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Abstract

This paper presents experimental evidence on the action commitment game with cost-

asymmetric firms in a differentiated products Bertrand duopoly. Unlike its quantity-setting

counterpart, the risk-dominant leader-follower equilibrium Pareto-dominates the simultaneous-

move equilibrium. This equilibrium also minimizes payoff differences between firms. Hence, one

would expect the model to accurately capture behavior. The evidence partially supports the

theory: low-cost firms price in period one more often than high-cost firms, and depending on the

treatment, between 40% and 57% of all observations conform to equilibrium play. However, the

modal timing outcome involved both firms delaying their pricing decision. This timing outcome

is characterized by Nash play and some collusion. The high frequency of delaying decisions

could be due to a desire to reduce strategic uncertainty.
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1 Introduction

The action commitment game by Hamilton and Slutsky (1990) is one of the seminal contributions

to the literature on games of endogenous timing. It describes a two period duopoly, in which firms

choose whether to produce/price in either period one or wait until period two. If a firm chooses

period one, it will not know its counterpart’s action. Waiting, in contrast, allows it to know the

choice the other firm made. This model is important to the industrial organization literature

because it provides a theoretical basis for the emergence of market leaders. While it is known that

the Stackelberg equilibrium is more efficient than the Cournot equilibrium (Daughety, 1990), prior

to the endogenous timing literature it was not obvious why and how a market leader would emerge.

Following Hamilton and Slutsky’s original work, there has been an increasing interest in

studying the conditions for the endogenous emergence of market leadership (e.g. Normann, 2002;

van Damme and Hurkens, 2004). However, the experimental evidence to date has not supported

the theory. Huck, Müller and Normann (2002) tested Hamilton and Slutsky’s (1990) model and

they found that behavior was consistent with simultaneous-move Cournot play. The data from

their experiment showed that only roughly 5% of observations were consistent with the predicted

equilibria. Rather, most observations recorded Cournot play, collusion or punishment by followers

of Stackelberg leader quantities. The authors justified this behavior on coordination problems due

to firms being symmetric.

In order to tackle the issue of coordination problems stemming from the symmetric nature

of the original action commitment game, Fonseca, Huck and Normann (2005) conducted a test

of the asymmetric version of the action commitment game proposed by van Damme and Hurkens

(1999). Their data again showed little evidence in favor of the emergence of Stackelberg leaders,

as most subjects committed to period one production and Cournot outputs were modal.1 Santos-

Pinto (2008) argued that such behavior could be explained by players being averse to inequality

in payoffs. He showed that if players exhibit social preferences of the form proposed by Fehr

and Schmidt (1999), there may be multiple simultaneous-move equilibria in period one, as well

as punitive behavior by second-movers via high quantities as a best-response to the Stackelberg

output in period one.

1Furthermore, other experimental studies of other endogenous timing models have also found little evidence

supporting their predictions. Müller (2006) investigated the timing game proposed by Saloner (1987), while Fonseca,

Müller and Normann (2006) studied the extended game with observable delay developed by Hamilton and Slutsky

(1990). Nosenzo and Sefton (2011) look at endogenous timing in a public good game.
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This evidence makes a strong case for testing the action commitment game with price-

setting firms and asymmetric costs. Unlike the quantity-setting game, there is a strategic incentive

to move second in the price-setting game. However, since being a first-mover is always most prof-

itable than playing a simultaneous-move game, both sequential-move equilibria Pareto-dominate

the simultaneous-move equilibrium. Furthermore, asymmetry in costs should help firms coordi-

nate on who moves first via risk dominance arguments (van Damme and Hurkens, 2004). Finally,

inequality-averse individuals should prefer the risk-dominant equilibrium, since it minimizes payoff

differences between the two firms.

We find that low-cost firms commit to period one pricing more often than high-cost firms.

However, a large proportion of firms in the experiment delay their pricing decisions to the second

period. This means the modal timing outcome is where both firms play a simultaneous-move game

in period two. Behavior in this subgame is characterized by prices close to the Nash equilibrium

of the static game, as well as collusive prices in some markets. Since average prices posted by

firms who commit to period one are not very different to the static game Nash equilibrium, the

resulting small differences in profits make delaying an attractive action, particularly since delaying

may reduce strategic uncertainty.

2 The Model

We consider a differentiated product price setting duopoly, where demand is given by

Di(pi, pj) = max{20− pi + 0.5pj , 0}, i 6= j (1)

with firms’ cost functions given by

C1(q1) = 2q1, (2)

C2(q2) = 8q2. (3)

The profit of firm i is given by πi(pi, pj) = (pi − ci)(Di(pi, pj)). The (unique) best reply of firm i

to a price pj is:

bi(pj) =
20 + ci

2
+

1

4
pj (4)

Firm i’s leader price is the unique maximizer of the function pi → π(pi, bj(pi)) is pLi . Denote pFi

as firm i’s follower price, pFi = bj(p
L
i ). Let Li = πi(p

L
i , p

F
j ) and Fi = πi(p

F
i , p

L
j ) denote leader

and follower profits, respectively. Let pNi be the Bertrand-Nash equilibrium price of the one-period

game and Ni = πi(p
N
i , p

N
j ) the corresponding profit for firm i.
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Firms prefer being a follower to being a leader, and prefer being a leader to playing a

simultaneous-move game: Fi > Li > Ni. Firms play the Action Commitment game of Hamilton

and Slutsky (1990), where they must select a price in either of two periods. If firm i sets a price in

period one, it will not be informed of the actions of its counterpart. If it waits, which we denote by

wi, it will know what the choice the other firm made in period one. Equation 5 describes payoffs

for firm i if both firms price in the first period; equation 6 defines payoffs for firm i if it commits to

period one and firm j delays; equation 7 describes payoffs for firm i if it delays its pricing decision

to the second period and firm j prices in period one. Finally, equation 8 defines payoffs to firm i if

both firms delay their pricing decision to period two.

πi(pi, pj) = (pi − ci)(20− pi + 0.5pj) (5)

πi(pi, wj) = (pi − ci)(20− pi + 0.5(
20 + ci

2
+

1

4
pj)) (6)

πi(wi, pj) = (
20 + ci

2
+

1

4
pj)

2 (7)

πi(wi, wj) = Ni (8)

This game has three pure-strategy equilibria.2 Firms either both select prices pNi in the first

period, or one of them chooses a price pLi in the first period while the other sets a price pFi in the

second period. In the game considered in this experiment with a discrete and finite strategy space,

the equilibrium where the efficient firm leads risk-dominates the equilibrium where the inefficient

firm leads. The relevant proofs are included in the Appendix.

If the game is finitely repeated, then there are multiple equilibrium paths: any sequence

of stage-game equilibria is an equilibrium of the repeated game. In this case, it is difficult to

predict what equilibrium path should be played. Any equilibrium path in which players play the

simultaneous-move equilibrium game at least once is Pareto-dominated by any equilibrium path

where players never play the Bertrand-Nash equilibrium. However, there is no obvious way to

select amongst the multiple equilibrium paths remaining. Theoretically, there is no possibility of

collusive equilibria in this environment using standard backward-induction arguments. However,

there is substantial evidence that cooperation is possible even in finitely repeated games. Embrey

et al. (2018) provide a meta-analysis of data from the Prisoners’ Dilemma. This suggests collusive

behavior may be possible in the experimental environment.

2Following van Damme and Hurkens (2004), we only consider pure-strategy equilibria.
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Random Fixed

End Timing 6 6

Control 6 6

Table 1: Experimental design. Numbers in cells are the number of independent observations.

3 The Experiment

3.1 Experimental Design

The experiment implements the endogenous timing model laid out in Section 2. The control

treatment consists of the simultaneous-move game. In addition, we conducted sessions where

subjects’ matching was random (Random), as well as sessions where subjects were matched with

the same partner for the whole session (Fixed). The random matching treatment best approximates

the one-shot nature of the game. However, since at the heart of this experiment lies a coordination

problem, the fixed matching treatment provides the best environment for subjects to be able to

coordinate on the efficient equilibrium, as it reduces the strategic uncertainty subjects face in the

experiment. Also, real world firm interaction is better characterized by repeated interaction rather

than random matching. Table 1 outlines the experimental design. There were six independent

observations in each condition — ten-subject sessions in the case of Random and pairs in the case

of Fixed.

3.2 Hypotheses

We now briefly set out the hypotheses underpinning the experiment. As discussed earlier, the

risk-dominant equilibrium is the sequential-move equilibrium in which the low-cost firm prices in

period one. This is also the equilibrium which maximizes total profits, and minimizes payoff dif-

ferences. This should be reflected in subjects’ timing choices, irrespective of the matching protocol

implemented in the experiment.

Hypothesis 1: Low-cost firms will choose to price in period one more often than high-cost firms

in both Random and Fixed.

We now turn to pricing behavior. Theory predicts that conditional on any given subgame

(that is, choosing to price in period one, follower in a sequential-move subgame, or playing a

simultaneous-move game in period two) low-cost firms will select lower prices than high-cost firms.
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Hypothesis 2: Conditional on a chosen subgame, low-cost firms will pick lower prices than high-

cost firms in both Fixed and Random.

We are also interested in understanding pricing behavior conditional on the matching proto-

col. Given that the game is finitely-repeated, there is no theoretical basis for expecting differences

in pricing behavior. However, there is ample evidence that fixed matching protocols give rise to

collusive behavior even in finitely repeated markets (Huck, Müller, Normann, 2001; Kübler, Müller,

2002; Embrey et al., 2018). It is therefore possible that similar patterns may emerge in our game,

especially given firms set prices. Since prices are strategic complements, any collusive deviation

from a Nash equilibrium price will be matched by a similar deviation.3

Hypothesis 3: Conditional on a chosen subgame, average prices will be higher in Fixed than in

Random.

3.3 Procedures

In all treatments, subjects were sorted into roles (high cost or low cost) in the beginning of the

session and retained those roles throughout the experiment. Each subject sat in an individual

computer booth. Verbal communication between subjects during the sessions was not allowed.

Each session began by the experimenter reading the instruction set aloud to establish common

knowledge of the experimental conditions. After that, there was a short period for subjects to query

the experimenter, followed by a short quiz, whose purpose was to ensure everyone understood the

mechanics of the experiment before the experiment itself began. Each session had 30 rounds, and

lasted on average one hour.

The instruction sets (available in the Appendix) informed participants that they were taking

the role of a firm that was in a market with another firm. Subjects taking part in the main treatment

read that in each round of the experiment they could choose to set their price in the first period

or that they could wait until the second period to do so. Choosing period one to set their price

meant they would not know what their counterpart had chosen, but if they chose to wait they

would be informed of what he or she had done before making their decision. To assist them in

their decisions they had a payoff matrix with information on profits for both players conditional

on both players’ price choices. All decisions were done through a computer terminal using Z-Tree

3In contrast, in quantity setting games, the best response to a collusive deviation from equilibrium output is to

do the opposite.
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Random Fixed

Low-cost 30% 52%

High-cost 16% 13%

Table 2: Frequency of period one pricing decisions

(Fischbacher, 2007), and all feedback was also given on screen, both after each decision was made

(i.e. the choice of the other firm if a subject had chosen to wait) and after each round was over.

The experimental sessions for the Fixed treatment took place in the Experimental Eco-

nomics Laboratory in the Economics Department at Royal Holloway, University of London, in the

Fall of 2004 and the sessions for the Random treatment in the FEELE lab at the University of

Exeter in the Fall of 2009. The subject pool in both sites consisted of undergraduate students

from a variety of backgrounds. Ten to twelve subjects participated in each session and no subject

participated in more than one session. We conducted a total of 14 sessions with 144 participants

in total. Subject payments consisted of the sum of all periods’ payoffs; average payment was £17

($31.60).

4 Experimental Results

In our analysis of the data, an independent observation in the Fixed treatment is the average

behavior across 30 periods by a pair of subjects. In the Random treatment, an independent

observation is the average behavior across 30 periods by all participants in that session. When

presenting and discussing results, we will denote ‘t = 1’ and ‘t = 2’ as the first and second pricing

periods in a given round. When reporting significance levels on non-parametric tests, we always

refer to two-sided tests.

4.1 Timing Choices and Timing Outcomes

We begin by looking at timing decisions. Table 2 displays the frequency with which low cost and

high cost firms picked prices in period one. It is notable that low cost firms always pick their prices

in period one more often than high cost firms in both Random (p = 0.055) and Fixed (p = 0.020)

treatments.4 However, the frequency with which low-cost firms price in period one is quite far

4In rounds 1-10, the differences between roles are significant at the 5% in both treatments; in rounds 11-20, the

difference between roles is only significant for Random at the 10% level; in rounds 21-30, there are no significant
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Figure 1: Time series of average timing decisions by firm type (top) and timing outcomes (bottom)

in Random (left) and Fixed (right).

from 100%. Focusing now on treatment differences, the low-cost firms in Fixed price in period one

more often than their counterparts in Random. Finally, looking at the evolution of timing choices

over the course of the experiment, the top row of Figure 1 shows that the frequency of period one

choices is quite stable throughout the session, with the exception of the high-cost firms in Fixed,

whose frequency of period one choices dips in the second third of the experiment, only to rise in the

final third. How do timing decisions by individuals translate into timing outcomes in the game?

Table 3 summarizes the frequency with which each of the four timing outcomes occurred in both

treatments. In Random, 23% of observations are consistent with the low-cost leader equilibrium,

while 10% of observations record the high-cost firm leading — a significant difference (McNemar’s

differences between roles in either treatment; across all rounds, both treatments show significant differences between

roles (5% level for Random and 10% level for Fixed). All comparisons tested using Wilcoxon sign-rank test for

paired samples.
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High-cost High-cost

t = 1 t = 2 t = 1 t = 2

L
ow

-c
os

t

t = 1 6% 23% 8% 44%

t = 2 10% 61% 5% 43%

Random Fixed

Table 3: Relative frequency of timing outcomes – all periods

test, p < 0.01). However, the majority of observations have both firms delaying their pricing

decision to period two. In Fixed, there are two modal timing outcomes: the first is where the

low-cost firm leads with 44% of observations, which is significantly more frequent than the outcome

in which the high-cost firm leads (McNemar’s test, p < 0.01). The second most observed timing

outcome with 43% of observations is where both firms delay their timing decisions.

The bottom row of Figure 1 displays the evolution of the relative frequencies of the four

timing outcomes over the course of the experiment. Bertrand play in the second period, and the

low-cost leader equilibrium are consistently the two most frequent timing outcomes in the Fixed

treatment, while period-two Bertrand is the modal outcome throughout in the Random treatment.5

The following summarizes our finding from the timing analysis.

Finding 1: Low-cost firms price in period one more often than high-cost firms in both treatments.

The simultaneous-move pricing subgame in period two is the modal outcome in Random. The risk-

dominant equilibrium and the simultaneous-move subgame in period two are the modal outcomes

in Fixed.

4.2 Pricing decisions

We now turn to the analysis of pricing decisions by firms. Theory predicts low-cost firms will

charge a lower price than high-cost firms in equilibrium for a given timing decision. Recall that in

equilibrium, a low-cost price will set a lower price if it chooses to price in period 1 than a high-cost

firm that prices in period 1. Likewise, a low-cost follower will set a lower price than a high-cost

follower. In addition, in a Bertrand equilibrium, a low-cost firm will set a lower price than a

high-cost firm. In short, pL1 < pL2 , pF1 < pF2 and pN1 < pN2 .

5There were no significant differences in the average proportion of each timing outcome over the two halves of the

experiment in either Fixed or Random using Wilcoxon signed rank test for paired samples.
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Table 4 reports the average prices chosen by firms in the main treatment, conditional on

having chosen period one, being a follower or having played a simultaneous-move game in period

two. As predicted, low-cost firms charge significantly lower prices than high-cost firms for a given

subgame. This is the case for both Random and Fixed treatments.6

Finding 2: Low-cost firms always set lower prices than high-cost firms in all subgames in both

Random and Fixed treatments.

We now turn to the comparison of pricing behavior between Random and Fixed. We find

no statistically significant difference in average prices in any pairwise comparison between the two

matching treatments.7 This is our next finding.

Finding 3: We find no significant difference in average prices conditional on role and/or subgame

between Random and Fixed treatments.

Looking at average pricing behavior naturally ignores the heterogeneity in behavior in each

of the timing outcomes. Table 5 displays the frequency with which low-cost firms priced in t = 1,

and the average price posted by high-cost firms when in the role of followers. In Random, the

modal price posted by low-cost firms in t = 1 is the Bertrand-Nash equilibrium price of the one-

period game, 16; in Fixed, the modal price is 17. Only 4% of observations in Random and 1%

in Fixed record the predicted price of 15. In contrast, the behavior of high-cost firms when in the

role of followers is rather close to prediction for the large majority of prices in both treatments.

Table 6 displays the same information with roles reversed: we now look at the distribution

of prices posted in t = 1 by high-cost firms and the average price posted by low-cost firms when in

the role of followers. Again, most observations in both treatments record pricing behavior in t = 1

which is closer to the one-period Bertrand Nash equilibrium (p = 17) than that predicted by the

two-period model (p = 20). However, in Random, the latter price is the second most observed

price with 23% (33/143) of observations. The average price posted by low-cost firms is very close

to the predicted best reply.

6All comparisons, Wilcoxon signed-rank test for paired samples. Random: pt=1
1 = pt=1

2 , p = 0.046; pFollower
1 <

pFollower
2 , p = 0.046; pBertrand,t=2

1 = pBertrand,t=2
2 , p = 0.028. Fixed:pt=1

1 = pt=1
2 , p = 0.068; pFollower

1 < pFollower
2 ,

p = 0.1088; pBertrand,t=2
1 = pBertrand,t=2

2 , p = 0.028. Note however that in the first two comparisons, data was

unavailable for some high-cost firms, making the number of pairs smaller than 6.
7Low cost firms, t = 1: z = 1.444, p = 0.149; Follower in t = 2: z = 0.258, p = 0.796; Bertrand in t = 2:

z = 0.320, p = 0.749. High cost firms, t = 1: z = 0.426, p = 0.670; Follower in t = 2: z = −0.241, p = 0.810; Bertrand
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Random Fixed

Firms’
t = 1

Follower Bertrand
Control t = 1

Follower Bertrand
Control

cost in t = 2 in t = 2 in t = 2 in t = 2

p∗ 16 16 15 15 16 16 15 15

p 17.70 15.51 16.11 16.25 17.51 16.67 17.69 16.02

low (2.55) (1.24) (1.68) (1.72) (1.54) (1.80) (2.61) (2.28)

N 266 87 547 450 93 9 78 180

p∗ 20 18 17 17 20 18 17 17

p 18.19 18.25 18.25 17.80 19.09 18.03 19.22 17.9

high (1.72) (1.52) (1.25) (1.34) (2.07) (1.91) (2.85) (2.05)

N 143 210 547 450 23 79 78 180

Standard deviations in parenthesis

Table 4: Average prices conditional on subgame

Random

pt=1 14 15 16 17 18 19 20 21 22 23

N 12 10 103 35 35 20 6 8 2 35

BR(pt=1) 17 17 18 18 18 19 19 19 20 20

pt=2

18.80 17.44 17.89 17.91 17.91 18.94 17.5 19.4 20 20

(2.90) (2.19) (0.51) (2.00) (0.73) (0.25) (1.73) (0.89) - (2.41)

N 10 9 89 23 32 16 4 5 1 21

Fixed

pt=1 14 15 16 17 18 19 20 21 22 23

N 0 1 23 42 2 11 8 6 0 0

BR(pt=1) 17 17 18 18 18 19 19 19 20 20

pt=2

- 17.00 17.96 17.03 18 19.18 18.75 20.60 - -

- - (1.43) (1.68) (0.00) (2.40) (0.46) (2.19) - -

N 0 1 23 29 2 11 8 5 0 0

Standard deviations in parenthesis

Table 5: Distribution of low cost firms’ first period prices, best replies and average replies by high

cost firms in period 2.
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Random

pt=1 14 15 16 17 18 19 20 21 22 23

N 5 1 3 52 30 11 33 4 1 3

BR(pt=1) 14 15 15 15 15 15 16 16 16 17

pt=2

14.00 - 14.67 15.07 14.69 16.14 16.31 16.00 16.00 17.00

(0.00) - (0.58) (0.47) (0.48) (2.04) (1.38) (-) (-) (0.00)

N 2 0 3 28 16 7 26 1 1 3

Fixed

pt=1 14 15 16 17 18 19 20 21 22 23

N 1 0 0 0 12 2 3 1 2 2

BR(pt=1) 14 15 15 15 15 15 16 16 16 17

pt=2

- - - - 16.33 15.00 17.00 16.00 16.00 21.00

- - - - (1.15) (-) (-) (-) (0.00) (-)

N 0 0 0 0 3 1 1 1 2 1

Standard deviations in parenthesis

Table 6: Distribution of low cost firms’ first period prices, best replies and average replies by high

cost firms in period 2.

We conclude the distributional analysis of pricing behavior by looking at the subgame in

which both firms delay their pricing decisions to period two – see Table 7. In this case, the two

firms are playing a standard Bertrand game with differentiated products, and the Nash equilibrium

is that low-cost firms set a price of 15 and high-cost firms set a price of 17. In Random, most

observations record behavior quite close to prediction. In Fixed the same is true, but the modal

prices for low-cost and high-cost firms are 21 and 23, respectively. This suggests collusive behavior,

since (21, 23) is the price pair which maximizes joint profits for the two firms. In fact, that pricing

outcome occurred 22 times in this subgame in Fixed; however, one pair of subjects accounted for

21 such observations. This was in effect a successful collusive agreement, characterized by both

subjects systematically setting prices in period two (25 rounds out of 30).

Finding 4: Prices set in the first period are closer to Nash equilibrium levels than the endogenous

timing prediction. When in the role of follower, firms’ average prices are close to predicted levels.

in t = 2: z = −0.801, p = 0.423. All comparisons using Mann- Whitney test for independent samples.
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Random

14 15 16 17 18 19 20 21 22 23

Low Cost 51 186 148 83 29 24 11 5 3 7

High Cost 6 4 9 92 271 82 69 2 5 7

Fixed

14 15 16 17 18 19 20 21 22 23

Low Cost 7 15 6 19 3 2 2 23 0 1

High Cost 5 0 2 19 18 2 8 0 0 24

Table 7: Distribution of prices in Bertrand t = 2 timing outcome.

When playing a simultaneous-move game in period two, modal prices are close to Nash predictions,

although there is some evidence of collusion in Fixed.

4.3 The Determinants of Delaying Decision

Having tested the main hypotheses, it is important to understand some patterns in the data, most

notably the high proportion of outcomes in which both firms delayed their pricing decision. We

start by looking at dynamics of pricing decisions. Table 8 outlines the relative frequency of period

one pricing conditional on each of the four timing outcomes in the previous round using data

from rounds 2-30 of the experiment. These frequencies are quite consistent over the course of

experiment.8

Given the incentive structure in the experiment, it is plausible to argue that subjects would

pick period one pricing in the current round if in the previous round they were playing a Bertrand

game in t = 1, or if they were the leader; otherwise, subjects ought to delay their pricing to t = 2.9

The data from Table 8 is only partially consistent with theory: while the large majority of both

types of firms in the two treatments continue to delay when in the role of follower, the reverse is

not the case when firms are in the role of leader (with the exception of low cost firms in Fixed).

Evidence is also mixed when firms are playing a Bertrand game in t = 1. However, it is difficult

8There is one exception. In the second half of the Fixed treatment sessions, the frequency of t = 1 choices by

high-cost firms following a round in which they played a Bertrand game in t = 1 is 0.72. However, this corresponds

to 5 observations out of a total of 7. Given the very small number of total cases, we do not feel this is a meaningful

deviation from the overall pattern in the data.
9This could be the result of a myopic best-response dynamic, or subjects updating their beliefs about the behavior

of the population they are facing.
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Random Fixed

Low Cost High Cost Low Cost High Cost

Bertrand in t = 1 0.60 0.60 0.85 0.38

Leader 0.55 0.57 0.82 0.56

Follower 0.23 0.07 0.22 0.08

Bertrand in t = 2 0.18 0.08 0.21 0.09

Table 8: Relative frequency of period one pricing choices conditional on timing outcome in previous

round.

Random Fixed

t = 1 Follower Bertrand t = 2 t = 1 Follower Bertrand t = 2

Low cost 175.21 183.78 180.34 180.02 194.74 181.67

(11.06) (11.38) (2.36) (11.57) (4.75) (9.25)

N 6 6 6 6 3 6

High cost 100.36 104.61 99.12 105.32 106.31 100.05

(6.78) (7.14) (3.52) (5.59) (2.67) (7.27)

N 6 6 6 4 6 6

Standard deviations in parentheses based on group-level/session-level averages in Fixed/Random.

Some cells in Fixed have N < 6, due to those particular cases never occurring in some groups.

Table 9: Average profits by subgame.

to draw meaningful conclusions from that timing outcome, as it only accounts for about 6% of the

data in either treatment. Importantly, most firms of both types continue to delay when playing a

Bertrand game in t = 2 in the previous round.

To understand the rationale for the persistent pricing in t = 2, we look at average profits

conditional on the subgame being played. As predicted, being a follower is nominally more profitable

than pricing in t = 1 for both types of firms, but these differences are small and only significant

for high-cost firms (Random: p = 0.075; Fixed: p = 0.075, Wilcoxon signed-rank test for paired

samples). Interestingly however, playing a Bertrand game in t = 2 was also (nominally) more

profitable than pricing in t = 1, even for low cost firms — however, the only significant difference is

in the Random treatment (p = 0.028). In short, subjects are not losing significant payoff amounts

by delaying their pricing decisions — sometimes even profiting from doing so.
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Finding 5: Playing the subgame where both firms delay their pricing decision to period two did

not imply large payoff losses for either type of firm compared with committing to period one pricing.

5 Conclusion

This paper reports an experimental investigation of the model of endogenous price leadership in a

two- period duopoly with asymmetric costs developed by van Damme and Hurkens (2004). The

model predicts three equilibria in pure strategies: the Nash equilibrium of the static game in period

one, and two sequential-moves equilibria wherein one firm prices in period one while the other waits

until period two. However, the risk dominance criterion (Harsanyi and Selten, 1988) selects the

equilibrium in which the low- cost firm leads.

Unlike the previous evidence on the Action Commitment game, a large proportion of the

data supports the theoretical predictions. Firstly, low-cost firms priced in the first period more

frequently than high-cost firms. In the treatment where firms were randomly matched every period,

40% of observations had timing outcomes consistent with equilibrium play. In the treatment where

firm matching was fixed, about 57% of all observations were consistent with equilibrium play. In

both treatments, out of the three equilibrium timing outcomes, the risk-dominant equilibrium was

the most often observed. However, the modal timing outcome overall was the simultaneous-move

game in t = 2, which is out-of-equilibrium behavior. Behavior in this subgame is characterized by

a mix of Nash equilibrium play and, in the case of one market in the fixed matching condition,

collusive pricing.

While other timing outcomes are not very persistent (with the exception of low cost leader

outcome in the random matching condition, delaying is persistent. Once in t = 2 subgame, subjects

are likely to continue delaying their pricing decisions. Part of the reason for this is that pricing

behavior when both firms choose t = 1 and when both firms delay is very close to the static Nash

equilibrium — this is reflected in the very small payoff differentials across timing outcomes. Since

playing a second mover is more profitable than being a price leader, the fact that low-cost firms gain

little by pricing in t = 1 means that delaying becomes a reasonably safe and profitable strategy.

Delaying one’s pricing decision to some extent also resolves part of the strategic uncertainty in the

action commitment game, which makes that action even more attractive to those who may have a

preference for the resolution of uncertainty (Tykocinski and Ruffle, 2003.)

While the behavior in the current setup was much more consistent with theoretical pre-
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dictions than previous research using Cournot markets, it is apparent that subjects are unwilling

to overcome the strategic incentives to move first or second: when playing games of strategy sub-

stitutes, high-cost firms do not delay often enough; when playing games of strategic complements

it is the low-cost firms who do not commit enough to period one. Part of the reason could lie in

the quadratic nature of the profit function, which may be flat at its maximum (Harrison, 1989).

This undermines the saliency of the asymmetric leader-follower equilibria, even if the stakes are

high (average payments in the present experiment far exceeded hourly market wages). Further

work should investigate the extent to which setups with more salient incentives can induce more

equilibrium behavior.
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Appendix NOT FOR PUBLICATION

Proof

We show here that the equilibrium where the low-cost firm leads is the risk-dominant equilibrium.

Table 1 shows the reduced form game resulting from Equations 1-310. Denote this game as Γ1.

The payoffs associated with the waiting action for both players are the payoffs of the equilibria of

the associated subgames, following van Damme and Hurkens (2004). This game has 3 equilibria in

pure strategies, the simultaneous Nash equilibrium, (15, 17) and the two sequential Nash equilibria,

(16,W ) and (W, 20).

In order to determine the risk-dominant equilibrium, one must use the tracing procedure

developed by Harsanyi and Selten (1988). This procedure tries to capture “a process of convergent

expectations [...] by which rational players will come to adopt, and to expect each other to adopt,

one particular equilibrium point” (Harsanyi and Selten (1988), p. 137) as the outcome for the

particular game under consideration. Since a priori, neither player will have any specific theory

concerning the strategies to be used by the other player, she will express her expectations regarding

the behavior of the other player by means of a subjective probability distribution, ρj = (ρj1, ..., ρjk),

where ρjk is the subjective probability that player i assigns to the hypothesis that player j will

use pure strategy k. Following Harsanyi and Selten (1988), we invoke the principle of insufficient

reason to assume that player i will assume ρj to be uniformly distributed on the action space

k = {14, 15, ..., 23,W}.

We can then construct an auxiliary game Γ0, whose payoff function for player i is a function

of her strategy space and ρj , which is depicted in Table 2. We can now proceed to construct the

linear tracing procedure, which is based on a one-parameter family of auxiliary games Γt with

0 ≤ t ≤ 1. In any game Γt every player i will have the same strategy set P ∪{W} as in the original

10Because we are dealing with a duopoly with linear demand and cost with a discrete action space, multiple

equilibria may arise (Holt, 1985). We therefore subtracted 1 profit unit from 14 out of the 2 × 10 × 10 = 200 entries

to ensure uniqueness of best-replies and the existence of the simultaneous-move and two sequential-move equilibria.
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game, but her payoff function will be Πt
i = tΠ1

i (pi, pj) + (1 − t)Π0
i (pi, ρj). Let Et be the set of all

equilibrium points in Γt. By Nash’s (1951) existence theorem, we know that Et is non-empty. Let

X = X(Γt, z) be the graph of the correspondence t → Et for 0 ≤ t ≤ 1. Each point x of X will

have the form x = (t, z), where z is an equilibrium point of Γt.

Suppose that X contains a path L connecting a point x0 = (0, z0), corresponding to an

equilibrium point z0 of Γ0, with a point x1 = (1, z∗), corresponding to an equilibrium point z∗ of

the original game Γ1 = G. Then L will be called a feasible path, whereas x0 and x1 will be called

the starting and end points of this path L respectively. z∗ will be called the outcome selected by

L. We can now define the linear tracing procedure. It amounts to selecting an outcome z∗ for the

game G by tracing a feasible path from x0 to x1.

In our auxiliary game Γ0, we have one equilibrium in pure-strategies, (W,W ). Given that

equilibrium of Γ0 is not an equilibrium of Γ1, we must apply the tracing procedure to ascertain

at what point will the two sequential-move equilibria of Γ1 become equilibria of Γt, in order to be

able to select the risk-dominant equilibrium. This is done by taking the convex combination of the

payoff functions of both games as described above and defining Γt.11

The point where (16,W ) becomes an equilibrium of Γt is t = 0.0741 since the following

equation 181t+ (1− t)(185.2) = 176t+ (1− t)(185.6) has this t-value as its solution.

The point where (W, 20) becomes an equilibrium of Γt is t = 0.7059, since the following

equation 97t+ (1− t)(110.2) = 96t+ (1− t)(112.6) has this t-value as solution.

It follows that the equilibrium where the efficient firm leads is selected as the risk-dominant

equilibrium of the game, since it becomes an equilibrium of Γt at an earlier moment (t = 0.0741)

than the equilibrium where the high-cost firm leads (t = 0.7059).

Sample Instruction Set — Endogenous Timing Treatment

Welcome to our experiment. We ask you to remain quiet during the entire experiment and not to

communicate with the other people in this room. If you at any point require assistance or have any

questions, please raise your hand.

Please read these instructions carefully, since through your decisions and the decisions of

other participants, you stand to gain a significant amount of money.

In this experiment, you will be playing the role of a firm, which is paired with another firm

in a market for the entire experiment. There are two types of firms, A and B. In each market a firm

11For presentational reasons we are unable to reproduce the entire game matrix for Γt.
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A will always be matched with a firm B. You will see your type on the screen, once the experiment

begins. Additionally, firm A has a lower cost of producing the good. This means that, for instance,

if both firms charge the same price, firm A will make a higher profit than firm B.

In this experiment, your task is to select a price for the good you are producing. If you

select a higher price than the other firm, you will still be able to sell some of your goods. However,

this means that the other firm will sell more units, the higher your selected price is. Conversely, the

higher the price chose by the other firm is, the more units you will sell and therefore the more profits

you will make. The currency unit used in this experiment will be called Experimental Currency

Unit (ECU).

To help you make your decisions, you will be provided with a table that tells you the profits

you will make depending on what prices you and the other firm chose. The first column outlines

the prices firm A can choose from and the first row depicts the prices firm B can choose from. In

each cell, the profits for both firms resulting from their pricing decisions are shown. Profits for firm

A are shown on the upper left-hand corner of each cell, while profits for firm B are shown in the

lower right-hand corner of each cell. For instance, if firm A chooses a price of 19 and firm B chooses

a price of 17, firm A will make 162 ECUs of profit while firm B will make 113 ECUs of profit.

In each round there will be two periods. You and the other firm will have to make two

decisions. Firstly, you will have to decide when to price and then the price you will charge. The

decision of when to make the pricing decision has no impact on your profits. However, if you decide

to price in the first period, you will not be able to know what the other firm has done until the

end of the period. If you choose to make your pricing decision in period 2, you will know whether

the other firm has chosen to price in period 1 and the price it chose, or whether the other firm has

also chosen to wait.

Once both firms have chosen their prices, the profits for both firms will be calculated and

you will be told in a separate screen of what prices both firms have chosen and what were their

profits for the round. Additionally, you will be told of your profits up to that point.

We remind you again that you will be interacting with the same firm for the duration of

the experiment.

There will be 30 rounds in this experiment. Once the 30 rounds are over, we will calculate

the total amount of profit you made in ECUs and convert them into pound sterling, which will be

your payment for the experiment. 250 ECU will be worth £1.
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