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Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena

ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are

nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical

ranges of these phenomena are much larger than what is computationally accessible. In large eddy

simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing

to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics.

This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal

MHD LES equations with particular emphasis on the effects of compressibility. The closures are

based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and

require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their

applicability ranges from the sub- to the hyper-sonic and -Alfv�enic regimes. The closures support

spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and

magnetic resolved and unresolved energy budgets. They implicitly take into account the local ge-

ometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in

Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in

the literature with respect to a wide range of simulation data of homogeneous and isotropic turbu-

lence. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954303]

I. INTRODUCTION

There is a great need for increased accuracy in numerical

simulations involving turbulent flows of magnetized fluids in

fields varying from engineering to astrophysics. In astrophy-

sics, in particular, compressible magnetohydrodynamic

(MHD) turbulence is an important ingredient in the solution

of outstanding problems on many scales such as the genera-

tion and sustainment of galactic and super-galactic scale mag-

netic fields;3–5 the detailed process of star formation,

including self-regulation and fragmentation;6–8 stellar convec-

tion in the interior and stellar atmospheres;9 accretion and pro-

toplanetary discs, stellar ejecta, e.g., jets, winds,

and outflows;10,11 and the dynamics of the solar tachocline,

the solar wind, and the solar corona.12–16 The dynamical range

of these phenomena is usually much larger than what is com-

putationally tractable. Numerically, this translates to unphysi-

cal dissipation and turbulence dynamics due to the limited

resolution. For example, in finite-volume numerical schemes,

it leads to enhanced dissipation. In large eddy simulations

(LESs),17–20 this problem is tackled by directly solving only

the evolution equations for the resolved fields. The contribu-

tion of the small under and unresolved scales (i.e., the scales

which are badly contaminated by numerical noise or simply

unrepresented) on them has to be incorporated via explicit

modeling. Formally, these scales are identified by the intro-

duction of a finite resolution operator, in effect a low-pass fil-

ter. Large eddy simulations are typically used with grid-based

numerical schemes, e.g., based on finite-differences or finite-

volumes. As such the grid-scale can be taken to be the filter

scale and hence the terms responsible for the small-scale

effects are known as subgrid-scale (SGS) terms.

The magnetohydrodynamic LES equations are obtained

by applying a finite resolution operator to the MHD equa-

tions. It can be shown that this operator can be expressed as a

convolution with a low-pass filter kernel. There are several

comprehensive reviews of the formalism and its application

to hydrodynamics17,18,20 and MHD.21 Applying the formal-

ism with a static, homogeneous and isotropic kernel G with a

constant grid-scale (which can be used to represent the com-

monly used grid-based numerical schemes in physical or

spectral space) under periodic boundary conditions to the

ideal MHD equations results in the following equations for

the large-scale fields:

@q
@t
þr � qeuð Þ ¼ 0; (1a)

@qeu
@t
þr � qeu � eu � B � B

� �
þr P þ B

2

2

 !
¼ �r � s;
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@B

@t
�r� eu � Bð Þ ¼ r � E: (1c)

Here, a large scale, filtered field is denoted by an overbar.

For instance, the large scale component of the pressure P
is given by a convolution with the filter kernel G, i.e., P
¼ G � P and similarly for the filtered density q and the mag-

netic field B, which incorporates
ffiffiffiffiffiffi
4p
p

in the chosen notation.

The treatment of the pressure term is beyond the scope of

this work due to the wide array of possible equations of state

used to close the MHD system. Nevertheless, briefly, if the

equation of state is linear in the primary fields (e.g., in iso-

thermal conditions), the pressure does not lead to any SGS

contributions.

The tilde denotes a mass-weighted (also known as

Favre) filtered field,22 e.g., the Favre-filtered velocity field

~u ¼ qu=q. Using ~u as a primary quantity precludes the intro-

duction of SGS terms in the mass conservation equation.

Additionally, it fits well with physical-space-based com-

pressible schemes, where often the momentum qu is evolved

as the primary quantity instead of the velocity u. The mo-

mentum and induction equations contain two new, SGS

terms, r � s and r� E, which will occupy the focus of this

article. They are simply the commutators between the finite

resolution operator and the nonlinearities of the respective

MHD equations. Thus they carry information about the inter-

actions across the filter scale. Analytically, they are given by

E ¼ u� B � ~u � B;

and

sij ¼ su
ij � sb

ij þ
1

2
sb

kkdij;

with

su
ij ¼ qðguiuj � ~ui~ujÞ; sb

ij ¼ ðBiBj � Bi BjÞ; (2)

where the Einstein summation convention is assumed. The

tensor s is known as the SGS stress and can be decomposed

into kinetic and magnetic components, SGS Reynolds stress

su and SGS Maxwell stress sb, respectively. The (pseudo-)

vector E is known as the electromotive force (EMF). They

carry information about the subgrid-scales via the terms

u� B; guiuj , and BiBj and thus cannot be explicitly expressed

only in terms of large scale fields. This renders the system of

equations (1) unclosed. The evolution equations of the SGS

terms17 involve new, higher order unknown terms. This con-

tinues to build an infinite hierarchy. This is the LES aspect

of the well-known turbulence closure problem.

The resolved, i.e., large scale, energies and cross-

helicity are defined as

Eu
res ¼

1

2
qeu2; Eb

res ¼
1

2
B

2
; Eres ¼ Eu

res þ Eb
res; (3)

and

Wres ¼ ~u � B:

Their evolution equations are obtained in the classical man-

ner from the corresponding primary LES equations.23 For

ideal MHD they can be written as

@

@t
Eu

res þr � euEu
res

� �
þ eu � B � J þ eu � rP

¼ �eu � r � sð Þ; (4)

@

@t
Eb

res � B � r � eu � Bð Þ ¼ B � r � E; (5)

@Eres

@t
þr � euEu

res þ 2euEb
res � BWres

� �
þ eu � rP

¼ B � r � E � eu � r � sð Þ; (6)

@

@t
Wres þr � euWres �

B

q
Eu

res

 !
þ B

q
� rP

¼ eu � r � E � B

q
� r � sð Þ; (7)

where J ¼ r� B is the resolved current density. Although

the total energy and cross-helicity are ideal MHD invariants,

their resolved counterparts, as defined above, are not, due to

the SGS terms on the right hand side of Eqs. (6) and (7).

The equations show that the SGS stress and EMF encode the

entire transfer of energy and cross-helicity across the filter

scale and truncating the SGS hierarchy at the level of s and

E closes these equations as well.

Various approaches have been developed to address the

closure problem for hydrodynamics,17,18 in and astrophysical

settings.20 Several models have also been extended to the case

of magnetized fluids,24–26 some of them taking into account

compressibility as well.21,27 They can be separated heuristi-

cally into structural and functional ones. Functional closures

focus on the effect of the SGS terms on the resolved scales

and are thus largely phenomenological. For instance, the

eddy-viscosity (EV) models21 address the anomalous energy

dissipation due to turbulence, while dynamo models28,29

address the generation and amplification of magnetic fields.

Structural models try to mimic some aspect of the structure of

the SGS terms, expecting that the desired effects on the large

scale will follow automatically. Thus, they largely rely on the

robustness of these aspects. In the self-similarity closures,21,30

for example, the main assumption is the self-similarity of tur-

bulence in the inertial range. In that context, functional models

are useful in situations in which the effect of the unresolved

scales is well understood and quantified. Since in practice this

is rarely the case for compressible MHD, and in the absence

of extensive experimental data for calibration and validation,

we proceed with the derivation of a nonlinear structural clo-

sure, which is based on the properties of the finite resolution

operator, rather than turbulence itself. Thus, the MHD turbu-

lence dynamics is not required to obey any strong assump-

tions, like scale-similarity, existence of an inertial range,

energy cascade, etc. The resulting closure is closely related to

a previously a priori validated one27 but includes additional

compressibility effects. The present paper focuses on the deri-

vation of the new compressible MHD closure, the analytic

description of its scope of applicability, and energy dissipation

properties. A numerical validation of the closure is performed

in Paper II2 by a priori comparison to well-resolved numerical

data, where it is found to outperform all closures with which it

has been compared.
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II. APPROXIMATE DECONVOLUTION

As usual in the LES theory, the presented closure has its

origins in incompressible hydrodynamics. In particular, it is

a self-consistent extension of the Yeo-Bedford (YB) expan-

sions1,31 as applied to compressible MHD. Closures of this

family have been recently applied to incompressible32–34 and

compressible (supersonic) MHD23,27 turbulence with encour-

aging results. The same method has also been used to model

the transport of a passive scalar.34 Here, we focus on the clo-

sure derivation and extend it to include so far unaccounted

for compressibility effects.

For clarity, this section summarizes the original deriva-

tion31 as applied to a Gaussian filter kernel and the incom-

pressible MHD SGS terms. The Gaussian kernel can be

represented by its Fourier transform, i.e., transfer function Ĝ
given by

ĜðkÞ ¼ exp ð�D2k2=ð4cÞÞ; (8)

with wavenumber k and filter scale D. It is infinitely differen-

tiable, which renders it particularly suitable for analytical

manipulation. It is also positive and therefore signature

preserving. Thus under its action, the SGS counterparts of

positive definite quantities like energy are also positive defi-

nite.17 Furthermore, by setting the width parameter c¼ 6, its

first and second order moments match those of a box filter

with the same filter scale D.

The main idea of the YB expansion is to compute an

approximation of the inverse filtering operator based on gradi-

ent expansion of the filter kernel G. This amounts to comput-

ing an approximation of the inverse Fourier transform of 1=Ĝ.

The first step is to perform a Taylor expansion of the transfer

function and its inverse in terms of the filter scale D, i.e.,

Ĝ kð Þ ¼
X1
n¼0

�1ð Þn

n!

D2

4c
k2

 !n

; (9)

1

Ĝ kð Þ
¼
X1
n¼0

1

n!

D2

4c
k2

 !n

: (10)

Applying the expansions to the test fields f̂ and f̂ , respec-

tively, followed by an inverse Fourier transformation yields

infinite series representations of the filter operator and its

inverse in terms of gradient operators acting on the test fields

f ¼ G � f ¼
X1
n¼0

1

n!

D2

4c
r2

 !n

f ; (11)

f ¼ G�1 � f ¼
X1
n¼0

�1ð Þn

n!

D2

4c
r2

 !n

f : (12)

They are absolutely convergent and formally accurate at all

orders, since the Gaussian kernel is infinitely differentiable

and with unbounded support. In fact, it has been found35 that

the series given in Eq. (11) converges for all canonical filters,

and more generally, symmetry of the filtering kernel and non-

negativity of its transfer function are sufficient conditions for

its convergence for a periodic band-limited field f. (The last

condition is trivially satisfied in any numerical simulation.) It

has also been suggested35 that qualitatively the convergence

rate tends to decrease as the dissipative strength of the filter

increases. In the case of the Gaussian filter, the same results

hold for the forward expansion Eq. (12), as it differs from Eq.

(11) only by an alternating sign.

To proceed note that the unknown components of the

SGS stresses and the EMF are of the form f g. Applying Eq.

(11) to such an expression results in a series in terms of (fg).

As it is absolutely convergent, Eq. (12) can be applied sepa-

rately to each f and g term of the series. The result can be

simplified to

f g ¼ f g þ 2af ;kg;k þ
1

2!
2að Þ2f ;klg;kl

þ 1

3!
2að Þ3f ;klmg;klm þ O a4r8ð Þ; (13)

as given in Eq. (5.21) of Yeo.31 Here, a comma is used to

represent differentiation with respect to a co-ordinate and

a ¼ D2=ð4cÞ. The coefficients in the expansions are given in

terms of moments of the transfer function and its inverse.

This relationship comes from the orthogonality of the terms

in the Fourier expansion and thus holds for any filter kernel

for which the expansion exists. There is a closed form

expression36 for the coefficients in Eq. (13) for a symmetric

filter kernel G with infinitely differentiable transfer func-

tion—they are given by the Taylor coefficients of the func-

tion Fðf ; gÞ ¼ Gð�iðf þ gÞÞ=ðGð�if ÞGð�igÞÞ. Moreover,

since any symmetric filter has a real transfer function, only

the even order coefficients are non-zero. This symmetry has

a fundamental impact on the form of the terms in the expan-

sion as well, namely, each field is differentiated at most once

with respect to a co-ordinate.

Recall that for c¼ 6 the Gaussian and box filter kernels

have identical first and second moments. Therefore, with this

parameter choice Eq. (13) is also valid for a box filter up to

second order. Furthermore, since all moments of a Gaussian

function can be expressed in terms of its second order

moment, here ð2aÞ, it is the only parameter which can appear

in Eq. (13).

Applying Eq. (13) to the SGS terms in the incompressi-

ble MHD equations is sufficient to completely close them

uiuj � uiuj ¼ 2aui;kuj;k;

BiBj � BiBj ¼ 2aBi;kBj;k;

ðu� B � u � BÞi ¼ 2a�ijkuj;lBk;l: (14)

It should be noted that the resulting closures have been

reached by alternative routes in hydrodynamic LES. The

tensor-diffusivity models,37–39 for instance, use Taylor

expansions of the SGS terms with respect to the turbulent

fluctuations (e.g., u0 ¼ u� ~u) or the entire (unfiltered) fields

(e.g., u). These derivations however are questionable as they

require smoothness of the small scales.40 Another alterna-

tive, originally designed for image processing,41 is given by

approximate deconvolution closures.18,42–47 They are again

based on the truncation of an infinite series to reconstruct the

inverse of the filtering operator. However, in this approach,

062316-3 Vlaykov et al. Phys. Plasmas 23, 062316 (2016)



the series is not necessarily convergent and truncating at the

optimal order is critical. The results of both approaches for a

Gaussian filter agree with Eq. (13) up to second order.18 The

different motivations and derivation are revealed only at

higher orders.

III. COMPRESSIBLE EXTENSIONS

To apply the presented derivation self-consistently to

the compressible Reynolds SGS stress and EMF, as defined

in Eq. (2), the compressibility effects onto the mass-

weighted large scale velocity have to be taken further into

account. The issue can be addressed from several view-

points. On the one hand, one can dispense with the mass-

weighted filtering operator altogether, and re-substitute
~f q ¼ fq in the relevant SGS terms. This requires that an

additional SGS term qui � q ui is introduced in the continu-

ity equation, and that the EMF and the Reynolds SGS stress

are re-defined. The complexity of the Reynolds SGS stress

su is formally increased, as it now contains an unclosed prod-

uct of three fields, i.e., quiuj . Nevertheless, the derivation

outlined above still holds. Applying Eqs. (11) and (12) to a

general term of third order leads to (as given in Eq. (5.23) of

Yeo31)

f gh ¼ f gh þ 2a f ;kg;kh þ f ;kgh;k þ f g;kh;k

� �
þ 1

2!
2að Þ2

�
f ;klg;klh þ f ;klgh;kl þ f g;klh;kl

þ2f ;kg;klh;l þ 2f ;kg;lh;kl þ 2f ;klg;kh;l
�

þO a3r6ð Þ: (15)

To first order in a, this technique leads to the following

results for the primary SGS terms:

qui � q ui ¼ 2aq;kui;k

quiuj � q uiuj ¼ 2aq ui;kuj;k þ 2aq;kðui;kuj þ uiuj;kÞ;
BiBj � BiBj ¼ 2aBi;kBj;k;

ðu� B � u � BÞi ¼ 2a�ijkuj;lBk;l:

(16)

This constitutes a complete closure of the compressible

MHD equations (barring pressure considerations). This

approach is applicable for numerical schemes which evolve

the velocity field, because only directly filtered fields are

present. Even though such schemes are not frequently used

to address highly compressible problems, such a model has

been implemented in compressible hydrodynamics.48

On the other hand, for applications to compressible

codes which treat the momentum as a primary quantity, e.g.,

using finite volume schemes, one needs to take into account

the mass-weighted filtering operator. For a field f, it is given

by ~f ¼ ðG � ðqf ÞÞ=ðG � qÞ. In the process of directly apply-

ing the outlined procedure to this operator, several funda-

mental challenges are encountered. The main obstacle is that

since its filter kernel contains strongly fluctuating contribu-

tions (e.g., from the G � q component), the Taylor expansion

of its transfer function is not well-defined. Additionally, the

existence of the inverse transfer function is not assured over

an extended interval in spectral space.

A. Simple compressible extension

The simplest hypothesis which circumvents the compli-

cations outlined above would be to assume that even if the

derivation is not valid for compressible MHD, its result still

holds, i.e., to apply the map

u ! ~u; (17)

to the incompressible closures Eq. (14). This would imply

that the compressibility effects are implicitly taken into

account by the change of operator. Qualitatively, this

approach could be motivated by invoking the reduction of

compressibility effects at smaller scales,49 but ultimately it is

the simplest compressibility extension of Eq. (14). In fact, a

previous a priori comparison27 with data from supersonic

numerical simulations showed that this extension yields con-

sistently higher correlation with the data than the other tested

classical closures. However, while the results for the SGS

stress were consistently high, the EMF closure exhibited a

comparatively larger scatter. This difference can be

explained by the self-consistent derivation of compressibility

effects which follows.

B. Primary compressible extension

The goal is to obtain an expression of a simply filtered

field in terms of the corresponding mass-weighted filtered

field. Since mass-weighting applies to velocity-related fields,

consider in particular, ~u ¼ uq=q. Applying Eq. (13) to the

right-hand side leads to

~ui ¼ ui þ 2ay;kui;k þ 2a2ðy;kl þ y;ky;lÞui;kl þ Oða3Þ; (18)

where we denote for brevity the natural logarithm of the

resolved density as y ¼ ln q. As Eq. (18) represents an abso-

lutely convergent series, under the same conditions as the

original expansion Eq. (11), it can be rearranged to give

ui ¼ ~ui � 2ay;kui;k � 2a2ðy;kl þ y;ky;lÞui;kl � Oða3Þ: (19)

To this we can apply a recurrence technique. To second

order in a it gives

ui ¼ ~ui � 2ay;k ~ui;k � 2a2ððy;kl � y;ky;lÞ~ui;kl � 2y;ky;kl ~ui;lÞ
� Oða3Þ: (20)

This expression, along with Eqs. (13) and (15), can be

applied to the definition of the SGS terms, Eq. (2), to obtain

su
ij ¼ 2aq~ui;k ~uj;k þ 2a2qð~ui;kl~uj;kl � 2y;kl ~ui;k ~uj;lÞ þ Oða3Þ;

(21)

Ei ¼ 2a�ijkð~uj;lBk;l � y;l~uj;lBkÞ
þ2a2�ijkð~uj;lmBk;lm � 2ðy;lm~uj;l þ y;l~uj;lmÞBk;l

þð2y;ly;lm ~uj;m þ ðy;py;l � y;plÞ~uj;plÞBkÞ þ Oða3Þ: (22)

062316-4 Vlaykov et al. Phys. Plasmas 23, 062316 (2016)



As the Maxwell SGS stress is not directly affected by

density variations, its closure is identical to the one from Eq.

(14). Remarkably, to first order the compressibility effects on

the Reynolds SGS stress are implicitly accounted for by the

mass-weighted filtering itself. This is a consequence of the

symmetry of the Reynolds SGS stress tensor (su
ij ¼ su

ji).

Explicit density variations appear here only at second order

and as second order logarithmic derivatives. Therefore, only

very strong compressibility cannot be accounted for by the

simple compressibility extension implied in Eq. (17). In con-

trast, in the EMF closure density variations appear already at

first order, and at second order they are much more extensive

than for su. This explains the different levels of success of the

simple compressibility extension27 — terms which account

for compressibility effects are missing in the EMF closure

but not in the Reynolds SGS stress one.

We note that combining the recurrence relation Eq. (20)

with expansions of the type of Eqs. (13) and (15) allows the

construction of self-consistent closures for an SGS term of

any type to any order. The SGS kinetic and magnetic energies

for instance are given trivially as half the traces of the

Reynolds or Maxwell SGS stress tensors, respectively. If we

were to construct the SGS cross-helicity Wsgs ¼ u � B � ~u � B,

e.g., to gauge the correlation between kinetic and magnetic

SGS effects, its closure to first order would be given by

Wsgs ¼ 2að~ui;jBi;j � ~ui;jy;jBiÞ þ Oða2Þ: (23)

Retaining terms to first order in a is expected to provide

sufficient SGS information, as suggested by the previously

reported results.27,32–34 Furthermore, the computational over-

head of including such closures in an LES is minimal, as

they can contain at most first order derivatives in large scale

primary fields.

C. Extension for the SGS derivatives

Direct comparison of the outlined closures with the cor-

responding SGS terms based on numerical data reveals

directly the probity of the method.2 However, for a posteriori
application of the closures in LES simulations, a further

compressible effect needs to be considered.

The simple filtering operator is a convolution and as

such commutes with differentiation, however, the mass-

weighted filtering operator does not. This is critical since the

SGS stress and EMF enter the evolution equations under a

gradient. For the purposes of this section, let f̂ denote

the closure of an SGS term f incorporating mass-weighted

filtering. Then propagating the commutator between mass-

weighted filtering and differentiation through the closure

calculations above yields the following additional contribu-

tions to the momentum and induction equations:

d@isu
ij � @i

bsu
ij ¼ 2aqð~ui~uj;l þ ~uj~ui;lÞy;il;dr� E �r� Ê� �

i ¼ 2a�ijk�klm ~ul;pBmy;jp: (24)

These expressions show the difference between applying

the closure procedure to the derivatives of the SGS terms

and taking derivatives of the respective closures. The

additional corrections are expected to be important primarily

for very strong density variations, as they contain second

derivatives in the logarithmic density. This can be also seen

by comparing the expressions above with the ones obtained

by differentiating Eq. (16). Furthermore, they are of leading

order (in a) for the derivatives of both SGS terms and these

are precisely the quantities which enter the LES evolution

equations and affect the large scale dynamics.

Combining the two compressibility effects leads to sig-

nificant cancellation of the first order terms in the EMF clo-

sure with a final result given by

dr� E� �
i ¼ 2a�ijk�klmðð~ulBmÞ;j � ð~ul;pBmÞ;jy;pÞ: (25)

For the Reynolds SGS stress, the final closure can be given

as

d@isu
ij ¼ 2aðq~ui;k ~uj;kÞ;i þ 2aqð~ui~uj;l þ ~uj~ui;lÞy;il: (26)

Once again, the SGS Maxwell stress closure is trivially

derived from Eq. (14), as it does not contain any mass-

weighted large scale fields.

The effects of the two types of compressibility correc-

tions can be identified by different types of a priori testing.

In fact, the validity of the compressible closures was tested a
priori against a range of data from sub- to hypersonic turbu-

lence simulations and benchmarked against a wide range of

alternative closures2 with very positive results. In particular,

we investigate their performance with respect to the resolved

energy and cross-helicity dynamics (cf. Eqs. (6) and (7)).

The primary compressible closures Eqs. (21) and (22) are

validated by considering their effect on the spatially local (in

the Eulerian sense) dynamics, i.e., in terms of the form ðsu �
rÞ � ~u and E � r � B. These terms are usually identified

with contributions to the resolved energy or cross-helicity

cascades. The impact of these closures on the overall

resolved energy or cross-helicity dynamics, e.g., ~u � ðr � suÞ
and B � r � E, is also tested. While the impact of the differ-

entiation commutators Eq. (24) is best tested directly in a
posteriori application, by comparing the results of the local

and non-local a priori tests, we give an indication of the pa-

rameter regime where these extensions can be important.

IV. SCOPE OF APPLICABILITY

The closure described above has been derived without

any strong assumptions about the flow or the magnetic field.

Thus, their application is not limited to turbulence simula-

tions but can be applied in principle to any MHD simulation

in which the small scales are not sufficiently well-resolved.

Nevertheless, several limitations need to be kept in mind.

First, we have implicitly assumed that the filter kernel

is homogeneous and isotropic and has a constant filter scale.

This translates to numerical schemes with a regular grid.

Furthermore, no boundary terms have been taken into account,

which is consistent with periodic domains. Extensions of SGS

closures to non-regular grids and non-periodic conditions have

been studied in incompressible hydrodynamics.17 However,
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their application to the current closure is beyond the scope of

this article.

Second, the described closures are derived from the ana-

lytical form of a filter kernel. As the effective kernel of an

LES for a particular numerical scheme is a combination of

various discretizations, e.g., grid spacing, time-stepping, dif-

ferential approximations, quadrature, flux limiting, diver-

gence cleaning (for the magnetic field), shock capturing,

etc., its exact analytical form is rarely available. Additional

errors stem from the truncation of the infinite series Eqs.

(13) and (18), i.e., higher order closures are in principle

more accurate. Depending on the convergence rate of the

expansions for a particular filter, this error may also need to

be considered. Conversely, due to the nonlinear combination

of gradient fields, higher order closures are more prone to

numerical instabilities.39,50

Finally, in LES applications, the SGS terms are based

upon information contained in resolved fields, which resides

above the Nyquist scale, i.e., the grid resolution. This can be

represented by decomposing the effective filter kernel into a

spectral kernel at the Nyquist scale and a remainder. The

spectral kernel renders the inverse transfer function of the

effective filter ill-defined. In order to circumvent this, a two-

step procedure can be applied. First, the derivation above

should be applied to the component of the effective filtering

operator with a formally well-defined inverse. The spectral

filter can then be applied to the resulting equations.

To allow for the mentioned inaccuracies and numerical

instabilities, additional renormalization may be applied to the

final closures. Parametric renormalization may also be

applied to the results of a closure for a well-behaved filter, as

outlined above, in order to boost its dissipative effect or

render it suitable for a selection of numerical schemes. The

renormalization can come in the form of constant coefficients

or variable fields. Both practices are common in LES. Most

canonical SGS closures include a constant coefficient whose

value is calibrated dynamically or against experimental data.

Allowing for distinct coefficients for the different additive

terms in the proposed closures and calibrating them against a

particular dataset may be used as a guide for the relative im-

portance of the different terms in the respective flow. With

respect to spatially varying modulation, the SGS energy, for

instance, can be used to renormalize the strength of the SGS

effects in a hydrodynamic LES with a related closure.51,52

This technique naturally requires an additional closure for

the SGS energy — a common situation in hydrodynam-

ics,18,30,36,51,53–55 where different closures are frequently

combined in order to alleviate their respective shortcomings.

Both types of renormalization outlined above are applied and

a priori tested2 for the proposed closures, however, it is found

that neither is particularly necessary nor beneficial.

V. ENERGY AND CROSS-HELICITY DISSIPATION
PROPERTIES

One of the main functions of SGS closures is to correct

for the transfer of energy across the resolution scale.

Therefore, we proceed with an analysis of the dissipation

properties of the proposed closures. In particular, we consider

the local dissipation of the resolved kinetic energy, magnetic

energy and cross-helicity given, respectively, by

Ru ¼ �sij
~S ij; Rb ¼ �E � J ; (27)

and

RW ¼ �
sij

q
Mij � Bjy;i
� �

� E � ~X; (28)

with the usual definitions of the resolved rate-of-strain
~S ij ¼ 1=2ð~ui;j þ ~uj;iÞ, vorticity ð ~XÞk ¼ ðr � ~uÞk, current

ðJÞk ¼ ðr � BÞk, and magnetic rate-of-strain Mij ¼ 1=2

ðBi;j þ Bj;iÞ. The signs of the R fields are chosen such that

positive values correspond to a down-scale transfer, i.e.,

dissipation.

We consider each dissipation term in turn. The kinetic

energy dissipation can be further decomposed according to

Eq. (2) into Ru ¼ Ru
su þ Ru

sb þ Ru
sb

kk
. The contribution from

the Reynolds SGS stress is given by Ru
su ¼ �su

ij
~S ij. The

results here will be the same as in the hydrodynamic limit.

As a basis for comparison, consider the classical incompres-

sible eddy-viscosity (EV) family of closures,56 which take

the form su ¼ ��turb
~S with Trð~SÞ � 0 for some (usually

non-negative) turbulent viscosity �turb. For it Ru
su takes the

form

Ru
EV ¼ �turbTr ~S2

� �
; (29)

where ~Sn
represents a tensor product, e.g., ð~S2Þij ¼ ~S ik

~Skj.

As Trð~S2Þ is always non-negative, this closure can transfer

energy across the resolution scale only in one direction,

depending on the sign of �turb, e.g., from resolved to subgrid

scales for �turb > 0. This model can provide energy backscat-

ter only in the compressible regime via an additional (not

self-consistent) closure for the SGS kinetic energy and even

then only from regions where Trð~SÞ > 0. This can be seen to

be problematic since the presence of strong energy cascades

in both directions is a key characteristic of MHD turbu-

lence,57,58 which differentiates it from the hydrodynamic

case.

In contrast, the proposed closure for the Reynolds SGS

stress su can be written as

su
ij ¼ 2aq ~S ik

~S jk þ ~Xik
~Xjk þ ~S ik

~Xjk þ ~Xik
~S jk

� �
; (30)

with vorticity tensor ~Xij ¼ �1=2�ijkð ~XÞk. Substituting this in

Ru
su leads to

Ru
su ¼ �2aq Tr eS3

� �
þ 1

4
eX2

Tr eS� �� 1

4
eXT � eS � eX� �

:

(31)

The first term is reminiscent of the eddy-viscosity expres-

sion, as it depends only on the strain tensor. However, there

are two qualitative differences stemming from the fact that

this term is cubic in ~S . First, the larger power leads to stron-

ger sensitivity to the resolved rate-of-strain. Second, and per-

haps more importantly, this term has indefinite signature,
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which allows for bi-directional energy cascade. Because of it

totally compressive rate-of-strain leads to dissipation while

expansion leads to back-scatter of kinetic energy.

The proposed model includes a further effect, associated

with the last two terms in Eq. (31), namely, vortex stretching.

This is the compressible analogue of the incompressible vor-

tex stretching effect encoded in the last term. Geometrically,

the combination of the two terms represents the interaction

of the vorticity vector with the strain lying in a plane orthog-

onal to it. As intuition suggests, if a simple vortex tube is

compressed perpendicular to its axis, its radius decreases and

bigger proportion of its kinetic energy is associated with

smaller scales, i.e., this leads to dissipation. Conversely,

stretching a vortex shifts its associated energy to larger

scales and the result is back-scatter.

Next, consider the contribution of the Maxwell SGS

stress to the kinetic energy flux given by Ru
sb ¼ sb

ij
~S ij. The

proposed closure can be written as

sb
ij ¼ 2aðMikMjk þ JikJ jk þMikJ jk þ JikMjkÞ; (32)

with current tensor Jij ¼ �1=2�ijkðJÞk. Its contribution to the

kinetic energy dissipation is given by

Ru
sb ¼ 2a

�
Tr MeSM� �

þ 2Tr MeSJ
� �

þ 1

4
J

2
Tr eS� �

� 1

4
J

T � eS � J�: (33)

This expression is similar to the contribution of the Reynolds

SGS stress. Note, however, that the entire Maxwell SGS

stress works in the opposite direction to the Reynolds SGS

stress (because of the different overall sign). The first term

represents the interaction between the magnetic and kinetic

rates-of-strain. Here, compression (i.e., negative eigenvalues

of ~S) leads to back-scatter, while stretching leads to dissipa-

tion. Furthermore, alignment of the eigenvectors of ~S and

M maximizes the effect of this term. The second term is

associated with the amplification of magnitudes of the rates-

of-strain, i.e., Trð~S2Þ and TrðM2Þ. It implies that the proc-

esses which enhance kinetic and magnetic shearing simulta-

neously dissipate kinetic energy. The last two terms are the

counterpart of the vorticity terms Eq. (31) — they are associ-

ated with current deformation analogous to the vortex

stretching effect. They imply that currents perpendicular to

compressive flows lead to backscatter and ones perpendicu-

lar to expanding flows — to dissipation. Currents flowing

along the compressive or stretching directions have no effect

on the SGS energy.

The final component of the kinetic energy flux comes

from the SGS magnetic pressure

Ru
sb

kk
¼ � 1

2
sb

kkTr eS� � ¼ �2aTr eS� � Tr M2
� �

2
þ 1

4
J

2

 !
:

(34)

It reduces the Maxwell SGS stress effects associated with the

overall dilatation rate. It introduces purely compressible

effects, as in the incompressible limit Trð~SÞ ¼ 0. The

isotropic current component (/ Trð~SÞJ2
) cancels exactly the

contribution from Ru
sb . This re-introduces the possibility of

dissipation due to compression along the current direction

and emphasizes the importance of providing a closure for the

total SGS pressure. Moreover, it enhances the closure’s over-

all sensitivity to the relative orientation of the current and

the kinetic rate of strain. The magnetic shear term is associ-

ated with the growth of TrðM2Þ due to overall compression.

Finally, consider the transfer of magnetic energy across

the filter scale. The analytic form of Rb shows that there is

backscatter or dynamo-like effect, when the electromotive

force is aligned with the large-scale currents and dissipation

into unresolved energy in case of anti-alignment. Decomposing

the proposed closure into symmetric and anti-symmetric gra-

dients of the resolved fields and substituting into the expression

for Rb, leads to the following expression:

Rb ¼ 2a

�
2Tr MeSJ
� �

þ 1

2
J

T � eS � J � 1

2
J

2
Tr eS� �

� 1

2
eXT � M � J þ B � Jð ÞT � eS � ry

þ 1

2
eX � Bð Þ J � ry

� �
� 1

2
eX � J� �

B � ry
� ��

: (35)

Due to the nonlinear coupling between kinetic and magnetic

structures in this closure, these terms involve a large plethora

of effects.

Here, like in the kinetic energy case, the relative align-

ment of the resolved gradients, i.e., the local inhomogeneity

and anisotropy, plays a vital role in determining the magnetic

energy flux. The first four terms are associated with evolu-

tion of the total current J
2
. The first, shearing term is already

familiar from Eq. (33) and has the same effect on the mag-

netic energy as on the kinetic one. The next two terms can be

identified as anomalous (anisotropic) resistivity. They are

also found in Eq. (33), but with opposite signs and half the

amplitude. This identifies an SGS channel for transfer

between resolved kinetic and magnetic energy, i.e., half of

the dissipated resolved magnetic energy is backscattered into

resolved kinetic energy and vice versa, kinetic energy dissi-

pation leads to enhanced turbulence, which in turn causes a

dynamo-like increase of resolved magnetic energy. The

fourth term is specific to the magnetic energy budget. It is

also associated with the enstrophy evolution due to the

Lorentz force and connects the relative orientation of vortic-

ity and current with the principal axes of M. For instance,

along a magnetically compressive direction, it leads to dissi-

pation, if the vorticity and the current are parallel, and back-

scatter, if they are anti-parallel.

All considerations made so far apply equally to the sim-

ple and primary compressible extensions, as well as in the

incompressible limit (allowing for Trð~SÞ ¼ 0). The final

three terms of the magnetic energy dissipation Eq. (35) con-

tain the explicit effect of the primary compressible exten-

sion. They have a strong impact primarily in regions of very

strong density gradients, e.g., the neighborhood of shocks,

due to the logarithmic density derivative. Formally, they are

also strongly anisotropic and can be seen to be related to
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dynamo-like effects. For instance, B � J is the complement

of the current helicity B � J, which can be associated with

the a-dynamo, while ~X � J is related to the cross-helicity

dynamo.29

The effect of the primary compressible extension

becomes more evident when considering the SGS effects on

the cross-helicity evolution. For completeness, we give the

exact expressions for the local contributions of the total SGS

Maxwell stress RW
sb

tot
¼ RW

sb þ RW
sb

kk
, the SGS Reynolds stress

RW
su , and the EMF RW

E , defined analogously to their energy

counterparts, to the resolved cross-helicity

RW
sb

tot
¼ � 2a

q

�
B

T � M2 � ry

� �
� Tr M3

� �
� 1

2
Tr M2
� �

B � ry
� �

þ J
T � M � J

� B
T � M

� �
� J �ry
� �

� J � Bð ÞT � M � ry
� �

� J � Bð ÞJ � ry

�
; (36)

RW
su ¼ 2a

�
�2Tr eSM ~X

� �
� 1

4
eX � Bð Þ eX � ry

� �
þ 1

4
eXT � M � eX þ 1

4
eX2

B � ry
� �

þ 1

2
B � eXð ÞT � eS � ry

� �
� Tr eSMeS� �

� 1

2
B

T � eS� �
� eX �ry
� �

þ B
T � eS2 � ry

�
; (37)

RW
E ¼ 2a

�
2Tr eSM ~X
� �

þ 1

2
eX � Bð Þ eX � ry

� �
� 1

2
eXT � M � eX � 1

2
eX2

B � ry
� �

� B � eXð ÞT � eS � ry
� �

þ 1

2
eXT � eS � J

� 1

2
J � eX� �

Tr eS� ��: (38)

While these expressions contain a large variety of terms, the

key point is that there is a strong interplay between Reynolds

SGS stress and the EMF contributions, i.e., the terms in RW
su

and RW
E . For instance, the cancellation of the Trð~SM ~XÞ

term points to an interaction between the resolved and turbu-

lent fields which preserves the large scale topology charac-

terized by W.

Another example is given by the ry-terms in RW
su and

RW
E . In RW

su they come from the intrinsic compressibility

effect described by su
ijBjy;i=q, i.e., the interaction between

velocity fluctuations, density gradients, and a large scale

magnetic field. The corresponding ry-terms in RW
E are spe-

cific to the primary compressible extension. The analogous

form of the two sets of terms shows that the primary exten-

sion naturally restores the symmetry between kinetic and

magnetic turbulent contributions to the effects of compressi-

bility on Wres. As the resolved cross-helicity plays a role in

the non-local transfer between kinetic and magnetic energies

and affects the rate of energy decay, it is clearly important to

treat it with as much care as the resolved energy itself.

VI. CONCLUSION

The high computational cost of 3-dimensional direct nu-

merical MHD simulations poses severe limitations to our

understanding of astrophysical and terrestrial phenomena

involving strongly turbulent magnetized fluids. Large-eddy

simulations can alleviate this issue by explicitly considering

the effects of limited resolution. In this work, we presented

the derivation and properties of a nonlinear structural closure

of the compressible MHD LES equations. It is based on a se-

ries expansion31 of the finite resolution operator, a convolu-

tion with a low-pass filter kernel, and careful consideration of

the impact of the operator on the compressible dynamics. As

the derivation needs no assumptions on the nature of the flow,

the closures can be applied to a wide variety of MHD prob-

lems, as long as they can be described on a regular grid under

periodic boundary conditions. In particular, no assumptions

were invoked on the level of compressibility, on the structure,

dynamics, or even the presence of turbulence and magnetic

fields. Thus, the closures are suitable for both statistically sta-

tionary and developing disordered velocity and magnetic field

configurations, from the sub- to the hyper-sonic and -Alfvenic

regime. Only an isothermal equation of state was considered.

However, the formalism can be extended to incorporate ther-

mal variations, as well as additional evolution equations, e.g.,

for the SGS energy or for passive scalar transport.

Although the closures for the MHD SGS terms are

derived self-consistently, the information gap below the

Nyquist frequency as well as the complicated nature of real-

istic LES filters leaves room for additional re-normalization

or re-calibration of the proposed closures and for combina-

tions with additional closures. In fact a simple renormalized

version of the closure has already been validated27 in a priori
comparison. Here, through a self-consistent derivation of the

compressibility effects due to a mass-weighted filter, some

of the results of this comparison are clarified. An analysis of

the energy dissipation properties of the simple compressible

closure demonstrates that it can already accommodate so-

phisticated energy transfers between resolved and unresolved

kinetic and magnetic energy budgets. It emphasizes the de-

pendence of the transfer on local geometry, e.g., anisotropy,

and topology, e.g., the interplay between vortical and shear-

ing magnetic and kinetic structures of different types.

Furthermore, it allows for imperfect transfer between the

resolved kinetic and magnetic energy mediated by the sub-

grid scales. The additional effects of the self-consistent, pri-

mary closure are revealed through the resolved magnetic

energy dissipation, where it plays a role in regions of strong

compressibility. Moreover, it restores the symmetry between

kinetic and magnetic contributions to the cross-helicity dissi-

pation and thus plays a vital role in the evolution of the

large-scale fields’ topology. Thus presented, the closure is

ready to be bench-marked against currently used compressi-

ble MHD closures and to have its properties validated

against numerical and experimental turbulence data. The

results of such a comparison with a wide selection of avail-

able SGS closures against a suite of simulation data of homo-

geneous and isotropic turbulence ranging from the sub- to

the hyper-sonic regime are presented in Paper II.2
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