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We describe a compatible finite element discretisation for the shallow water equations 
on the rotating sphere, concentrating on integrating consistent upwind stabilisation into 
the framework. Although the prognostic variables are velocity and layer depth, the 
discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection 
equation through a Taylor–Galerkin scheme; this provides a mechanism for dissipating 
enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind 
discontinuous Galerkin schemes for the transport of layer depth. These transport schemes 
are incorporated into a semi-implicit formulation that is facilitated by a hybridisation 
method for solving the resulting mixed Helmholtz equation. We demonstrate that our 
discretisation achieves the expected second order convergence and provide results from 
some standard rotating sphere test problems.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The development of new numerical discretisations based on finite element methods is being driven by the need for more 
flexibility in mesh geometry. The scalability bottleneck arising from the latitude–longitude grid means that weather and 
climate model developers are searching for numerical discretisations that are stable and accurate on pseudo-uniform grids 
without sacrificing properties of conservation, balance and wave propagation that are important for accurate atmosphere 
modelling on the scales relevant to weather and climate [31]. There is also ongoing interest in adaptively refined meshes 
as a way of seamlessly coupling global scale and local scale atmosphere simulations, as well as dynamic adaptivity or even 
moving meshes; using these meshes requires numerical methods that can remain stable and accurate on multiscale meshes. 
Further, there is an interest in using higher-order spaces to try to offset the inhomogeneity in the error due to using grids 
that break rotational symmetry.

Compatible finite element methods are a form of mixed finite element methods (meaning that different finite element 
spaces are used for different fields) that allow the exact representation of the standard vector calculus identities div-curl=0 
and curl-grad=0. This necessitates the use of H(div) finite element spaces for velocity, such as Raviart–Thomas and Brezzi–
Douglas–Marini, and discontinuous finite element spaces for pressure (stable pairing of velocity and pressure space relies 
on the existence of bounded commuting projections from continuous to discrete spaces, as detailed in Boffi et al. [9], for 
example). The main reason for choosing compatible finite element spaces is that they have a discrete Helmholtz decomposi-
tion of the velocity space; this means that there is a clean separation between divergence-free and rotational velocity fields. 
Cotter and Shipton [11] used this decomposition to demonstrate that compatible finite element discretisations for the linear 
shallow water equations on arbitrary grids satisfy the basic conservation, balance and wave propagation properties listed 
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in Staniforth and Thuburn [31]. In particular, it was shown that the discretisation has a geostrophic balancing pressure for 
every velocity field in the divergence-free subspace of the H(div) finite element space. A survey of the stability and approx-
imation properties of compatible finite element spaces is provided in Natale et al. [25], including a proof of the absence of 
spurious inertial oscillations.

The challenge of building atmosphere models using compatible finite elements is that there is no freedom to select 
finite element spaces in order to ensure good representation of the nonlinear equations (such as conservation, or accurate 
advection, for example), because the choice has already been made to satisfy linear requirements. In the case of the rotating 
shallow water equations, the use of discontinuous finite element spaces for the layer depth field encourages us to use 
upwind discontinuous Galerkin methods to solve the continuity equation describing layer depth transport.

The nonlinearity in the momentum/velocity equation is more challenging. In McRae and Cotter [24], the energy-
enstrophy conserving formulation of Arakawa and Lamb [2] was extended to compatible finite element methods. This 
extension is closely related to C-grid methods for the shallow water equations on more general meshes in Ringler 
et al. [28], Thuburn and Cotter [32]. Following these approaches, the compatible finite element formulation, which has 
velocity and height as prognostic variables, has a diagnostic potential vorticity that satisfies a conservation equation that is 
implied by the prognostic dynamics for velocity and height. A finite element exterior calculus structure in this formulation 
was exposed in Cotter and Thuburn [12], which also provided an alternative formulation based around low-order finite 
element methods on dual grids. In Thuburn and Cotter [34], the close relationship of the dual grid formulation to finite 
volume methods was exploited to obtain a stable discretisation of the nonlinear shallow water equations on the sphere 
where the finite element formulation of the wave dynamics was coupled with high-order finite volume methods for the 
layer depth and prognostic potential vorticity fields. The essential idea is to select a particular stable accurate finite volume 
scheme for the diagnostic potential vorticity, and to then find the update for the prognostic velocity which implies it. In 
this paper we address the issue of extending this idea to higher-order finite element spaces, for which there is no analogue 
of the dual grid spaces. This means that we must return to the formulation of McRae and Cotter [24], where the potential 
vorticity is stored in a continuous finite element space. We then seek stable, accurate higher-order discretisations of the 
potential vorticity equation using continuous finite element methods that make it possible to find the corresponding update 
for prognostic velocity. It turns out that this is indeed possible for advection methods from the SUPG/Taylor–Galerkin family 
of methods.

Finally, we show how these discretisations can be embedded within a semi-implicit time-integration scheme. We again 
follow the formulation in Thuburn and Cotter [34], in which advection terms are obtained from explicit time integration 
methods applied using the (iterative) velocity at time level n + 1/2. The linear system solved during each nonlinear iteration 
for the corrections to the field values also requires attention. The standard approach of eliminating velocity to solve a 
Helmholtz problem for the correction to the layer depth is problematic because the inverse velocity mass matrix is dense. 
We instead use a hybridised formulation where one solves for the Lagrange multipliers that enforce normal continuity of 
the velocity field [9, for example].

In section 2 we describe the shallow water model, including the spatial and temporal discretisation; we present finite 
element spaces that satisfy the properties outlined above and provide details of how to construct such spaces on the sphere 
and describe advection schemes for both discontinuous and continuous fields as required. In section 3 we present the results 
of applying our scheme to some of the standard set of test cases for simulation of the rotating shallow water equations on 
the sphere as described in Williamson et al. [36] and Galewsky et al. [15]. Section 4 provides a summary and brief outlook.

2. The shallow water model

2.1. Shallow water equations

We begin with the vector invariant form of the nonlinear shallow water equations on a two dimensional surface �
embedded in three dimensions,

ut + (ζ + f )u⊥ + ∇
(

g(D + b) + 1

2
|u|2

)
= 0, (1)

Dt + ∇ · (uD) = 0, (2)

where u is the horizontal velocity, D is the layer depth, b is the height of the lower boundary, g is the gravitational 
acceleration, f is the Coriolis parameter and ζ = ∇⊥ · u := (k × ∇) · u is the vorticity, u⊥ = k × u, k is the normal to the 
surface �, and where the ∇ and ∇· operators are defined intrinsically on the surface. These equations have the important 
property that the shallow water potential vorticity (PV)

q = ζ + f

D
(3)

satisfies a local conservation law,

∂
(Dq) + ∇ · (uqD) = 0. (4)
∂t
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This can be seen by applying ∇⊥· to equation (1). Equation (2) then implies that q is constant along characteristics moving 
with the flow velocity u, i.e.,

∂q

∂t
+ (u · ∇)q = 0. (5)

Numerical discretisations that preserve some aspects of these properties have been demonstrated to be very successful at 
obtaining long time integrations of the rotating shallow water equations on sphere in the quasi-geostrophic flow regime. 
This is partially because they provide a way to avoid discretising the vector advection term (u · ∇)u in the velocity equation 
directly; instead one can choose a suitable stable, accurate and conservative scalar advection scheme for the potential 
vorticity (treated as a diagnostic variable with u and D being prognostic variables) and use it to diagnose a form of the (ζ +
f )u⊥ term in equation (1) that leads to stable advection of u. These ideas were introduced in the compatible finite element 
context in McRae and Cotter [24] in order to obtain energy-enstrophy conserving discretisations; here we concentrate on 
stable, accurate and conservative advection of q, improving on the low-order APVM stabilisation suggested there. We also 
replace the centred discretisation of equation (2) with stable and accurate Discontinuous Galerkin (DG) advection schemes 
for D , and show how these can be incorporated into the PV conserving formulation.

2.2. Spatial discretisation

2.2.1. Finite element spaces
In this section we shall summarise the properties we require from our finite element spaces and the operators between 

them. We start with the space H(div) of square integrable velocity fields, whose divergence in also square integrable. The 
condition that the discrete velocity belongs to the finite element subspace V1 ⊂ H(div) means that the velocity must have 
continuous normal components across element edges. Having chosen V1, we select a finite element space V2 ⊂ L2 such that

{∇ · w : w ∈V1} ⊂V2. (6)

This necessarily requires that V2 is a discontinuous space. We also define a space V0 ⊂ H1 consisting of continuous fields 
γ such that k × ∇ψ ∈V1, where the curl k × ∇ , henceforth written as ∇⊥ , maps from V0 onto the kernel of ∇· in V1.

The proof that the mixed finite element discretisation of the linear shallow water equations has steady geostrophic 
modes relies on the existence of a discrete Helmholtz decomposition for the velocity field [11]. As described in Arnold 
et al. [3], this decomposition exists if the following diagram commutes with bounded projections π0, π1, π2,

H1 ∇⊥−−−−→ H(div)
∇·−−−−→ L2⏐⏐�π0

⏐⏐�π1

⏐⏐�π2

V0
∇⊥−−−−→ V1

∇·−−−−→ V2

(7)

that is, the result of applying an operator to the continuous field and projecting into the discrete space is the same as the 
result of first projecting the field into the discrete space and then applying the operator.

Cotter and Shipton [11] reviewed several sets of finite element spaces that satisfy these requirements, together with 
further requirements on the degree-of-freedom (DOF) ratios between V1 and V2 that are necessary to exclude the possibility 
of spurious mode branches in the dispersion relation for the linear shallow water equations. In this paper with shall present 
results from choosing V1 to be the first order Brezzi–Douglas–Marini (BDM2) function space on triangles which requires 
that V0 is P3, the space of piecewise continuous cubic functions. V2 is the space PDG

1 of piecewise linear functions that can 
be discontinuous at the element boundaries.

2.2.2. Constructing the finite element spaces on the sphere
In order to implement the finite element method, we need to expand our variables in terms of suitable basis functions 

and compute integrals of combinations of these basis functions over elements. This is done by defining a reference element 
on which these integrals can be calculated and mappings from each reference element to the physical element, which we 
describe in this section. A more detailed and general exposition, plus description of how these mappings are implemented 
in the FEniCS project, is provided in [29]. In the rest of this section, hatted quantities refer to those defined on the reference 
element.

We start by defining finite element spaces Vi(ê), i = 0, 1, 2, on the reference element ê. These are constructed from 
polynomials in the usual manner for the chosen spaces as described in [9], for example. Then, for each element e, we 
construct a polynomial mapping ge : ê �→ R

3, such that

�̂ = ∪Ne
i=1 gei

(ê), ge1
(ê) ∩ ge2

(ê) = ∅, if e1 �= e2, (8)

where �̂ is the computational domain, which is a piecewise polynomial approximation to the sphere domain �. Then, we 
use ge to relate functions in our finite element spaces on �̂, restricted to each element e in �̂, to functions in Vi(ê).
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For V0, V2, these functions are simply related by function composition, i.e.,

ψ ∈V0 =⇒ ψ |e ◦ ge ∈ V0(ê), φ ∈V2 =⇒ φ|e ◦ ge ∈ V2(ê), (9)

For V1, we use the Piola transformation [9]

u|e
(

ge(x̂)
) = Je û

det Je
, (10)

where u|e is the restriction of u to element e, and

Je = ∂ ge

∂ x̂
(11)

is the Jacobian of g in element e, to ensure that u is tangent to �. The Piola transformation has the crucial property that

∇ · u
(

ge(x̂)
) = ∇̂ · û(x̂)

det Je
(
x̂
) . (12)

When the discrete space is made up of flat elements, as in Cotter and Shipton [11] and McRae and Cotter [24], det Je is 
constant. This guarantees that if ∇̂ · û ∈ V̂1 then ∇ · u ∈ V1. However, for meshes made up of general quadrilaterals (i.e. 
cubed sphere meshes such as those in Putman and Lin [26]) or high-order, curved triangles, the mapping g is no longer 
affine and the determinant of its Jacobian is no longer constant. This means that in general ∇ · u /∈ V1. This clearly violates 
the commutative diagram property (7). There are 3 ways to remedy the situation.

1. Modify the mapping for V2 to become

φ ∈V2 =⇒ det Jeφ|e ◦ ge ∈V2(ê). (13)

This option is the choice that is most consistent with the finite element exterior calculus methodology.
2. Modify the mapping for V1 so that the factor of det Je in ∇ · u|e ◦ ge is replaced by the element average of det Je . This 

approach was described in Boffi and Gastaldi [8] for the case of lowest order Raviart–Thomas elements; the extension 
to other H(div) elements is straightforward but the construction is quite complicated.

3. Replace the divergence operator ∇· in the commutative diagram by ∇̃· to be the L2 projection π2 of ∇· into V2, defined 
by ∫

�

φ∇̃ · u d V =
∫
�

φ∇ · u d V , ∀φ ∈V2. (14)

By defining a new divergence operator in this way we immediately recover the required commutation property, since 
π2 appears in the commutative diagram (7) and is a projection. This is a generalisation of the “rehabilitation” technique 
described for lowest order Raviart–Thomas elements applied to mixed elliptic problems in [7]. In fact, as Bochev and 
Ridzal noticed, introduction of the ∇̃· operator does not require any changes to a code implementation for mixed elliptic 
operators since the ∇̃· operator only appears in an inner product with a test function from V2, and hence can be safely 
replaced by ∇· there. We shall see that this continues to be the case in our nonlinear shallow water formulation.

In general, Option 1 is the most mathematically elegant choice. However, since our software implementation is based upon 
the Firedrake finite element library [27,23] which is already used to develop DG schemes that use the transformations in (9), 
Option 3 was much less pervasive through the code base. We will investigate the differences between Options 1 and 3 in 
future work.

Arnold et al. [4] showed that there is a potential problem with loss of consistency with compatible finite elements on 
quadrilateral and cubic curvilinear cells; it is likely that this problem also can be exhibited on triangular cells. In partic-
ular, for general constructions there may be loss of consistency for the V1 spaces used here (the consistency problem for 
V2 is avoided through rehabilitation). However, Holst and Stern [20] demonstrated that consistent approximation can still 
be obtained if the computational domain can be obtained via a transformation from a mesh of affine elements onto the 
higher-order nodal interpolation of a C∞ manifold (such as the sphere). This aspect is discussed further in the context of 
geophysical fluid dynamics in [25].

2.2.3. Mixed finite element formulation
The mixed finite element discretisation of equations (1)–(2) is formed by restricting u ∈ V1, D ∈ V2, multiplying the 

equations by appropriate test functions, w ∈V1 and φ ∈V2, and integrating over the domain, giving
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∫
�

w · ut d V +
∫
�

w · Q ⊥ d V −
∫
�

∇ · w
(

g (D + b) + 1

2
|u|2

)
d V = 0, ∀w ∈V1, (15)

∫
�

φ
(

Dt + ∇̃ · F
)

d V = 0, ∀φ ∈V2, (16)

where we have introduced the mass flux F ∈ V1 (an approximation to uD), and the vorticity flux Q (an approximation 
to uDq). F and Q are defined by appropriate choice of advection schemes for D and the diagnostic potential vorticity q, 
which we shall define later.

We have integrated the gradient term in equation (15) by parts to avoid taking the gradient of the layer depth which 
is undefined since D ∈ V2 is discontinuous. A similar problem is posed for the definition of the potential vorticity q since 
ζ = ∇⊥ · u, which appears in the definition of q, is similarly undefined. In order to fix this we integrate the ∇⊥ term by 
parts (with no surface term since we are solving our equations on the sphere), defining our discrete potential vorticity 
q ∈V0 as∫

�

γ qD d V =
∫
�

−∇⊥γ · u d V +
∫
�

γ f d V , ∀γ ∈V0. (17)

Provided D remains positive (this can be enforced using a slope limiter, although in the test cases used here the mean 
depth is sufficiently high that a slope limiter is not required), then this equation can be solved for q ∈ V0 from known 
D and u. This provides a one-to-one mapping between q and the weak curl of u, which leads to a one-to-one mapping 
between q and the divergence-free part of u via the discrete Helmholtz decomposition (without needing to solve a global 
Poisson problem). Hence, control of q in the L2 norm from a chosen stable advection scheme provides strong control over 
the divergence-free component of u without compromising the divergent part. This is one reason for the success of this 
type of potential vorticity conserving discretisation for the rotating shallow water equations.

We differentiate this equation in time, and substitute for ut using equation (15) with w = −∇⊥γ . Since ∇ · ∇⊥ ≡ 0 and 
we assume ft = 0, this gives∫

�

γ (qD)t d V −
∫
�

∇γ · Q d V = 0, ∀γ ∈V0, (18)

which is the Galerkin projection of the PV conservation law into V0. If we select γ = 1, then we obtain conservation of 
total PV,

d

d t

∫
�

qD d V = 0. (19)

On the other hand, if we are on the sphere, then this quantity is zero as can be computed directly from (17); this topological 
result stems from the fact that in this case w = −∇⊥γ = 0.

If we choose our advection scheme so that Q = qF and if q is a constant, then we may integrate (18) by parts without 
introducing error (since q ∈ H1 and F ∈ H(div)), and we obtain∫

�

γ (qD)t d V = −
∫
�

γ q∇ · F d V , (20)

and hence∫
�

γ Dqt d V = −
∫
�

γ q (Dt + ∇ · F )d V . (21)

For flat elements, or if we had chosen Option 1, the right hand side is zero since D and ∇ · F are in the same finite element 
space and therefore equation (16) holds pointwise, i.e.,

Dt + ∇ · F = 0. (22)

Hence, we conclude that if q is constant, then qt = 0, and so q remains constant. As well as being a statement of first-order 
consistency for the advection scheme for q, this is also an important property of equation (5).

The formulation requires some adaptation for the finite element spaces used in this paper to obtain this result, since 
∇ · F is not guaranteed to be in the same space as D , so equation (22) does not hold pointwise. To recover it, some further 
“rehabiliation” is required; we amend equation (17) by defining D̃ ∈ V2 such that
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D̃t

τ
+ ∇ · F = 0, (23)

where

τ |e = det Je ◦ ge. (24)

Comparing the weak form of this equation with (16) we see that∫
�

φ
D̃t

τ
d V =

∫
�

φDt d V , ∀φ ∈V2, (25)

which is consistent with the definition∫
�

φ
D̃

τ
d V =

∫
�

φD d V ∀φ ∈V2, (26)

hence we can solve for D̃ (since τ is a positive quantity and just alters the metric). D̃ is discontinuous and hence this 
equation can be solved separately in each element.

Using this in equation (17) gives∫
�

γ q
D̃

τ
d V = −

∫
�

∇⊥γ · u d V +
∫
�

γ f d V ∀γ ∈ V0. (27)

Differentiating, rearranging and assuming q is constant as before we obtain

∫
�

γ
D̃

τ
qt d V = −

∫
�

γ q

(
D̃t

τ
+ ∇ · F

)
d V = 0, (28)

as required.
In fact, the finite element formulation allows us to go beyond the first order consistency result. For example, if we choose 

Q = F q, we have enough continuity to integrate by parts, and we obtain∫
�

γ ((qD)t + ∇ · (F q)) d V = 0, ∀γ ∈ V0. (29)

The left-hand side vanishes if q is an exact solution of the equation

(qD)t + ∇ · (F q) = 0, (30)

where D and F are the discrete mass and mass flux, indicating that the discretisation is consistent at the order of approxi-
mation of the finite element space V0. Unfortunately, this is not a good choice for Q since the implied discrete advection 
operator is not stable. An alternative is to choose

Q = F q − αF
F

|F | · ∇q, (31)

where α is a stabilisation parameter. Substitution, rearrangement and integration by parts on the F q term leads to∫
�

(
γ + α

F

|F | · ∇γ

)(
(qD)t + ∇ · (F q)

)
d V = 0, ∀γ ∈V0, (32)

which is a streamline-upwind Petrov–Galerkin (SUPG) spatial discretisation of the PV conservation equation. This discretisa-
tion is stable, and also consistent, i.e. the equation vanishes when the exact solution to (30) is substituted.

In this paper we will use a Taylor–Galerkin discretisation for the potential vorticity equation; this discretisation achieves 
the same aims as the SUPG discretisation described above, but arises more naturally in the discrete time setting and hence 
we shall postpone our discussion of it until we have described the time-discrete formulation of the full shallow water 
system in the next section.

We remark that all of the results above are assuming that integrations are evaluated exactly. Due to the factors of 1/ det J
arising from the Piola transformation, not all integrands are polynomial and hence exact quadrature is difficult. However, as 
noted in [12], the structure of terms of the following forms,
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∫
�

∇g · v d x,

∫
�

g w · v⊥ d x,

∫
�

g∇ · w d x, (33)

where g is an arbitrary scalar function (such as a product of scalar functions) and w and v are Piola-mapped functions, 
means that the factors of det J cancel after transforming to the reference element, and the integral after change of variables 
has a polynomial integrand after all. Later on this will also apply to integrals of the form∫

f

v · ng d S, (34)

where f is an element facet. This means that all of the conservation properties in this paper also hold for inexact quadrature 
provided that it is sufficiently high order to integrate these polynomial integrands exactly, after appropriately redefining 
inner products using a quadrature rule instead of an exact integral.

2.3. Time discretisation

We shall build a semi-implicit time discrete formulation. First we write

u∗ = θun+1 + (1 − θ)un, D∗ = θ Dn+1 + (1 − θ)Dn (35)

and

�u = un+1 − un,�D = Dn+1 − Dn. (36)

We can now write equations (15) and (16) as∫
�

w · �u d V + �t

∫
�

w · Q ⊥ d V − �t

∫
�

∇ · w
(

g(D∗ + b) + K (u∗)
)

d V = 0, ∀w ∈V1, (37)

∫
�

φ�D d V + �t

∫
�

φ∇ · F d V =0, ∀φ ∈ V2, (38)

where

K (u) = 1

2
|u|2, (39)

and where the time-averaged mass and vorticity fluxes F and Q are yet to be defined. The idea is that we choose F to 
be a time-independent function such that Dn+1 is obtained from Dn via a high-order stable time discretisation over one 
timestep for the equation

Dt + ∇ · (u∗D) = 0, (40)

i.e. with the advecting velocity frozen to the value of u∗ . Similarly, Q is chosen so that qn+1 is related to qn via a high-order 
stable time discretisation over one timestep for the equation

(qD)t + ∇ · (F q) = 0, (41)

i.e. with the advecting mass flux frozen to the time-averaged flux F . This means that for θ = 1/2 we obtain a scheme that is 
overall second-order in time, but that uses higher-order advection schemes for D and q. The rationale is that for near-linear 
waves, we would like the propagation to be as conservative as possible, so the semi-linear formulation should be based 
around a time-centred scheme. However, we would also like to obtain good quality solutions over long integrations when 
close to geostrophic balance, in which case the important quantity is q, and it is important that we transport D consistently 
with q to stay close to the balanced state. In that regime, it is thought to be important to use a high odd-order time 
integration scheme, since for odd-order schemes the error is dominated by diffusion rather than dispersion (the latter leads 
to oscillations near to near-discontinuous data). It is also thought that the use of a time-averaged velocity to transport q
and D helps to preserve geostrophic balance. This was also the rationale behind choosing the 3rd order Forward-in-Time 
advection schemes used in Thuburn and Cotter [34].

An implicit formulation such as the one above requires Newton or Picard iterations to iterate to convergence. In practice, 
we perform a small fixed number (4) of Picard iterations per timestep, since our aim is to obtain a stable timestepping 
method with accurate q and D transport, rather than iterating to convergence to obtain an exact implementation of the 
fully implicit scheme described above. In the Picard iteration we replace the Jacobian obtained from linearisation around 
the current state with the Jacobian linearised around the system at a state of rest. This means that it is possible to reduce 
the system as described in the next section, and that the same solver context can be reused during each Picard iteration 
and timestep.

Hence, each Picard cycle consists of the following steps.
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1. Initialise �u = 0, �D = 0.
2. Use the current values of �u and �D to compute corresponding values for u∗ , D∗ .
3. Use the chosen mass advection scheme with velocity u∗ to update from Dn to Dn+1, and find F such that∫

�

φ
(

Dn+1 − Dn + �t∇ · F
)

d V = 0, ∀φ ∈V2. (42)

We will explain how to construct F in section 2.3.2. The mass residual R D : V2 →R is defined as

R D [φ] =
∫
�

φ(�D + �t∇ · F )d V . (43)

4. Diagnose the PV qn at time tn .
5. Use the chosen PV advection scheme with mass flux F to update from qn to qn+1 and compute the corresponding PV 

flux Q such that∫
�

γ

(
qn+1 D̃n+1

τ
− qn D̃n

τ

)
d V − �t

∫
�

∇γ · Q d V = 0, ∀γ ∈ V0. (44)

6. The velocity residual Ru : V1 →R is defined as

Ru[w] =
∫
�

w · �u d V + �t

∫
�

w · Q ⊥ d V + �t

∫
�

∇ · w
(

g(D∗ + b) + K (u∗)
)

d V . (45)

7. The increments

�u �→ �u + δu, �D �→ �D + δD (46)

are then obtained by solving the coupled system∫
�

w · δu d V + θ�t

∫
�

f w · δu⊥ d V − θ�t

∫
�

∇ · w gδD d V = −Ru[w], ∀w ∈V1, (47)

∫
�

φ (δD + θ�t H0∇ · δu)d V = −R D [φ], ∀φ ∈V2, (48)

where H0 is the mean layer depth at rest.
8. If we have not completed 4 iterations, apply these updates and return to 2.

In the following sections we describe the construction of F , Q and the solution of the coupled system in detail.

2.3.1. Solving the coupled linear system
In our formulation, we use hybridisation to solve equations (47)–(48). Hybridisation is a technique for efficiently solving 

mixed finite element problems that has been used since the 1960s; in the 1980s it was also discovered that the hybridised 
formulation could also be used to obtain more accurate approximations of the solution (see [9] for a general survey).

Obtaining a hybridised formulation requires two steps. First, we introduce a finite element space Ṽ1 by relaxing the 
normal continuity constraints within V1. In other words, functions in Ṽ1 have the same local polynomial representation as 
functions in V1, but there are no requirements of continuity between edges. In particular, we note that V1 ⊂ Ṽ1. Second, 
we introduce a trace space Tr(V1), defined on the element facet set �, such that functions λ ∈ Tr(V1) are scalar functions 
which when restricted to a single element facet f , are from the same polynomial space as u · n restricted to that facet. 
Having relaxed the continuity requirements for δu ∈ Ṽ1, we enforce them again by adding another equation,∫

�

μ�u�dS = 0, ∀μ ∈ Tr(V1), (49)

where we use the usual “jump” notation

�u� = u+ · n+ + u− · n−, (50)

having arbitrarily labelled each side of each facet with + and −, so that n+ points from the + side to the − side and vice 
versa. To avoid an over-determined system, we introduce Lagrange multipliers λ ∈ Tr(V1) and rewrite equations (47)–(48)
as
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∫
�

w · δu d V + θ�t

∫
�

f w · u⊥ d V − θ�t

∫
�

∇ · w gδD d V +
∫
�

λ� w � d S = −Ru[w], ∀w ∈ Ṽ1, (51)

∫
�

φ (δD + θ�t H0∇ · δu)d V = −R D [φ], ∀φ ∈ V2, (52)

together with equation (49). Note that the residual Ru must now be evaluated with w ∈ Ṽ1. All of the inter-element 
coupling in equations (51)–(52) takes place in the λ term. This means that if λ is known, then it is possible to obtain u and 
D independently in each element. To enable elimination of u and D , we define a lifting operator L : Tr(V1) → Ṽ1, which 
gives the solution u for a given λ in the case when R D [φ] and Ru[w] are replaced by zero. We also define u0 which is 
the solution obtained when λ is zero, but R D [φ] and Ru[w] are present. Then, the general solution of this equation given 
particular R D and Ru is

u = Lλ + u0. (53)

Substituting into equation (49) gives∫
�

μ�Lλ� d S = −
∫
�

μ�u0 � d S, ∀μ ∈ Tr(V1). (54)

This reduced equation can be solved for λ before reconstructing u and D by solving equations (51)–(52) independently 
in each element. Since the value of Lλ in each element only depends on the values of λ on the facets of that element, 
equation (54) only couples together values of λ on facets that share an element. This means that the matrix-vector form of 
this equation is very sparse. In fact, the matrix can be assembled by visiting each element separately, performing inversion 
on element block systems. Further, this equation has the same spectral properties as the Helmholtz operator, and hence 
can be solved with Krylov methods and standard preconditioners such as SOR, algebraic multigrid; a geometric multigrid 
for general higher-order hybridised mixed finite element elliptic problems was provided in [17]. Note that the Coriolis term 
can be included in the linear system in this approach without altering the sparsity of the reduced system. One important 
aspect is that if the solver for this system is not iterated to convergence, the resulting velocity field will not be exactly 
div-conforming. We address this in our implementation by simply projecting the velocity back into V1 after reconstruction, 
which appears not to cause any problems with stability. A more sophisticated approach would use the hybridised solver as 
a preconditioner for the (�u, �D) system on (V1, V2); we will investigate this in further work.

2.3.2. Advection scheme for layer depth D
We now need to solve the mass continuity equation (16) for the update to D . As D ∈ V2 and is therefore discontinuous, 

we can use standard upwind discontinuous Galerkin methods to obtain an approximation to Dt ,∫
e

φDt d V = �t

∫
e

∇φ · u∗D d V − �t

∫
∂e

φDu u∗ · n d S, ∀φ ∈V2(e), (55)

for each element e, where V2(e) is the space V2 restricted to the element e, and Du is the value of D on the upwind side 
of the element boundary ∂e. We then use the standard 3-stage Strong Stability Preserving Runge–Kutta scheme [18],

D1 = Dn + �t Dn
t , (56)

D2 = 3

4
Dn + 1

4

(
D1 + �t D1

t

)
, (57)

Dn+1 = 1

3
Dn + 2

3

(
D2 + �t D2

t

)
. (58)

Later we shall discuss a consistency property of the potential vorticity conserving discretisation of the velocity equation; 
this property requires that we find a time-integrated mass flux F̄ ∈ V1 that satisfies

�D = −�t∇ · F̄ . (59)

This is done by finding F given Dt such that

Dt + ∇ · F = 0, (60)

and then substituting into equations (56)–(58) to construct F̄ . To find a flux F for each Runge–Kutta stage, we solve
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∫
f

κ F · n d s =
∫
f

κ Du u∗ · n d s, ∀κ ∈ Tr f (V1), ∀ f ∈ ∂e (61)

∫
e

w · F d x =
∫
e

w · u∗D d x, ∀w ∈ V̊
∗
1(e), (62)

where V̊∗
1(e) is the right size to close the system and ∇φ ∈ V̊

∗
1(e) for all φ ∈V2(e). The left-hand sides of equations (61)–(62)

are the same as the left-hand sides of the definition of the commuting operator π : H(div) → V1 that features in stability 
proofs for mixed finite element methods (see [9], for example). This means that the above construction is well-posed. To 
check that equation (60) is satisfied, we integrate (59) by parts. Then, substituting the above relations (61)–(62) (with 
w = ∇φ), we see that∫

e

φDt d V = −�t

∫
e

φ∇ · F d V

= �t

∫
e

∇φ · F d V − �t

∫
δe

φF · n d S

= �t

∫
e

∇φ · u∗D d V − �t

∫
δe

φDu u∗ · n d S,

as required.
We note, although we did not use it in this paper, that the use of a slope limiter can also be incorporated into the mass 

flux computation. If a slope limiter is used after a Runge–Kutta stage, then D is replaced by D ′ , with 
∫

e D − D ′ d x = 0. If we 
seek F ′ such that

D ′ − D + �t∇ · F ′ = 0, (63)

then integration over a single element immediately tells us that this can be satisfied by∫
f

κ F ′ · n d S = 0, ∀κ ∈ Tr f (V1), ∀ f ∈ ∂e, (64)

i.e. F ′ · n = 0 on the boundary ∂e. We then solve a local mixed problem for (F ′, p) ∈ (V1(e), V2(e)), given by∫
e

φ∇ · F ′ d x =
∫
e

φ(D ′ − D)d x, ∀φ ∈V2(e), (65)

∫
e

w · F ′ + ∇ · w p d x = 0, ∀w ∈V1(e), (66)

subject to the above zero Dirichlet boundary conditions for F ′ , where p is introduced to determine a unique F ′ .

2.3.3. Advection scheme for velocity u
The advection scheme described in this section follows the following design strategy: find an advection scheme for q

that is compatible with equation (37), and select the corresponding Q for insertion into that equation to compute Ru[w]. 
Selecting w = −∇⊥γ in equation (37), evaluating equation (17) at time levels n and n + 1 and substituting gives∫

�

γ qn+1 Dn+1 d x −
∫
�

γ qn Dn d x − �t

∫
�

∇γ · Q d x = 0, ∀γ ∈ V
0, (67)

after noting that w is divergence-free. McRae and Cotter [24] used Q = F̄ qn+1/2 to obtain an implicit midpoint rule time 
discretisation for an energy-enstrophy conserving formulation. In this paper, we aim to use higher-order stabilised advection 
schemes in order to obtain accurate representation of potential vorticity transport. We note that Streamline Upwind Petrov 
Galerkin methods [10] and Taylor–Galerkin methods [14] all result in time-discrete formulations equivalent to equation (67).

It is desirable to use a higher order timestepping scheme for q, to obtain accurate transport of potential vorticity using 
the balanced flow. In particular, odd-ordered schemes are attractive since the leading order error is diffusive rather than 
dispersive. Hence, in this paper we make use of the two-step third-order unconditionally-stable Taylor–Galerkin scheme of 
Safjan and Oden [30].

Taylor–Galerkin schemes are built by transforming time derivatives into space derivatives using the advection equation.
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The general form of a multistage Taylor–Galerkin method is

Zi − η(�t)2(Zi)tt = Zn + �t
i∑

j=1

μi j(Z j)t + (�t)2
i∑

j=1

νi j(Z j)tt, i = 1, . . . ,k, (68)

where η is a stabilisation parameter, the subscript i is the stage index, and the {μ}i j and {ν}i j are coefficients defined in 
Safjan and Oden [30]. After computing these stage variables, the value of Zk is copied into Zn+1.

In our discretisation we use a formulation where Z = qD . Then we have∫
�

γ (qD)t d x =
∫
�

∇γ · ( F̄ q
)

d x, ∀γ ∈V0, (69)

∫
�

γ (qD)tt d x =
∫
�

∇γ · ( F̄ qt
)

d x = −
∫
�

∇γ ·
(

F̄
F̄

D̄
· ∇q

)
d x, ∀γ ∈V0, (70)

recalling that F̄ = D̄ ū is considered to be time-independent over the advection step as part of the semi-implicit discretisa-
tion. Combination with Equation (68) leads to

∫
�

γ qi Dn+1 + η�t2 F̄

D̄
· ∇γ F̄ · ∇qi d x =

∫
�

γ qn Dn + �t
i∑

j=1

μi j

∫
�

∇γ · F̄ q j d x−

(�t)2
i∑

j=1

νi j

∫
�

F̄

D̄
· ∇γ F̄ · ∇q j d x, ∀γ ∈ V0. (71)

Note that this equation involves solving a Helmholtz-type equation with derivatives in the streamline direction for each 
stage variable. This equation is symmetric positive definite and well-conditioned for O(1) Courant numbers; the conjugate 
gradient method converges quickly with simple SOR preconditioning.

In this paper we took the following coefficients

η = 0.48, c1 = 1

2

(
1 + (−1

3
+ 8η)

1
2

)
, μ11 = c1, μ12 = 0, μ21 = 1

2

(
3 − 1

c1

)
,

μ22 = 1

2

(
1

c1
− 1

)
, ν11 = 1

2
c2

1 − η, ν12 = 0, ν21 = 1

4
(3c1 − 1) − η, ν22 = 1

4
(1 − c1) . (72)

Safjan and Oden [30] showed this scheme to be third order and unconditionally stable for η > 0.473.
Having solved for qn+1, we take i = 2, and notice that equation (71) takes the form of equation (67), and hence Q can 

be extracted for insertion into equation (37). For the case of curved elements, D must be replaced by D̃/τ throughout.

3. Numerical results

In this section we show numerical results from three standard test cases on icosahedral grids, using the spaces 
(P3, B DM2, DG1), and a piecewise cubic approximation to the surface of the sphere. The code was implemented using 
the Firedrake finite element framework, which permits the symbolic implementation of the mixed finite element techniques 
discussed in this paper. Using the Unified Form Language (see Alnæs et al. [1]), which provides a high-level mathematical 
description of the finite element problem, code is automatically generated which forms the resulting matrix equations by 
assembling the local contributions from each cell and/or facet of the mesh. These equations are provided directly to PETSc 
[6,5], which provides direct access to runtime configurable iterative solvers and preconditioners. The hybridisation of the 
implicit system for the linear updates is implemented using the Slate framework [16], which performs the local elimination 
and recovery operations. The reduced equation for the trace variables is numerically inverted using the conjugate gradient 
method and PETSc’s smooth aggregation multigrid preconditioner (GAMG).

The first two test cases are numbers 2 (solid body rotation) and 5 (flow over a mountain) from Williamson et al. [36] and 
the third is the barotropically unstable jet from Galewsky et al. [15]. Table 1 contains information on the properties of the 
4 grids that we use for the Williamson convergence tests, along with the timesteps used. The timestep was chosen to give 
a constant Courant number across the different resolutions; 0.2 in the solid body rotation test and 0.06 in the flow over a 
mountain test, although we note that in order to see second order convergence, we had to further reduce the timestep for 
the highest resolution mountain simulation because at this resolution the time discretisation errors start to dominate. Fig. 1
shows the lowest resolution icosahedral grid that we use.
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Table 1
Grid properties for the 4 grids used in the convergence tests, including the number of degrees of freedom (DOFs) for velocity u, depth D and potential 
vorticity q, along with the timestep used for the solid body rotation test (2) and flow over a mountain test (5).

Grid properties DOFs Test 2 Test 5

cells nodes �xmax (km) �xmin (km) u D q �t (s) �t (s)

1280 642 1054 720 9600 3840 5762 3000 900
5120 2562 527 348 38400 15360 23042 1500 450

20480 10242 263 171 153600 61440 92162 750 225
81920 40962 132 85 614400 245760 368642 375 84.375

Fig. 1. Icosahedral sphere grid, viewed looking down on the North pole, corresponding to the lowest resolution described in Table 1.

Table 2
Normalised depth, D , and velocity, u, errors at day 15 for the solid body rotation test case.

cells L2(D) L∞(D) L2(u) L∞(u)

1280 5.929 × 10−5 2.177 × 10−4 7.180 × 10−4 1.701 × 10−3

5120 9.154 × 10−6 4.405 × 10−5 1.261 × 10−4 2.978 × 10−4

20480 1.840 × 10−6 1.062 × 10−5 2.761 × 10−5 6.588 × 10−5

81920 4.288 × 10−7 2.636 × 10−6 6.640 × 10−6 1.551 × 10−5

Where shown, normalised errors in a field q are computed as in Williamson et al. [36] as

L2(q) =
(∫

�
(q − qT )2 d V

) 1
2(∫

�
q2

T d V
) 1

2

, (73)

L∞(q) = max |q − qT |
max |qT | , (74)

where qT is the true solution, specified either analytically (as in the solid body rotation test) or from a high resolution 
reference solution (as in the flow over a mountain test).

3.1. Solid body rotation (Williamson, test case 2)

This test case is initialised with depth and velocity fields that are in geostrophic balance:

D = D0 −
(

R�u0 + u2
0

2

)
z2

g R2
, (75)

u = u0

R
(−y, x,0), (76)

where R = 6.37122 × 106 m is the radius of the Earth, � = 7.292 × 10−5 s−1 is the rotation rate of the Earth, (x, y, z)
are the 3D Cartesian coordinates, g = 9.80616 m s−2 is the gravitational acceleration, D0 = 2.94 × 104/g ≈ 2998 m and 
u0 = 2π R/(12 days) ≈ 38.6 m s−1. Since there is no topography or other forcing, the flow should remain in this steady, 
balanced state. As the flow is steady we have an analytic solution which allows us to compute errors and hence an order of 
convergence for our method. We present these results in Table 2 and Fig. 2 reveals that our method is converging at second 
order. The depth error at day 15, shown in Fig. 3, is large scale and shows some evidence of grid imprinting.
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Fig. 2. Solid body rotation test case: normalised depth, D , and velocity, u, errors at day 15 versus average mesh size �x.

Fig. 3. Solid body rotation test case: depth error (in metres) at day 15. The range is min:−5.8 × 10−3 m, max: 7.9 × 10−3 m.

Table 3
Normalised depth errors at day 15 for the flow over a mountain test case.

cells L2(D) L∞(D)

1280 1.406 × 10−3 7.963 × 10−3

5120 6.776 × 10−4 3.317 × 10−3

20480 2.136 × 10−4 1.200 × 10−3

81920 4.159 × 10−5 2.989 × 10−4

3.2. Flow over a mountain (Williamson, test case 5)

This test case uses the same zonal flow initial conditions (75)–(76) as the previous test but with D0 = 5960 m and 
u0 = 20 m. An isolated, conical mountain, given by

Ds = Ds0(1 − r/R0) (77)

with Ds0 = 2000 m, R0 = π/9 and r2 = min[R2
0, (φ − φc)

2 + (λ − λc)
2] is placed with its centre at latitude φ = π/6 and 

longitude λ = −π/2. As the zonal flow interacts with the mountain, it produces waves that travel around the globe. As 
there is no analytical solution for this problem, the model output at 15 days is compared to a high resolution (a 2048 by 
1024 grid, with a timestep of 45 s) reference solution generated using a semi-Lagrangian shallow water code provided by 
John Thuburn. We present the magnitude of the errors in Table 3 and Fig. 4 reveals that our method is converging at second 
order. We plot the depth errors at day 15 in Fig. 5. We can see that the error is small scale and is not dominated by errors 
due to grid imprinting.

Up until this point the flow is only weakly nonlinear (see Fig. 6) so, as in Thuburn et al. [33], we continued the highest 
resolution simulation until day 50. By this time, fine scale structure has been generated as the flow becomes more nonlinear; 
the PV field develops sharp gradients and filaments that stretch out and roll up. These features can be seen in the potential 
vorticity field at 50 days, shown in Fig. 7.
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Fig. 4. Flow over a mountain test case: normalised depth errors at day 15 versus average mesh size �x.

Fig. 5. Flow over a mountain test case: depth errors (in metres) at day 15. The range is min: −1.74 m, max: 1.78 m.

Fig. 6. Flow over a mountain test case: potential vorticity at day 15. The range is min: −3.05 × 10−8 (ms)−1, max: 3.05 × 10−8 (ms)−1. The circle indicates 
the position of the mountain.

3.3. Barotropically unstable jet (Galewsky)

The details of this test case are specified in Galewsky et al. [15]. The initial condition consists of a strong midlatitude jet, 
with an added perturbation, which is barotropically unstable and evolves to produce vortices and small scale structure. It has 
become a particularly useful test for models on grids that are not aligned with latitude/longitude because these grids can 
induce early development of the instability and even lead to the final solution (at day 6) having the incorrect wavenumber. 
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Fig. 7. Flow over a mountain test case: potential vorticity at day 50. The range is min: −3.1 × 10−8 (ms)−1, max: 3.2 × 10−8 (ms)−1. The circle indicates 
the position of the mountain.

Fig. 8. Snapshot of the northern hemisphere relative vorticity field at day 6 for the Galewsky jet test. The range is min: −1.10 × 10−4 (ms)−1, max: 
1.66 × 10−4 (ms)−1.

Table 4
Values of Q (see equation (78)) for the Galewsky test case.

Time (days) Q Q

0 −5.70 × 10−15 Min: −1.80 × 10−14

2 −5.22 × 10−15 Max: 1.73 × 10−14

4 1.05 × 10−14 Mean: 4.23 × 10−16

6 −2.02 × 10−16 Standard deviation: 4.36 × 10−15

Again, there is no analytic solution so results are compared to those in the literature (see for example Thuburn et al. [33]
and Weller [35]). An important feature to reproduce is the relatively straight path of the jet across approximately quarter of 
the globe – this is not seen in models where grid imprinting has resulted in the generation of instability along the length 
of the jet [35].

Fig. 8 shows the vorticity field, computed on the highest resolution grid (see Table 1) with timestep of 120 s, in the 
Northern hemisphere after 6 days. The maximum Courant number reached during this simulation is 0.28. We note that 
the jet has the correct wavenumber and the expected quiescent section. Lower resolution simulations, as others have found 
[33], did not have these requisite features. The conservation properties of the algorithm are demonstrated in Table 4 which 
gives values of the normalised integral of the potential vorticity over the sphere,

Q =
∫
�

qD d V

‖q0‖L2‖D0‖L2
(78)

where q0 and D0 are the initial values of the potential vorticity and depth respectively, and ‖ · ‖L2 indicates the (un-
normalised) L2 norm. This is conserved (and zero) by construction (see equation 19 and the following discussion).

4. Summary and outlook

We have built upon the work of Cotter and Shipton [11] and McRae and Cotter [24] to produce a semi-implicit compat-
ible finite element model for the nonlinear rotating shallow water equations on the sphere. The important features are that 
we introduce higher-order upwind advection schemes that maintain PV conservation, and consistency of PV advection with 
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the mass conservation law. By applying the model to standard test cases we have demonstrated that this model has the 
expected second order convergence rate and can produce the required features of both large scale balanced flows and un-
stable turbulent flows. The developments of this paper inform our ongoing development of a three dimensional dynamical 
core on the sphere.
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