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Objective: To assess the evidence regarding the differences in areal bone mineral density 

(aBMD) between children and adolescents with cystic fibrosis (CF) compared with their 

healthy peers, based on data from longitudinal studies. Study design: We searched 

MEDLINE, SPORTDiscus, the Cochrane Library, PEDro (Physiotherapy Evidence 

Database), and Embase databases. Observational studies addressing the change of aBMD 

in children with CF and healthy children and adolescents were eligible. The DerSimonian 

and Laird method was used to compute pooled estimates of effect sizes (ES) and 95% CIs 

for the change of whole body (WB), lumbar spine (LS), and femoral neck (FN) aBMD. 

Results: Six studies with participants with CF and 26 studies with healthy participants 

were included in the systematic review and meta-analysis. For the analysis in children 

with CF, the pooled ES for the change of WB aBMD was 0.29 (95% CI –0.15 to 0.74), 

for the change of LS aBMD was 0.13 (95% CI –0.16 to 0.41), and for the change of FN 

aBMD was 0.09 (95% CI –0.39 to 0.57). For the analysis in healthy children, the pooled 

ES for the change of WB aBMD was 0.37 (95% CI 0.26-0.49), for the change of LS 

aBMD was 0.13 (95%CI –0.16 to 0.41), and for the change of FN aBMD was 0.52 (95% 

CI 0.19-0.85). Conclusions: aBMD development might not differ between children and 

adolescents with CF receiving medical care compared with their healthy peers. Further 

longitudinal studies in a CF population during growth and development are required to 

confirm our findings. 



 

Introduction 

Cystic fibrosis (CF) is an inherited disease affecting the correct functioning of numerous 

vital organs, such as the lungs and the gastrointestinal tract (1). It is caused by mutations 

in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene and it is the 

most prevalent (autosomal recessive) disorder in the Caucasian-race population. The 

median age at death, 29.1 years, has continuously increased over the last two decades, 

and nowadays more than half of the individuals with CF are 18 years or older (2), 

suggesting an increase in the likelihood of having long-term CF sequels. These include 

low areal bone mineral density (aBMD), osteoporosis-related fractures and abnormal 

excessive convex curvature of the spine (e.g. kyphosis) (3-5), which in turn may cause 

pain when breathing and impair physical activity levels, which can contribute to bone 

accrual (6). CF is also related to exocrine pancreatic insufficiency, characterised by a 

deficiency in the number of exocrine pancreatic enzymes and causing an inability to 

digest food and absorb nutrients, which affects proper development in children and 

adolescents with CF (1, 7). In this regard, a poor nutritional status has been associated 

with a reduction in lung function, impaired pulmonary muscle function, and tolerance 

levels towards exercise (8).  

 

Multiple factors seem to explain the link between low aBMD and CF, including poor 

nutritional status, nutrient malabsorption and clinical status (9-12) but also a more direct 

pathway through the CFTR gene mutation, which may lower aBMD (11). The association 

between aBMD and CF may vary depending on whether it is looked at in growing or 

adult population. Findings from a systematic review and meta-analysis showed that 38% 

and 23.5% of the adults with CF had osteopenia and osteoporosis, respectively (13). It is 



known that bone acquisition occurs throughout childhood and adolescence, with 80-90 % 

acquired by late adolescence, depending of the sites of the skeleton (14, 15). Therefore, 

the origins of bone disease in CF are likely to occur during childhood or adolescence.  

 

The scientific evidence regarding bone mineralization in CF is controversial (4, 16-20). 

Some evidence points out the prevalence of low aBMD in children and adolescents (21-

23), and suggest lung function and nutritional status as important determinants of low 

aBMD in CF (16, 23-25). The study of Reix, Bellon (26) showed that bone alterations 

may be already present in children younger than 6 years of age, and highlighted that 

monitoring bone status in this population is needed. In contrast, other studies highlight a 

minimal difference in bone mass in CF (relative to normal) but that this difference is more 

important at later life stages, such as adulthood (27-29). In this regard, the CF Foundation 

consensus statement on bone health and disease recommends monitoring CF adults with 

Dual energy X-ray Absorptiometry (DXA) and subsequent follow-up based on the 

findings (2). 

 

DXA is considered the gold standard method for assessing aBMD and has been used 

worldwide not only in adults but also in children and adolescents (30). In a clinical setting, 

the most common sites measured with DXA are the lumbar spine, hip (total hip or 

proximal femur), and total body (31, 32). Considering the increase in life expectancy in 

people with CF and associated sequels, such as the increased risk of osteoporosis, 

examining whether low bone mass is already apparent in children and adolescents with 

CF must be viewed as a high priority. To the best of our knowledge, no meta-analysis has 

analysed whether aBMD differs between CF and healthy children and adolescents.   

 



Therefore, this systematic review and meta-analysis aims to examine the differences in 

aBMD between children and adolescents with CF compared to their healthy peers based 

on data from longitudinal studies. 

 

Methods  

This study was reported according to the Meta-analysis of Observational Studies in 

Epidemiology statements (MOOSE) (33) and followed the recommendations of the 

Cochrane Collaboration Handbook (34). This systematic review and meta-analysis was 

registered through the International Prospective Register of Systematic Reviews 

(Registration number: CRD42018099671). 

 

Search strategy 

We systematically searched MEDLINE (via PubMed), SPORTDiscus, the Cochrane 

Library, PEDro (Physiotherapy Evidence Database) and Scopus (via databases from their 

inception until October, 2018). Observational studies addressing the change of aBMD in 

both, cystic fibrosis and healthy, across the childhood and adolescence period were 

eligible. The search strategy included the following terms for cystic fibrosis populations: 

(bone) AND (children OR adolescents OR young OR boys OR girls) AND (“cystic 

fibrosis”); and for healthy populations: (bone) AND (children OR adolescents OR young 

OR boys OR girls) AND (healthy). The literature search was complemented by reviewing 

citations of the articles considered eligible for the systematic review and authors were 

contacted to obtain missing information when necessary. 

 

Study selection  



The criteria for including studies were as follows: i) participants: cystic fibrosis 

population samples or healthy population samples; ii) study design: longitudinal studies, 

with prospective data collection; iii) exposure: bone development during the follow-up; 

and iv) outcome: aBMD. The criteria for excluding studies were as follows: i) reports not 

written in English or Spanish; ii) studies including individuals aged below 18 years old; 

and iii) non-eligible publication types, such as review articles, editorials, comments, 

guidelines or case-reports. 

 

When more than one study provided data from the same sample, we only considered the 

one presenting the most detailed results or providing data for the largest sample size. 

However, data regarding sample characteristics could be extracted from multiple reports 

to obtain the most complete information 

 

The literature search was independently conducted by two reviewers (EUG and LGM), 

and disagreements were solved by consensus or involving a third researcher (ICR). 

 

Data extraction and quality assessment  

The following data were extracted from the original reports (1) first author and year of 

publication, (2) country of the study where data were collected, (3) length of follow-up, 

(4) sample characteristics (age, sample size, BMI, stature, weight and type of population) 

and, (5) bone measurement characteristics (aBMD measurement method used, values for 

each aBMD [WB, LS and FN] at baseline and at end of follow-up). 

Quality Assessment tool for Observational Cohort and Cross-sectional Studies from the 

National Heart, Lung and Blood Institute (35) was used to evaluate risk of bias for cohort 

and cross-sectional studies. Assessed methodological criteria included: research question, 



population definition, participation rate, recruitment, sample size, analysis, timeframe, 

exposure levels, measures and assessment, outcome measures and blinding, loss at follow 

up and confounding variables. Each study was rated either as good (i.e., most criteria met, 

and with a low risk of bias), fair (i.e., some criteria met, with a moderate risk of bias), or 

poor (i.e., few criteria met, and with a high risk of bias). 

 

Data extraction and quality assessment were independently performed by two researchers 

(EUG and LGM), and inconsistencies were solved by consensus or involving a third 

researcher (ICR). 

 

Statistical analysis and data synthesis 

The inverse-variance fixed effects method (36), were used to compute pooled estimates 

of effect size (ES) and respective 95% CI. When the studies presented aBMD mean values 

for baseline and end-point or aBMD mean value change, effect size (ES) were calculated. 

ES values around 0.2 were considered to be a weak effect, values around 0.5 were a 

moderate effect, values around 0.8 were a strong effect, and values larger than 1.0 were 

a very strong effect. In order to compare the differences in aBMD changes between cystic 

fibrosis and healthy population the meta-analysis was done separately. The heterogeneity 

of results across studies was assessed using the I2 statistic (37). I2 values are considered 

as: might not be important (0% to 40%), may represent moderate heterogeneity (30% to 

60%), substantial heterogeneity (50% to 90%) or considerable heterogeneity (75% to 

100%); the corresponding p-values were also taken into account (34). 

 

Sensitivity analyses (systematic re-analysis while removing studies one at a time), and 

subgroup analyses were conducted in order to assess the robustness of the summary 



estimates. Results of the sensitivity analyses were considered meaningful when the 

resulting estimates were modified beyond the confidence intervals of the original 

summary estimate. In addition, sensitivity analyses provided insight as to whether any 

particular study or subgroup accounted for a large proportion of heterogeneity among the 

correlation pooled estimations, based on the change in I2 values (and associated categories 

previously reported). 

Random-effects meta-regression analyses were performed to determine whether age and 

length of follow-up to examine their interaction effect on the aBMD change comparing 

healthy and cystic fibrosis populations. Finally, to assess publication bias, Egger’s 

regression asymmetry test was used (38). A level of <0.10 was used to determine if 

publication bias might be present. Statistical analyses were performed using StataSE 

software, version 14 (StataCorp). 

Results 

Systematic Review 

We identified 6 longitudinal studies (Table 1) (21, 39-43) about the development of 

aBMD in children and adolescents with cystic fibrosis. In parallel, we identified 29 

studies (Table 2) (44-72) with longitudinal data of aBMD in healthy children and 

adolescents. The compilation of these studies allow us to compare the status of bone 

health in cystic fibrosis young with a healthy peers (control studies) over the time. 

 

Regarding to the cystic fibrosis studies, these were carried out in 4 different countries: 

three from USA, one from Italy, one from New Zealand and one from Hungary. Reports 

were published between 1998 and 2017, and they included longitudinal studies using the 



following designs: five were follow-up non-randomised studies and one was a 

randomised trial. Length of studies ranged from 9 months to 5 years. 

 

All the participants suffered cystic fibrosis and one of the study the participants 

underwent liver transplantation. Included participants were aged between 4 and 18 years, 

with sample sizes ranging from 9 to 40 subjects. Concerning assessment methods carried 

out in the studies, all of them used a dual-energy x-ray absorptiometry scanner to measure 

bone outcomes: two studies used the model Hologic 1000W, one study used the model 

Hologic QDR 2000, two studies used the model Hologic QDR-4500, and one study used 

the model Lunar Prodigy. 

 

Regarding to the control studies, these were realised in 12 different countries: one from 

Brazil, two from Spain, three from Switzerland, five from Australia, four from Canada, 

seven from USA, one from United Kingdom, one from Estonia, one from France, two 

from Sweden, one from Belgium and one from Denmark. Data were published between 

1991 and 2017 and they included longitudinal studies using the following designs: twelve 

were follow-up non-randomised studies and seventeen were randomised-controlled trial. 

Length of studies ranged from 3 months to 14 years. 

 

All the participants were healthy children and adolescents. The range age of the 

participants was 4 to 18 years, with sample sizes between 9 to 124. Concerning 

assessment methods carried out in the studies, all of them used a dual-energy x-ray 

absorptiometry scanner to measure bone outcomes: eight studies used the model Lunar 

Prodigy, one study used the model Hologic QDR 1500, three studies used the model 

Hologic QDR 2000, five studies used the model Hologic QDR 1000W, ten studies used 



the model Hologic QDR 4500, one study used the model Hologic WB Delphi, and one 

study used the model Norland Medical XR800. 

 

Study Quality 

The risk of bias was evaluated by a quality assessment tool for observational cohort and 

cross-sectional studies for The National Institutes of Health (73). The cystic fibrosis 

studies showed a 33.3% of high risk of bias and 66.7% of moderate risk of bias. The 

control studies showed a 51.7 % of high risk of bias, a 44.8% of moderate risk of bias, 

and a 3.4% of low risk of bias. 

 

When studies were analysed by individual domains, 100% of the cystic fibrosis studies 

defined a clearly research question, took into account the exposure(s) of interest measured 

prior to the outcome(s) being measured, the timeframe was sufficient, the exposure 

measures (independent and dependent variables) were clearly defined, valid, reliable, and 

implemented consistently, and presented a lower percentage of 20% of withdrawals/drop-

outs. However, no study or just one had presented a sample size justification (power 

description, or variance and effect estimates) and had shortcomings in the blinding 

domain. On the other hand, approximately 100% of the control studies defined a clearly 

research question, the timeframe was sufficient, and the exposure measures (independent 

and dependent variables) were clearly defined, valid, reliable, and implemented 

consistently. However, less than 25% had presented a sample size justification (power 

description, or variance and effect estimates) and have shortcomings in the blinding 

domain. 

 (Electronic Supplementary Material Tables S2 and S3). 

Meta-analysis 



To more clearly display the pooled ES estimates of WB, LS, and FN aBMD, we have 

provided forest plots including the pooled ES estimates, their 95% CI and the I2 

heterogeneity statistic for healthy and cystic fibrosis children (Figures 2-4).  

 

WB aBMD 

Finally, for the analysis in cystic fibrosis children, the pooled ES for the change of WB 

aBMD was 0.29 (95% CI -0.15–0.74), with no heterogeneity (I2 = 0.0%; p = 0.829). 

Furthermore, for the analysis in healthy children, the pooled ES for this change was 0.25 

(95% CI 0.13–0.37), with not important heterogeneity (I2 = 35.8%; p = 0.071) (Figure 2). 

 

LS aBMD 

Additionally, regarding the change of LS aBMD, the pooled ES in cystic fibrosis children 

was 0.13 (95% CI -0.16–0.41), with no heterogeneity (I2 = 0.0%; p = 1.000). Besides in 

healthy children the pooled ES was 0.29 (95% CI 0.18–0.40), with not important 

heterogeneity (I2 = 21.0%; p = 0.209) (Figure 3). 

 

FN aBMD 

For the analysis in cystic fibrosis children, the pooled ES for the change of FN aBMD 

was 0.09 (95% CI -0.39–0.57), with no heterogeneity (I2 = 0.0%; p = 0.999). Furthermore, 

for the analysis in healthy children, the pooled ES for this change was 0.20 (95% CI 0.11–

0.30), also with no heterogeneity (I2 = 0.0%; p = 0.558) (Figure 4). 

 

 

Sensitivity analysis, meta-regression subgroup analysis and publication bias 



The pooled ES estimate was not significantly modified in magnitude or direction when 

individual study data were removed from the analysis one at a time. 

 

The random-effects meta-regression model showed that length of follow up, age, BMI, 

height and weight were not related to FN, LS or WB aBMD change across studies either 

for cystic fibrosis children or for healthy children (Figures XXX-XXX in the 

Supplementary file). 

 

Finally, evidence of publication bias was found by funnel plot asymmetry and Egger’s 

test for the change of LS aBMD in cystic fibrosis children (p = 0.027) and for the change 

of WB aBMD in healthy children (p = 0.073) (Figures XXX-XXX in the Supplementary 

file). 

 

Discussion 

In the present systematic review and meta-analysis, children and adolescents affected by 

CF did not present lower aBMD compared with their peers without CF. To the best of 

our knowledge, this is the first meta-analysis analysing the status of aBMD in CF children 

and adolescents.  

 

Among other factors, a poor nutritional status, nutrient malabsorption and clinical status 

have been suggested in previous investigations as determinants that may explain the 

association between low aBMD and CF (9-12). However, there is controversial in the 

scientific literature on whether CF patients present poorer bone mineralization (4, 16-20). 

Our data show that longitudinal changes in WB, LS and FN aBMD in children and 

adolescents with CF are not different from those found in their healthy peers. These 



results are in accordance with the cross-sectional study by Buntain, Greer (10) in which 

it was found that well-nourished prepubertal children with CF had no significant 

differences in WB, LS and FN aBMD than a healthy control group. Young adults with 

CF have shown a low bone turnover with reduced bone formation but there is no evidence 

for increased bone resorption (74, 75). Nevertheless, it seems that the prevalence of CF-

related bone disease increases with age (19, 76). For example, <5% of children with CF 

presented bone disease, increasing to 20% in adolescents and 55 to 65% in adults older 

than 45 years (29). Therefore, deficits in aBMD seem to be more evident in adulthood 

than childhood (10). 

 

In contrast to our findings, previous investigations have shown bone disease in CF youth 

patients (16, 21-23, 26). Schulze, Cutchins (41) found that low bone mass was usual 

among their cohort of adolescent girls with CF, and approximately a 40% of the girls 

presented deficits in expected bone mineral content at the lumbar spine, and above 20% 

in expected bone mineral content at the WB. In this line, a longitudinal study indicated 

failure to gain bone at the expected rate in youths (21).  

 

These findings can be extrapolated to the adult population, since it has been demonstrated 

through anterior research that adults with CF present bone disease (16, 21, 23, 24). In a 

systematic review and meta-analysis in young adults with CF, the prevalence of 

osteoporosis was 23.5%, the prevalence of osteopenia was 38.0%, and the prevalence of 

vertebral and non-vertebral fractures were 14.0% and 19.7%, respectively (13). In this 

sense, a longitudinal study showed inadequate values of aBMD in adults (21). 

These discrepancies and the fact that our meta-analyses did not show differences in 

aBMD between groups may in part reflect our sample characteristics since participants 



with CF remained on their standard meds as part of their usual treatment regimen, which 

included daily multivitamin and mineral supplements as ADEK vitamins, calcium 

supplementation, and use of pancreatic enzyme supplements, mainly (40-43). In addition, 

our sample of healthy participants were mostly physically inactive (44, 45, 49, 51, 55, 

57-59, 61, 64, 65, 67, 72) and/or did not meet the minimum calcium and/or vitamin D 

intake (46, 47, 52-54, 59, 66, 68). It is known that nutritional status is a major determinant 

of aBMD (42), importantly vitamin D and K deficiencies, and a negative calcium balance 

(27). In other words, CF children who receive the nutritional supplementation as part of 

their medical treatment do not have their aBMD negatively affected. Similarly, young 

people with CF has affected bone accrual in those with the poorest nutritional status (42). 

So, aBMD is usually normal in children with CF with no nutritional deficit (20), which is 

the case in 4 out of 6 studies (40-43), omitting that information in the other 2 studies (21, 

39). Further, it has been demonstrated that calcium absorption is normal in children with 

CF (40) and that those who have never received steroid treatment could also present bone 

deficit (43). So, steroid treatment is not determinant in the development of bone deficit 

(43). In 4 out of 6 studies (21, 39, 41, 42), some of the patients received steroid treatment 

while in the other two studies they did not receive (40, 43) 

 

We must also bear in mind that they are children and, therefore, they are growing. The 

greatest growth and skeletal maturation occurs at the end of puberty when ~51% of the 

peak bone mass is attained (77). In this regard, it has been demonstrated that total body 

bone mineral content increases across pubertal groups, as a consequence of pubertal 

growth (41). Therefore, it is important to optimize bone health in children, adolescents 

and adults with CF through strategies that include a nutritional plan, vitamin K, vitamin 

D and calcium supplementation if necessary, and as well as weight bearing exercise (27). 



Exercise during childhood, especially high impact sports (such as football, handball or 

basketball) have been related to improvements in aBMD (78, 79), and strength at loaded 

sites (80). Additionally, it is recommended to monitor patients with CF through DXA 

scanners to have a follow-up of their bone health according to the European Cystic 

Fibrosis Society (81). 

 

Some limitations need to be acknowledged. First, the limited number of published studies 

investigating bone health in children and/or adolescence with CF must be taken into 

account. For this reason, confidence intervals are large compared to the studies in healthy 

children and adolescents. Second, data extraction were non-blinded, which is a potential 

source of bias. Third, 66.7% of the CF studies and a 44.8% of the healthy studies 

presented moderate risk of bias. Fourth, the use of covariates in the studies was 

heterogeneous, although we have always tried to analyse raw data. Finally, the majority 

of the studies did not present a sample size justification, and had shortcomings in the 

blinding domain. 

 

In conclusion, our meta-analysis showed that aBMD values do not differ between well-

nourished children and adolescents with CF and those from their healthy peers. This 

underlines that in spite of the problems associated with this disease, correct 

supplementation strategies and clinical care may counteract the possible detrimental 

consequences of CF on bone health during growth. In addition, long-term physical 

activity programs may further protect against the sequels of CF on bone mass.  
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Table 1. Characteristics of studies included in the systematic review and meta-analysis in cystic fibrosis participants. 

Study (year) Country Study design 

Population characteristics at baseline Outcome 

Age 

[years (mean 

± SD)] 

Sample size 

[n (% male)] 

BMI 

[kg/m2 (mean 

± SD)] 

Stature 

[cm (mean 

± SD)] 

Weight 

[kg (mean  

± SD)] 

Type of 

population 
Method Baseline bone Follow-up bone 

Bhudhikanok 

et al. (1998) 
USA 

Longitudinal 

study 

(1.5 years) 

Males 

11.8 ± 2.7 

 

Females 

12.1 ± 2.7 

20 (45%) 

Males 

18.5 ± 3.0 

 

Females 

16.2 ± 2.3 

Males 

146 ± 18 

 

Females 

145 ± 15 

Males 

41.0 ± 16.4 

 

Females 

35.1 ± 11.2 

Patients with 

cystic fibrosis 

Hologic QDR 

1000W dual-

energy x-ray 

absorptiometry 

scanner (Hologic 

Corporation, 

Waltham, Mass) 

Males 

(mean ± SD): 

WB BMD (g/cm2): 

0.855 ± 0.106 

LS BMD (g/cm2): 

0.661 ± 0.140 

FN BMD (g/cm2): 

0.706 ± 0.114 

 

Females 

(mean ± SD): 

WB BMD (g/cm2): 

0.815 ± 0.133 

LS BMD (g/cm2): 

0.704 ± 0.210 

FN BMD (g/cm2): 

0.616 ± 0.146 

Males 

(mean ± SD): 

WB BMD (g/cm2): 

0.864 ± 0.103 

LS BMD (g/cm2): 

0.678 ± 0.116 

FN BMD (g/cm2): 

0.718 ± 0.113 

 

Females 

(mean ± SD): 

WB BMD (g/cm2): 

0.829 ± 0.144 

LS BMD (g/cm2): 

0.731 ± 0.227 

FN BMD (g/cm2): 

0.637 ± 0.182 

Colombo et 

al. (2005) 
Italy 

Longitudinal 

study 

(5 years) 

11.5 ± 1.6 4 (75%) 16.9 ± 2.1 142.0 ± 5.0 34.0 ± 4.0 

Liver transplant 

patients with 

cystic fibrosis 

Hologic QDR 

2000 dual-energy 

x-ray 

absorptiometry 

scanner (Hologic 

Inc., Bedford, 

MA, USA). 

(Mean ± SD): 

WB BMD (g/cm2): 

0.810 ± 0.122 

 

(Mean ± SD): 

WB BMD (g/cm2): 

0.880 ± 0.106 

Colombo et 

al. (2005) 
Italy 

Longitudinal 

study 

(4.6 years) 

11.9 ± 4.4 5 (60%) 17.0 ± 2.5 141.0 ± 22.6 37.9 ± 12.8 

Nontransplante

d patients with 

cystic fibrosis 

Hologic QDR 

2000 dual-energy 

x-ray 

absorptiometry 

scanner (Hologic 

Inc., Bedford, 

MA, USA). 

(Mean ± SD): 

WB BMD (g/cm2): 

0.854 ± 0.073 

(Mean ± SD): 

WB BMD (g/cm2): 

0.906 ± 0.078 

Hillman et al. 

(2008) 
USA 

Longitudinal 

study 
9.1 ± 2.3 9 (NR) 15.9 ± 1.1   134 ± 14 29.3 ± 7.5 

Patients with 

cystic fibrosis 

Hologic 1000W 

dual-energy x-

Changes 

(mean ± SD): 
 



(9 months) (pero es de 

todos los 

sujetos, ya 

que no 

muestran la 

edad sólo del 

grupo 

placebo) 

(igual que 

con la edad) 

(igual que 

con la edad) 

(igual que 

con la edad) 

ray 

absorptiometry 

scanner 

WB BMD (g/cm2): 

0.033 ± 0.027 

LS BMD (g/cm2): 

0.041 ± 0.045 

Schulze et al. 

(2006) 
USA 

Longitudinal 

study 

(1-4 years) 

12.1 ± 3.2 18 (0%) 18.0 ± 3.0 146 ± 15 39.6 ± 13.9 
Patients with 

cystic fibrosis 

Hologic QDR-

4500A dual-

energy x-ray 

absorptiometry 

scanner 

Z-score 

(mean ± SD): 

LS BMD: 

-0.40 ± 1.13 

Z-score 

(mean ± SD): 

LS BMD:  

-0.46 ± 0.94 

Sharma et al. 

(2017) 

New 

Zealand 

Longitudinal 

study 

(2 years) 

12.1 ± 2.0 40 (0%) 
Z-score:  

-0.17 ± 1.05 

Z-score:  

-0.49 ± 0.88 

Z-score:  

-0.36 ± 0.93 

Patients with 

cystic fibrosis 

Lunar Prodigy 

dual-energy x-

ray 

absorptiometry 

scanner (GE 

Health 

Care) 

Z-score 

(mean ± SD): 

LS BMD: 

-0.94 ± 0.88 

Z-score 

(mean ± SD): 

LS BMD: 

-1.13 ± 1.0 

Ujhelyi et al. 

(2004) 
Hungary 

Longitudinal 

study 

(2 years) 

8.3 (4 - 12) 11 (63.6%) NR 115.1 ± 9.1 19.5 ± 4.7 
Patients with 

cystic fibrosis 

Dual x-ray 

absorptiometry 

(Hologic QDR 

4500C, Hologic, 

Waltham, MA, 

U.S.A.) 

Changes 

(mean ± SD): 

LS BMD (g/cm2): 

0.04 ± 0.04 

FN BMD (g/cm2): 

0.08 ± 0.06 

 

 

Ujhelyi et al. 

(2004) 
Hungary 

Longitudinal 

study 

(2 years) 

 

14.9 (8 - 19) 
16 (56.3%) NR 149.0 ± 16.9 37.0 ± 11.8 

Patients with 

cystic fibrosis 

Dual x-ray 

absorptiometry 

(Hologic QDR 

4500C, Hologic, 

Waltham, MA, 

U.S.A.) 

Changes 

(mean ± SD): 

LS BMD (g/cm2): 

0.10 ± 0.07 

FN BMD (g/cm2): 

0.07 ± 0.07 

 

Not reported: NR 

 



Table 2. Characteristics of studies included in the systematic review and meta-analysis with healthy participants. 

Study (year) Country 
Study 

design 

Population characteristics (baseline) Outcome 

Age  

[years (mean 

± SD)] 

Sample size 

[n (% male)] 

BMI 

[kg/m2 (mean 

± SD)] 

Stature 

[cm (mean 

± SD)] 

Weight 

[kg (mean  

± SD)] 

Type of 

population  Method Baseline bone Follow-up bone 

Agostinete et 

al. (2016) 
Brazil 

A 9-mo 

follow-up 
11.9 ± 2.2 13 (100%)  NR 154.5 ± 13.1 NR 

Healthy male 

adolescents 

Lunar DPX-NT 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

1.001 ± 0.100 

LS BMD (g/cm2): 

0.857 ± 0.130 

Mean ± SD: 

WB BMD (g/cm2): 

1.041 ± 1.106 

LS BMD (g/cm2): 

0.901 ± 0.147 

Ara et al. 

(2006) 
Spain 

3.3-year 

follow-up 

period 

9.3 ± 1.6 16 (100%) 16.9 ± 2.2 136.5 ± 10.8 31.9 ± 7.6 

Healthy male 

children and 

adolescents 

Hologic QDR-

1500 dual-energy 

x-ray 

absorptiometry 

scanner 

Changes (mean ± 

SD): 

WB BMD (g/cm2): 

9.25 ± 4.34 

 

Bonjour et al. 

(1997) 
Switzerland 

48 wk 

follow-up 
7.9 ± 0.1 53 (0%) 16.6 ± 0.3 127.2 ± 0.8 26.9 ± 0.6 

Healthy 

prepubertal 

caucasian girls 

Hologic QDR-

2000 dual-energy 

x-ray 

absorptiometry 

scanner 

Mean ± SEM: 

LS BMD (g/cm2): 

0. 615 ± 0.008 

FN BMD (g/cm2): 

0. 622 ± 0.009 

Mean ± SEM: 

LS BMD (g/cm2): 

0. 638 ± 0.008 

FN BMD (g/cm2): 

0. 635 ± 0.009 

Cameron et 

al. (2004) 
Australia 

A 6-mo 

follow-up 
10.3 ± 1.5 51 (0%) NR 141.62 ± 9.45 37.5 ± 9.5 

Healthy 

australian 

Twins 

QDR 1000W 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

LS BMD (g/cm2): 

0.697 ± 0.085 

FN BMD (g/cm2): 

0.697 ± 0.084 

Mean ± SD: 

LS BMD (g/cm2): 

0.724 ± 0.097 

FN BMD (g/cm2): 

0.714 ± 0.615 

Cameron et 

al. (2004) 

Mismo 

estudio que el 

anterior 

Australia 
A 12-mo 

follow-up 
10.4 ± 1.5 48 (0%) NR 141.60 ± 9.52 37. ± 9.8 

Healthy 

australian 

Twins 

QDR 1000W 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

LS BMD (g/cm2): 

0.697 ± 0.085 

FN BMD (g/cm2): 

0.697 ± 0.084 

Mean ± SD: 

LS BMD (g/cm2): 

0.759 ± 0.114 

FN BMD (g/cm2): 

0.742 ± 0.107 

Cameron et 

al. (2004) 

Mismo 

estudio que el 

anterior 

Australia 
A 18-mo 

follow-up 
10.4 ± 1.5 42 (0%) NR 142.12 ± 9.18 37.6 ± 9.5 

Healthy 

australian 

Twins 

QDR 1000W 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

LS BMD (g/cm2): 

0.697 ± 0.085 

FN BMD (g/cm2): 

0.697 ± 0.084 

Mean ± SD: 

LS BMD (g/cm2): 

0.804 ± 0.129 

FN BMD (g/cm2): 

0.765 ± 0.112 



Cameron et 

al. (2004) 

Mismo 

estudio que el 

anterior 

Australia 
A 24-mo 

follow-up 
10.6 ± 1.5 24 (0%) NR 141.80 ± 9.12 37.1 ± 7.3 

Healthy 

australian 

Twins 

QDR 1000W 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

LS BMD (g/cm2): 

0.697 ± 0.085 

FN BMD (g/cm2): 

0.697 ± 0.084 

Mean ± SD: 

LS BMD (g/cm2): 

0.833 ± 0.142 

FN BMD (g/cm2): 

0.816 ± 0.131 

Chevalley et 

al. (2011) 
Switzerland 

A 12-y 

follow-up 
7.9 ± 0.5 124 (0%) 16.2 ± 1.8 127.7 ± 5.9 26.5 ± 4.1 Healthy girls 

Hologic QDR-

4500 dual-energy 

x-ray 

absorptiometry 

scanner 

Mean ± SD: 

FN BMD (g/cm2): 

0.634 ± 0.074 

Mean ± SD: 

FN BMD (g/cm2):  

(after 1 year) 

0.647 ± 0.075 

FN BMD (g/cm2):  

(after 2 years) 

0.675 ± 0.078 

FN BMD (g/cm2):  

(after 4 years) 

0.751 ± 0.103 

FN BMD (g/cm2):  

(after 8 years) 

0.867 ± 0.111 

FN BMD (g/cm2):  

(after 12 years) 

0.858 ± 0.108 

Erlandsson et 

al. (2012) 
Canada 

A 14-y 

follow-up 
11.9 ± 1.7 22 (0%) NR 151.6 ± 11.7 44.3 ± 11.9 

Healthy white 

girls 

Hologic 2000 

QDR dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.8 ± 0.1 

LS BMD (g/cm2): 

0.7 ± 0.2 

FN BMD (g/cm2): 

0.7 ± 0.1 

Mean ± SD: 

WB BMD (g/cm2): 

1.1 ± 0.1 

LS BMD (g/cm2): 

1.0 ± 0.1 

FN BMD (g/cm2): 

0.9 ± 0.6 

Fuchs et al. 

(2001) 
USA 

A 7-mo 

follow-up 
7.6 ± 0.2 

44 (59.09%) 

26 chicos y 

18 chicas 

NR 126.8 ± 1.2 NR 
Healthy school 

children 

Hologic 

QDR/4500-A 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SEM: 

LS BMD (g/cm2): 

0.550 ± 0.008  

FN BMD (g/cm2): 

0.613 ± 0.010 

Mean ± SEM: 

LS BMD (g/cm2): 

0.571 ± 0.008 

FN BMD (g/cm2): 

0.635 ± 0.009 



Gómez-

Brutón et al. 

(2017) 

Spain 
An 8-mo 

follow-up 
14.1 ± 2.3 

28 (57.14%) 

16 chicos y 

12 chicas 

20.4 ± 3.3 159.8 ± 11.7 52.8 ± 13.4 

Healthy 

Caucasian 

adolescents 

QDR 4500-

Explorer dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

(less head) 

0.889 ± 0.076 

LS BMD (g/cm2): 

0.861 ± 0.128 

FN BMD (g/cm2): 

0.833 ± 0.116 

Mean ± SD: 

WB BMD (g/cm2):  

(less head) 

0.905 ± 0.075 

LS BMD (g/cm2): 

0.886 ± 0.122 

FN BMD (g/cm2): 

0.844 ± 0.110 

Lambert et al. 

(2008) 

United 

Kingdom 

an 18-mo 

randomize

d 

controlled 

trial with 

2-y 

follow-up 

11.4 ± 0.5 44 (0%) 19.0 ± 3.1 149.8 ± 8.2 43.2 ± 10.1 
Healthy white 

girls 

QDR 4500A 

dual-energy x-

ray 

absorptiometry 

scanner 

 

Mean ± SD: 

WB BMD (g/cm2): 

0.88 ± 0.06 

LS BMD (g/cm2): 

0.70 ± 0.11 

Mean ± SD: 

WB BMD (g/cm2): 

0.954 ± 0.004 

LS BMD (g/cm2): 

0.831 ± 0.007 

Mackelvie et 

al. (2002) 
Canada 

A 7-

Month 

Randomiz

ed 

Controlle

d 

10.3 ± 0.7 60 (100%) 18.0 ± 4.0 141.8 ± 7.1 36.6 ± 10.1 

Healthy Asian 

and white  

children (North 

American or 

European 

origin) 

QDR 4500W 

dual-energy x-

ray 

absorptiometry 

scanner 

Changes (mean 

±95%CI): 

LS BMD (g/cm2): 

0.020 (0.015-

0.025)  

FN BMD (g/cm2): 

0.014 (0.009-

0.019) 

 

Markovic et 

al. (2005) 
USA 

4-y 

follow-up 

 

10.8 ± 0.7 123 (0%) NR 145.2 ± 7.0 40.2 ± 9.0 
Healthy 

Caucasian girls 

GE-Lunar DPX-

L dual-energy x-

ray 

absorptiometry 

scanner 

Changes (mean ± 

SD): 

WB BMD (g/cm2): 

0.204 ± 0.035 

 

 

Markovic et 

al. (2005) 

Mismo 

estudio que el 

anterior 

USA 

7-y folow-

up 

 

10.8 ± 0.7 100 (0%) NR 145.2 ± 7.0 40.2 ± 9.0 
Healthy 

Caucasian girls 

GE-Lunar DPX-

L dual-energy x-

ray 

absorptiometry 

scanner 

Changes (mean ± 

SD): 

WB BMD (g/cm2): 

0.263 ± 0.044 

 

Nickols et al. 

(1999) 
USA 

6-month 

follow-up 10.1 ± 0.3 9 (0%) NR 138.9 ± 2.4 30.3 ± 1.7 

Healthy 

premenarcheal 

girls 

QDR-1000 W 

dual-energy x-

ray 

Mean ± SEM: 

WB BMD (g/cm2): 

0.835 ± 0.012 

Mean ± SEM: 

WB BMD (g/cm2): 

0.845 ± 0.013 



Caucasian absorptiometry 

scanner 

LS BMD (g/cm2): 

0.620 ± 0.019  

FN BMD (g/cm2): 

0.647 ± 0.023 

LS BMD (g/cm2): 

0.6412± 0.020 

FN BMD (g/cm2): 

0.663 ± 0.024 

Nickols et al. 

(1999) 

Mismo 

estudio que el 

anterior 

USA 

12-month 

follow-up 10.1 ± 0.3 9 (0%) NR 138.9 ± 2.4 30.3 ± 1.7 

Healthy 

premenarcheal 

girls 

Caucasian 

QDR-1000 W 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SEM: 

WB BMD (g/cm2): 

0.835 ± 0.012  

LS BMD (g/cm2): 

0.6200± 0.019  

FN BMD (g/cm2): 

0.647 ± 0.023 

Mean ± SEM: 

WB BMD (g/cm2): 

0.864 ± 0.014 

LS BMD (g/cm2): 

0.666 ± 0.022 

FN BMD (g/cm2): 

0.675 ± 0.025 

Vaitkeviciute 

et al. (2016) 
Estonia 

12-month 

follow-up 
11.9 ± 0.6 

96 (100%) 20.5 ± 5.2 153.8 ± 7.4 49.3 ± 16.0 
Healthy school 

children 

Lunar DPX-IQ 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.983 ± 0.069 

LS BMD (g/cm2): 

0.831 ± 0.097 

FN BMD (g/cm2): 

0.895 ± 0.086 

Mean ± SD: 

WB BMD (g/cm2): 

1.018 ± 0.081 

LS BMD (g/cm2): 

0.890 ± 0.121 

FN BMD (g/cm2): 

0.940 ± 0.103 

Vaitkeviciute 

et al. (2016) 

Mismo 

estudio que el 

anterior 

Estonia 

24-month 

follow-up 
11.9 ± 0.6 

96 (100%) 20.5 ± 5.2 153.8 ± 7.4 49.3 ± 16.0 
Healthy school 

children 

Lunar DPX-IQ 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.983 ± 0.069 

LS BMD (g/cm2): 

0.831 ± 0.097 

FN BMD (g/cm2): 

0.895 ± 0.086 

Mean ± SD: 

WB BMD (g/cm2): 

1.018 ± 0.081 

LS BMD (g/cm2): 

0.890 ± 0.121 

FN BMD (g/cm2): 

0.940 ± 0.103 

Zouch et al. 

(2015) 
France 

A 3-Yr 

Longitudi

nal Study 
11.74 ± 0.64 23 (100%) 18.6 ± 2.9 152.0 ± 6.0 42.6 ± 8.3 

Healthy 

Caucasian 

boys 

Hologic 

WB Delphi  

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.902 ± 0.042 

LS BMD (g/cm2): 

0.679 ± 0.071 

FN BMD (g/cm2): 

0.753 ± 0.065 

Mean ± SD: 

WB BMD (g/cm2): 

1.010 ± 0.087 

LS BMD (g/cm2): 

0.843 ± 0.121 

FN BMD (g/cm2): 

0.840 ± 0.100 

Bradney et al. 

(1998) 

Australia/ 

USA 

8-month 

follow-up 10.3 ± 0.2 19 (100%) NR 142.2 ± 1.3 40.1 ± 1.6 
Healthy school 

children 

Lunar DPX-L 

dual-energy x-

ray 

Mean ± SEM: 

WB BMD (g/cm2): 

0.92 ± 0.01 

LS BMD (g/cm2): 

Changes per month 

(mean ± SEM): 

WB BMD (g/cm2): 

0.002 ± 0.001 



absorptiometry 

scanner 

0.77 ± 0.02 

 

LS BMD (g/cm2): 

0.002 ± 0.001 

Johannsen et 

al. (2003) 
USA 

12-week 

interventi

on 

randomize

d trial 

10.0 ± 5.1 26 (45.2%) NR 136.6 ± 30.7 39.3 ± 20.7 
Healthy 

children 

Hologic 4500A 

dual-energy x-

ray 

absorptiometry 

scanner 

Changes (mean ± 

SEM): 

LS BMD (g/cm2): 

0.009 ± 0.004 

FN BMD (g/cm2): 

0.001 ± 0.005 

 

Laing et al. 

(2005) 
USA 

A 24-

month 

quasi-

experimen

tal 

6.0 ± 1.49 78 (0%) 17.3 ± 2.88 119.0 ± 11.8 25.2 ± 7.6 

Healthy 

females  

 

Hologic QDR-

1000W dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.669 ± 0.06 

LS BMD (g/cm2): 

0.557 ± 0.07 

Mean ± SD: 

WB BMD (g/cm2): 

0.736 ± 0.07 

LS BMD (g/cm2): 

0.609 ± 0.08 

Linden et al. 

(2006) 
Sweden 

2-year 

prospectiv

e 

controlled 

exercise 

interventi

on trial 

7.9 ± 0.6 50 (0%) NR 129.1 ± 7.9 27.4 ± 5.5 

Healthy 

elementary 

schools in a 

middle-class 

area 

Lunar DPX-L 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.84 ± 0.05 

LS BMD (g/cm2): 

0.70 ± 0.08 

FN BMD (g/cm2): 

0.71 ± 0.10 

 

Changes per year 

(mean ± SD): 

WB BMD (g/cm2): 

0.024 ± 0.009  

LS BMD (g/cm2): 

0.026 ± 0.015  

FN BMD (g/cm2): 

0.040 ± 0.040  

 

MacKelvie et 

al.(2001) 

 

Canada 

7-month 

randomize

d, 

prospectiv

e, school-

based 

interventi

on 

Prepubertal: 

10.1 ± 0.5 

 

Early  

pubertal: 

10.5 ± 0.6 

Prepubertal: 

26 (0%) 

 

Early 

pubertal: 

64 (0%) 

NR 

Prepubertal: 

137.3 ± 6.2 

 

Early 

pubertal: 

145.6 ± 6.4 

Prepubertal: 

31.1 ± 5.6 

 

Early 

pubertal: 

41.3 ± 8.3 

Healthy Asian 

and white  

children (North 

American or 

European 

origin) 

Hologic QDR 

4500 W dual-

energy x-ray 

absorptiometry 

scanner 

Prepubertal (mean 

± SD): 

WB BMD (g/cm2): 

0.860 ± 0.040 

LS BMD (g/cm2): 

0.630 ± 0.060 

FN BMD (g/cm2): 

0.630 ± 0.070 

 

Early pubertal 

(mean ± SD): 

WB BMD (g/cm2): 

Prepubertal 

changes (mean ± 

95%CI): 

WB BMD (g/cm2): 

0.017 (0.011-

0.023)  

LS BMD (g/cm2): 

0.027 (0.019-

0.034)  

FN BMD (g/cm2): 

0.024 (0.016-

0.031)  



0.870 ± 0.070 

LS BMD (g/cm2): 

0.690 ± 0.100 

FN BMD (g/cm2): 

0.670 ± 0.090 

 

 

Early pubertal 

(mean ± SD): 

WB BMD (g/cm2): 

0.030 (0.025-

0.035) 

LS BMD (g/cm2): 

0.044 (0.038-

0.049) 

FN BMD (g/cm2): 

0.034 (0.028-

0.039) 

McKay et al. 

(2000) 

 

Canada 

A 8 

months 

randomize

d school-

based 

exercise 

interventi

on study 

6.9 to 

10.2 years 
81 (NR) NR 133.9 ± 0.7 30.5 ± 0.8 

Healthy Asian 

and white  

children (North 

American or 

European 

origin) 

Hologic QDR 

4500 W dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SEM: 

WB BMD (g/cm2): 

0.807 ± 0.006 

LS BMD (g/cm2): 

0.581 ± 0.007 

FN BMD (g/cm2): 

0.642 ± 0.008 

Mean ± SEM: 

WB BMD (g/cm2): 

0.818 ± 0.006 

LS BMD (g/cm2): 

0.592 ± 0.007 

FN BMD (g/cm2): 

0.661 ± 0.009 

Moriss et al. 

(1997) 
Australia 

Prospectiv

e Ten-

Month 

Exercise 

Interventi

on 

9.5 ± 0.9 38 (0%) NR 138.6 ± 6.4 34.8 ± 5.2 
Healthy school 

girls 

Hologic QDR-

2000+ dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SEM: 

WB BMD (g/cm2): 

0.810 ± 0.01  

LS BMD (g/cm2): 

0.637 ± 0.01 

FN BMD (g/cm2): 

0.690 ± 0.07 

Changes (mean± 

SEM): 

WB BMD (g/cm2): 

0.010 ± 0.01 

LS BMD (g/cm2): 

0.008 ± 0.05 

FN BMD (g/cm2): 

0.012 ± 0.03 

Nichols et al. 

(2001) 
USA 

15 months 

follow-up 15.7 ± 0.1 11 (0%) NR 158.2 ± 3.1 63.8 ± 5.2 
Healthy 

females 

Lunar DPX dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

1.111 ± 0.066 

LS BMD (g/cm2): 

1.158 ± 0.135 

FN BMD (g/cm2): 

Mean ± SD: 

WB BMD (g/cm2): 

1.129 ± 0.065 

LS BMD (g/cm2): 

1.190 ± 0.125 

FN BMD (g/cm2): 



1.034 ± 0.086 1.048 ± 0.075 

Van 

Langendonck 

et al. (2003) 

Belgium 

9 months 

follow-up 8.7 ± 0.7 21 (0%) NR 132.22 ± 6.37 28.8 ± 4.5 
Healthy female 

twins 

Hologic QDR-

4500A dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.850 ± 0.030 

LS BMD (g/cm2): 

0.850 ± 0.030 

FN BMD (g/cm2): 

0.630 ± 0.060 

Changes (mean± 

SD): 

WB BMD (g/cm2): 

0.020 ± 0.020 

LS BMD (g/cm2): 

0.010 ± 0.020 

FN BMD (g/cm2): 

0.020 ± 0.020 

Chevalley et 

al. (2011) 
Switzerland 

an 8-yr 

cohort 

study 
7.4 ± 0.4 89 (100%) 15.9 ± 2.0 125.5 ± 6.2 25.2 ± 5.0 

Healthy 

prepubertal 

Caucasian boys 

Hologic QDR 

4500 dual-energy 

x-ray 

absorptiometry 

scanner 

Mean ± SD: 

LS BMD (g/cm2): 

0.568 ± 0.052 

FN BMD (g/cm2): 

0.688 ± 0.070 

Mean ± SD: 

LS BMD (g/cm2): 

0.918 ± 0.135 

FN BMD (g/cm2): 

0.901 ± 0.133 

Gustavsson et 

al. (2003) 
Sweden 

3 years 

follow-up 16.1 ± 0.6 24 (100%) NR 179.0 ± 6.0 69.2 ± 10.1 
Healthy 

Caucasian boys 

Lunar DPX-L 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

1.15 ± 0.11 

LS BMD (g/cm2): 

1.10 ± 0.14 

FN BMD (g/cm2): 

1.13 ± 0.15 

Mean ± SD: 

WB BMD (g/cm2): 

1.26 ± 0.09 

LS BMD (g/cm2): 

1.24 ± 0.14 

FN BMD (g/cm2): 

1.21 ± 0.16 

Katzman et 

al. (1991) 
USA 

2 years 

follow-up 14.3 ± 3.6 45 (0%) 20.0 ± 2.9 158.0 ± 13.2 50.6 ± 12.7 

Healthy 

adolescent 

females 

Hologic QDR 

1000W dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.904 ± 0.130 

LS BMD (g/cm2): 

1.009 ± 0.155 

Mean ± SD: 

WB BMD (g/cm2): 

0.993 ± 0.114 

LS BMD (g/cm2): 

1.005 ± 0.142 

Maggio et al. 

(2012) 
Switzerland 

9 month 

follow-up 10.5 ± 3.0 17 (47%) 17.8 ± 2.9 143.1 ± 19.1 38.3 ± 15.7 
Healthy 

children 

GE Lunar 

Prodigyi dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.94 ± 0.13 

LS BMD (g/cm2): 

0.83 ± 0.25 

FN BMD (g/cm2): 

0.86 ± 0.17 

Changes (mean± 

SD): 

WB BMD (g/cm2): 

0.020 ± 0.007 

LS BMD (g/cm2): 

0.033 ± 0.014 

FN BMD (g/cm2): 

0.025 ± 0.019 



Mølgaard et 

al. (2010) 
Denmark 

12 month 

follow-up 11.4 ± 0.2 74 (0%) NR 150.1 ± 6.9 40.5 ± 7.9 
Healthy Danish 

Caucasian girls 

Hologic 1000/W 

dual-energy x-

ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.863 ± 0.064  

LS BMD (g/cm2): 

0.697 ± 0.102 

Mean ± SD: 

WB BMD (g/cm2): 

0.909 ± 0.075 

LS BMD (g/cm2): 

0.788 ± 0.121 

Nogueira et 

al. (2015) 
Australia 

A 9-

month, 

cluster-

controlled 

trial 

10.7 ± 0.6 68 (100%) NR 143.7 ± 6.2 39.6 ± 9.2 
Healthy school 

children 

Norland Medical 

XR800 dual-

energy x-ray 

absorptiometry 

scanner 

Mean ± SD: 

WB BMD (g/cm2): 

0.765 ± 0.083 

LS BMD (g/cm2): 

0.674 ± 0.123 

FN BMD (g/cm2): 

0.803 ± 0.116 

Mean ± SD: 

WB BMD (g/cm2): 

0.806 ± 0.103 

LS BMD (g/cm2): 

0.705 ± 0.150 

FN BMD (g/cm2): 

0.843 ± 0.134 

NR: not reported 
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CYSTIC FIBROSIS CHILDREN
Bhudhikanok et al 1998 (F)
Bhudhikanok et al 1998 (M)
Colombo et al 2004 (NT)
Colombo et al 2004 (T)
Hillman et al 2008
Subtotal  (I-squared = 0.0%, p = 0.829)

HEALTHY CHILDREN
Agostinete et al 2016
Ara et al 2006
Erlandsson et al 2012
Gustavsson et al 2003
Gómez-Brutón et al 2017
Katzman et al 1991
Laing et al 2005
Lambert et al 2008
Linden et al 2006
Mackelvie et al 2002 (Early)
Mackelvie et al 2002 (Pre)
Maggio et al 2012
Markovic et al 2005
Mølgaard et al 2010
Nickols et al 1999
Vaitkeviciute et al 2016
Zouch et al 2015
Subtotal  (I-squared = 35.8%, p = 0.071)

References

0.10 (-0.74, 0.94)
0.09 (-0.84, 1.01)
0.69 (-0.32, 1.70)
0.61 (-0.46, 1.68)
0.02 (-1.28, 1.33)
0.29 (-0.15, 0.74)

0.05 (-0.72, 0.82)
0.53 (0.01, 1.06)
0.41 (-0.18, 1.01)
0.23 (-0.34, 0.80)
0.21 (-0.31, 0.73)
0.73 (0.30, 1.15)
0.00 (-0.34, 0.34)
0.27 (-0.15, 0.69)
0.03 (-0.25, 0.30)
0.19 (-0.06, 0.44)
0.17 (-0.22, 0.55)
0.69 (0.16, 1.22)
0.06 (-0.14, 0.26)
0.66 (0.33, 0.99)
0.29 (-0.64, 1.22)
0.05 (-0.24, 0.33)
0.34 (-0.25, 0.92)
0.25 (0.13, 0.37)

SMD (95% CI)

28.19
23.25
19.50
17.38
11.68
100.00

2.16
4.09
3.35
3.59
4.15
5.59
7.45
5.68
9.37
10.24
6.38
4.03
12.17
7.72
1.54
9.05
3.44
100.00

Weight
%

0.10 (-0.74, 0.94)
0.09 (-0.84, 1.01)
0.69 (-0.32, 1.70)
0.61 (-0.46, 1.68)
0.02 (-1.28, 1.33)
0.29 (-0.15, 0.74)

0.05 (-0.72, 0.82)
0.53 (0.01, 1.06)
0.41 (-0.18, 1.01)
0.23 (-0.34, 0.80)
0.21 (-0.31, 0.73)
0.73 (0.30, 1.15)
0.00 (-0.34, 0.34)
0.27 (-0.15, 0.69)
0.03 (-0.25, 0.30)
0.19 (-0.06, 0.44)
0.17 (-0.22, 0.55)
0.69 (0.16, 1.22)
0.06 (-0.14, 0.26)
0.66 (0.33, 0.99)
0.29 (-0.64, 1.22)
0.05 (-0.24, 0.33)
0.34 (-0.25, 0.92)
0.25 (0.13, 0.37)

SMD (95% CI)

28.19
23.25
19.50
17.38
11.68
100.00

2.16
4.09
3.35
3.59
4.15
5.59
7.45
5.68
9.37
10.24
6.38
4.03
12.17
7.72
1.54
9.05
3.44
100.00

Weight
%

  0-1.3 -1 -.7 -.4 .2 .5 .8 1.1 1.4 1.7 2



.
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CYSTIC FIBROSIS CHILDREN
Bhudhikanok et al 1998 (F)
Bhudhikanok et al 1998 (M)
Hillman et al 2008
Schulze et al 2006
Sharma et al 2017
Ujhelyi et al 2004 (A)
Ujhelyi et al 2004 (C)
Subtotal  (I-squared = 0.0%, p = 1.000)

HEALTHY CHILDREN
Bonjour et al 1997
Cameron et al 2004
Erlandsson et al 2012
Fuchs et al 2001
Gustavsson et al 2003
Gómez-Brutón et al 2017
Johannsen et al 2003
Katzman et al 1991
Lambert et al 2008
Linden et al 2006
Mackelvie et al 2002 (Early)
Mackelvie et al 2002 (Pre)
Maggio et al 2012
Mølgaard et al 2010
Nickols et al 1999
Vaitkeviciute et al 2016
Zouch et al 2015
Subtotal  (I-squared = 21.0%, p = 0.209)

References

0.12 (-0.71, 0.96)
0.13 (-0.79, 1.06)
0.03 (-1.28, 1.33)
0.06 (-0.60, 0.71)
0.20 (-0.24, 0.64)
0.05 (-0.93, 1.03)
0.02 (-1.16, 1.21)
0.13 (-0.16, 0.41)

0.40 (0.01, 0.78)
0.30 (-0.09, 0.69)
0.41 (-0.18, 1.01)
0.40 (-0.02, 0.82)
0.21 (-0.36, 0.78)
0.25 (-0.28, 0.77)
0.44 (0.04, 0.84)
-0.03 (-0.44, 0.39)
0.26 (-0.16, 0.68)
0.02 (-0.26, 0.30)
0.28 (0.03, 0.53)
0.27 (-0.13, 0.66)
0.57 (0.06, 1.08)
0.81 (0.48, 1.15)
0.38 (-0.55, 1.31)
0.06 (-0.23, 0.34)
0.22 (-0.36, 0.80)
0.29 (0.18, 0.40)

SMD (95% CI)

11.53
9.40
4.72
18.74
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8.37
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6.40
6.27
3.07
5.57
3.32
3.83
6.02
5.68
5.57
10.11
11.65
6.15
4.03
7.89
1.34
9.88
3.21
100.00

Weight
%

0.12 (-0.71, 0.96)
0.13 (-0.79, 1.06)
0.03 (-1.28, 1.33)
0.06 (-0.60, 0.71)
0.20 (-0.24, 0.64)
0.05 (-0.93, 1.03)
0.02 (-1.16, 1.21)
0.13 (-0.16, 0.41)

0.40 (0.01, 0.78)
0.30 (-0.09, 0.69)
0.41 (-0.18, 1.01)
0.40 (-0.02, 0.82)
0.21 (-0.36, 0.78)
0.25 (-0.28, 0.77)
0.44 (0.04, 0.84)
-0.03 (-0.44, 0.39)
0.26 (-0.16, 0.68)
0.02 (-0.26, 0.30)
0.28 (0.03, 0.53)
0.27 (-0.13, 0.66)
0.57 (0.06, 1.08)
0.81 (0.48, 1.15)
0.38 (-0.55, 1.31)
0.06 (-0.23, 0.34)
0.22 (-0.36, 0.80)
0.29 (0.18, 0.40)

SMD (95% CI)

11.53
9.40
4.72
18.74
41.52
8.37
5.72
100.00

6.40
6.27
3.07
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3.32
3.83
6.02
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10.11
11.65
6.15
4.03
7.89
1.34
9.88
3.21
100.00

Weight
%
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CYSTIC FIBROSIS CHILDREN
Bhudhikanok et al 1998 (F)
Bhudhikanok et al 1998 (M)
Ujhelyi et al 2004 (A)
Ujhelyi et al 2004 (C)
Subtotal  (I-squared = 0.0%, p = 0.999)

HEALTHY CHILDREN
Bonjour et al 1997
Cameron et al 2004
Chevalley et al 2011
Erlandsson et al 2012
Fuchs et al 2001
Gustavsson et al 2003
Gómez-Brutón et al 2017
Johannsen et al 2003
Linden et al 2006
Mackelvie et al 2002 (Early)
Mackelvie et al 2002 (Pre)
Maggio et al 2012
Nickols et al 1999
Vaitkeviciute et al 2016
Zouch et al 2015
Subtotal  (I-squared = 0.0%, p = 0.558)
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0.13 (-0.71, 0.96)
0.11 (-0.82, 1.03)
0.04 (-0.95, 1.02)
0.05 (-1.13, 1.23)
0.09 (-0.39, 0.57)

0.20 (-0.18, 0.58)
0.04 (-0.35, 0.43)
0.54 (0.29, 0.79)
0.10 (-0.49, 0.69)
0.35 (-0.07, 0.77)
0.11 (-0.46, 0.67)
0.12 (-0.41, 0.64)
0.04 (-0.35, 0.42)
0.01 (-0.27, 0.29)
0.21 (-0.04, 0.46)
0.24 (-0.15, 0.63)
0.32 (-0.17, 0.81)
0.22 (-0.70, 1.15)
0.05 (-0.23, 0.33)
0.35 (-0.23, 0.93)
0.20 (0.11, 0.30)

SMD (95% CI)

32.96
26.86
23.68
16.50
100.00

6.42
6.09
14.82
2.66
5.25
2.90
3.36
6.25
11.82
14.82
6.09
3.86
1.08
11.82
2.75
100.00
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%
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