˆ̄λ‖2)

)
L̃itλ̃

=
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β(Z̄js)− β(z̄))1̄Z̄js,z̄L̃itλ̃

+
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β(Z̄js)− β(z̄))

r1∑
n=1

λ̂n1̄n,Z̄js,z̄L̃itλ̃

+O(‖ˆ̄λ‖2)
1

NT

N∑
j=1

T∑
s=1

X̃jsX̃
′
js(β(Z̄js)− β(z̄))L̃itλ̃

= 0 +
1

NT

N∑
j=1

T∑
s=1

XjsX
′
js(β(Z̄js)− β(z̄))

(
r1∑
n=1

λ̂n1̄n,Z̄js,z̄

)
L̃itλ̃ +OP

(
1

NT

)
= OP

(
1√
NT

)
,

where the second equality follows from (β(Z̄js)−β(z̄))1̄Z̄js,z̄ = 0 and Theorem 2.2.1. The proof is then

complete. �

Proof of Theorem 2.3.1:
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1). Let αNT = 1√
NT

and U be an (m× q) matrix. We want to show that for any given ε > 0, there

exists a large constant C such that

lim inf
N

Pr

{
inf
‖U‖=C

Qτ (B0 + αNTU) > Qτ (B0)

}
= 1− ε. (B.32)

This implies with a probability of at least 1−ε that there exists a local minimum in the ball {B0+αNTU :

‖U‖ ≤ C}. Hence, there exists a local minimizer such that ‖B̂−B0‖ = OP (αNT ). The above argument

is in the same spirit of the proofs for Theorem 1 of Fan and Li (2001) and Lemma A.1 of Wang and

Xia (2009).

For notational simplicity, let Uj be the transpose of the jth row of the matrix U with j = 1, . . . ,m

and Vs be the sth column of the matrix U with s = 1, . . . , p; and denote

ej =
1√
NT

N∑
i=1

T∑
t=1

X̃it

(
X̃ ′itβ(Z̄it)− X̃ ′itβ(z̄j) + γit + ũit

)
L(Zit, z

j , λ̂),

where γit = 1
Tit

∑T
s=1X

′
is

(
β(Z̄is)− β(Z̄it)

)
Lpis,it. By the proofs of Theorems 2.1.2 and 2.2.2, it is easy

to know that ej = OP (1) uniformly in j due to the fact that D is compact.

Then we write

Qτ (B0 + αNTU)−Qτ (B0)

=
m∑
j=1

N∑
i=1

T∑
t=1

(
X̃ ′itβ(Z̄it) + γit + ũit − X̃ ′itβ(z̄j)− αNT X̃ ′itUj

)2
L(Zit, z

j , λ̂)

+

q∗∑
s=1

τs‖b0s + αNTVs‖+

q∑
s=q∗+1

τs‖αNTVs‖

−
m∑
j=1

N∑
i=1

T∑
t=1

(
X̃ ′itβ(Z̄it) + γit + ũit − X̃ ′itβ(z̄j)

)2
L(Zit, z

j , λ̂)−
q∗∑
s=1

τs‖b0s‖

=
m∑
j=1

N∑
i=1

T∑
t=1

(
αNT X̃

′
itUj

)2
L(Zit, z

j , λ̂) +

q∑
s=q∗+1

τs‖αNTVs‖+

q∗∑
s=1

τs (‖b0s + αNTVs‖ − ‖b0s‖)

−2

m∑
j=1

N∑
i=1

T∑
t=1

αNTU
′
jX̃it

(
X̃ ′itβ(Z̄it)− X̃ ′itβ(z̄j) + γit + ũit

)
L(Zit, z

j , λ̂)

≥
m∑
j=1

N∑
i=1

T∑
t=1

α2
NTU

′
jX̃itX̃

′
itUjL(Zit, z

j , λ̂) +

q∗∑
s=1

τs (‖b0s + αNVs‖ − ‖b0s‖)

−2

m∑
j=1

N∑
i=1

T∑
t=1

αNTU
′
jX̃it

(
X̃ ′itβ(Z̄it)− X̃ ′itβ(z̄j) + γit + ũit

)
L(Zit, z

j , λ̂)

≥ ρ1

2

m∑
j=1

‖Uj‖2 − 2

m∑
j=1

U ′jej +

q∗∑
s=1

τs (‖b0s + αNTVs‖ − ‖b0s‖)

≥ ρ1

2

m∑
j=1

‖Uj‖2 − 2
m∑
j=1

U ′jej −O(1)

q∗∑
s=1

τs
1√
NT
‖Vs‖,

where the second inequality follows from (2) of Lemma B.2 and Assumption C; and the third inequality
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follows from the Mean Value Theorem. Note that ‖U‖ = C, so we can further write

Qτ (B0 + αNTU)−Qτ (B0)

≥ ρ1

2

m∑
j=1

‖Uj‖2 − 2
m∑
j=1

U ′jej −O(1)

q∗∑
s=1

τs
1√
NT
‖Vs‖

≥ ρ1

2

m∑
j=1

‖Uj‖2 − 2

 m∑
j=1

‖Uj‖2
m∑
j=1

‖ej‖2
1/2

−O(1)

q∗∑
s=1

τs
1√
NT
‖Vs‖

≥ ρ1

2
C2 − 2C

 m∑
j=1

‖ej‖2
1/2

−O(1)
1√
NT
‖τ∗‖

 q∗∑
s=1

‖Vs‖2
1/2

=
ρ1

2
C2 − 2C

 m∑
j=1

‖ej‖2
1/2

−O(1)C, (B.33)

where 1√
NT
‖τ∗‖ = O(1) by the condition given in this theorem and ‖ej‖ = OP (1) uniformly in j. Note

that ρ1
2 C

2 is a quadratic function in C while the remaining terms on RHS of (B.33) are linear in C.

Since C can be sufficiently large, it is easy to know that RHS of (B.33) is positive with an arbitrary

probability close to 1. The proof for (B.32) is now complete. �

2). For simplicity, we show that Pr(‖b̂τ,q‖ = 0)→ 1 only. The proofs for b̂τ,j with j = q∗+1, . . . , q−1

are the same. If ‖b̂τ,q‖ 6= 0, B̂τ must satisfy the following equation

0 =
∂

∂bq
Qτ (B) = A1 +A2, (B.34)

where

A1 = −
N∑
i=1

T∑
t=1

2X̃it,q

(
(Ỹit − X̃ ′itβ̂τ,1)L(Zit, z

1, λ̂), . . . , (Ỹit − X̃ ′itβ̂τ,m)L(Zit, z
m, λ̂)

)′
and A2 =

τq

‖b̂τ,q‖
b̂τ,q. For s = 1, . . . ,m, we can further write each element of A1 as follows:

1√
NT

A1,s = − 1√
NT

N∑
i=1

T∑
t=1

2X̃it,q

(
X̃ ′it(β(Z̄it)− β̂τ,s) + γit + ũit

)
= − 1√

NT

N∑
i=1

T∑
t=1

2X̃it,qX̃
′
it(β(Z̄it)− β̂τ,s)L(Zit, z

s, λ̂)

− 1√
NT

N∑
i=1

T∑
t=1

2X̃it,q(γit + ũit)L(Zit, z
s, λ̂)

= − 1√
NT

N∑
i=1

T∑
t=1

2X̃it,qX̃
′
it(β(Z̄it)− β(z̄s))L(Zit, z

s, λ̂)

− 1√
NT

N∑
i=1

T∑
t=1

2X̃it,qX̃
′
it(β(z̄s)− β̂τ,s)L(Zit, z

s, λ̂) +OP (1) = OP (1) ,

where the third equality follows from the proof of the first result of this theorem; and the fourth equality

follows from Theorem 2.1.1 (or 2.2.1) and the first result of this theorem.
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On the other hand,
∥∥∥ 1√

NT
A2

∥∥∥ ≥ 1√
NT

mins∈{q∗+1,...,q} τs ≥ ω2 by the condition given in the theorem,

where ω2 is sufficiently large. Therefore, Pr(‖A1‖ < ‖A2‖)→ 1, which implies that, with a probability

tending to 1, (B.34) does not hold. The above analysis implies that b̂τ,q must be located at a place

where the objective function (2.7) is not differentiable with respect to bq. Since equation (2.7) of

the main file is not differentiable with respect to bq only at the origin, we immediately obtain that

Pr(‖b̂τ,q‖ = 0)→ 1. In a similar fashion, we can show that Pr(b̂τ,j = 0)→ 1 with j = q∗ + 1, . . . , q − 1.

The proof is then complete. �

Proof of Theorem 2.3.2:

By Theorem 2.3.1, we know that ‖b̂τ,s‖ = 0 for s = q∗ + 1, . . . , q with a probability tending to

one. After some simple algebra, we can obtain the first derivative of Qτ (B) with respect to βj for

j = 1, . . . ,m. Then it is easy to know that β̂τ,jU must be the solution of the following equation

2

NT

N∑
i=1

T∑
t=1

X̃itU

(
Ỹit − X̃ ′itU β̂τ,jU

)
L(Zit, z

j , λ̂) +
1

NT
Dβ̂τ,jU = 0,

where X̃itU = (X̃it,1, . . . , X̃it,q∗)′ and D = diag
(
τ1‖b̂τ,1‖−1, . . . , τq∗‖b̂τ,q∗‖−1

)
. It implies that β̂τ,jU must

have the form

β̂τ,jU =

(
1

NT

N∑
i=1

T∑
t=1

X̃itUX̃
′
itUL(Zit, z

j , λ̂) +
1

2NT
D

)−1
1

NT

N∑
i=1

T∑
t=1

X̃itU ỸitL(Zit, z
j , λ̂).

In contrast, the oracle estimator has the following form

∥∥∥β̂τ,jU − β̂ora(z̄j)∥∥∥ ≤ ∥∥ΣNT (zj)
∥∥∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

X̃itU ỸitL(Zit, z
j , λ̂)

∥∥∥∥∥ , (B.35)

where

ΣNT (zj) =

(
1

NT

N∑
i=1

T∑
t=1

X̃itUX̃
′
itUL(Zit, z

j , λ̂) +
1

2NT
D

)−1

−

(
1

NT

N∑
i=1

T∑
t=1

X̃itUX̃
′
itUL(Zit, z

j , λ̂)

)−1

.

Since ΣNT (zj) has finite dimensions, it is easy to know that the rate of
∥∥ΣNT (zj)

∥∥ converging to 0

is the same as∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

X̃itUX̃
′
itUL(Zit, z

j , λ̂) +
1

2NT
D − 1

NT

N∑
i=1

T∑
t=1

X̃itUX̃
′
itUL(Zit, z

j , λ̂)

∥∥∥∥∥
=

∥∥∥∥ 1

2NT
D

∥∥∥∥ = OP

(
‖τ∗‖
NT

)
.

Moreover, as with the proof of Theorem 2.1.1 (or 2.2.1), 1
NT

∑N
i=1

∑T
t=1 X̃itU ỸitL(Zit, z

j , λ̂) =

OP (1). Therefore, for j = 1, . . . ,m,
∥∥∥β̂τ,jU − β̂ora(z̄j)∥∥∥ = OP

(
‖τ∗‖
NT

)
. The proof is now complete.

�
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Proof of Theorem 2.3.3:

1). For an arbitrary model S, we say it is under-fitted if it misses at least one variable with

a nonzero coefficient (i.e. S ⊂ Ac but Ac 6= S); it is over fitted if S covers all relevant variables

but also includes at least one redundant regressor (i.e. Ac ⊂ S but Ac 6= S). Then, depending on

whether the model S is under fitted, correctly fitted, or over fitted, we create three mutually exclusive

sets A− = {τ̃ ∈ R : S ⊂ Ac, S 6= Ac}, A0 = {τ̃ ∈ R : S = Ac} and A+ = {τ̃ ∈ R : S ⊃ Ac, S 6= Ac}.

Suppose that β̃j for j = 1, . . . ,m are unregularized estimates and there is a sequence {τ̂NT } that

ensures (2.15) of the main file satisfies the conditions required by Theorem 2.3.1 (e.g. those used in

Monte Carlo study).

Case 1: In this case, we consider under-fitted models, where S ⊂ Ac but Ac 6= S. Without losing

generality, we assume that only one variable is missing, so we assume that the first q∗ − 1 elements of

β̂τ̃ ,j are obtained from the under-fitted model and the remaining q − q∗ + 1 elements of β̂τ̃ ,j are 0.

We then write

RSSτ̃ =
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̂τ̃ ,j

)2
L(Zit, z

j , λ̂)

=
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̃j + X̃ ′itβ̃j − X̃ ′itβ̂τ̃ ,j

)2
L(Zit, z

j , λ̂)

=
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̃j

)2
L(Zit, z

j , λ̂)

+
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
X̃ ′itβ̃j − X̃ ′itβ̂τ̃ ,j

)2
L(Zit, z

j , λ̂)

+
2

N

m∑
j=1

N∑
i=1

T∑
t=1

(
β̃j − β̂τ̃ ,j

)′
X̃it

(
Ỹit − X̃ ′itβ̃j

)
L(Zit, z

j , λ̂)

=
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̃j

)2
L(Zit, z

j , λ̂)

+
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
X̃ ′itβ̃j − X̃ ′itβ̂τ̃ ,j

)2
L(Zit, z

j , λ̂)

≡ RSS∗ +R2τ̃ ,

where the fourth equality is due to the construction of the unregularized estimators.

We now consider R2τ̃ and write

R2τ̃ =
1

NT

m∑
j=1

N∑
i=1

T∑
s=1

(
β̃j − β̂τ̃ ,j

)′
X̃itX̃

′
itL(Zit, z

j , λ̂)
(
β̃j − β̂τ̃ ,j

)
=

m∑
j=1

(
β̃j − β̂τ̃ ,j

)′
Σ1(zj)

(
β̃j − β̂τ̃ ,j

)
+ oP (1)

≥
m∑
j=1

ρmin(Σ1(zj))
∥∥∥β̃j − β̂τ̃ ,j∥∥∥2

+ oP (1)
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= O(1)
m∑
j=1

∥∥∥β̃j − β̂τ̃ ,j∥∥∥2
+ oP (1) ≥ O(1)

m∑
j=1

β̃2
j,q∗ + oP (1),

where Σ1(zj) = ΣXX(z̄)E[L̃(Z̃it, z̃,
ˆ̃
λ)|ˆ̃λ]; ρmin(Σ1(zj)) denotes the minimum eigenvalue of Σ1(zj); β̃j,q∗

denotes the q∗th element of β̃j ; the second equality follows from (2) of Lemma B.2 of the Appendix and

Theorem 2.1.1 (or 2.2.1); and the first inequality follows from Assumption C.2.

Similarly, we can obtain that RSSτ̂NT ≡ RSS∗ +R2τ̂NT , where

R2τ̂NT =
1

NT

m∑
j=1

N∑
i=1

T∑
s=1

(
β̃j − β̂τ̂NT ,j

)′
X̃itX̃

′
itL(Zit, z

j , λ̂)
(
β̃j − β̂τ̂NT ,j

)
=

m∑
j=1

(
β̃j − β̂τ̂NT ,j

)′
Σ1(zj)

(
β̃j − β̂τ̂NT ,j

)
+ oP (1)

≤
m∑
j=1

ρmax(Σ1(zj))
∥∥∥β̃j − β̂τ̂NT ,j∥∥∥2

+ oP (1)

≤ O(1)
m∑
j=1

∥∥∥β̃j − β̂τ̂NT ,j∥∥∥2
+ oP (1)

≤ O(1)

m∑
j=1

∥∥∥β̃j − β(z̄j)
∥∥∥2

+O(1)

m∑
j=1

∥∥∥β(z̄j)− β̂τ̂NT ,j
∥∥∥2

= oP (1),

where ρmax(Σ1(zj)) denotes the maximum eigenvalue of Σ1(zj); the second equality follows from (2)

of Lemma B.2 of the Appendix and Theorem 2.1.1 (or 2.2.1); the second inequality follows from

Assumption C.2; and the last equality follows from Theorem 2.3.1 and the fact that both β̃j and

β̂τ̂NT ,j are regularized estimators.

Note that by (1) of Lemma B.2 we can obtain that RSS∗ →P
∑m

j=1 Pr(z̄j)σ2
u. Based on the analysis

on R2τ̃ and R2τ̂NT , we then can further conclude that

Pr

(
inf
τ̃∈A−

BICτ̃ > BICτ̂NT

)
→ 1.

Case 2: In this case, we consider over-fitted models, where S ⊃ Ac but Ac 6= S. Consider ∀τ̃ ∈ A+

and recall that B̂τ̃ determines Sτ̃ . Under such a model Sτ̃ , we can define another unpenalized estimator

B̌τ̃ as

B̌τ̃ = argmin
β1,...,βm

1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβj

)2
L(Zit, z

j , λ̂),

where, for j = 1, . . . ,m, ‖βj,s‖ = 0 with ∀s /∈ Sτ̃ and βj,s denotes the sth element of βj . In other words,

B̌τ̃ = (β̌1, . . . , β̌m)′ is the unregularized estimator under the model determined by B̂τ̃ . By definition,

we obtain immediately that RRSτ̃ ≥ RRSSτ̃ , where

RRSSτ̃ =
1

NT

m∑
j=1

N∑
i=1

T∑
t=1

(
Ỹit − X̃ ′itβ̌j

)2
L(Zit, z

j , λ̂).

It follows that
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lnRRSτ̃ − lnRRS∗ ≥ lnRRSSτ̃ − lnRRS∗

= ln

RRS∗RRS∗
+

1

NT ·RRS∗
m∑
j=1

N∑
i=1

T∑
t=1

(
β̃j − β̌j

)′
X̃itX̃

′
itL(Zit, z

j , λ̂)
(
β̃j − β̌j

)
≥ − O(1)

NT ·RRS∗
m∑
j=1

N∑
i=1

T∑
t=1

(
β̃j − β̌j

)′
X̃itX̃

′
itL(Zit, z

j , λ̂)
(
β̃j − β̌j

)
≥ −OP (1)

RRS∗

m∑
j=1

ρmax(Σ1(zj))
∥∥∥β̃j − β̌j∥∥∥2

≥ −OP (1)

RRS∗

m∑
j=1

ρmax(Σ1(zj))
∥∥∥β̃j − β(z̄j)

∥∥∥2
− OP (1)

RRS∗

m∑
j=1

ρmax(Σ1(zj))
∥∥β(z̄j)− β̌j

∥∥2

≥ −
∣∣∣∣OP ( 1

NT

)∣∣∣∣ ,
where β̃j for j = 1, . . . ,m are unregularized estimators as those used in Case 1; the second inequality

follows from (2) of Lemma B.2 and Theorem 2.1.1 (or 2.2.1); and the fourth inequality follows from

Theorem 2.3.1.

Similarly, we can obtain that lnRRSτ̂NT − lnRRS∗ = OP
(

1
NT

)
. Thus, we obtain

lnRRSτ̃ − lnRRSτ̂NT ≥ −
∣∣∣∣OP ( 1

NT

)∣∣∣∣ .
We then write

inf
τ̃∈A+

BICτ̃ −BICτ̂NT = lnRRSτ̃ − lnRRSτ̂NT + (dfτ̃ − dfτ̂NT )
ln(NT )

NT
.

By Theorem 2.3.1, we know that Pr(dfτ̂NT → q∗) = 1. Since τ̃ ∈ A+, we must have that Pr(dfτ̃ ≥

q∗ + 1)→ 1. Then it is clear that

Pr

(
inf
τ̃∈A+

BICτ̃ > BICτ̂NT

)
→ 1.

Combining Cases 1 and 2, we obtain that Pr (inf τ̃∈A−∪A+ BICτ̃ > BICτ̂NT ) → 1, which in turn

implies Pr
(
Sˆ̃τ → A

c
)

= 1. The proof is complete.

2)-3). The second and third results of this theorem follow by noting that setting τ̃ to a large constant

satisfies all the conditions required by Theorem 2.3.2 and the first result of this theorem. Thus, we

have

β̂ˆ̃τ,jU − βU (z̄j) = β̂ora(z̄
j)− βU (z̄j) +OP

(
1

NT

)
.

Then the results follow from Theorem 2.1.2 and Theorem 2.2.2 immediately. �
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