
Computational models of auditory perception from
feature extraction to stream segregation and behavior
James Rankin1 and John Rinzel2,3

Available online at www.sciencedirect.com

ScienceDirect
Audition is by nature dynamic, from brainstem processing on

sub-millisecond time scales, to segregating and tracking sound

sources with changing features, to the pleasure of listening to

music and the satisfaction of getting the beat. We review recent

advances from computational models of sound localization, of

auditory stream segregation and of beat perception/

generation. A wealth of behavioral, electrophysiological and

imaging studies shed light on these processes, typically with

synthesized sounds having regular temporal structure.

Computational models integrate knowledge from different

experimental fields and at different levels of description. We

advocate a neuromechanistic modeling approach that

incorporates knowledge of the auditory system from various

fields, that utilizes plausible neural mechanisms, and that

bridges our understanding across disciplines.
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Introduction
In a crowded bar, people chatter away and glasses clink,

but from the corner stage we pick out the repetitive snap

of a snare drum and start to tap along. All this relies on the

extraction of multiple auditory features from a rich

soundscape. The separation of features, such as pitch

and location, along with timing cues, allows for the

segregation of individual streams like a voice or melody.

Once identified, a stream can be predicted in order to

drive motor behavior like tapping along to the beat. This

review focuses on computational modeling, especially

neuromechanistic approaches, of the dynamics of
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auditory processing, that is the representation and per-

ception of how we hear the world. Among recent research

developments our review highlights: the biophysics

underlying neuronal computation with exceptional

temporal precision — on the order of tens of microse-

conds — for sound localization, the emergence of stream

segregation and subsequent perceptual bistability for

ambiguous sounds and the continuation of a learned beat

after stimulus offset by a neural oscillator. The relatively

mature topic of sound localization, having benefited from

longstanding interplay between modeling and experi-

ments, is presented first. We propose that the less devel-

oped fields of stream segregation and beat perception will

profit from a similar interplay albeit with new challenges

arising from the experimental constraints in studying

higher-level, cognitive processes.

Sound localization
Localization of a sound source involves detecting inter-

aural time differences, ITD, for low frequency sounds

(say, <1.5 kHz) or interaural level differences, ILD, for

high frequency sounds. These neuronal computations are

performed early in the auditory pathway where inputs

from the two ears converge: in mammals, the superior

olivary complex, SO. According to the ‘duplex’ theory,

the medial portion, MSO, computes ITD while the lateral

portion, LSO, handles ILD [1,2]. Theoretical research,

including biophysically based and neural coding models,

has aligned closely with quantitative neurophysiological

experiments (in vitro and in vivo [3�]) in reaching

substantial mechanistic understanding, whilst several

challenges remain.

Behavioral and neuronal-MSO ITD tuning curves show

discriminability with an astonishing temporal resolution,

tens of microseconds. Various biophysical specializations

underlie this extraordinary and essentially single neuron

computation: sub-millisecond membrane time constants,

fast subthreshold nonlinear conductance mechanisms

underlying onset firing, strong phase-locking, and brief

synaptic conductances segregated to bipolar dendrites

[3�]. An MSO neuron’s onset responsiveness supports

coincidence detection. An MSO neuron behaves as a

differentiator, responding only to fast change, as with

nearly coincident inputs, but not to slow inputs [4,5]

(Figure 1b). Spiking follows feed-forward summation

of relatively few inputs per dendrite [6]; spikes are

generated downstream of the soma with almost no back

propagation [7,8,9]. Dendritic cable modeling demon-

strates why single-sided inputs rarely fire a cell [10].
www.sciencedirect.com
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Figure 1
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Physiology, tuning and onset response for sound localization. (a) Schematic of physiological architecture (left) for the neuronal computation of ITD

tuning (right); comparison of bird (barn owl, upper) and mammal (gerbil, lower); adapted from [13]. The barn owl exemplifies the Jeffress

conceptual model: labeled delay lines, one set from the ipsilateral ear and one from the contralateral ear, providing excitatory input to an array of

coincidence-detector neurons. The neurons along the array with the highest firing rate correspond to the ITD. The collection of tuning curves span

the physiological range, as determined by head size. In the gerbil (lower A panels) MSO neurons receive excitatory and inhibitory input from

ipsilateral and contralateral ears; an ITD tuning curve has maximum firing for ITD that lies outside the physiological range (shaded) [14�]. The ITD

computation is thought to involve the difference between the oppositely sloping tuning curves in the two brain hemispheres, the ‘two-channel’

hypothesis of [1,15]. Various models have been proposed to account for ‘slope-based’ encoding: precise and fast timing of the contralateral

inhibition to disfavor firing for ITD <0 [14�]; difference in EPSP slopes for ipsi/contra inputs [16]; and asymmetrical emergence of axon from soma/

dendrite [17]. (b) MSO principal neurons fire phasically, only to fast rising inputs such as step current (left). They do not fire in response to slowly

varying input as shown here (right) with a model [18]: for rectified sinusoidal current input the model fires once per cycle (green) for a stimulus

frequency range (approximately 100–350 Hz, for adequate strength input); no firing occurs for lower frequency (dark blue), phase-locking but with

cycle-skipping may occur for higher frequency (light blue). In vitro experiments and biophysically based modeling together reveal dynamic, but

fast, subthreshold mechanisms that preclude spike generation if depolarizing input is too slow. To get a spike, depolarization should be fast

enough to out-race the activation of a low-voltage-threshold potassium current, Iklt, [4,18] and the substantial and fast inactivation of the sodium

current [19]. If the conductance of Iklt is frozen at its resting level the model converts to tonic firing, Type 3 to Type 2 excitability, while phase-

locking and ITD-sensitivity suffer [5].
Recent findings help to focus further questions about the

role for dendrites. Since dendritic and synaptic conduc-

tances counteract temporal broadening [11] and provide
www.sciencedirect.com 
somatic EPSP amplitude equalization [12], we might feel

satisfied that single soma-dendrite compartment models

succeed in addressing some questions about MSO
Current Opinion in Neurobiology 2019, 58:46–53
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processing. On the other hand, further insights are likely

if we understand more about the spatio-temporal pattern-

ing of inputs to MSO dendrites [12].

The conceptual Jeffress model [20] for localization

applies to barn owl anatomy and physiology [13]

(Figure 1a) but not directly to mammals [1,3�]. Both

excitatory input and fast temporally precise inhibitory

input shapes ITD-tuning in gerbils [14�] (although just

how fast to avoid temporal summation is under question

[21]). Further, and unexpected according to Jeffress, the

ITD for maximal firing can lie beyond the physiological

range (Figure 1a), as determined by head-size. A coding

theory approach, involving Fisher information, offers an

explanation that optimal ITD estimation is based on

tuning function slope (not peak) [22,23]. With regard

to the delay lines of Jeffress, anatomical evidence of

explicit axonal delays (Figure 1a) is lacking for the gerbil

and alternate explanations remain under consideration,

including cochlear disparities, mismatch of inputs from

cochlea to MSO, preceding inputs influencing spike

threshold, and dependence on stimulus properties

[24,3�,2].

In the classical view LSO performs rate-based encoding

rather than timing-based encoding as in MSO [1,2]. Yet

recent studies have found timing-based biophysical mech-

anisms, namely some LSO neurons are not just simple

integrators but have resonance properties [25,26] with

frequency preferences comparable to those reported in

MSO [27] and some LSO neurons show onset behavior

and/or ITD sensitivity [24,25,2]. The classical lines of the

‘duplex’ theory continue to blur and hypotheses are being

proposed about how ITD information from MSO and LSO

may be combined for sound localization [15].

Auditory streaming, ambiguity and bistability
How does the brain extract auditory objects and track

their cues and features? This so-called ‘cocktail party

problem’ involves isolating separate voices in a dynamic

environment and attending to one speaker. Initially we

hear an integrated mixture of sound/voices but then our

auditory system distinguishes separate streams (Auditory

Scene Analysis; recent reviews [28,29]). A valued para-

digm from Van Noorden [30] for studying auditory

streaming involves segregating two interleaved

sequences of A tones and B tones, separable by a per-

ceived difference in pure tone frequency and timing

(Figure 2a). Initially heard in one stream (integrated,

Figure 2b), the probability of hearing two streams (seg-

regated, Figure 2b) gradually builds up over several to

tens of seconds. Build-up occurs more rapidly with a large

difference in tone frequency (DF) between A and B

(Figure 2h) and at faster presentation rates. The first

perceptual switch, typically from integrated to segre-

gated, is followed by persistent alternations between

the two interpretations [31] (Figure 2c). Imaging
Current Opinion in Neurobiology 2019, 58:46–53 
approaches have shed light on, for example, the network

of brain areas involved in streaming with fMRI [32], the

effects of attention on neural representations of streams

with MEG [33] or magnetic resonance spectroscopy [34],

and the role of oscillations in encoding streams with EEG

[35] (comprehensive review: [29]).

Most existing computational models of auditory stream-

ing (recent review: Szabó et al. [39�]) focused on

reproducing the dependence of perceptual bias, and/or

the dynamics of build-up, on DF and presentation rate.

Models of build-up are posed in a range of frameworks:

signal processing [40], temporal coherence [41], tonoto-

pic organization [42] or neural oscillations [43]. A

complete theoretical framework for streaming should

account for build-up and later alternations (build-up

converges to the long-term probability of bistable

alternations (Figure 2h)).

Several recent models focused on post-build-up alterna-

tions (auditory bistability) with competition dynamics

[44,36] or probabilistic switching schemes [45,46]. The

statistical properties of percept durations share features

across a range of bistable perceptual phenomena: typi-

cally described by log-normal distributions [31,47,48].

The statistical model of [45], based on an alternating

renewal process, reproduces the main features of build-up

and later alternations, but not observed switch time

correlations. A Bayesian model for alternations using an

evidence accumulation process [46] succeeds in reprodu-

cing correlations. In these models the initial bias to

integration is set by specifying a priori initial conditions

[45,46].

Competition-based models proposed for visual bistabil-

ity (e.g. binocular rivalry) incorporate mutual inhibition,

slow adaptation and noise [49]. In competition-based

dynamics a slow adaptation process sets durations and

produces switch correlations [45]. The phenomenologi-

cal model presented in [44] treats build-up and subse-

quent bistability separately. The pattern discovery stage

addresses algorithmically the formation of the different

perceptual patterns during build-up and the initial bias

to integration emerges from this process (albeit without a

link to neural computations). Abstracted units assigned

to each perceptual pattern (once discovered) enter into

competition through mechanisms similar to those

described above.

Our recent study introduced the first neuromechanistic

competition model of auditory bistability [36], a depar-

ture from percept-based rivalry models. Dynamic inputs

are linked to sensory features by mimicking the neuronal

responses from electrophysiologically recorded A1 [37]

(Figure 2d). On the basis of a theoretical description

proposed in [38] (Figure 2e), the model considers com-

petition downstream of A1 (Figure 2f). It captures
www.sciencedirect.com
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Figure 2

0 40 80time (s)

DF (st)

(a)

(c)

Audi tory  stream ing: A BA_ se quence

To
ne

 fr
eq

ue
nc

y

(b)
Integ rated

Segregated

Perce ptual in terpretations (perce pts)

Perce pt  repo rts (human data,  Rankin et al 2015)

ABABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_ABA_

Early
adaptation Static i nputs a fter ~3 trip lets

(d) Macacque electrop hysiol ogy (A 1) f rom M ich eyl 
et al 2005 ( qualitati vely  rep roduc ed)

To
no

to
pi

c 
lo

ca
tio

n 
in

 A
1

A

B

(A+B)/2

time

N
or

m
al

iz
ed

 a
ct

iv
ity

 

0 1 2 3 4 5 6 7
0

0.5

1

AB
A
B

Integrated Segregated

In
t

S
eg

A

AB

B

DF

(e) (f)Fishman  et
al (2001)

Ranki n et
al (2015)

(g) Competition mo del  respo nses  to ear ly tripl ets

time (s)
time (s)

P
ro

po
rt

io
n 

se
gr

eg
at

ed

0

1 DF=10

DF=7

DF=4

Input static from t=0

Input, early adaptation

0     1     2      3      4      5      6      7

(h)Tri al- averaged b uild-up function

Current Opinion in Neurobiology

Dynamics and competition for auditory streaming. (a) Stimulus paradigm where low A tones, high B tones (separated by the difference in tone

frequency DF) and silences (_) each of 100 ms repeat in an ABA_ triplet pattern. (b) Stimulus is perceived as either one integrated stream

ABA_ABA_ . . . or two segregated streams A_A_A_A_ . . . and _B___B__, . . . . (c) Perceptual reports for 90 s of a single trial [36]. Initial percept

is integrated (bias to integration) followed by a switch to segregated within first �10 s (build-up phase). Subsequently perception alternates every

�2–5 s between integrated and segregated (bistability) if DF is not too large or too small. (d) Neural responses in primary auditory cortex (A1) to

repeating triplet stimulus at three tonotopic locations with best frequency A (red), B (green) or in between at (A + B)/2 (blue). Time axis as in panel

G, vertical offset for visualization only. Responses mimick trial-averaged firing rates from [37] capturing qualitative characteristics: rapid early

adaption of overall amplitude (timescale 500 ms), initially responses are broad across tonotopy with similar responses to all tones at each location

and tonotopic dependence emerges after early adaptation with full responses to the A (B) tones at the A (B) location and reduced responses to

each tone at the intermediate location (A+B)/2. (e) Schematic of the population separation model proposed in [38]. Tonotopic spread of responses

to A and B tones gives significant overlap (blue shaded region) if DF is sufficiently small. Interpretation: For small DF joint responses to both A and

B tones centered at the location (A + B)/2 presumably leads to the integrated percept. For large DF minimal or no overlap leads to the segregated

percept. At intermediate values both percepts are possible, resulting in build-up to segregation (which increases gradually after trial averaging)

followed by bistability. (f) The three-unit competition model proposed in [36] pools inputs from the three tonotopic locations in panel D. The

model’s competition stage shown here is assumed to be downstream of (and taking input from) A1, with mutual inhibition between units,

adaptation and noise driving competition. (g) One model simulation showing the activation threshold (horizontal dashed), and each population’s

excitation variable (solid) and adaptation variable (dashed). When the central AB unit is active (integrated), the peripheral units are suppressed

through mutual inhibition. Rising adaptation for AB increases the probability of noise inducing a switch; when units A or B become active and

dominant after �4.5 s (segregated), the integrated (AB) unit is suppressed. (h) Averaging across many behavioral trials (or many simulations), the

smooth build-up [37] in the probability of segregation and dependence on DF (faster for larger DF) is captured by the model when early

adaptation, as shown in panel (d), is included (solid curves). Without early adaptation (dashed curves) the responses only reflect the probability of

segregation for post-build-up alternations.
the switching statistics of bistable auditory perception for

long stimulus presentations and their dependence on DF

[36]. The work was recently extended to account for early

bias to integration and build-up (Figure 2g–h) [50]. Our

model demonstrates that broader tonotopic responses in

A1 before rapid adaptation on a timescale of 500 ms biases

towards integration, whilst the slower timescale of build-

up (�10 s) emerges from competition downstream. Our

model is the first treatment — through a direct link to

observed neurophysiological responses — to explain both

the initial bias for integration and the apparent disparity

between adaptation timescales.
www.sciencedirect.com 
Auditory beat perception, beat generation and
sensorimotor synchronization
Humans have a remarkable ability to perceptually track

complicated sensory patterns and synchronize move-

ment, even predicting upcoming events [51–54] as inves-

tigated behaviorally in finger tapping experiments [54]

(Figure 3a). A recent review of imaging experiments

investigating musical rhythm and timing proposes that

the perception and production of rhythm relies on similar

mechanisms involving sensory and motor areas [55].

Indeed, perception of simple musical rhythms (without

movement) involves auditory and motor regions, as shown
Current Opinion in Neurobiology 2019, 58:46–53
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Figure 3
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Sensorimotor synchronization (SMS) and beat generation, entrainment models and error-correction models. (a) Repetitive stimulus with regular

intervals between events (black). An internal representation predicts the onset of the next event (spikes in red). Internal representation drives motor

responses, for example finger tapping or clapping, timed to match the stimulus. The timing entrains to match the stimulus after 5–8 cycles. This

process is faster than say long term potentiation or depression requiring hundreds of repetitions. The learned interval time is maintained after

stimulus offset (vertical black) and the listener continues to clap in time (beat generation). (b) In entrainment models, the difference in phase

between the stimulus and its internal representation monotonically increases towards 0 (horizontal blue). At stimulus offset (vertical black) the

phase error drifts away as the oscillator returns to its intrinsic frequency of oscillation (unless this matches the stimulus exactly). In error-correction

models, a parameter is adapted in discrete steps to reduce the error between the stimulus and its internal representation. Whilst this approach

can overshoot, the stimulus interval timing is learned and maintained at stimulus offset, allowing for continuation of the beat with correct timing.
in combined behavioral and fMRI [56] or EEG [57,58]

experiments. However, with these approaches distin-

guishing perceptual from sensory signals is challenging

and the necessary trial averaging compromises timing

information.

Models of rhythm and beat perception are geared towards

understanding how temporally structured stimuli gener-

ated patterns of neural activation (Figure 3a, internal

representation) from which perceptual experience is

derived. A hierarchical auditory and motor oscillator

model can explain the perception of musical pulse at

frequencies without spectral energy through entrainment

[59�]. The oscillator model describes an array of

canonical oscillators organized by natural frequency

where responses gradually entrain with the stimulus

(Figure 3b). A recent extension with Hebbian learning

for tuning intrinsic oscillator frequencies [60] allows for a

large dimensionality reduction [61]. Recently, imaging

experiments identified entrained neural activity linked to

the perception of a missing pulse in only auditory (not

motor) areas [62], suggesting a reassessment of the hier-

archy in [59�]. Elsewhere, predictive coding models
Current Opinion in Neurobiology 2019, 58:46–53 
explain some aspects of processing for more complicated

rhythms (e.g. syncopation) [63,64], however, these mod-

els focus only on spectral profiles rather than event timing

information (recent review [65]).

Models of beat generation focus on frameworks that adapt

to timed intervals of an incoming signal and learn a

matching pattern (which continues after the input).

The framework proposed in [66] depends on an error

correction mechanism [67] that samples input–output

differences and makes predictions from an internal model

(weak anticipation [66]). Tested against behavioral

experiments [68], the model best accounts for tempo

changes when both correction and prediction mecha-

nisms are incorporated. A recent dynamical model of beat

generation [69�] exploits plausible neural mechanisms in

an error correction framework so that the neuronal beat

generator learns the period and timing of a rhythmic input

and continues the beat after input offset. The model,

robust for tempo changes and to noise, implements a

plasticity rule with gamma oscillations as a timekeeper

measuring differences in spike times between inputs and

beat generation [70] (plausible neural implementation
www.sciencedirect.com



Computational models of auditory perception Rankin and Rinzel 51
the learning rule in [61]). Elsewhere, tap interval timing

as effected by noise effects are studied in drift-diffusion

models [71,72], but without scope to learn and continue

time interval production.

Perspectives
Theoretical advances on sound localization encoding

have benefited from close links to neurophysiological

experiments early in the auditory pathway in animal

models. In a relatively mature field, a long-established

and mutually beneficial interplay between theory and

experiments has driven significant progress [3�]. Achiev-

ing similar advances for auditory streaming and beat

perception/generation will depend on such interplay,

but with different challenges. Tasks involving perceptual

reports and behavior are limited in animal models and

these functions involve a network of multiple cortical

areas [32,55]. Whilst [36] successfully bridged between

available neurophysiological data from macaque A1

[37,38] and behavior in humans [31], future insights are

likely to be informed by a closer link to imaging work in

humans (three papers exploring attention [33–35], as yet

unexplored in models). A prime example on beat percep-

tion is a recent imaging study [62] linked to and informa-

tive for related modeling work [59�].

There is potential for convergence between models of

beat perception/generation and of auditory streaming.

The former are in some recent cases adaptive to event

timing [61,69�]. Such processes allow a common popula-

tion of neurons to learn sequences with a range of timing

properties with a simple model structure. A similar pro-

cess is likely at play for streaming but with separate

populations entraining oscillations to different streams

[35]. In this case the importance of temporal coherence

[41] as a cue for binding of events and therefore, for

integration, would be emergent. As suggested in [69�],
beat generation with more complex stimuli could lead to

bistability. In both fields, a drive towards more dynamic

environments with slowly varying cues and timing would

bring us closer to real-world situations.
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31. Pressnitzer D, Hupé J: Temporal dynamics of auditory and
visual bistability reveal common principles of perceptual
organization. Curr Biol 2006, 16:1351-1357.

32. Kashino M, Kondo H: Functional brain networks underlying
perceptual switching: auditory streaming and verbal
transformations. Philos Trans R Soc Lond Ser B: Biol Sci 2012,
367:977-987.

33. Billig AJ, Davis MH, Carlyon RP: Neural decoding of bistable
sounds reveals an effect of intention on perceptual
organization. J Neurosci 2018:3022-3117.

34. Kondo HM, Pressnitzer D, Shimada Y, Kochiyama T, Kashino M:
Inhibition–excitation balance in the parietal cortex modulates
volitional control for auditory and visual multistability. Sci Rep
2018, 8:14548.

35. Costa-Faidella J, Sussman ES, Escera C: Selective entrainment
of brain oscillations drives auditory perceptual organization.
NeuroImage 2017, 159:195-206.

36. Rankin J, Sussman E, Rinzel J: Neuromechanistic model of
auditory bistability. PLoS Comput Biol 2015, 11:e1004555.

37. Micheyl C, Tian B, Carlyon R, Rauschecker J: Perceptual
organization of tone sequences in the auditory cortex of
awake macaques. Neuron 2005, 48:139-148.

38. Fishman Y, Reser D, Arezzo J, Steinschneider M: Neural
correlates of auditory stream segregation in primary auditory
cortex of the awake monkey. Hear Res 2001, 151:167-187.
Current Opinion in Neurobiology 2019, 58:46–53 
39.
�
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