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Abstract 

The most common genetic cause of neonatal diabetes and hyperinsulinism are 

pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the 

beta-cell ATP sensitive potassium channel, a key component of the glucose-

stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated 

insulin secretion; inactivating mutations cause an over-secretion of insulin leading to 

congenital hyperinsulinism, whilst activating mutations cause the opposing 

phenotype, diabetes. This review focuses on variants identified in ABCC8 and 

KCNJ11, the phenotypic spectrum and the treatment implications for individuals with 

pathogenic variants. 
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ATP-sensitive potassium (KATP) channels were found to couple glucose metabolism 

to membrane electrical activity and insulin release over 30 years ago (Ashcroft, et al., 

1984; Cook and Hales, 1984; Rorsman and Trube, 1985). This landmark discovery 

was fundamental to furthering understanding of the insulin secretion pathway 

whereby glucose metabolism results in a change in ratio of ADP and ATP. Binding of 

ATP to the channel induces channel closure, depolarisation of the membrane and 

activation of voltage-dependent calcium channels leading to calcium influx and 

insulin granule exocytosis (Figure 1a).  

 

Given the role of the KATP channel in insulin secretion, it is not unexpected that 

variants in KCNJ11, encoding the four pore-forming inwardly rectifying Kir6.2 

subunits, and ABCC8, encoding the four sulphonylurea receptor 1 (SUR1) subunits 

of the channel, can cause hypo- or hyperglycaemia (Babenko, et al., 2006; Gloyn, et 

al., 2004b; Thomas, et al., 1996; Thomas, et al., 1995). Identifying these mutations is 

important for informing prognosis, medical management and recurrence risk.  

 

Over recent years, the number of variants identified in these two genes has 

expanded tremendously. In 2006, 124 disease-causing mutations were reported 

which increased to 265 pathogenic variants 3 years later (Flanagan, et al., 2009; 

Gloyn, et al., 2006b).  By combining published reports together with data from 5 

international molecular genetic screening laboratories in the UK, Denmark, France 

and the United States of America we now report 953 pathogenic ABCC8 and 

KCNJ11 variants (Supp Tables S1-S6) and discuss the role of these genes in 

congenital hyperinsulinism (CHI) and monogenic diabetes.  

 

Congenital Hyperinsulinism 

CHI is characterised by the inappropriate secretion of insulin despite low blood 

glucose which can result in irreversible brain damage if not promptly treated 
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(Helleskov, et al., 2017). The condition has a variable phenotype usually presenting 

during the neonatal period or infancy with seizures and/or coma and a large birth 

weight due to high levels of insulin acting as a growth factor in utero. 

 

Although most cases of CHI are sporadic rare familial forms have been well 

documented. Sporadic CHI has an estimated incidence of between 1 in 27,000 and 1 

in 50,000 live births (Glaser, et al., 2000; Otonkoski, et al., 1999). However, in some 

isolated populations, or in countries with high rates of consanguineous unions, the 

incidence is higher (i.e. 1 in 2,675 to 1 in 3,200) (Mathew, et al., 1988; Otonkoski, et 

al., 1999).  

 

CHI due to KATP channel mutations  

Loss-of-function ABCC8 mutations were first described in 1995 (Thomas, et al., 

1995). These mutations either prevent trafficking of the channel to the membrane 

surface or are associated with channels that reach the surface but are not fully 

responsive to MgADP activation (figure 1) (Ashcroft, 2005; Nichols, et al., 1996; 

Taschenberger, et al., 2002). The majority of ABCC8 loss-of-function mutations are 

recessively acting with a small number of dominant missense mutations reported 

which produce channels that traffic to the membrane but have impaired mgADP 

activation.  

 

Fewer loss of function mutations have been reported in KCNJ11  in keeping with the 

gene being much smaller (1173 vs 4749 bases, respectively) (Thomas, et al., 1996). 

Similarly to ABCC8, both dominant and recessively acting KCNJ11 mutations have 

been described (Pinney, et al., 2013). Together mutations in these two genes 

account for 36%-70% of CHI cases (Kapoor, et al., 2013; Snider, et al., 2013). 
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Mouse models for KATP channel CHI exist, however, their inability to fully recapitulate 

the human phenotype means that they have limited value for studying specific 

disease mechanisms. For example, mice generated with a deletion of ABCC8 or 

KCNJ11, or the homozygous recessive KCNJ11 mutation p.(Tyr12Ter), do not have 

the sustained neonatal hypoglycaemia observed in humans with homozygous null 

mutations. Instead the blood glucose levels normalise in the mouse within a few days 

of birth with glucose intolerance developing in later life (Hugill, et al., 2010; Miki, et 

al., 1998; Seghers, et al., 2000). The differences in the phenotype between mice and 

humans are not fully understood but highlight the need to develop human-specific 

models for studying disease mechanisms.  

 

Clinical Management of KATP Channel CHI 

In 2015, the Pediatric Endocrine Society published recommendations for the 

evaluation and management of persistent hypoglycaemia in neonates, infants and 

children (Thornton, et al., 2015). The main treatment for CHI is the KATP channel-

opener diazoxide, however patients with ABCC8/KCNJ11 mutations which prevent 

trafficking to the membrane do not respond to the drug as diazoxide targets the 

SUR1 subunit of the KATP channel. For approximately 50% of patients with mutations 

that do not prevent the channel from reaching the membrane, diazoxide is an 

effective treatment (Boodhansingh, et al., 2019). For patients with diazoxide-

unresponsive CHI, second line treatment with somatostatin analogues may be helpful 

to control hypoglycaemia although adverse effects to somatostatin analogues, and 

likewise diazoxide, have been reported (Demirbilek, et al., 2014; Herrera, et al., 

2018). 

 

The mode of inheritance of the KATP channel mutation determines the pancreatic 

histological subtype (de Lonlay, et al., 1997; de Lonlay, et al., 2002; Jack, et al., 

2000; Rahier, et al., 1984). Inheritance of two recessively–acting or one dominant 
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ABCC8/KCNJ11 mutation results in diffuse disease affecting the entire pancreas. 

Focal disease is caused by somatic loss of the maternal chromosome 11p15.5 region 

by uniparental disomy which unmasks a paternally-inherited KATP channel mutation at 

11p15.1. These focal lesions often appear histologically as small regions of islet 

adenomatosis which develop as a result of the imbalanced expression of maternally 

imprinted tumour suppressor genes H19 and p57Kip2, and the increased expression of 

the paternally derived insulin-like growth factor II gene (Craigie, et al., 2018; Damaj, 

et al., 2008; de Lonlay, et al., 1997). Rarely, giant focal lesions have been described 

where virtually the whole of the pancreas is affected (Ismail, et al., 2012). Atypical 

mosaic disease has also been reported in a small number of cases (Han, et al., 

2017; Houghton, et al., 2019; Hussain, et al., 2008; Sempoux, et al., 2011).  

 

The identification of a single recessively-acting KATP channel mutation in an individual 

with CHI predicts focal disease with 84-97% sensitivity with a positive predictive 

value up to 94% (Mohnike, et al., 2014; Snider, et al., 2013). 18F-DOPA PET/CT 

scanning can identify and localize a focal lesion prior to surgery (Otonkoski, et al., 

2006). Intraoperative ultrasound may further aid the surgeon to perform tissue-

sparing pancreatic resection in focal CHI which is potentially curative (Bendix, et al., 

2018).  

 

DIABETES MELLITUS 

Diabetes is the opposing disorder to CHI and results from hyper- rather than 

hypoglycaemia. Current estimates suggest that approximately 0.4% of all diabetes 

(and up to 3.5% of those diagnosed under 30 years of age) has a monogenic cause 

(Shepherd, et al., 2016; Shields, et al., 2017). Individuals diagnosed with monogenic 

diabetes outside of infancy are generally classified as having Maturity Onset 

Diabetes of the Young (MODY), whilst Neonatal Diabetes (NDM) describes 

congenital diabetes. In individuals with NDM, impaired insulin secretion results in a 
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low birth weight and hyperglycaemia diagnosed before the age of 6 months 

(Hattersley and Ashcroft, 2005). The minimal incidence of NDM has been calculated 

to be between 1 in 89,000 and 1 in 160,949 live births (Grulich-Henn, et al., 2010; 

Wiedemann, et al., 2010).  

 

Later-onset diabetes due to KATP channel mutations 

Dominantly acting mutations in the KATP channel genes have been rarely described in 

individuals with later-onset diabetes in the absence of documented hyper- or 

hypoglycaemia in the neonatal period (Tarasov, et al., 2008)(Bowman, et al., 2012; 

Hartemann-Heurtier, et al., 2009; Huopio, et al., 2003; Koufakis, et al., 2019). The 

mechanism(s) leading to this variable penetrance are not fully understood and may 

differ according to whether the mutation is causing a gain or loss of channel function. 

Interestingly, in one study the generation of a mouse model harbouring a 

homozygous dominantly-acting loss-of-function ABCC8 mutation p.(Glu1507Lys) 

recapitulated the biphasic phenotype with the mice having increased insulin secretion 

in early life and reduced insulin secretion later on. This was shown to be resulting 

from a reduction in insulin content rather than a reduction of islet number and/or size. 

Heterozygosity for the mutation did however not result in a phenotype in the mouse, 

further highlighting differences between the mouse models and human disease 

(Shimomura, et al., 2013).  

 

Neonatal diabetes due to KATP channel mutations 

Strong support for the role of gain-of-function KATP channel mutations in the aetiology 

of diabetes came from the observation that mice over-expressing a mutant KATP 

channel with reduced ATP sensitivity developed diabetes within 2 days (Koster, et 

al., 2000). In 2004, the first heterozygous activating KCNJ11 mutations causing NDM 

were described in humans with activating ABCC8 mutations reported two years later 

(Babenko, et al., 2006; Gloyn, et al., 2004b; Proks, et al., 2006). Together mutations 
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in these two genes have now been shown to account for approximately 40% of NDM 

cases (De Franco, et al., 2015; Stoy, et al., 2008). 

 

Both dominant and recessive activating mutations are frequently identified in ABCC8. 

Conversely for KCNJ11, all but one of the mutations reported so far, p.(Gly324Arg), 

have been dominantly acting. The majority (~60%) of dominant mutations arise “de 

novo” so there is often no family history of diabetes although germline mosaicism has 

been observed in some families (Edghill, et al., 2007; Gloyn, et al., 2004a). 

 

There is added complexity associated with ABCC8 mutations, as compound 

heterozygosity for both an activating and an inactivating mutation can cause diabetes 

(Ellard, et al., 2007). Furthermore, a recessively-inherited ABCC8 nonsense variant 

has been reported in two cases with NDM which leads to the deletion of the in-frame 

exon 17 likely resulting in enhanced sensitivity of the channel to intracellular 

MgADP/ATP (Flanagan, et al., 2017).  

 

The specific KATP channel mutation identified determines whether the diabetes will 

cause permanent or transient NDM (Gloyn, et al., 2005; Patch, et al., 2007). Variable 

penetrance within families with mutations leading to transient diabetes is observed 

with some individuals being diagnosed with diabetes at birth yet others developing 

diabetes for the first time in adulthood (see previous section on adult-onset diabetes) 

(Flanagan, et al., 2006). 

 

Spectrum of central nervous system (CNS) features in KATP channel NDM  

CNS features are frequently reported in individuals with KATP channel NDM due to the 

Kir6.2 and SUR1 proteins being expressed in the brain (Karschin, et al., 1997; Liss, 

et al., 1999; Sakura, et al., 1995; Schmahmann and Sherman, 1998). The most 

severe neurological phenotype is termed Developmental delay, Epilepsy and 
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Neonatal Diabetes (DEND) syndrome which includes muscle weakness and 

hypotonia (Hattersley and Ashcroft, 2005). Intermediate DEND (iDEND) syndrome is 

diagnosed when epilepsy is absent or presents after the age of 12 months (Gloyn, et 

al., 2006a). Clinical studies have reported CNS features in ≈20-30% of individuals 

with KATP channel permanent NDM (De Franco, et al., 2015; Massa, et al., 2005; 

Sagen, et al., 2004).  

 

Since these initial reports, studies in larger cohorts of individuals affected with KATP 

channel NDM have characterised the neurological features in more detail. Additional 

features reported include autism and attention deficit hyperactivity disorder (ADHD), 

anxiety and sleep disorders, dyspraxia and learning difficulties resulting in impaired 

attention, memory, visuospatial abilities and executive function (Beltrand, et al., 2015; 

Bowman, et al., 2016; Bowman, et al., 2018a; Bowman, et al., 2017; Busiah, et al., 

2013; Landmeier, et al., 2017). Importantly, it is now recognised that some degree of 

impairment can be detected on neuropsychological testing in the majority of patients 

with KATP channel mutations even if there is no obvious CNS involvement (Busiah, et 

al., 2013; Carmody, et al., 2016). 

 

Clinical management of neonatal diabetes and CNS features due to KATP 

channel mutations 

The identification of a KATP channel mutation can impact on the medical management 

of patients with NDM as ~90% can transfer from insulin injections to high-dose 

sulphonylurea tablets (Pearson, et al., 2006; Zung, et al., 2004). Sulphonylureas bind 

to the SUR1 subunit of the KATP channel and close it independently of ATP, resulting 

in excellent long-term glycaemic control and improved quality of life for affected 

patients and their families (Babenko, et al., 2006; Bowman, et al., 2018b; Rafiq, et 

al., 2008). Patients who are unable to transfer to sulphonylureas tend to have a 

longer duration of diabetes prior to attempting transfer or functionally severe 
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mutations (Babiker, et al., 2016; Thurber, et al., 2015).  Few side effects and no 

episodes of severe hypoglycaemia involving seizures or loss of consciousness have 

been reported in individuals with sulphonylurea-treated neonatal diabetes (Bowman, 

et al., 2018b; Codner, et al., 2005; Kumaraguru, et al., 2009; Lanning, et al., 2018). 

 

Sulphonylureas can improve the neurological features in people with KATP channel 

NDM, particularly in the first year of treatment (Beltrand, et al., 2015; Fendler, et al., 

2013; Stoy, et al., 2008). However, these features do not fully resolve on 

sulphonylureas and persist long-term into adulthood (Bowman, et al., 2018a; 

Bowman, et al., 2018b). Higher doses of sulphonylureas are recommended for 

patients with severe neurological features in an attempt to mitigate this 

(https://www.diabetesgenes.org/). In addition, starting sulphonylurea therapy as early 

as possible after a genetic diagnosis is crucial as the largest improvements appear to 

occur in younger patients (Beltrand, et al., 2015; Shah, et al., 2012). 

 

GENETIC VARIATION IN ABCC8 AND KCNJ11 

KCNJ11 (MIM# 600937) is located 4.5Kb from ABCC8 on chromosome 11p15.1 and 

has a single exon encoding for the 390-amino acid Kir6.2 protein (GenBank 

NM_000525.3). ABCC8 consists of 39 exons which encode for the 1,582 amino acids 

of SUR1 (NM_001287174.1) (MIM# 600509). This gene has an alternatively spliced 

recognition site at the 5’ end of exon 17 which results in two different transcripts 

differing in length by a single amino acid (GenBank AH003589.2). This alternative 

splicing has led to discrepancies in the literature for nomenclature of variants present 

in 17-39 which differ by a single amino acid depending on the isoform used (1581 

amino acids, NM_000249.3 and 1582 amino acids, NM_001287174.1). For the 

purpose of this review we have described ABCC8 variants according to the longer 

isoform (NM_001287174.1).  
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Disease-causing variants 

A total of 748 ABCC8 and 205 KCNJ11 pathogenic or likely pathogenic variants have 

been identified in individuals with CHI or NDM (Table 1 and Supp Tables S1 and S4 - 

please note that these tables are meant to direct to the appropriate references and 

laboratories. The tables do not provide in-depth clinical information and variants 

which had been previously reported as pathogenic with a GnomAD frequency 

compatible with the disease frequency (as calculated by 

http://cardiodb.org/allelefrequencyapp/ using a biallelic mode of inheritance, a 

prevalence of 1/50,000, an allelic heterogeneity of 0.1, genetic heterogeneity of 0.5, 

and penetrance of 0.5) were not re-assessed).  

 

Founder mutations have been identified in many populations with the best 

recognised example being the ABCC8 p.(Phe1388del) and c.3992-9G>A mutations 

present in >90% of cases from the Ashkenazi Jewish population (Nestorowicz, et al., 

1996; Otonkoski, et al., 1999). In the Irish population, a deep intronic ABCC8 founder 

mutation at position c.1333-1013G>A has been described which generates a cryptic 

splice site and causes pseudoexon activation (Flanagan, et al., 2013). Founder 

mutations have also been reported in Hispanic (Aguilar-Bryan and Bryan, 1999), 

Bedouin (Tornovsky, et al., 2004), Spanish (Fernandez-Marmiesse, et al., 2006) 

Finnish (Otonkoski, et al., 1999) and Turkish populations (Flanagan, et al., 2013). 

 

Common variation in ABCC8 and KCNJ11  

368 benign/likely benign variants and variants of uncertain significance have been 

observed in both genes (Supp Tables S2, S3, S5 and S6). Two common variants in 

linkage disequilibrium, p.(Glu23Lys) in KCNJ11 and p.(Ser1370Ala) in ABCC8,  

predispose to type 2 diabetes (Florez, et al., 2004). Whilst their effect size is small 

(odds ratio ~1.2), given that 58% of the population carry at least one lysine allele at 

http://cardiodb.org/allelefrequencyapp/
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residue 23 in KCNJ11, this equates to a sizeable population risk (Gloyn, et al., 2003; 

Nielsen, et al., 2003). 

 

Variant Interpretation 

Given the highly polymorphic nature of ABCC8 and KCNJ11, the occurrence of both 

activating and inactivating mutations, the multiple modes of inheritance of disease 

and the variable penetrance associated with dominantly acting mutations, interpreting 

variants identified in these genes can be extremely challenging. Whilst the 

identification of a null ABCC8 or KCNJ11 variant(s) in an individual with CHI provides 

strong evidence for pathogenicity, finding a missense variant is insufficient to assign 

disease causality and as such additional support is required to achieve a ‘pathogenic’ 

classification according to the guidelines set out by the American College of Medical 

Genetics (Richards, et al., 2015).  

 

Large variant databases such as GnomAD and LOVD are powerful tools which aid in 

variant interpretation and allow for re-classification of variants (Fokkema, et al., 2011; 

Lek, et al., 2016). As such, some variants previously reported as pathogenic in the 

literature have now been found to be too common to be causative of disease and 

have now be reassigned as a variant of uncertain significance or a benign variant 

(Supp tables S2, S3, S5 and S6).  

 

FUTURE PROSPECTS 

Whilst sulphonylureas provide a safe and effective treatment for the majority of 

individuals with KATP channel NDM, for patients with CHI pharmacological 

management of the condition is not always successful. Current efforts are therefore 

focussing on the development of new pharmacological treatments for this condition 

(Banerjee, et al., 2017; De Leon, et al., 2008; Ng, et al., 2018; Patel, et al., 2018; 

Powell, et al., 2011; Senniappan, et al., 2014). 
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Progress is also being made in terms of genetic screening, with a recent report 

describing the use of non-invasive prenatal testing of a paternally-inherited KCNJ11 

activating mutation in cell-free fetal DNA (De Franco, et al., 2017). Implementation of 

non-invasive prenatal testing for maternally-inherited mutations will be extremely 

important as a previous study suggested that sulphonylurea can cross the placenta 

and influence fetal growth with implications for treatment of monogenic diabetes 

pregnancies (Myngheer, et al., 2014; Shepherd, et al., 2017).  

 

SUMMARY 

The discovery of both inactivating and activating KATP channel mutations has firmly 

established the critical role of the channel in insulin secretion. The highly polymorphic 

nature of the two genes along with the occurrence of both gain-of-function and loss-

of-function mutations as well as multiple different modes of inheritance can make 

variant interpretation extremely challenging. Rapid testing is absolutely crucial for all 

patients with CHI or NDM because finding a mutation has a huge impact on the 

clinical management of these conditions.  
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Figure 1: Schematic representation of insulin secretion in the pancreatic beta-

cell a) In a normal cell in a high plasma glucose environment b) In a cell with an 

activating KATP channel mutation c) In a cell with an inactivating mutation 

resulting in absence/reduction in protein at the membrane surface d) In a cell 

with a inactivating mutation that impairs the stimulatory effect of MgADP A) 

Glucose is metabolised following entry into the beta-cell via a GLUT transporter. This 

results in change in the ATP:ADP ratio leading to channel closure and membrane 

depolarisation and activation of voltage-dependent calcium channels. Calcium enters 

the cell which triggers insulin release. B) An activating mutation in a KATP channel 

gene results in the membrane being maintained in a hyperpolarised state. Calcium 

channels remain closed and insulin is not secreted. C) Loss of function mutations can 

result in an absence/reduction in protein at the membrane surface. This keeps the 

membrane in a depolarised state regardless of the metabolic state ultimately leading 

to unregulated insulin secretion D) Loss of function missense mutations can produce 

channels that traffic to the membrane but have impaired mgADP activation.  

 

 

https://www.lovd.nl/
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