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Abstract: The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective 

behaviour in nature, and have attracted much research. 3D imaging techniques now allow us to 

characterise the kinematics of turning and their group-level consequences in precise detail. We measured 

the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to 

roosts and anti-predator mobbing. All flocks reduced their speed during turns, likely due to constraints on 

individual flight capability. Turn rates increased with the angle of the turn so that the time to complete 

turns remained constant. We also find that context may alter where turns are initiated in the flocks: for 

transit flocks in the absence of predators, initiators were located throughout the flocks, but for mobbing 

flocks with a fixed ground-based predator, they were always located at the front. Moreover, in some 

transit flocks, initiators were far apart from each other, potentially due to the existence of subgroups and 

variation in individual interaction ranges. Finally, we find that as the group size increased, the information 

transfer speed initially increased, but rapidly saturated to a constant value. Our results highlight 

previously unrecognized complexity in turning kinematics and information transfer in social animals.  
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Introduction 

Collective behaviour is observed for a broad range of biological systems, from cell colonies [1], insect 

swarms [2,3], fish schools [4,5], and groups of mammals [6–8], including human crowds [9]. One of the 

most spectacular illustrations of collective behaviour occurs when whole groups of hundreds of 

individuals suddenly change direction, executing cohesive turns like a single, cohesive unit [10,11]. These 

collective turns may be triggered by local changes in traveling direction [12,13], external stimuli such as 

predator attacks [14–16], or may simply be stochastic, spontaneous effects [17–20]. Usually, a few 

individuals are observed to turn first and are subsequently followed by other group members [16,20,21], 

causing shimmering waves to propagate rapidly through the entire group [14,22]. Such synchronization 

among group members during collective turns is crucial for maintaining group cohesion and thus for the 

survival of group-living animals [23,24]. Understanding the mechanisms responsible for collective turns 

and information transfer among group members therefore has significant ecological and evolutionary 

implications [25,26].  

 

Bird flocks are one of the most extensively studied examples of collective behaviour. Following the 

development of seminal mathematical models of self-organising systems [27–29], collective behaviour is 

typically thought to arise as an emergent property of local interactions between individuals [11,30]. 

Consequently, many studies have focused on inferring the interaction rules followed by birds [31–40] and 

their implications for macroscopic quantities such as flock morphology [32,38,41] and the spatial distance 

over which the velocity fluctuations of individuals are correlated [37,42,43]. Flocking behaviour, 

including collective turns, has also been numerically simulated using discrete self-propelled particles 
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[44,45], network models [46], and continuum hydrodynamic models [47,48]. Although there have been a 

number of empirical studies on the collective turns of large groups of birds in the wild [14,18,21,49,50], 

many questions remain outstanding. In particular, the turning kinematics such as flight speed and radial 

acceleration have not been well characterized. Since these quantities are constrained by the flight 

capabilities of individuals, they offer a potential connection between individual- and group-level 

properties. It is also unclear how group size affects the speed of information propagation within the group.  

 

The simplest way to characterize collective turns is to quantify the kinematics of each involved individual. 

In this vein, the temporal variation of radial acceleration and group polarization during turns has been 

reported for starling flocks [21]. However, many other relevant kinematic quantities such as flight speed, 

turn rate (i.e., angular velocity), turn radius, and angular momentum have not been studied. Individual 

group members slowing their movement speed have been shown to trigger collective turns in fish schools 

[20,51], and so studying the temporal variation of flight speed can help to test whether flocking birds use 

a similar mechanism. Moreover, evading predators depends on how quickly a flock can adjust its flight 

direction, suggesting that one should measure a flock’s turn rate and its relationship with the magnitude of 

the change of traveling direction g (where g=180 degrees for a U-turn). Examining the radial 

acceleration allows us to test whether the centripetal forces produced by birds are constrained by inherent 

biophysical limitations [52,53]. An upper limit on the radial acceleration could explain why movement 

speed is reduced during turns [20]. Thus, fully characterizing the kinematics of collective turns is 

essential to better understand how avian flocks execute these coordinated manoeuvres.  

 

Studying the distribution of spatial locations from which turns can be initiated can also reveal aspects of 

how information flows through the group. In small flocks of pigeons (<10 individuals), it was found that 

birds at the front of the flocks were most likely to start the turns [12]. In very large starling flocks (>100 

individuals), however, the first birds that started to turn were found to be located close to each other [21], 

but tended to be on the sides (in elongated tips) of the flocks rather than at the front [18]. In contrast, in 

fish, individuals located in the rear part of a school can also initiate turns [20]. Since birds have a wide 

field of vision and often produce vocalisations while flocking, turns may also plausibly be initiated from 

the rear of the flocks. In addition, given that flocks of some species contain multiple subgroups [38,54,55] 

and that some individuals may have longer interaction ranges (either interacting with more neighbours or 

having a longer range of perception) than others [37,56–58], the first birds that start to turn may not 

always be close to each other. New observational data are required to address these questions. Moreover, 

since predators may attack flocks from any directions, testing whether birds located at various positions in 

flocks have the ability to initiate collective turns is central to understanding the adaptive function of 

collective turning as a predator avoidance strategy.   

 

Finally, only a few empirical studies [21] have investigated how group size affects information transfer in 

bird flocks. Given evidence that larger groups make faster and more accurate decisions than smaller 

groups [59], it is likely that group size has a strong influence on the speed of information transfer through 

flocks. For instance, research on fish schools has shown that the information transfer speed (i.e., the speed 

with which information about a turn propagates within the group) increases as the group size grows from 

2 to 20 individuals [20]. However, for birds, researchers have found that there is no correlation between 

group size and information transfer speed for starling flocks with sizes ranging from 50 to 595 [21]. 

Determining whether the different results for these cases stems from the difference in species or a group 

size effect requires data for flocks with sizes in the range of 10 to 50 individuals.   

 

In this study, we address these open questions by tracking the three-dimensional (3D) motion of flocking 

jackdaws (Corvus monedula), a small member of the large-brained corvid family. Jackdaws form flocks 

with group sizes ranging from two to several thousand [38,60]. Their flight paths and roosting sites are 

predictable, allowing for data collection using a ground-based 3D imaging system [61]. We study 

collective turns made by flocks with a range of sizes, in the absence of real predators but under two 
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different ecological contexts. We describe the turning kinematics including flight speed, turn rate, turn 

radius, radial acceleration, all as functions of g. We also show that the first birds that start to turn can be 

located variously in the rear or front of the flocks, and can be either close to or far apart from each other. 

Finally, we find that group size does indeed affect the information transfer speed, particularly for smaller 

groups.  

 

Materials and Methods 

(a) Study species 

Jackdaws (Corvus monedula) are a highly social, colony-breeding corvid found throughout much of the 

Western Palaearctic. At our study sites in Cornwall, UK, more than 2000 jackdaws are fitted with unique 

colour ring combinations for individual identification. We study collective turns in two types of flocks: 

transit flocks and mobbing flocks. In the winter, jackdaws gather in large flocks around pre-roost and 

roost trees before they spend the night at the roost sites. These pre-roost and roost sites are predictable 

and consistent, allowing for observations of the transit flights of flocks between them. During the 

breeding season, jackdaws also form mobbing flocks in the vicinity of their nest-boxes aimed at driving 

away aerial and terrestrial predators such as raptors and foxes. During this time period (May to July), 

jackdaws can be readily recruited into mobbing flocks by pairing presentations of a model predator (a 

taxidermy fox) with playbacks of pre-recorded anti-predator recruitment calls (known as scolding calls) 

[62], facilitating data collection (see details in electronic supplementary material). Both transit and 

mobbing flocks provide excellent opportunities to study how social birds make collective turns and how 

information spreads through flocks.  

 

There are two essential differences between transit and mobbing flocks. Transit flocks contain pairwise 

subgroups that are attributable to the life-long monogamous pair bonds in jackdaw societies [37,63,64], as 

well as larger clusters of birds flying together (potentially reflecting groups from different colonies 

joining together within large flocks) [38]. In contrast, mobbing flocks formed in response to experimental 

presentations of scolding calls and model predators during the breeding season do not contain such 

internal sub-structure (see details in electronic supplementary material). Additionally, the collective turns 

in transit flocks mostly arise from a stochastic change of traveling direction, while in mobbing flocks they 

are responses to spatially localized scolding calls and predators. In transit flocks, we cannot exclude the 

possibility that external stimuli such as wind or other flocks outside our imaging volume could also play a 

role in triggering turns. We will show below that these two types of flocks have different turning 

behaviour: the locations from which turns are initiated in mobbing flocks are always in front of the flocks, 

while those in transit flocks can be anywhere in the flocks.  

 

(b) Data collection  

Using a multi-camera three-dimensional (3D) imaging system [61] (see electronic supplementary 

material), we recorded 21 flocking events consisting of 4 to 197 jackdaws (Table 1). 13 events were 

collected during the winter season near pre-roost sites at Mabe and Gwennap, Cornwall, and 8 events 

during the breeding season near nest-box colonies near Stithians, Cornwall (see electronic supplementary 

material for more details of the data collection procedures). Each event was captured at 60 frames per 

second for a time period long enough for flocks to complete a single turn. The event selection criteria 

included: (i) the flock changed its traveling direction by more than 90 degrees; (ii) the group size N (i.e., 

the number of birds in the flock) was larger than 4; (iii) flock images were captured by all four cameras; 

(iv) all birds were jackdaws (identified by vocalisations and morphological characteristics) to avoid any 

effects caused by species differences [63]; and (v) no real predators were present.  

 

From the recorded images, we reconstructed the 3D trajectories of individual birds within the flocks. 

First, we determined the 2D intensity-weighted centroids of each bird on each image. We matched these 

2D coordinates across all four cameras by finding candidates located within a small tolerance of the 

epipolar lines. The matched candidates were combined to calculate 3D locations using a least-squares 
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solution of the line-of-sight equations [65]. When multiple 3D positions for the same bird were possible, 

we selected the one with the smallest 3D ray intersection distance (that is, the residual of the least-squares 

solution). We solved the optical occlusion problem by associating every detected bird on each camera 

with a 3D position [61].  

 

We linked the 3D locations belonging to the same bird over time based on a three-frame predictive 

particle tracking algorithm [66]. We applied a Gaussian smoothing and differentiating kernel [67] to the 

3D trajectories to obtain accurate velocities and accelerations. Wingbeat-induced noise was removed by 

applying a low-pass filter to the measured acceleration [61]. For every time step t, we measured the 

position x=(x1, x2, x3), velocity u=(u1, u2, u3), and acceleration a=(a1, a2, a3) of individual birds in a 

Cartesian coordinate system. We aligned x3 to the gravity direction and +x1 to the mean traveling 

direction of all birds in the flock at t=0 before a turn was initiated.  

 

(d) Bird ranking and turning delay 

We ranked birds from the first to turn to the last to turn, assigning a rank index ri ranging from 1 to N to 

each bird. To do so, we followed the method used by Attanasi et al. (2014) [21]. First, we calculated the 

time lag ij (in the manner discussed below) between each pair of birds i and j, where ij>0 means that bird 

i turns earlier than bird j. Then, we assigned a score wij=1 if ij<0 (or wij=-1 if ij>0) for bird i. After 

considering all pairs, the total score for bird i was calculated as Wi=ji wij, where a smaller Wi means that 

bird i turns earlier than a larger number of other birds in the group. Therefore, we can define ri based on 

Wi, since a smaller Wi corresponds to a smaller ri.  

 

To calculate ij, we used the correlations of the velocity, defined as C(t)=<ui(t)uj(t+t)>t/<|ui||uj|>t, 

where ui and uj are the velocities of birds i and j respectively, < >t represents a time average, and t is a 

time shift. ij was chosen as the time when C reached its maximal value. We use correlations of the 

velocity instead of the radial acceleration to measure ij, since the velocity signal is less noisy than the 

acceleration signal. 

 

After ranking the birds, we calculated the turning delay ti for each bird, i.e., the time when the bird starts 

to turn. Still following [21], for the bird with rank ri=1, we set ti=0, and for birds with rank ri>1, 

ti=rj<ri(tj+ij)/(ri1). According to [21], this method is a robust estimate of the turning delay even under 

some time-ordering violations ijik+kj. Based on the locations of birds with ri=1 and ti=0 within the 

flocks, we then know where a turn is started. By investigating the spatial distribution of ti, we can study 

how information about the turn propagates through the flock.  

 

Results 

(a) Turning kinematics  

A sample collective turn made by a mobbing flock consisting of N=70 birds is illustrated in Fig. 1(a). 

Flight trajectories and speeds of three birds with ri=1, N/2, and N are shown in Fig. 1(b) and (c). For 

0<t<1 s, the flock is highly polarized as all birds move in nearly the same direction. For 1<t<2 s, a small 

number of birds located in the front of the flock slow down and begin to turn backwards, while the other 

flock members keep moving in the same direction. For 2<t<4 s, birds in the middle of the flock begin to 

slow down and turn backwards, followed finally by birds in the rear of the flock. By t=5 s, the entire flock 

is moving in a new direction opposite to that of the initial direction. More examples of collective turns are 

shown in Figs. S1 to S3 and Movies S1 to S3. 

 

Figures 2, S4 and S5 shows the temporal variation of the group speed Ug=|ug|, radial acceleration 

ang=|ugag|/Ug, turn radius Rg=ang
2/Ug, turn rate wg=Ug/Rg, polarization =|<u/|u|>|, and angular 

momentum m=|<(xxg)u/(|u||xxg|)>|. Here, the symbol < > implies an average over all individuals at 

one instant of time, and xg=<x>, ug=<u>, and ag=<a> are the group centre, velocity, and acceleration 
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respectively. Since for all turns wg increases to a peak wg
max and then reduces (Fig. 2a; Fig. S4; Fig. S5), 

we define ts as the time when wg increases to 0.1wg
max (approximately the time when a turn starts), tm as 

the time when wg reaches wg
max, and te as the time when wg decreases to 0.1wg

max (approximately the time 

when a turn ends). The time for a group to complete a turn is thus tg=tets, and the change of traveling 

direction can be calculated as g= ts
te wgdt (Table 1).   

 

As t increases, Ug, Rg and  decrease to minimum values near t=tm and then slowly recover (Fig. 2c, 2e, 

and 2i; Fig. S4; Fig. S5), while ang and mg have the opposite trend (Fig. 2g; Fig. S4; Fig. S5). The increase 

of m and reduction of  indicate that the flocks change from highly polarized motion to more of a milling 

state during the turn. For the case of g, the jackdaws with ranks ri=1 and N move in opposite 

directions at t=tm such that their velocities nearly cancel and  can be as low as 0.6 (Fig. 2j). The milling 

state is more apparent for larger g (Fig. 2k).  

 

Comparing turns with different g, we find that wg
max increases with g (Fig. 2b) in such a way that all 

turns are completed in a nearly constant time (about 4 s) regardless of g (Fig. 2l). The peak radial 

acceleration ang
max, however, remains nearly constant with increasing g (about 7 m/s2 or 70% of a 

jackdaw’s body weight) (Fig. 2h). As a result, the minimum flight speed Ug
min decreases as 1/g (Fig. 2d), 

and the minimum group radius Rg
min decreases as (1/g)2 (Fig. 2f). For the most extreme case, Ug

min is as 

low as 1.7 m/s and Rg
min is as low as 0.6 m.  

 

(b) Turn initiation locations within flocks  

To understand how information about the turns spreads between the birds and leads to a collective 

response, we investigated where turns are initiated in the flock. Figures 3(a-c), S6 and S7 show the spatial 

distributions of birds with ri<0.2N and ri>0.8N at t=ts. We find that in transit flocks a turn can be initiated 

at the front of the flock, on the side, or even at the rear (Fig. 3a-b; Fig. S6). In contrast, in mobbing flocks, 

turns were always initiated at the front (Fig. 3c; Fig. S7). We define a vector us=<x(ri<0.2N;t=ts)>  

<x(ri>0.8N;t=ts)> that points from the mean position of the birds with ri>0.8N to the mean position of the 

birds with ri<0.2N, which gives the approximate direction antiparallel to the direction of information 

propagation. We calculate the angle between the two vectors us and ug(t=ts) (the group velocity at t=ts), 

and denote it as s. Thus, s=0 means that information propagates from front to back, s=90 degrees 

means that it propagates from side to side, and s=180 degrees from back to front. We find that for transit 

flocks s varies from 0 to 180 degrees, while for mobbing flocks s<60 degrees (Fig. 3d; Table 1). We do 

not observe clear relationships between N and s or between (t=ts) and s (Fig. S8).  

 

We also find that in transit flocks the first birds that begin to turn can be located either near each other in 

a small volume or in totally different parts of the flocks (Fig. 3a-b; Fig. S6), while in mobbing flocks the 

initiators were always close to each other (Fig. 3c; Fig. S7). To quantify these tendencies, we computed 

Vtop, the ratio of the volume occupied by the top ranked birds (ri<0.2N) to the volume of the entire flock. 

To do this, we calculated the average distance between the furthest individuals for the selected top-ranked 

birds Ds and for the entire flock D at every time step. Then, we approximated Vtop=[Ds(t=ts)/D(t=ts)]3. We 

find that for transit flocks Vtop varies from 0 to 1, while for mobbing flocks Vtop remains very small (Fig. 

3d; Table 1). We observed no clear relationships between N and Vtop or between (t=ts) and Vtop (Fig. S8).  

 

(c) Information transfer speed in mobbing flocks  

For all mobbing flocks we observed, the birds that start to turn first are localized at the front of flocks and 

the turning information propagates gradually backward through the flocks (Fig. 4a; Fig. S9). Following a 

method used for starling flocks [21], we estimated the information transfer distance as di=(riV/N)1/3, where 

V=<D3/6>t is a measure of the time-averaged volume of the flock. Similar to starling flocks [21], we find 

regions during the turn where di increases linearly with ti (Fig. 4b; Fig. S10), and the information 
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propagation speed cs is obtained by fitting these linear regions. Attanasi et al. (2014) [21] first reported 

linear information propagation in the collective turns of starling flocks. They developed a theoretical 

model that included behavioural inertia of the birds and showed that this model can correctly reproduce 

linear propagation. A similar mechanism may be occurring here.  

 

As N grows from 4 to 80, cs initially increases and then becomes nearly constant (Fig. 4c; Table 1). In fish 

schools with group sizes ranging from 5 to 20, cs was also found to increase with N [20]. The authors of 

that study proposed that this is because fish swim faster in larger groups. For jackdaws in mobbing flocks, 

however, bird flight speed is independent of N (Fig. S11). Studies of starling flocks found that cs also 

increases with the polarization  [21]. However, we find no clear relationship between the time-averaged 

group polarization <>t and cs (Fig. 4d), perhaps because of confounding effects due to group size. To 

isolate the effect of polarization on cs, one would need to compare flocks with similar N, or flocks with 

N>30 where cs is independent of N. Unfortunately, our current dataset does not have enough flocks with 

appropriate parameters to allow formal statistical analysis.  

 

For the transit flocks, due to the large variation of Vtop and s (i.e., multiple initiation locations and various 

information propagation directions), the information transfer among birds is more complicated and cannot 

be modelled as a simple progressive information wave; thus, we did not attempt to estimate the 

information transfer speed for these transit flocks. 

 

Discussion 

In this study, we measured the collective turns of flocking jackdaws using a 3D imaging system. We 

obtained and analysed 21 collective turns for groups ranging from 4 to 196 individuals and directional 

changes of 100 to 240 degrees, taken from 13 transit flocks and 8 mobbing flocks. With these data, we 

can provide new insights on the collective turns of flocking birds.  

 

We found first that jackdaws slow down during collective turns in both transit and mobbing flocks. Since 

fish also slow down during collective U-turns [20], this raises the possibility that this trend might be a 

common feature of collective movement in animals. There are several possible explanations for this 

phenomenon. The physics of animal locomotion, for example, imposes some constraints. Turning 

requires the production of a centripetal force, which increases with traveling speed. Flying or swimming 

animals generate these forces by pushing the surrounding fluid, and thus these forces are bounded. For 

birds, for example, the aerodynamic force is limited to a few times the body weight [52,53]. Thus, 

animals can make turns more easily by reducing their speed, which in turn requires a smaller centripetal 

force. Our results support this hypothesis, since the maximum centripetal forces we observe are about 0.7 

times the body weight regardless of the magnitude of the change of traveling direction. A second possible 

reason, as suggested in the context of fish schools [20,51], is that lower speeds correspond to a less 

polarized group [68] and an increase of velocity fluctuations [51], driving the group close to a transition 

between aligned movement and a disorganized swarming state. Consequently, triggering collective turns 

may be easier at lower speeds [20,51].  

 

We also found that the flocks complete their turns in a fixed amount of time regardless of the magnitude 

of the change of traveling direction. Switching to a new direction in a limited time might have significant 

benefits; for example, the flocks may be able to avoid predators more rapidly. To accomplish these equal-

time turns, the flocks increase their turn rate, slow down more, and reduce the turn radius when changing 

their traveling direction more. Considering that both wingbeat frequency and mechanical power output 

increase as flight speed decreases for low flight speeds (<5 m/s) [69], jackdaws are likely to expend more 

energy when making sharper, lower speed collective turns.  

 

Previous studies have shown that differences in behavioural and ecological context can affect group 

properties such as size, density, and polarization [5,7,70–72], as well as the interaction rules between 
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individuals [64,70]. Here, we find that context may also play a role in determining the locations where 

turns are initiated. In transit flocks, the first birds to turn can be located not only in the front and on the 

side of the flocks, but also in the rear. As a consequence, turning information can sometimes propagate 

from back to front. However, in mobbing flocks, the first birds to turn are always located at the front of 

the flocks. Results in transit flocks (Fig. 3a-b; Fig. S6) indicate that individual birds are able to respond 

quickly to neighbours located all around them. This ability may arise from jackdaws’ wide field of vision, 

or perhaps from auditory cues as they are highly vocal during flight and can discriminate between the 

calls of different conspecifics [62,73]. The ability to initiate turns from any internal location also provides 

benefits to the flocks: given that predators may attack from different directions, all birds on the edges of 

the flocks can play a role in the detection of risk and trigger a collective response, which enables the 

flocks to detect risk faster and more effectively. This hypothesis may also explain why turns in mobbing 

flocks were always initiated from the front: in these cases, the birds are actively tracking the predator, and 

thus facing towards it as they circle overhead. 

 

Additionally, the first birds to turn can be far apart from each other in transit flocks, unlike in mobbing 

flocks and previous studies of starling flocks where the initiators are always close to one another [21]. A 

possible explanation for this finding is that transit flocks contain multiple subgroups (Fig. S12), and each 

subgroup has a few individuals that have longer interaction range, so that they pay attention to 

environmental cues or birds at larger distances in addition to their local neighbours, and respond faster 

than other members. Indeed, our previous work has shown that jackdaw flocks in transit flights contain 

intermediate-range subgroups spread along the movement direction [38], and that there is variation in 

individual interaction ranges as jackdaws without social pair bonds interact with more neighbours than 

those with pair bonds [37]. It would be interesting to test whether our observations on the location of 

collective turn initiation hold for other animal groups that contain multiple subgroups [55] and have 

variations in individual local interaction rules [58].  

 

Finally, we showed that the speed of information transfer increases with group size for small groups, but 

saturates for larger groups. This observation may be due to edge effects. As is evident from Fig. 4(b), 

birds with turning rank close to group size N (i.e., those on the flock edges) have longer time lags than 

birds in the centre of the flocks, perhaps because birds on the edges have to pay attention to the external 

environment in addition to their neighbours. When the group size is small, most birds are on the edges of 

the flocks, leading to a low information propagation speed. As the group size increases, the proportion of 

birds on the edges becomes smaller such that edge effects are weaker, and information propagation speed 

approaches a constant value. Note also that information propagation speed in large jackdaw flocks is 

about 7 m/s, much slower than the 15 to 30 m/s observed in starling flocks. This discrepancy might 

explain why individual jackdaw flocks become less ordered during collective turns (Fig. 2i), as jackdaws 

that turn later respond much slowly and thus have different flight directions as compared to those that turn 

first.  

 

In conclusion, we have provided more observational data of collective turns of flocking birds. Our data 

help to better understand the turning kinematics and information transfer among birds. We also anticipate 

that kinematic and group size effects on information transfer we see will apply to other biological systems. 

Future studies, ideally with the capacity to trigger turns by using for instance simulated predator attacks, 

may help to illuminate what factors determine the locations of turn initiation, how these locations affect 

information transfer, and what interaction rules individuals obey during collective turns.  
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Figures  

 
Figure 1. (a) Snapshots of positions (dots) and velocities (arrows) of individual birds in three-dimensional space 

during a collective turn made by flock #M05. Birds are coloured by the turning delay ti. (b-c) Sample bird 

trajectories (b) and flight speeds |u| (c) for birds with turning rank rj=1, N/2 and N taken from flock #M05 (dots are 

the ends of the trajectories). (d) Relation between ij and ik+kj showing that ijik+kj, indicating that the 

calculation of ij is biologically meaningful. More examples of collective turns are shown in Figs. S1 to S3, and 

Movies S1 to S3.  
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Figure 2. (a)(c)(e)(g)(i) Temporal variations of (a) group turn rate wg, (c) group flight speed Ug, (e) group turn 

radius Rg, (g) group radial acceleration ang, and (i) group polarization  during collective turns for flocks #T06 and 

#T12 (data for other flocks are shown in Figs. S4 and S5). (b)(d)(f)(h)(j)(k)(l) Effects of the magnitude of the change 

of traveling direction g on (b) maximum group turn rate wg
max, (d) minimum group flight speed Ug

min, (f) minimum 

group turn radius Rg
min, (h) peak group radial acceleration ang

max, (j) minimum group polarization min, (k) maximum 

group angular momentum mmax, and (l) the time for flocks to complete turns tg. Here, tm is defined as the time when 

wg reaches wg
max.  
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Figure 3. (a-c) Snapshots of positions (dots) and velocities (arrows) of individual birds projected onto a horizontal 

plane at t=ts (the time when a turn starts). Red triangles are birds with ri<0.2N and blue squares are birds with 

ri>0.8N. Data for other flocks are shown in Figs. S6 and S7. (d) Distributions of s and Vtop for 13 transit and 8 

mobbing flocks. (e-f) Probability density functions of (e) s and (f) Vtop. s=0 means that information propagates 

from front to back, s=90 degrees mean that it propagates from side to side, and s=180 degrees means that it 

propagates from back to front. Larger Vtop means that the first birds that start to turn are further apart.  
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Figure 4. (a) Snapshots of positions (dots) and velocities (arrows) of individual birds projected onto a horizontal 

plane for flock #M05 at t=ts (data for other flocks are shown in Fig. S9). Birds are coloured by ti. (b) Information 

propagation distance di as a function of ti for flock #M05 (data for other flocks are shown in Fig. S10). The 

information propagation speed cs is obtained by fitting the linear region of the curve. (c-d) Relation between (c) N 

and cs and (d) between time-averaged group polarization <>t and cs for the 8 mobbing flocks. Errors in cs are due to 

the uncertainty when fitting di(ti). 
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Event N g (degrees) tg (s) (t=ts) Ug(t=ts) (m/s) s (degrees) Vtop cs (m/s) 

Transit flocks recorded during the winter seasons of 2018 and 2019 

T01 11 142 3.7 0.94 6.1 31 0.74 - 

T02 15 132 4.0 0.99 10.1 14 0 - 

T03 79 135 3.5 0.87 6.2 146 0.72 - 

T04 196 235 3.8 0.72 9.7 74 0.93 - 

T05 70 167 2.7 0.97 6.0 89 0.65 - 

T06 25 98 4.0 0.99 11.3 146 0.05 - 

T07 73 127 3.3 0.95 8.6 85 0.59 - 

T08 6 217 5.0 0.95 9.7 26 0 - 

T09 11 194 5.0 0.94 6.6 30 1 - 

T10 4 220 4.8 0.90 10.5 52 0 - 

T11 5 187 2.8 0.55 1.8 34 0 - 

T12 19 216 4.3 0.98 11.1 73 0 - 

T13 14 223 5.0 0.98 11.8 9 0.51 - 

Mobbing flocks recorded between May and July of 2018 

M01 8 213 5.0 0.93 7.2 19 0 4.4 

M02 4 239 5.0 0.95 7.5 24 0 3.3 

M03 44 214 5.0 0.73 3.8 23 0.32 6.3 

M04 57 201 4.1 0.93 6.8 22 0.07 5.9 

M05 70 186 3.5 0.96 7.8 31 0.03 6.8 

M06 5 212 4.9 0.88 6.8 24 0 3.2 

M07 34 177 3.4 0.96 6.2 51 0.1 7.5 

M08 4 175 5.0 0.93 6.0 21 0 2.7 

Table 1. Statistics of 21 collective turns made by 13 transit flocks and 8 mobbing flocks. N is group size, g is the 

change of traveling direction, tg is the time for the group to complete the turn, (t=ts) and Ug(t=ts) are the group 

polarization and speed at the beginning of the turn t=ts, s denotes the direction of information transfer through 

flocks (0 means from front to back, 90 degrees means from side to side, 180 degrees means from back to front), Vtop 

denotes the volume ratio of the top ranked birds to the entire flock (larger values mean that the top ranked birds are 

farther apart), cs denotes the information transfer speed. 

 

 

 

 

 

 


