
On the Love Affair between Computing and Maths
The 2017 IMA Lighthill Lecture, was given by Professor Beth 
Wingate at the British Applied Mathematics Colloquium, 
University of Surrey. The lecture is given in memory of Sir 
James Lighthill, founder President of the IMA. This article is 
based on Beth’s Lighthill Lecture.

ENIAC and numerical weather prediction 

T he first grand challenge and one of the most famous break-
throughs in scientific computing occurred just after World 
War II when a group of mathe-

maticians and scientists came together 
to create the world’s first numerical 
weather prediction on the Electronic 
Numerical Integrator and Computer 
(ENIAC), an early computer. One 
of the most important mathematical 
lessons learned from this endeavour was that there is an intimate 
relationship between the underlying mathematical structure of 
the governing equations and their numerical approximation.

The problem that had to be addressed before numerical sim-
ulations of the governing equations were made possible was the 
oscillatory stiffness inherent in numerical weather prediction 
(see [1–3]).

By making key mathematical approximations based on ob-
served velocity and time scales available through weather maps, 
Charney derived reduced equations, called the Quasi-Geostroph-
ic (QG) equations, that represented the large scales of interest to 
planetary scale dynamics and filtered out the fast waves that, at 
the time, could not be resolved numerically. The first simulations 
were published in the widely cited paper [4].

An interesting account of that time period, including de-
scriptions of the grand challenge project to use the ENIAC 
for numerical weather prediction, and a re-creation of the 
numerical results was published in The ENIAC Forecasts [5] 
in 2008 by Peter Lynch from University College Dublin. The 
original weather prediction researchers were contemporaries of 
Sir James Lighthill, whose many contributions to wave theory 
persist today, and whose book, Waves in Fluids [6] is still an 
important reference text for practitioners.

Mathematically, PDEs of the type faced by Charney have the 
following form:

where the linear operator  has pure imaginary eigenvalues, the 
non-linear term is of quadratic type, the operator D is some form 
of dissipation with real eigenvalues, and  is a small non-dimen-
sional parameter. In this equation we also define u (t ) to be the 
spatial (vector-valued) function u (t, · ) = (u1 (t, · ), u2 (t, · ),…).

The operator  -1L results in oscillations on an order O () time 
scale, and requires small timesteps if standard explicit numerical 
integrators are used. Even implicit integrators need to use small 
timesteps if accuracy is required. One of the interesting effects of 
the non-linearity is that it acts like a phase scrambler and creates 
dynamics that is slow relative to the fast O () oscillations. Each 
application, such weather prediction or magnetic field dynamos, 
will have a particular native timestep that has to do with the 
types of waves that exist in the system. The notion that both slow 
and fast time scales exist simultaneously in the solution is called 
a multiscale system and is associated with the phenomenon of 

time-scale separation. If there is more than one type of native 
frequency (e.g. buoyancy, rotation) in a system, this gives rise to 
even more complex mathematical structure.

Even though there are slow dynamics available in the solu-
tions, the fact that the fastest time scales are highly oscillatory 
means that as the spatial resolution increases, the timestep must 
decrease. For example, contemporary atmosphere models with 
a resolution of 300  km will use a timestep of 20 mins. If the 
resolution is refined to 1 km, this would require a timestep of 4 s, 

making the cost of doing century scale 
runs expensive.

This means there are trade-offs be-
tween horizontal resolution, optimal 
distribution on parallel processors, 
and the timestep, and this is affected 
by the oscillations of the system.

The numerical issues first identified by these earlier mathe-
maticians, in particular the timestep limitation due to dispersive 
waves, has been an active topic of research ever since those early 
years and an issue that has to be addressed in every field that uses 
computations of partial differential equations.

Despite the timestep limitations, the years since the ENIAC 
simulations have seen computational science become the third 
pillar of scientific discovery alongside theory and experiment. 
During this era computational science has provided major gains 
in our understanding of the physical and biological world, in-
cluding, for example, anthropogenic climate change, tsunami 
prediction, and the simulation of supernovae.

Beyond the silicon limitation
One of the most important reasons why computational science 
has flourished in our lifetime is that Moore’s Law, an observation 
made in 1960 by Gordon Moore, has held true these last 40 years. 
To get an idea of how far computers have advanced, Peter Lynch 
recreated the first numerical weather simulations on his mobile 
phone, which he called the PHONIAC (Portable Hand-Operated 
Numerical Integrator And Computer) – https://maths.ucd.ie/ 
plynch/eniac/phoniac.html. The exponential processor speedups, 
which led to the most advanced computer of its age becoming no 
more powerful than a mobile phone today, are at an end. This 
is due to physical limitations in the manufacture of transistors 
and their subsequent power consumption. For practical purposes 
Moore’s Law ended in 2005 and unless some other way is found 
to advance processor speeds, such as quantum computing, this is 
the end of unending computer processor speeds.

This has not dampened the creativity of computer architects 
who have been working steadily on creating new types of com-
puters that are different from those of the past and that could 
be considered the grand challenge computers of our time. 
In particular, they have been developing new types of silicon 
architectures that replace processor speed with the possibility 
of doing hundreds of millions more calculations at the same 
time, called concurrency. This means that rather than relying 
on faster computers to help us answer questions about how to 
make wind power more efficient, or to help us decide where 
continental boundaries might change due to sea level rise, we are 
asked to find many more things that can be computed at the same 
time. It is expected that, in the next five years, machines will 
be delivered capable of 100-200-million-way parallelism. Just 
this year, to prepare UK science for the jump to concurrency, 
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… Peter Lynch recreated the first 
numerical weather simulations 
on his mobile phone, which he 
called the PHONIAC … 
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the Engineering Physical Sciences Research Council (EPSRC) 
funded five new Tier 2 Computing Centres, three of which have 
new architectures of the kind we can expect in the future.

The urgency to prepare scientific simulation methods for the 
post-Moore shift to exascale computer architectures has already 
initiated major projects in every nation that relies on high per-
formance computing (HPC). For numerical weather prediction 
alone examples include the Accelerated Climate Modeling 
for Energy (ACME) in the USA, the Met Office/NERC/STFC 
GungHo (next-generation numerics) in the UK, the Centre of 
Excellence in Simulation of Weather and Climate in Europe 
(ESiWACE) and the Energy-efficient Scalable Algorithms for 
Weather Prediction at Exascale (ESCAPE) project in Europe. 
These efforts are required to address the immediate difficulties 
with today’s sophisticated computer models that will have to be 
run on early versions of these post-Moore architectures expected 
in the next 3–5 years.

The return of the native timestep limitation 
In this new era of post-Moore computing, the question is, can 
we continue to advance science on new computer architectures 
where we do not have faster processors, but we do have the 
potential to do hundreds of millions more computations at the 
same time? These new computers are the ENIACs of our time 
and making best use of them is one of the important mathe-
matical challenges of our time. What is standing in the way of 
computational science continuing in the same way it has the last 
40 years? It is our old friend the timestep limitation that was 
confronted in the early days of numerical weather prediction.

This challenge invites us to re-examine and rethink the math-
ematical structure of the equations. In particular, examining the 
structure of the time domain has been proposed by the paral-
lel-in-time numerical analysis community (www.parallelintime.
org). There are different flavours of time-parallelism, but for an 
introduction see the review article by Martin Gander [7]. One 
idea of interest to me is one that illuminates the mathematical 

structure of the low frequencies available in the PDE. This 
method, the topic of the Lighthill Lecture, relies on trying to 
make gains in parallelism by taking advantage of the frequency 
domain.

Our approach uses a mapping, the matrix exponential, to 
transform the unknowns into the space of the oscillations, 
thereby exposing the frequency content of the non-linearity to 
mathematical analysis and modelling. The mapping looks like,

where we have dropped the dissipation, D, to focus on the oscilla-
tions in non-linearity. Here the operator e-t/L is the semi-group 
operator associated with L, also called the matrix exponential. 
The mapping, Equation (2), continuously twists the unknowns in 
what I like to think of as a generalised helix in time, allowing the 
non-linear solution to unfold in Equation (3).

Inspired by the use of this mapping in multi-scale theorems of 
the 1990s, Terry Haut (Lawrence Livermore National Laborato-
ry) and I [8] showed that finite frequency averaging combined 
with the formulation of Equations (2, 3) could lead to significant 
parallel speedups for a range of time-scale separations. While 
the parallel speedups we obtained for the simple problem stud-
ied were interesting, we were only able to prove super-linear 
convergence in the case where epsilon goes to infinity.

There has been plenty of evidence (see examples from [9–11] 
and those who cite them) before our work that the case for finite 
epsilon is at least as interesting as the case when epsilon goes 
to infinity, an assumption commonly used in mathematics. For 
example, though the Earth rotates once per day, mathematics 
often assumes that the Earth rotates infinitely fast to make 
progress with proofs. This assumption omits the bandwidths 
of frequencies that contribute to the low frequency dynamics 
shown in Figure 1 through phase scrambling. Therefore, the im-
mediate need is for methods and theorems for the more realistic 
case of finite epsilon, and therefore finite time-scale separation. 
This means there is a great deal more to be done and understood 
before methods that rely on time-scale separation can be used for 
realistic applications like weather prediction.

Grand challenge problems
In this section I propose some conceptual grand challenges 
for mathematics and computing. These suggestions are biased 
toward my own area of expertise and the list will be different 
for applications beyond weather and climate, such as plasma 
physics, tsunamis, magnetohydrodynamics, wave propagation, 
and other application areas whose governing equations are PDEs 
in the form of Equation (1).

Finite time-scale separation: 
As mentioned above, there has been persistent evidence that the 
finite time-scale separation is just as important as the infinite 
case [9-11] 
  (a)PDEs analysis: Proofs of regularity, existence and unique-

ness for PDEs like Equation (1) with finite time-scale 
separation could help guide numerical methods designers. 
Even knowing the assumptions under which theorems can 
be proved could be useful.

  (b)Numerical methods design and analysis: How far can we 
take time-parallelism? Can we do novel integrations of the 
evolution equations in the frequency domain?
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Figure 1: The time evolution of a 1D Gaussian dam-break problem 
using the psuedo-1D shallow water equations used in [5]. The 
figure is for  = 0.005; (a) shows the evolution of the frequency-
filtered twist equation (3); (b) is the result of rotating (a) back using 
the matrix exponential mapping (2); and (c) the time-evolution of 
the dam-break problem computed with a 4th order runge-kutta 
timestepping method. Courtesy Adam Peddle. 
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  (c)Mathematics of fluid dynamics and physics: If the low 
frequencies matter, there should be structural treasure to 
find. Are there new theories and scaling laws for finite time-
scale separation?

Solution space of PDEs as images 
Consider the solution space of Equation (1) over some long, 
finite time T to be an image. Are there mathematical notions that 
allow the reconstruction of the solution space from an initial 
guess? Will it be faster on new machines to drive snapshots of 
data from one parameter regime to another rather than beginning 
every solution at time zero? As an example, in Ingrid Daubechies 
Lecture at the 2017 BAMC, she spoke about the application of 
wavelets to art reconstruction. To fill in damaged spaces of a 
painting the applied mathematician considers ‘where the paint 
stroke came from’. Can we use ideas from the structure of the fi-
nite-frequency PDEs, or image compression and reconstruction, 
to reconstruct solution spaces of PDEs on finite time intervals? 
This could allow different parameter regimes to be explored with 
much more concurrency.

Performance models as mathematical maps 
One commonly used strategy for advancing the computational 
performance of complex applications is to construct a perfor-
mance model that is then used to understand and transform how 
the more complex simulation will perform on a new architecture. 
Can we develop this further to construct mathematical maps 
between the entire solution space of Equation (1) over some 
long-time T, and different configurations (memory, bandwidth, 
concurrency) of new computer architectures? If we can view 
these types of performance models as mappings, analysis may be 
able to tell us how far we can take the solution into concurrency. 
If successful this could help modify existing algorithms and 
architectures in the direction of best performance.

Ensembles Averages and Machine learning 
While increasing model resolution may be challenging on new 
architectures, running many variations of our current model 
resolutions, which would use significant degrees of concurrency, 
may bring on an era of ensemble-driven science. Though it is 
unclear whether models of this type can answer some of the 
pressing questions about climate change, it seems possible that 
having richer data sets and ensembles could be useful. What are 
the new science questions we can answer with richer data sets 
of ensemble averages? Where can the growing fields of machine 
learning and data analytics take us in answering questions of 
interest to life on earth?

Conclusion
In David Keyes’ opening address at the 2017 SIAM CS&E 
meeting in Atlanta he reminded the attendees of an important 
moment after World War I. At the International Mathematical 
Congress in Bologna, 1928, after the 1920 and 1924 Congresses 
had excluded mathematicians representing the countries defeat-
ed in World War  I, Keyes said: ‘Mathematics knows no races 
or geographic boundaries; for mathematics, the whole cultural 
world is one country’ [12]. It seems to me that other challenges 
of our time could be met by working together to see how far we 
can go with the ENIACS of our time.

Beth A. Wingate
University of Exeter
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