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ABSTRACT 

 

The miniaturisation of multispectral sensors in recent years have resulted in a proliferation of applications particularly in 

vegetation-focused studies using lightweight drones. Multi-camera arrays (MCAs), capable of capturing information over 

different wavelength intervals using separate cameras with specific band-pass filters, are now commonplace in this field. 

However, data from MCAs require a considerable amount of geometric and radiometric corrections if high quality 

reflectance products are to be delivered. Some aspects of this workflow can be handled by commercial software packages 

(e.g. Pix4D and Agisoft Metashape), using black box algorithms, however radiometric uncertainties within products are 

not reported to the end-user by the software. We present the results of two experiments using a low-cost MCA complete 

with irradiance sensor (Parrot Sequoia), which set out to assess the accuracy and consistency of hemispherical-conical 

surface reflectance factors from MCA data. Using reference panels in the field, we found that the empirical line method 

(ELM) generated the smallest RMSEs (0.0037) when compared to simplified single-panel based workflows; while for the 

latter there was little difference between using a calibrated Spectralon® panel or grey card imaged prior to the flight 

(0.0215 vs 0.0154 average over the four bands). Errors for a vegetated target within the survey flight were larger and 

comparable for all cases. Furthermore, a study on median vegetation index values for single vegetation canopies showed 

that illumination correction using irradiance data still yields significant differences in resulting values between two 

acquisitions during changing direct and diffuse irradiance conditions. We therefore highlight the importance of critical 

assessment prior to integrating drone derived MCA-measured reflectance factors into further geospatial workflows. 

 

1 INTRODUCTION 

 

The multi-camera array (MCA) solution to multi-spectral imaging is attractive due to the relatively low-cost and light 

weight of the required hardware, meaning the cameras can be deployed on small multi-rotor drones which offer unique 

flexibility. Furthermore, the fully integrated systems usually weigh in at < 3 kg making them exempt from regulations that 

control the deployments of heavier drone aircraft; and are therefore deployable by scientists at a large range of study sites. 

In particular the Parrot Sequoia camera has been applied in a number of recent vegetation related studies 1,2,3. However, in 

part due to fully integrated processing in commercial software (i.e. Pix4D), reports regarding the uncertainties within 

surface reflectance and derived indices are often lacking. In particular, the quality of the reference panel and its calibrated 

reflectance used to convert the generated pseudo-radiance orthomosaics to surface reflectance factors has been shown to 
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be a potential large source of error due to degradation, an issue which is commonly encountered for spectroradiometric 

studies in the field 4,5,6. 

Furthermore, important metadata such as temporal/spatial irradiance variations during acquisitions are not commonly 

reported, and instead there is often a reliance on the integrated irradiance compensation to provide homogenous products, 

although it has been previously observed that this does not always lead to consistent improvements7. 

Within this study, we assess two key constraints regarding the reliability of drone-mounted MCA derived surface 

reflectance factors:  

1. the influence of the type of reflectance calibration method used; and 

2. the compensation of irradiance variations.  

Experiment 1 tested the hypothesis that the two most commonly employed approaches for the retrieval of surface 

reflectance from MCA image data would deliver the same information. First, a standard empirical line method (ELM) 8 

was used, using reference points of multiple panels of known reflectance imaged in-flight. Second, a simplified ELM (e.g. 
9, 10) implemented in software packages which relies on a single ground-based calibration image of a reference panel was 

used as a comparison. Panels for the in-flight ELM correction were self-manufactured while for the simplified ELM a 

Kodak grey card middle grey reference as well as a Spectralon®i calibrated reflectance panel was used. Derived surface 

reflectance factors were compared to those of validation targets measured in-situ using an OceanOptics FLAME 

spectrometer measuring over the same spectral range as the MCA instrument. 

The second experiment tested the hypothesis that in-flight irradiance information could eliminate variations stemming 

from changing illumination within the generated surface reflectance product. The impact of correcting for illumination 

variations based on irradiance sensor data was assessed by comparing surface reflectance factors and derived vegetation 

index values (normalised difference vegetation index (NDVI) and chlorophyll index (CHL)) from acquisitions with 

changing irradiance conditions due to patchy cloud cover. 

 

2 MATERIALS AND METHODS 

 

Both experiments were conducted using a low-cost MCA complete with irradiance sensor (Parrot Sequoia, Parrot, France) 

mounted on a 3DR Solo quadcopter using custom 3D printed mounts. The Sequoia is mounted at 3° off-nadir in forward 

direction to compensate the average forward tilt of the drone when flying at 5 m/s.   

The Sequoia multispectral sensor consists of four cameras with different band-pass filters located in the green, red, red-

edge and NIR regions of the spectrum with centre wavelengths at 550, 640, 735 and 790 nm and varying bandwidths. The 

approximated sensor response per band is visualised in Figure 1 along with a simulated reflectance spectrum representing 

healthy vegetation.  

 
i Spectralon is a registered trademark of Labsphere, Inc. 
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Figure 1: Red: Sequoia normalised spectral response, Black: Simulated vegetation spectrum for illustration. 

 

2.1 Experiment 1 

2.1.1 Study site and drone flights 

Data were acquired over a pasture and mixed woodland study area in South West UK during cloud-free conditions at 11:30 

AM BST (UTC+1)  on 4th July 2019.  The drone was flown in a pre-programmed north-south oriented lawnmower pattern 

at 70 m elevation above ground at a speed of 5 m/s. This resulted in ~80% lateral and ~90% frontal overlap between images 

and a nominal ground resolution of 6.6 cm. Calibration panels deployed in the field were imaged at a lower elevation of 

25 m resulting in a nominal ground resolution of 2.36 cm.  

2.1.2 Calibration panels 

A calibrated Spectralon panel of 42.5% average reflectance over the Sequoia wavelength range (SRT-40-050) as well as a 

calibrated grey card of ~20% average reflectance were imaged prior to the flight at three different exposures with the 

Sequoia Radiometric Calibration setting. For each band, the non-saturated image with the longest exposure was selected 

as reference.  

Five reference panels of varying reflectances ranging from 2% to 42% (Figure 2) were levelled and imaged at a lower 

flying altitude of 25 m in order to resolve sufficient pure pixels per panel and reduce adjacency effects. Panels (c), (d) and 

(e) are plywood painted with Rust-Oleum® matte furniture paint while (f) and (g) are fabric panels manufactured by 

MosaicMill (Finland). All panels are designed to minimise bi-directional effects, though the actual BRDF was not assessed 

here. 
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2.1.3 Field spectral measurements 

The reflectance of the five reference panels as well as one grass and one pseudo-invariant concrete surface were measured 

immediately prior to the drone acquisition (11:20-11:25 UTC+1), using an OceanOptics FLAME spectrometer and a 

calibrated Spectralon white reference panel (SRS-99-020, 99% reflectance across the Sequoia wavelength range). 

Measured reflectance spectra were post-processed by interpolating artefacts stemming from absorption features, the most 

prominent in the O2A band (760 nm), and smoothing the spectra using Savitzky-Golay filtering 11.  

In order to compare the reference values to the measured Sequoia band values, the spectra were convolved with each 

band’s spectral response function (SRF). Due to the true SRFs being unavailable, they were derived from filter transmission 

values per wavelength and the approximated camera CMOS sensor response (see Figure 1).   

2.1.4 Drone derived HCRF 

The following formulas for the calibration of Sequoia images using information recorded in image EXIF tags are based on 

information provided by the manufacturer12 and are fully integrated within the Pix4D software (with the exception of the 

standard ELM based on multiple panels). However, the implementation of the full processing pipeline remains black-box 

and cannot be detailed here. Lens distortion and vignetting corrections are also applied within the software (see Pix4D, 

2019). 

The digital numbers P as recorded per pixel by the Sequoia sensor are converted to radiance-equivalent values, here termed 

pseudo-radiance R, following eq. (1) in Table 1. Here f  is the focal ratio, γ the ISO and ɛ the exposure time in seconds 

whereas A, B and C are camera specific calibration factors provided by the manufacturer.  

For the single-panel simplified ELM calibration, R is converted to surface reflectance ρ using calibration coefficient K  (eq. 

3, Table 1). K  is derived from the calibrated reflectance value 𝜌𝑟𝑒𝑓  of a reference panel imaged prior to the flight, as well 

as the average R over the surface of the imaged panel, termed 𝑅𝑟𝑒𝑓
̅̅ ̅̅ ̅̅  (eq. 2, Table 1). 

Alternatively, the irradiance counts in DNs (C) recorded by the irradiance sensor are converted to pseudo-irradiance (𝑅𝑖𝑟𝑟) 

using eq. (4), where 𝑔 is the gain and ɛ𝑖𝑟𝑟 is the exposure time of the irradiance sensor. 𝑅𝑖𝑟𝑟 can then be used to account 

for the variation in irradiance in respect to the single panel reference image and derive a ρ which is less susceptible to 

Figure 2: The grey card (a) and Spectralon panel on tripod (b) imaged pre-

flight, and the five larger reference panels (c-g, with averaged reflectances of 

0.2, 0.07, 0.39, 0.02 and 0.42 respectively) imaged at 25 m altitude, displayed 

in the NIR band.  
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irradiance differences, using eq. (6) in Table 1. K’  is derived similarly to K  but includes the irradiance measured during 

the capture of the single panel calibration image 𝑅𝑟𝑒𝑓𝑖𝑟𝑟   (eq. 5, Table 1). This factor also accounts for the differences in 

sensitivities and solid angles between the irradiance sensor and camera pixel measurements. 

 

Table 1: Formulas used to convert digital numbers as measured by the Sequoia camera and irradiance sensor to surface reflectance. 

Left column: reflectance calibration not considering irradiance, Right column: Reflectance calibration with irradiance compensation. 

Pseudo-Radiance (R) from DNs (P): Pseudo-Irradiance (𝑅𝑖𝑟𝑟) from DNs (C): 

 

 𝑅 = 𝑓2 𝑃−𝐵

𝐴ɛ𝛾+𝐶
     (eq. 1) 

 

𝑅𝑖𝑟𝑟 =  
𝐶

𝑔ɛ𝑖𝑟𝑟
     (eq. 4) 

Calibration coefficient using reference panel 

(simplified ELM): 

Calibration coefficient using reference panel and 

measured irradiance (simplified ELM): 

𝐾 =
𝜌𝑟𝑒𝑓

𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅
     (eq. 2) 

 

𝐾′ = 𝜌𝑟𝑒𝑓

𝑅𝑟𝑒𝑓𝑖𝑟𝑟

𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅
     (eq. 5) 

 

  

 

𝜌 = 𝐾𝑅     (eq. 3) 

 

𝜌 = 𝐾′
𝑅

𝑅𝑖𝑟𝑟
     (eq. 6) 

 

For the ELM calibration method, surface reflectance ρ was predicted from pseudo radiance R using a linear model based 

on a dark and bright reference target. The bright targets used were different for the visible bands due to saturation (here 2% 

and 25% reflective panels for the Green and Red bands, 2% and 42% reflective panels for the red edge and NIR bands).   

 

2.2 Experiment 2 

 
2.2.1 Study site and drone flights 

These data were acquired over a 10 year old oil-palm plantation in Sarawak, Malaysian Borneo between 10:30 and 11:20 

AM UTC+8 on 3rd February 2018. Two identical flights were conducted following a lawnmower pattern flight plan at 100 

m elevation above ground and 5 m/s speed with image acquisitions triggered by intervalometer which ensured 80% lateral 

and >90% frontal image overlap and yielded 9.42 cm ground resolution. For the first flight, here referred to as F1, 

illumination conditions were more uniform throughout the flight than compared to the second flight (F2). However, while 

for F1 irradiance was mostly diffuse, both flights showed variations in irradiance  

2.2.2 Calibration panels 

The flights were calibrated using a Spectralon white reference panel (SRT-99-050, 99% reflectance over the Sequoia 

wavelength regions) imaged during overcast conditions at three different exposures with the Sequoia Radiometric 

Calibration setting. For each band, the non-saturated image with the longest exposure was selected as reference. 

2.2.3 Drone derived HCRF 

The simplified ELM radiometric calibration is the same as described for Experiment 1.  
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The pseudo radiance R from both flights was calibrated to surface reflectance by alternatively using equations (3) and (6), 

resulting in two surface reflectance products each, one which considers measured irradiance and one which uses only the 

Spectralon (SRT-99-050, 99% reflective) panel as reference. 

2.2.4 Per-palm NDVI and CHL values 

The NDVI and CHL indices were calculated for both acquisitions as follows: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
   (eq. 7)   𝐶𝐻𝐿 =

𝑁𝐼𝑅

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒
− 1   (eq. 8) 

 

Eq. (7) is based on the work by Gitelson et al. (2006). 

The locations of 496 palm tree tops were derived using structure-from-motion photogrammetry in a previous study 

conducted on this site 15. Median NDVI and CHL values were extracted within a 2.5 m buffer around each point, the buffer 

size was chosen to minimise the impact of overlapping palm fronds or visible ground between palms.  

 

3 RESULTS 

 

3.1 Experiment 1 

 

The measured surface reflectance averaged over the area of each target is plotted against the field-measured reference 

reflectance (HCRF) in Figure 3, while corresponding root mean square errors and standard deviations over the reference 

panel areas are recorded in Table 2.  

The two brightest targets with >30% average reflectance saturated in the green and red band and were therefore omitted 

from this analysis. This represents a limitation of the minimum automatic exposure time of the Parrot Sequoia sensor, 

which is designed to capture small variations within vegetation reflectance which is very low in the green and red bands 

due to absorption. The dark and bright targets used to construct the empirical line for the ELM were also omitted from the 

further analysis. 

As is apparent from Table 2, for the reference panels the mean RMSEs over all bands is considerably lower for the ELM 

calibration compared to the single-panel approaches. Between the two panels used for the simplified ELM, the Kodak grey 

card performs better than the Spectralon (SRT-40-050) panel with 0.0154 mean RMSE over all bands compared to 0.0215 

for the Spectralon panel. In the red edge and NIR bands, larger deviations for the single panel calibrations can be observed 

at lower reflectance. As these panels were imaged at lower altitude to prevent adjacency effects and the influence of water 

vapour and aerosols is assumed to be negligible at these altitudes 16, one possible source of error is dark-current which may 

not be adequately accounted for within the calibration workflow. This does not appear to influence the visible bands.   

Errors are highest for the grass meadow target in the red edge and NIR bands, with mean absolute errors up to 6.7% in the 

red edge when using the grey card. These errors can have a substantial impact, particularly for the derivation of chlorophyll 

content from indices. The source of this anomaly is unclear and may be related to non-representative measurements in the 

field or uncertainties within the sensor response used to convolve the measured spectra to representative Sequoia 

measurements. The latter should be investigated as it has far reaching consequences when seeking to use Sequoia 

reflectances for the retrieval of biochemical parameters. 
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It should also be noted that the ELM does not perform better than the single panel calibration for the grass and concrete 

reference targets within the survey flight. As the ELM was derived from panels imaged at a lower altitude and slightly 

different sun-sensor geometry, the difference is likely BRDF related.  

 

 

 

Table 2: RMSE per band and calibration method between the measured reflectance and the reference reflectance for the reference 

panels. In brackets: Standard deviations over the pixels of each panel.  

RMSE and SD GRE RED REG NIR RMSE all 

bands 

GreyCard  

 
0.0113 (0.0014) 0.0067 (0.0017) 0.0159 (0.0022) 

0.0274 

(0.0031) 

0.0154 

Spectralon (SRT-

40-050) 
0.0213 (0.0016) 0.0153 (0.0019) 0.0206 (0.0023) 

0.0288 

(0.0031) 

0.0215 

ELM 
0.0036 (0.0016) 0.0022 (0.0019) 0.0056 (0.0024) 

0.0032 

(0.0034) 

0.0037 

 

A visual comparison of the green band surface reflectance (HCRF) results for a subset of the actual surveyed scene is 

displayed in Figure 4. It is evident that there are slight offsets depending on the calibration method used, with the highest 

Figure 3: Reflectance values as derived from multispectral imagery using different calibration methods for five reference panels of 

different reflectance as well as a pseudo-invariant concrete surface (blue) and grass meadow (green). Results are plotted by band: a) 

Green, b) Red, c) Red edge and d) NIR bands. 
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values for the Spectralon (SRT-40-050) calibrated product and the ELM resulting in generally lower values, even slightly 

negative for the dark cast-shadow region. 

 

a) b) c)  

   

 

    

    

Figure 4: HCRF values in the green wavelength band for a subset of the scene showing an oak tree canopy and cast shadow for a) the 

standard ELM, b) simplified ELM with grey card and c) simplified ELM with Spectralon panel. 

 

3.2 Experiment 2 

 

The derived pseudo-irradiance values for each flight are visualised in Figure 5. The recorded camera positions for F2 

appear more unequally spaced as opposed to F1. As the wind speeds and directions were similar for both flights, this is 

likely a camera related issue appearing due to continuous operation. As frontal image overlap was very high, this issue is 

not expected to significantly impact the results.   

The surface reflectance for F1 and F2 and the two different calibration approaches are displayed for the NIR wavelength 

band in the area of interest in Figure 6. As the single panel calibration image was acquired during overcast conditions, 

HCRF is greater than 1 for areas imaged during direct irradiance conditions if irradiance is not considered. If measured 

irradiance is considered, illumination-based anomalies are reduced in magnitude. Visual inspection of F1 shows that there 

are no large differences apparent due to more stable irradiance conditions. Comparing the F2 reflectance maps to F1, it is 

clear that considerable variations due to irradiance are still present, even when irradiance information is included in the 

calibration. The spatial distribution of brighter and darker areas is however different.  
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Figure 6: Surface reflectance in the NIR band for the consecutive acquisitions F1 and F2, with and without 

accounting for measured irradiance information. 

 

Figure 5: Spatial representations of the pseudo-irradiance values captured per image in the green band for the two drone 

acquisitions. Left: Flight 1 (F1), Right: Flight 2 (F2). The black dots represent the GPS position recorded for each captured 

image. 
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The values of indices derived using band-ratios are impacted due to wavelength-dependent differences in apparent 

reflectance depending on direct or diffuse illumination conditions 17. As is evident in Figure 7 and Table 3, the mean 

index values differ considerably between F1 and F2 due to illumination dependent differences. The difference between 

mean values is greatly reduced by compensating for irradiance and the value spreads are reduced, also clearly visualised 

in Figure 8. However, a paired t-test showed that the differences between means was still significant for both NDVI and 

CHL values (p<0.05). The standard deviation of CHL values within the more variable acquisition F2 are still almost 

double those of F1. This means it is likely that index variations even within irradiance-compensated products may mask 

actual physiologically based differences between palm canopy reflectances. 

 

Table 3: Means and standard deviations of per-palm index values for the two acquisitions F1 and F2, with and without irradiance 

compensation  

 F1 F2 F1 corr. F2 corr. 

NDVI mean 0.892 0.846 0.903 0.898 

NDVI SD 0.013 0.025 0.011 0.017 

CHL mean 0.870 0.308 0.986 0.928 

CHL SD 0.164 0.214 0.125 0.241 

  

 

Figure 7: Boxplots of palm median NDVI (left) and CHL (right) values for acquisitions F1 and F2, with and without irradiance 

compensation (corr.). The bold central line represents the median, the lower and upper boundaries of the boxes are the 25th and 75th 

percentile respectively and the whiskers extend to the furthest data points within 1.5 times the interquartile range, outliers beyond are 

omitted. 
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Figure 8: Per palm CHL and NDVI values for two replicate flights of varying illumination. Red: Irradiance considered during 

reflectance calibration, Blue: Irradiance not considered during reflectance calibration. 

 

 

4 DISCUSSION AND CONCLUSIONS 

 

In this study, we firstly assessed the accuracy of drone-based MCA data derived surface HCRF for two different calibration 

approaches and reference panels (experiment 1) as well as the impact of illumination variations on HCRF derived 

vegetation indices and the performance of corrections using irradiance data (experiment 2). 

 

4.1 Experiment 1 

 

We found that the standard ELM based method can provide surface reflectance factor estimates which are more consistent 

with in-situ measured values, if acquired at the same altitude and viewing geometry. The ELM can compensate for the 

influence of aerosols and water vapour between the ground and sensor given a uniform distribution of these throughout 

the imaged scene, whereas a calibration based on a single reference panel imaged on the ground would be susceptible to 

this bias. The ELM also has the advantage that the panels are imaged with the same viewing geometry as ~50% of the 

scene (flight lines of same orientation). However, as in this study the panels were imaged at a significantly lower altitude 

than the rest of the scene (45 m difference), atmospheric effects and viewing geometry will be slightly different and indeed  

for the two targets measured within the survey flight, the performance of the same standard ELM and single-panel 

calibration was comparable. 

To enable the ELM at flight altitude, significantly larger panels would be required. For practical reasons, this is commonly 

solved by using tarpaulins 18, though these cannot be levelled and may introduce variations in reflectance due to BRDF 

effects.  
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When using the standard ELM a divergence in areas of low reflectance (cast shadows) was observed when the ELM 

intercept is not constrained to zero. Assuming adjacency effects are indeed negligible for the panels imaged at lower 

altitude and dark current offset is constant, the cause of this phenomenon is unclear but may be due to non-linearity in 

sensor response for very low incoming radiance. 

There did not appear to be a large difference when considering the use of the 42.5%  Spectralon panel for single-panel 

calibration as compared to a much more affordable Kodak grey card. Although the Spectralon panel can be expected to 

exhibit more Lambertian reflectance properties than the grey card, it should be noted that carbon-dosed Spectralon has 

been found to be slightly less Lambertian than purely white panels 19. It should however be stressed that our study did not 

investigate degradation of actual reflectance versus the calibrated reflectance values over time which has been shown to 

be larger for lower quality panels such as the Kodak grey card used here 4.  

 

4.2 Experiment 2 

 

Experiment two showed that corrections for irradiance variations based solely on irradiance sensor information can 

improve the consistency of results acquired during overcast conditions with varying diffuse illumination but cannot fully 

compensate for the impact of direct/diffuse irradiance variations. This is due to the point-based irradiance measurement 

representative for the image not being representative for the actual top-of-canopy irradiance of the imaged scene due to a 

large spatial extent being imaged, often not perfectly nadir due to non-gimbaled acquisition. Cloud shadows and gaps can 

therefore lead to significant variations in derived indices which is superimposed on natural variation within the scene. This 

is true even for the NDVI which is considered more robust to wavelength dependent variations 17.  

From the two experiments presented here, we conclude that standard ELM calibrations of pseudo-radiance orthomosaics 

generated using black-box processing software remain the most reliable way of deriving true HCRF from MCA drone 

imagery, however the deployment of panels of sufficient size and Lambertian reflectance is limiting in practice. Reference 

panels imaged in-flight are still highly recommended either for calibration or accuracy assessment of any study seeking to 

make use of individual band HCRF information. Furthermore, in order to generate spatially consistent HCRF products, 

irradiance conditions should be as homogenous as possible and any greater variations will introduce errors which cannot 

be adequately compensated using drone-based irradiance measurements. There is therefore a need for scientists working 

with multispectral drone data to be aware of these limitations and transparently report illumination conditions during 

acquisitions, ideally through concurrent measurements.  
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