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Abstract

This paper develops a simple model of the inertial range of turbulent flow,

based on a cascade of vortical filaments. The filaments are taken to be helical,

one turn of the helix playing the role of a turbulent eddy. A binary branching

structure is proposed, involving the splitting of filaments at each step into pairs

of daughter filaments with differing properties, in effect two distinct simultaneous

cascades. Neither of the cascades of this bimodal structure, in isolation, has the

Richardson exponent of 1/3. If cascades are assumed to be initiated continuously

and throughout space we obtain a model of the inertial range of stationary tur-

bulence. We impose the constraint associated with Kolmogorov’s four-fifths law

and then adjust the splitting to achieve good agreement with the observed structure

exponents ζp. The presence of two elements to the cascade is responsible for the

nonlinear dependence of ζp upon p.

The proposed binary branching cascade provides a model for the initial-value

problem of the Navier–Stokes equations in the limit of vanishing viscosity. To sim-

ulate this limit we let the cascade continue indefinitely, energy removal occurring

in the limit. We are thus able to compute the decay of energy in the model.

1 Introduction

In the limit of vanishing viscosity, and in three space dimensions, the nonlinearity

of the Navier–Stokes equations leads to intense vortex stretching and the possibility

of a cascade to small scales in both space and time. This cascade is a cornerstone

of the structure of statistically stationary homogeneous turbulence at large Reynolds

number. It occurs primarily within the inertial range, where the flow is essentially

obeying Euler’s equations, and the energy imparted at large scales cascades down to

a point where viscosity acts to dissipate it. In fact the cascade, even in the inertial

range, could very much depend upon viscous dissipation, for example in the process of

forming smaller eddies from larger ones.
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Figure 1: The function y =
∑5

n=0(2/3)n sin(2π4nx).

According to the early work of Richardson on dispersal in the atmosphere and, later,

Kolmogorov’s 1941 theory, denoted by K41 (see [1] and references therein), within the

inertial range energy cascades down to small scales through a series of steps. At each

step the “eddies” of one scale break up completely into eddies of a smaller scale. In

K41 phenomenology the volume of eddies is conserved in the process. The cascade

starts with eddies of size L and typical velocity U . The transition of eddies of a given

size to the smaller eddies of the next step of the cascade, is taken to be independent

of size, leading to the similarity scaling for length r = λnL at the nth step, where

0 < λ < 1. Let δu(r) be the velocity characteristic of eddies of size r. We think

of δu(r) as the velocity difference within an eddy, between two points a distance r
apart, seen by an observer moving with the flow which carries the eddy. From the

point of view of scaling the choice of velocity components used is unimportant. The

kinetic energy of the nth stage eddies is ∼ (δu)2 per unit volume. Here ∼ indicates

a proportionality, since δu is a velocity scale of a self-similar vortical structure. We

assume that these eddies are created from n − 1–stage eddies in a time ∼ r/δu(r).
In K41 the flux of kinetic energy ε is taken as a constant in the inertial range; thus

ε ∼ (δu)3/r and so δu(r) ∼ (εr)1/3.

In the case of stationary fully developed turbulence in three dimensions the above

scenario is misleading in one important aspect. The eddies of all sizes are actually

superimposed, all extending over a domain of the same volume, the eddies of a certain

size being revealed only by variations on that scale. A one-dimensional representation,

which might be thought of as a signal from a hot wire moving though a large eddy, is

shown in figure 1.

The Richardson–Kolmogorov cascade permeates the phenomenology of turbulence

theory, despite the fact that the make-up of the structures in mind, the “eddies” of the

fluid, is unclear. Observation, numerical experiments, and some theoretical constructs,

suggest that in fully developed turbulence the regions of high vorticity are sheets or

pancake-like structures [6]. In other studies the preferred structures are tube-like fila-

ments [7, 8, 9]. Reality is clearly more complicated than either extreme, and both tubes

and sheets can coexist in modelling, tubes being flattened into sheets and sheets rolling

up into tubes [10]. Further, the complexity of the flow offers little insight into what

would constitute an infinite cascade in the sense of Richardson–Kolmogorov. Lund-

gren has proposed stretched spiral vortices as a source of the cascade and obtained the
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Kolmogorov −5/3 spectrum by analysis of such structures [11]. The recent observa-

tion that elliptical instability of vortex tubes can produce a cascade to smaller scale

tubes provides a compelling argument that the mechanism is directly linked to vortex

instability [12]. These experiments also suggest that the cascade resembles the K41

scenario; see [13].

There are however important departures from the Richardson–Kolmogorov cas-

cade, associated with intermittency of the turbulent dissipation [1]. If one considers an

average of (δu)p, p ≥ 1 over structures of size r in a stationary field of fully devel-

oped turbulence, K41 predicts this should scale as rp/3. In fact there are significant

departures from experimental results for p > 3, as we shall indicate below. Various

cascade models have been proposed to correct for this discrepancy. We mention in

particular the “beta” model, which sacrifices the volume preserving feature of the cas-

cade, leading to a fractal eddy structure. This and other “multi-fractal” generalizations

bring the exponent of r in these averages into better agreement with experiment, but

are still without a physical model of the fluid dynamics of the cascades involved; see

[1], chapter 8.

In this note we propose a simple cascade model based upon tubular, essentially

filamentary helical vortices. This work is an outgrowth of an earlier study which sought

to give a vortical interpretation of the beta model [4]. In brief, the basic structure

of our model is a helical vortex tube, whose core consists of smaller helical vortex

tubes on many scales. Our model is unusual in that there will be two Richardson–

Kolmogorov cascades involved, neither of which involves the K41 velocity exponent

of 1/3. Nevertheless we obtain near-K41 scaling for velocity in an average sense. Since

we shall conserve vorticity volume, our cascade is space filling. We shall also find that

the model can easily realize the observed intermittency corrections to K41.

In addition to vorticity volume, our model will respect the kinematics of geometry,

and will be constrained to satisfy reasonably well the conservation of kinetic energy.

The model is a “toy” in that the vortical structures constructed are organized into a

clean geometrical hierarchy. In real turbulence such structures would be deformed and

unrecognizable. However it is clear from many simulations that filamentary vortices

are seen among the small scales of a turbulent flow, and the observations of McKeown

et al. [12, 13] are consistent with a filamentary hierarchy.

One reason for the well-organised hierarchy of our model is that it bypasses the

dynamics of vortical interactions. The only dynamical constraint imposed is that as-

sociated with Kolmogorov’s four-fifths law [1]. Consider the volume average 〈(δu)p〉
for any integer p ≥ 1. The exponents ζp are defined by 〈(δu(r)/U)p〉 ∼ (r/L)ζp .

The four-fifths law implies that ζ3 = 1, this being one of the few exact results for the

inertial range. For discussion and a rigorous proof as a local property of weak solutions

of the Euler equations see [2, 3]. We emphasize that here the constraint is imposed on

a single realization of the cascade, and in that sense it is being taken as a local property

of cascading eddies according to Euler’s equations. However we must pay a price for

the restricted dynamical input. Our cascade will comprise a two parameter family: one

of these parameters can be fixed by bringing the ζp, 1 ≤ p ≤ 10 into agreement with

experimental data. The agreement is remarkably good given that only one parameter

is varied. Other constraints will be discussed below to further narrow the choice of

cascade.
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We shall not be displaying experimental results for the ζp. We shall refer instead to

a simple formula for ζp obtained by She and Leveque [5], which agrees very well with

experimental results for ζp in the range 1 ≤ p ≤ 10:

ζp =
p

9
+ 2

[

1 −
(2

3

)p/3]

. (1)

This formula will be the “target” relation for our model: agreement with the She–

Leveque values is regarded as reasonable agreement with observation, at least for

p ≤ 10. This formula was derived for stationary turbulence on the basis of certain

hypotheses concerning the ratios of moments of the dissipation. It is noteworthy that

the assumptions are based on the idea that the dominant dissipation occurs in filamen-

tary vortex structures.

2 Formulation of a binary branching model

We are interested in filamentary vortex structures with finite kinetic energy. One might

hope, when peering into the inertial range at extremely large Reynolds number, to

find that Navier–Stokes turbulence might exhibit some local order. That is, given a

certain time window, an observer moving with the local mean velocity might be able to

see a few well structured steps of the Richardson–Kolmogorov cascade. Globally, the

complexity is immense, remnants of the cascade having been distorted by long range

vortical interactions. Our attempt here is to model this local order. We need a structure

with well-defined length scales allowing the possibility of a self-similar ordering, as

well as a way of defining an “eddy”. We also need a way in which each structure can

break into two (or more) substructures, in a manner that does the least damage to the

geometry and topology of vortex lines.

The family of structures we use, to build an idealised model, is composed of he-

lices. The equation of one turn of a uniform helix wound on the x-axis is (x, y, z) =
(b cos t, b sin t, ct), 0 ≤ t ≤ 2π. Here we call b the turn radius, and 2πc is the pitch,

equal to the advance along the axis of one turn of the helix. The length of one turn is

2π
√
b2 + c2, and its slope is c/b. Thus in our construction these helices can have vary-

ing radii, pitch and can be wound around any curve, including another helix. Also, as

in the duplication of DNA, a helix can easily split into two sub-helices without having

any intersections. In our model, any one vortex filament of our cascade will be taken

as a tube wound into a helical structure, the tube having a circular core of constant

vorticity and carrying a certain circulation Γ. To secure finite energy, the vortex tube

can be regarded as wound helically around a closed helical curve whose shape will be

determined by the cascade. We will thus be dealing with an “iterated helical tube”. An

eddy associated with the filament will be one turn of this helical structure.

As examples, figure 2 shows two building blocks. In (a) a helix with 6 turns is

wound around its centreline, a circle. This helix could, through instability, throw off

one or more helices wrapped around it, as in (b) which shows a helix with 60 turns

whose centreline is the helix in (a). Clearly such a process involves a new, smaller

length scale, and stretching of vorticity. At the same time averaging over this smaller

scale reveals the presence of the larger scale as well. This is a property of a once
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(a) (b)

Figure 2: (a) A helix withm = 6 turns wrapped around a circle and parameters defined

as in (2) with turn radius b = 0.2, pitch 2πc, c = 1, core radius r = 0.05. (b) A helix

with 60 turns wrapped around the helix in (a), with turn radius b = 0.1, c ' 0.1, core

radius r = 0.03.

iterated helical filament. If we require that a single turn (eddy) of the helix in (b) is

geometrically similar to a single turn (eddy) in (a), in other words in terms of length,

core radius, turn radius and pitch, we have geometrical constraints on our modelling.

These constraints will introduce self-similar structures into the cascade.

To produce a model of a cascade to ever finer scales, we now develop this basic idea

and consider in detail the splitting of a helix into two distinct helices, each carrying a

fixed circulation, the sum of the two being the circulation Γ of the unsplit filament. It

will be useful to think of our filaments as comprised of vortical strands. The splitting

divides the filament into two distinct strands. Each will be similar in geometry to the

starting helix, but not necessarily scaled in the same way, an important distinction. This

splitting is assumed to be instantaneous and the two daughter filaments to twist about

one another but follow the path of the unsplit helix, a process that involves stretching

and intensification of vorticity. It is the twist in the daughter helices which will give

rise to a new iteration of the helix. This process is illustrated in figure 3 in which a

piece of helix in (a) splits to form the two daughter helices in (b, c): these are scaled

differently and so have different widths and different numbers of turns, the thicker one

twists around the parent vortex while the thinner daughter twists about her sister. After

some time each of the the daughter filaments will each split instantaneously into two

granddaughter filaments that twist about the daughter helices or each other, as detailed

below, the two splittings generally occurring at different times. These are shown in

figure 3(d, e), and a further step in (f). This process is then continued indefinitely,

producing, after n steps, 2n filaments of smaller and smaller circulation, and smaller

and smaller length scales. However, the structure will preserve all scales of the cascade.

Each splitting event will occur at a definite time which we shall specify in due course

(the figures show the levels in the hierarchy, not a snapshot in time). We shall also need

to specify how kinetic energy is distributed and flows down the cascade of scales.

2.1 The geometry of splitting

We now summarize how we will set up and evolve the vorticity within such a program.

We consider a single cascade initiated at time zero by a helical filament of circulation

Γ. To have a finite kinetic energy we take the helical filament to be closed and wound

5
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: (a) A piece of root helix, which in (b,c) splits into two daughter filaments

[0], [1], with different amounts of stretching and different scaling factors. To show the

winding of the filaments, in (b) both the parent “ghost” filament and the two daughter

filaments are shown, while in (c) the parent is removed to leave the daughters. In (d)

further splittings create four granddaughter filaments, shown with their parents in (d)

and without in (e). In (e) eight great granddaughters are seen without parents. Note

that the splittings will not generally occur at the same times when the filaments in (d–f)

are generated.
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on a torus as in figure 2(a). This is a bit of an artifice since we are interested in local

interactions. We shall deal with the question of finite energy in section 4.

The equation for the points of the initial filament centreline in Cartesian coordinates

is given by

R(t) = ((R+b cos t) cos(t/m), (R+b cos t) sin(t/m), b sin t), 0 ≤ t ≤ 2πm. (2)

This helix makes m turns on the torus and R = mc is the radius of the torus. We use

b and c as the parameters of the helix and its length is approximately 2πm
√
b2 + c2,

even though it is wrapped around a curve. The circular core of the filament, containing

the vorticity, is taken to have core radius r, and a parameter ε = 1
2r/

√
b2 + c2 will

occur in our analysis of the cascade. We shall denote this initial helical structure by H

and refer to it as the root filament or root helix of our cascade.

We describe the splitting of filaments using a binary notation. H will split into two

helices H[0] and H[1]; we call these the [0] helix and the [1] helix. The circulations of

these two filaments will be Γ[0] = β0Γ and Γ[1] = β1Γ with β0 + β1 = 1. Note that

β0 is the volume fraction of the the [0] helix relative to the root, since at the moment

of splitting the two daughters have the length of the parent. Also recall that λ, with a

subscript 0 or 1 below, will denote a scaling factor for lengths, such as core size and

the extent of one turn of a helix. Following the splitting, we assume that each daughter

filament is stretched uniformly, by factors s0 and s1 respectively. These stretched

filaments will also be closed filaments, with the [0] filament wrapped around the [1]

filament. We emphasize that all vorticity is accounted for in the splitting. Our cascade

preserves vorticity volume and hence does not produce a fractal (but does give what is

sometimes referred to as a fat fractal). Three levels of splitting are depicted in figure 3.

It is at this stage that binary self-similarity is introduced. We specify that one turn

of H[0] will be a copy of one turn of the root helix, but smaller by a factor λ0 (in all

dimensions, including the core size), and similarly for H[1] with factor λ1. Since in

general these scaling factors will not be the same, our model begins to differ signifi-

cantly from the beta model and the general phenomenology of simple (non-statistical)

K41 scaling.

Indeed, taking the stretching to be uniform, it is immediate from the scaling of the

core radii that

λ0 =
√

β0/s0, λ1 =
√

β1/s1. (3)

After stretching and establishment of the similitude, our structure will have m[0] =
ms0/λ0 turns of the [0] helix and m[1] = ms1/λ1 turns of the [1] helix. (Although

in general m[0], m[1] will not be integers, they will be large compared to one and the

nearest integer will be taken as they play a minor role in the computations below.) We

summarize the these scalings as follows:

(Γ, r, b, c,m) →
(

β0Γ, λ0r, λ0b, λ0c,mλ0/s0

)

⊕
(

β1Γ, λ1r, λ1b, λ1c,mλ1/s1

)

.

(4)

The [0] helix now has length 2πm
√
b2 + c2s0, since it has resulted from stretching

the root helix by the factor s0, and has parameters b[0], c[0]. The [1] helix will have

parameters b[1], c[1]. As we have noted, the [0] helix is regarded as wrapped around

the [1] helix.
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We approximate this “helix” around a helix” as a “helix around a large circle of

equal length.” Then we have, approximately

m[0] =
2πm

√
b2 + c2s1

2πc[0]
=

2πm
√
b2 + c2s1

2πλ0c
=
s0
λ0
m. (5)

Therefore s0 > s1 and

b

c
=

√

(

s0
s1

)2

− 1. (6)

Thus b/c, the inverse slope of the helices, is fixed from the stretching parameters

throughout our structure, 2πb > 2πc expressing the excess length needed to turn a

line into a helix.

We shall also specify that the pair of daughter helices, H[0], H[1] are together ori-

ented along the path occupied by what we shall describe as the “ghost” of the root helix

H — the root helix is no longer there, but the daughter helices spiral about the region

it previously occupied. This is important for the retention of the scales of variation of

the vorticity and velocity fields as the cascade proceeds. In effect the pair of daughter

helices should be regarded as merged into a restoration of the parent, when viewed

on the scale of the parent. One way to achieve this is to take the [1] helix as wound

on the ghost of the root helix. Then we would have 2πm[1]c[1] = 2πm
√
b2 + c2 or

s1 =
√

1 + (b/c)2. We have above also taken the [0] helix as wound around the [1]

helix: the figure 3(b) depicts this configuration with the ghost of the parent from (a)

shown, while in (c) only the two daughters are shown. Thus, combined with (6) we

then obtain the geometrical constraint

s21 = s0. (7)

If, similarly s20 = s1, then the H[1] may wrap around H[0]. We shall later see how well

our cascade satisfies these constraints and use them to fix parameters of the model.

We are using the term “helix” rather loosely here, to describe a structure each of

whose components consists in the small of helical turns. The only time we need to

be specific about the geometry is in the calculation of the local transfer of energy, as

discussed in the next section, as well as in the imposition of (7). We emphasize that

in visualizing this cascade it must be kept in mind that our helices are filamentary, i.e.

slender vortex tubes. The degree of slenderness is set by the root helix.

To assess the effect of binary splitting, consider how the velocity scales with eddy

size. Since vorticity increases in each filament by the stretching factor, we have char-

acteristic velocities U [0] =
√
s0β0 U , U [1] =

√
s1β1 U , where U is the characteristic

root velocity. Writing

U [0]/U =
√

s0β0 = λα0

0 , U [1]/U =
√

s1β1 = λα1

1 , (8)

we evaluate for s0 = 1.6, s1 = 1.22, β0 = 0.25, numbers which will appear below,

and obtain α0 = 0.49, α1 = 0.145. These values must be compared to the K41

scaling exponent of 1/3. No single cascade step of the present model, for example

from root to H[0] or root to H[1], will yield this scaling. But we shall see that the
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Root

[1] [0]

[11] [10] [01] [00]

[111][110] [101][100] [011][010] [001][000]

Figure 4: The binary cascade.

present model does give ζ1 = 0.348 for the above parameter values, close to K41. This

emphasizes the importance of averaging over all elements of a cascade which combines

two scaling factors. The point we highlight is that the resulting single scaling exponent

is a statistical quantity, a fact which is widely recognized but not often emphasized

when discussing phenomenology.

The cascade now continues by splitting of the two daughters H[0], H[1] into four

granddaughter helices. The pair H[01], H[00] splits off from H[0], and H[10] and

H[11] from H[1]. Here and below the digits read from left to right give the sequence of

splittings, H[10] being wrapped around H[11]. The scale factors λ0, s0 apply to derive

H[10] from H[1], the scale factors λ1, s1 similarly give H[11] from H[1]. We show in

figure 4 these and subsequent steps in the binary cascade, mirroring the structures in

physical space in figure 3.

3 Kinetic energy of filaments

We are interested in the energy transfers and energy conservation during the idealised

model cascade that we have outlined above. This is nevertheless a complex problem

since an arbitrarily large number of interacting filaments are involved. We shall there-

fore need to invoke a common assumption for the inertial range, namely the localness

of energetic intereactions among the various scales. This requires that the cascade of

energy at scale ` depends primarily on nearby scales, e.g λ−1` [1]. In the present con-

9

Page 9 of 38 AUTHOR SUBMITTED MANUSCRIPT - FDR-101340.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



text, this will mean that only a few filaments will be considered. The energy at a given

scale will be the energy of a finite number of filaments of that scale.

In order to facilitate these calculations, in this section we first focus on the energy

of a single helical filament, and of a pair that are intertwined. Since this is a compact

vorticity field, the flow is irrotational outside of a finite domain in R
3 and so the kinetic

energy E of such a compact vortical structure may be computed from

E =
1

8π

∫∫

ω(x) · ω(x′)

|x − x′| dV dV ′. (9)

This expression is derived under the assumption that velocity decays as r−3 at large

distance.

3.1 A single helix

We shall apply this formula first to the closed, filamentary, helical structures of our

cascade. Consider first the filament with axis given by (2) and core radius r. The

calculation of energy uses a classical regularization to deal with the singularity of the

energy of a vortex line. We give details in appendix A. The energy consists of two parts,

external and internal. Since the filaments are slender, the external part is independent

of the distribution of vorticity in the core. It can therefore be computed assuming that

vorticity is concentrated at the core boundary. The result is

Eext ≈
Γ2m

2

[
∫ ∞

ε

(

b2 cosψ + c2

(4b2 sin2 1
2
ψ + c2ψ2)1/2

− b2 cosψ + c2

cψ

)

dψ

− b2

c
Ci(ε) +

c

2

∫ π

ε/m

cosψ

sin 1
2ψ

dψ

]

, m� 1. (10)

Here
1
2

∫ π

ε/m

cosψ

sin 1
2
ψ
dψ = − log tan(ε/4m) − 2 cos(ε/2m), (11)

and

Ci(z) = −
∫ ∞

z

cos t

t
dt (12)

is the cosine integral.

For constant core vorticity the internal energy is

Eint =
mΓ2

√
b2 + c2

8
(13)

to leading order.

3.2 The interaction energy between two helices

We now consider the interaction energy between the two helices H[0] and H[1] that

result from a splitting. This is obtained from (9) when the x integration is over one

10
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filament and the x
′ integration is over the other. Since the [0] helix is wound on a

[1] helix, and the dimensions of the two, determined by the scaling factors, are of

comparable order, we have a complicated intertwining of curves. We shall model it by

replacing the H[1] helix by a ring of the same length, which then serves as the axis

on which H[0] is wound. We denote the helix with subscript ‘h’ and the ring with

subscript ‘r’. Thus we seek to compute

Einteract =
ΓhΓr

4π

∫ 2πm

0

∫ 2πm

0

th(t) · tr(t′)
|Rh(t) − Rr(t′)|

dt dt′, (14)

where

Rr(t) = (mc cos(t/m), mc sin(t/m), 0), (15)

Rh(t) = ((mc + b cos t) cos(t/m), (mc+ b cos t) sin(t/m), b sin t), (16)

th(t) · tr(t′) = −bc sin t sin[(t− t′)/m] + (c2 + (bc/m) cos t) cos[(t− t′)/m],
(17)

|Rh(t) − Rr(t
′)| =

[

b2 + (2mbc cos t + 2m2c2)
(

1 − cos[(t− t′)/m]
)]1/2

, (18)

for 0 ≤ t ≤ 2πm. We will drop the term involving bc/m in (17) and 2mbc in (18) as

negligible at large m.

At this point the calculation proceeds similarly to the direct energy calculation, and

is in fact simpler. We can divide into inner and outer contributions as follows:

Einteract ≈
ΓhΓr

2π

∫ 2πm

0

dt′
[

∫ Amα

0

c2
√

b2 + c2(t − t′)2
d(t− t′)

+

∫ π

Amα−1

−b sin(t′ +mψ) + c cosψ

2 sin 1
2
ψ

dψ

]

. (19)

We see that the t′ term does not contribute under t′ integration. Thus we obtain

Einteract ≈ ΓhΓrmc
[

log
2cAmα

b
− log

Amα−1

4
− 2

]

= ΓhΓrmc
[

log
8mc

b
− 2

]

.

(20)

We are now able to compute the energy (external plus internal plus interaction) of

our system of H[0] and H[1]. Let the root energy, involvingm turns of the root helix,

be E. We shall want to exhibit the main changes of energy under the cascade, due to

stretching and splitting, so it is helpful to exhibit these by writing E = mΓ2cF (m),
with dependence of F on the invariant b/c understood. The dependence of F upon

m is rather weak, since it occurs in the logarithmic divergence associated with a long

filament. Let H[0], involvingm[0] turns, have energy E[0] = β2
0λ0Γ

2cm[0]F (m[0]) in

isolation, and similarlyE[1] = β2
1λ1Γ

2cm[1]F ([m[1]) for H[1]. Finally letEinteract =
β0β1λ0cm[0]Finteract(m[0]) be the interaction energy of m[0] turns of H[0] in the

presence of a ring filament with the properties of H[1], and whose length is that of

H[1]. Then the ratio of total energy of this system to the root energy is given by

Etotal/E = s0β
2
0F (m[0])/F (m)+s1β

2
1F (m[1])/F (m)+s0β0β1Finteract(m[0])/F (m).

(21)
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Here the factors s0,1 come from a product of the scaling by λ0,1 in the size of one turn

of the helix, and the scaling by s0,1/λ0,1 of the number of turns of the helix. If we

write the right-hand side of (21) as e[0] + e[1] + e[0, 1] ≡ et, then conservation of

energy for this single step in the cascade is expressed by et = 1. We shall make use of

this formula for et in section 4 to validate the approximate conservation of energy in

the splitting of a helical filament.

4 A model of the inertial range in stationary turbulence

In this section we develop in detail the averaging of (δu)p over our branching, helical

model of the inertial range. Our aim is to calculate the structure function exponents ζp
and to determine the parameters of the model which yield ζp in good agreement with

experiment. We shall also consider the energy balance at a given step of the cascade.

To avoid clutter we will replace the normalising dimensional quantities L and U by

unity in much of what follows.

In the model the turns of helical filaments (our eddies) have scalings of size of

the form λk
0λ

n−k
1 at step n, with 0 ≤ k ≤ n. The individual filaments have well

defined lifetimes, of the form s−k
0 s

−(n−k)
1 , that is, proportional to the inverse vorticity

in each core. The volume of a filament scales as βk
0β

n−k
1 . In stationary turbulence, we

must be careful to differentiate the lifetime of a filament from the time of existence of a

particular scale of variation of the filament. Even as the splitting has proceeded down to

the Kolmogorov scale, the root structure, now involving many internal scales, remains,

as do the sub-filaments on all scales. For example in figure 3(f) the region occupied

by the great granddaughter filaments still outlines the original root filament in (a). In

essence we must keep separate the size of eddies and the size of the various structures

they comprise. These structures can be identified by sampling of the ensemble at a

particular resolution. Once eddies are removed at the dissipation scale, root energy is

maintained to sustain the stationary state. It is at this point that the external supply is

manifest, as a renewal of energy in a new root filament.

We assume that all cascades are identical so we may restrict attention to the average

over a single cascade. The time of appearance of a filament is not needed to compute

our average, but will be of interest below when we consider a model of freely decaying

turbulence. Since we are interested in the average of (δu)p, we note that at step n of

the cascade, in each of the various structures labelled by k, (δu)p scales as

(δu)p ∼ Up(β0s0)
pk/2(β1s1)

p(n−k)/2, k = 0, 1, . . . , n. (22)

Our goal now is to calculate the structure function

Qp(r) = 〈(δu)p〉 ∼ rζp (23)

as a function of scale r, and so the exponent ζp, by averaging over our hierarchy of

structures with different scales and strengths. Let us select a scale r and consider the

contribution to Qp(r) from structures in our hierarchy: those whose scale λk
0λ

n−k
1 is

approximately r will contribute toQp(r). Obviously r is a continuous variable whereas
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Figure 5: Eddies contributing to an average at a scale r for λ0 < λ1. For level n in

the hierarchy between n− ≤ n ≤ n+ there are contributions from eddies of scale, say

` = λk
0λ

n−k
1 for k = k(r, n) values given by (24).

we have a set of discrete scales labelled by n, the level in the hierarchy, and k giving

the various branches with a suitable binomial weight.

Let us suppose for definiteness that λ0 < λ1 and take a small scale r � 1. Then for

small n all the structure scales λk
0λ

n−k
1 for varying k will be significantly larger than

r, and for large n they will all be much smaller. There will be a range of levels n, say

n− ≤ n ≤ n+ for which λn
0 ≤ r ≤ λn

1 and at these levels structures for some k values

will contribute to the average. Specifically these are the k for which r ' λk
0λ

n−k
1 or

equivalently

k ' log r − n logλ1

log(λ0/λ1)
. (24)

Typically it would be a range of nearby k values contributing, but a range that would

not change as we vary r and n, since the scales of the individual contributions to the

correlation function go down geometrically.

Up to the multiplicative constants that we are ignoring in this type of scaling argu-

ment, we can take for each r and n the single structure with k rounded in (24) to the

nearest integer. The contributions to a given scale r are shown schematically in figure

5. We need to sum these contributions, over the appropriate values of k and n. First

though we consider a special situation in which λ0 = λ1 and the calculation is easier.

4.1 The self-similar case λ0 = λ1 ≡ λ

This special case is of interest because of its simplicity. The geometry of the struc-

tures is the same whether they are generated by splitting into a [0] daughter or a [1]

daughter; however the two branches are still not equivalent as we allow β0 6= β1 and so

s0 6= s1: structures can be stretched by different amounts and so at each level n of the

hierarchy we have structures that have the same scale but different vorticity intensities

and so different contributions to the structure functionQp(r). In the following we will
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often refer to scaling factors by the name of the quantity they scale, again effectively

setting the root scales U , L equal to unity. The structures of size r = λn may now be

identified with a given step n. These structures are space filling (have the total volume

of the root filament), but appear at different times and have different lifetimes, of order

s−k
0 s

−(n−k)
1 , before breaking into smaller structures.

We shall compute ζp by imposing the four-fifths condition ζ3 = 1. The latter

follows from the vanishing of a dissipation scaling parameter at p = 0, which is a

consequence of the assumption that the support of dissipation is finite in the limit of

zero viscosity; see [5]. This condition also results from the independence of volume on

the scale of the structures involved.

We now have the link λ =
√

β0/s0 =
√

β1/s1 and we recall that velocity scales

like λs0 or λs1 as we create [0] or [1] helices. We compute (δu)p by integrating

(β0s0)
pk/2(β1s1)

p(n−k)/2 over the volume occupied by the structures of size r = λn,

namely βk
0β

n−k
1 , multiplying by the number of such structures, and summing over k.

Thus we have

Qp(r) = 〈(δu)p〉 =

n
∑

k=0

(

n

k

)

βk
0β

n−k
1 (β0s0)

pk/2(β1s1)
p(n−k)/2 (25)

=
[

λ−p(βp+1
0 + βp+1

1 )
]n ∼ rζp = λnζp . (26)

The four-fifths law then implies

λ = λ−3(β4
0 + β4

1 ), (27)

or λ = (β4
0 + β4

1)1/4, with s0,1 = β0,1/λ
2. Thus

ζp =
log(βp+1

0 + βp+1
1 )

log(β4
0 + β4

1 )1/4
− p. (28)

We show in figure 6 this result for the optimal β0 = 0.438 or 0.562. Taking β0 =
0.562 we have s0 = 1.52, s1 = 1.18. The other values of β shown in the figure

illustrate what we shall find occurs more generally. For β less than optimal, the ζp are

too low. For larger values, the results lie close to K41. What is remarkable is how close

we fall to the She–Leveque result at the optimal β. We note that once the constraint of

equal λ = λ0 = λ1 is relaxed, there will be a second free parameter (which we shall

take to be s0). Optimization is then over two parameters. An important condition of

the cascade in stationary turbulence is that the flux of energy be constant. Here, we

must sum for each daughter the volume fraction times velocity squared divided by a

time, the latter being the inverse vorticity. Thus in terms of scaling factors the quantity

ε̄ = β2
0s

2
0 + β2

1s
2
1 (29)

should be unity. Since here s0,1 = β0,1λ
−2 we indeed find (β4

0 + β4
1)λ−4 = 1. Note

this constraint is equivalent here to the four-fifths law (27) since λ2 = β0,1/s0,1

We also point out the connection made here to a single cascade. The case β0 = 0.5
shown in figure 6 yields K41. But then, again since s0,1 = β0,1λ

2, we have s0 = s1.

Thus all the daughter filaments are equivalent. This is the only example within our
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Figure 6: ζp using (28) with optimal β0 = 0.438 or 0.562 (circles), with λ = 0.608.

Also we show results for β = 0.4 or 0.6 (squares), and β = 0.5 (diamonds). The solid

line is the She–Leveque result, the dashed line K41.

model of a single cascade. It yields K41 scaling for all p with β = 1/2, s =
√

2, λ =
8−1/4 = 0.5946. The [0] helix cannot now wrap around the [1] helix. So a different

structure is needed, for example taking both helices wrapped around the centerline of

the parent but out of phase by half a turn.

4.2 The general case λ1 6= λ0

We now consider the general case where λ1 6= λ0 and structures at each level n of

the cascade have varying scales. Bearing in mind the binomial weight and arguing as

above, each set of branches labelled by k and n contributes an amount that scales as

(

n

k

)

βk
0β

n−k
1 (β0s0)

pk/2(β1s1)
p(n−k)/2 (30)

to Qp(r) at the scale r = λk
0λ

n−k
1 . We take the cascade to continue to an arbitrary

number of levels n → ∞, for this calculation relevant to the inviscid limit. Of course

in reality the smallest filamentary scale is fixed at the Kolmogorov scale. We first give

an approximate argument that gives numerical values for the scaling exponents ζp for

Qp(r) ∼ rζp . We will then refine the discussion below in section 4.3.

First, let us generalise to some general measurement Q(r) and let Qλ be the scaling

factor linked to an eddy of size scaling factor λ, so that the contribution in (30) above

becomes
(

n

k

)

(β0Qλ0
)k(β1Qλ1

)n−k. (31)

If we look at the contribution to Q from all structures at level n for all k, that is the
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contribution to Q(r) integrated over all scales r, this is

(β0Qλ0
+ β1Qλ1

)n =

n
∑

k=0

(

n

k

)

(β0Qλ0
)k(β1Qλ1

)n−k (32)

= (β0Qλ0
+ β1Qλ1

)n
n

∑

k=0

(

n

k

)

fk
0 f

n−k
1 , (33)

where

f0 = β0Qλ0
/(β0Qλ0

+ β1Qλ1
), f1 = β1Qλ1

/(β0Qλ0
+ β1Qλ1

). (34)

Now the inertial range analysis in terms of the exponents ζp is in the limit r → 0.

One might therefore simplify the calculation of the exponents by taking n large and

just considering the contributions from the single level n. The binomial distribution

will then be sharply peaked and we can make use of the normal approximation to the

binomial distribution,

(

n

k

)

fk
0 f

n−k
1 ≈ 1√

2πnf0f1
e−(k−nf0)

2/2nf0f1 . (35)

The peak contribution toQ from structures at level n comes from a scale r = λnf0

0 λnf1

1 .

The approximation then consists of equating the total contribution (32) to Q, to the

value of Q(r) at this dominant scale r; in other words we set

Q(r) = (β0Qλ0
+ β1Qλ1

)n, r = λnf0

0 λnf1

1 . (36)

The scaling exponent ζQ linked toQ(r) is then defined by

β0Qλ0
+ β1Qλ1

= ΥζQ , Υ = λf0

0 λ
f1

1 , (37)

where f0, f1 are determined by the quantity being averaged through (34), giving ex-

plicitly

ζQ =
(β0Qλ0

+ β1Qλ1
) log(β0Qλ0

+ β1Qλ1
)

β0Qλ0
logλ0 + β1Qλ1

logλ1
. (38)

For velocity structure functions, Qλ0
= (β0s0)

p/2, Qλ1
= (β1s1)

p/2, for p =
1, 2, 3 . . . ., with now ζQ = ζp. In particular the four-fifths law may now be stated as

β
5/2
0 s

3/2
0 + β

5/2
1 s1

3/2 = Υ = λ

β
5/2

0
s
3/2

0

β
5/2

0
s
3/2

0
+β

5/2

1
s1

3/2

0 λ1

β
5/2

1
s1

3/2

β
5/2

0
s
3/2

0
+β

5/2

1
s1

3/2

. (39)

Recall that λ0 =
√

β0/s0, λ1 =
√

β1/s1 and β0 + β1 = 1. Thus (39) amounts to a

relation between β0 , s0, s1. In figure 7 we show this relation. In general to compute

structure coefficients we choose β0, s0, β1 = 1 − β0, find the s1 which enforces the

four-fifths law, and then for fixed β0 vary s0 until we obtain good agreement with the

She–Leveque formula in a suitable norm; here and below we use the l2 norm, that is

the root mean square, but very close results are obtained with the l1 norm. We thus
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Figure 7: s1 as a function of s0, as determined by solving (39) to satisfy the four-

fifths law. The curves, in descending order of their intercepts with the s1 axis, are for

β0 = 0.7, 0.5, 0.3, 0.2. The dashed line is the curve s1 = s0/(s0 − 1).

obtain a one-parameter family of “optimal” cascades with parameter β0. We also see

from figure 7 that the inequality s0 + s1 > s0s1 is easily satisfied for the values we

use. We shall make use of this inequality in section 5.

The above calculation of scaling exponents, yielding (38), is approximate as the

peak contribution to Qp(r) is not quite at the value of n determined above; however

values obtained for key quantities are correct to a few percent. We give a more detailed

calculation, which includes the correction to the peak contribution below, in section

4.3. For simplicity, in the tables and figures that follow we use results only from the

later, improved calculation.

Our results are shown in table 1 and figure 8, and surprisingly we find two solution

branches of acceptable cascade models. Figure 8(a) shows values of s0 as solid blue/red

curves for the lower/upper branches, as functions of β0. The dashed curves show the

corresponding values of s1: note that the solution branches are related by the reflection

symmetry in the line β0 = 1
2

, that is β0 ↔ β1, s0 ↔ s1. The fit to the She–Leveque

scalings exponents is excellent for both branches, with the l2 (rms) error depicted in

figure 8(b). The remarkable agreement suggests that our models realise physically the

assumptions underlying the She–Leveque result.

Further analysis of the two branches is given in table 1. For the lower branch (the

values below the middle horizontal line, blue curve in figure 8), we rejected larger

values of s0 as giving an extremely tight [0] helix (m[0]/m ≈ 16 when s0 = 3).

For the upper branch (values above the line, red curve in figure 8), we did not find

solutions below β0 ≈ 0.33. Note the last two columns, for s0/s
2
1 and s1/s

2
0, eliminate

the upper branch if one of the daughter helices is to wrap around the other; see the

discussion around (7). On the lower branch, these constraints allow two values of β0,

one slightly smaller than 0.25, the other at 0.41, with alternate wrapping of the two

daughter helices. These values then determine the bimodal cascades of choice in this
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Figure 8: Branches of solutions parameterised by β0 that have ζ3 = 1 and good agree-

ment with the She–Leveque values of ζp. In (a) s0 (solid) and s1 (dashed) are depicted,

with blue showing the lower branch and red the upper branch. (b) shows the l2 norm

error in the scaling exponents ζp for p = 1, 2, . . . , 10, for each branch.

Table 1: Calculation of ζp with different values of λ0,1 and optimal choice of β0,

s0, using the large deviation calculation in section 4.3, in particular (54). Here α0,1 =
log(

√

β0,1s0,1)/ logλ0,1 from (8) are the scaling exponents for velocity for the cascade

branches having subscript 0 or 1. In the table the upper branch is above the lower

branch.

β0 s0 s1 ζ1 ζ2 λ0 λ1 α0 α1 s0/s
2
1 s1/s

2
0

0.50 1.655 1.123 0.365 0.697 0.550 0.667 0.158 0.714 1.313 0.410

0.48 1.704 1.107 0.365 0.697 0.531 0.685 0.159 0.731 1.391 0.381

0.45 1.783 1.085 0.367 0.698 0.502 0.712 0.160 0.760 1.515 0.341

0.42 1.872 1.065 0.368 0.699 0.474 0.738 0.161 0.792 1.650 0.304

0.38 2.009 1.042 0.369 0.700 0.435 0.771 0.162 0.841 1.849 0.258

0.35 2.127 1.027 0.371 0.701 0.406 0.796 0.164 0.883 2.017 0.227

0.33 2.216 1.018 0.372 0.702 0.386 0.811 0.164 0.915 2.139 0.207

0.50 1.123 1.655 0.365 0.697 0.667 0.550 0.714 0.158 0.410 1.313

0.45 1.169 1.546 0.363 0.696 0.621 0.596 0.673 0.157 0.489 1.132

0.41 1.213 1.471 0.368 0.695 0.582 0.633 0.645 0.155 0.561 1.000

0.37 1.264 1.403 0.360 0.694 0.541 0.670 0.618 0.154 0.642 0.878

0.33 1.326 1.342 0.359 0.692 0.499 0.707 0.594 0.153 0.737 0.763

0.31 1.362 1.314 0.359 0.692 0.477 0.725 0.582 0.153 0.789 0.708

0.28 1.424 1.274 0.358 0.691 0.443 0.752 0.566 0.152 0.878 0.628

0.25 1.497 1.237 0.357 0.690 0.409 0.779 0.549 0.151 0.979 0.552

0.23 1.554 1.213 0.356 0.690 0.385 0.797 0.539 0.150 1.056 0.502

0.21 1.619 1.191 0.355 0.689 0.360 0.815 0.528 0.150 1.142 0.454

0.18 1.737 1.158 0.354 0.688 0.322 0.841 0.513 0.149 1.294 0.384
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model.

4.3 Large deviation calculation of scaling exponents ζp

While this calculation in the previous section leading to the formula (38) for ζp is useful

for exploring the parameter space of cascades, it makes a small error of a few percent

in the s0,1, though increasing for the smaller β0 values on the lower branch. The reason

for the error lies in the contributions from multiple levels of the cascade to the eddy

size r. It might be thought that these would be negligible at large n. However the sharp

peak in the binomial distribution forces contributions below the largest n to lie in the

tails of the distribution. This requires an application of large deviation theory and use

of Stirling’s formula in the binomial coefficients.

We now describe this precise calculation of scaling exponents for large n over a

range of cascade levels. If we fix a scale r � 1 then contributions to Q(r) will come

from a range of levels n, those for which λn
0 ≤ r ≤ λn

1 or n− ≤ n ≤ n+, taking

λ0 < λ1 without loss of generality. For each level n where there is a contribution, this

will arise from structures labelled by k with r ' λk
0λ

n−k
1 (or nearby values of k), as

depicted in figure 5. Thus, as far as we need for a scaling argument we can write

Q(r) =

n+
∑

n=n−

(

n
k

)

(β0Qλ0
)k(β1Qλ1

)n−k

∣

∣

∣

∣

k=k(r,n)

(40)

with

k(r, n) = round

[

log r − n logλ1

log(λ0/λ1)

]

; (41)

as we vary n we are also varying k to maintain a fixed scale. Setting b0 = β0Qλ0
,

b1 = β1Qλ1
for brevity, we first use Stirling’s formula to write

(

n
k

)

bk0b
n−k
1 =

1

(2πn)1/2(k/n)1/2(1 − k/n)1/2
expF (n), (42)

F (n) = n logn− k logk − (n− k) log(n − k) + k log b0 + (n− k) log b1. (43)

We are now able to replace k and n by continuous variables linked by

k(r, n) = σ0n+ γ, n − k = σ1n− γ, (44)

where

σ0 = − logλ1

log(λ0/λ1)
, σ1 =

logλ0

log(λ0/λ1)
, γ =

log r

log(λ0/λ1)
, (45)

noting that σ0 + σ1 = 1. With k linked to n via (44), we then have that

Q(r) =

∫ ∞

−∞

expF (n)

(2πn)1/2(k/n)1/2(1 − k/n)1/2
dn, k = k(r, n). (46)
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The contribution is peaked around the maximum of F (n) at say n = n̄, in other words

where

F ′(n̄) = log n̄− σ0 log(σ0n̄+ γ) − σ1 log(σ1n̄− γ) + σ0 log b0 + σ1 log b1 = 0,
(47)

and we have

F (n̄) = [log(λ0/λ1)]
−1

[

− log[(σ0 + γ/n̄)/b0] + log[(σ1 − γ/n̄)/b1]
]

log r. (48)

In a scaling argument we can ignore algebraic prefactors and focus on the exponential

dependence on F , to yield

Q(r) ∼ expF (n̄) ∼ rζQ . (49)

To tidy this up, set

n̄/ log r = δ−1, ` = log(λ0/λ1), (50)

and then in a calculation of a scaling exponent we first obtain n̄ or equivalently δ, which

means solving

− logλ1 log[(δ − logλ1)/b0`] + logλ0 log[(logλ0 − δ)/b1`] = 0 (51)

for δ, and then substituting to obtain

ζQ = `−1
[

− log[(δ − logλ1)/b0`] + log[(logλ0 − δ)/b1`]
]

. (52)

These two equations are linear in the terms involving the logarithm of δ and other

quantities; these may be solved and then δ eliminated to leave

b0λ
−ζQ

0 + b1λ
−ζQ

1 = 1. (53)

For any choices ofλ0,1 and b0,1 = β0,1Qλ0,1 giving the quantityQwe wish to measure,

this is the implicit equation for ζQ.

For the case of the Qp and exponents ζp we have b0,1 = β
p/2+1
0,1 s

p/2
0,1 , λ0,1 =

(β0,1/s0,1)
1/2 and so this becomes

β
(p−ζp)/2+1
0 s

(p+ζp)/2
0 + β

(p−ζp)/2+1
1 s

(p+ζp)/2
1 = 1. (54)

Imposing ζ3 = 1 gives a particularly straightforward equation, namely

β2
0s

2
0 + β2

1s
2
1 = 1, (55)

giving s1 explicitly in terms of s0 and β0 and making ε̄total = 1. We thus have es-

tablished exact constancy of energy flux when Qp(r) is determined precisely. We note

that, when λ0 = λ1 = λ, (54, 55) yield our previous results for this special case. This

is not surprising since (54, 55) are precise for large n and the special case applies to

any n.
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Figure 9: log ζp versus log p for β0 = 0.23. The dotted line gives the She–Leveque

results. The dashed line is the asymptotic approximation (56).

It is of interest to explore the asymptotics of ζp for large p in our model. Then

one or other of the terms on the left-hand side of (54) becomes negligible, giving the

approximation

ζp ' min
i={0,1}

[

1
2p log(βisi) + logβi

]

/ logλi. (56)

For example, for β0 = 0.23 and the values in table 1 the minimum is obtained always

for i = 1. In figure 9 we compare our values for ζp with She–Leveque and with the

above approximation, out to p = 30. There is no indication of saturation and our model

gives an apparent asymptote somewhat steeper than She–Leveque. It is interesting that

it is the parameters with subscript 1 which control the asymptote. This highlights

the competition between the two branches of the cascade, giving rise to the nonlinear

dependence of ζp upon p.

4.4 Remarks

We emphasize again the special features of this binary cascade. The two values of

αi, which are the velocity scaling exponents for the two branches of our model, from

(8), are distinct from K41, although the overall velocity scaling exponent ζ1 is close to

it. We suggest that our model is but one example of a cascade with multiple scalings

of velocity. The K41 values in these models would be entirely statistical. It is also

interesting that ζ1 and ζ2 tend to lie above K41, a feature that has been observed for

low-order structure exponents [14]. Also, although we have two parameters to adjust

for agreement with experimental results, the range of permissible values is rather small.

If the geometric conditions s0 = s21 or s1 = s20 are imposed, we have seen that this will

fix β0 as close to either 0.25 or 0.41.

One of the tenets of turbulence phenomenology is the “localness of eddy interac-

tions”. That is, the cascading of eddies of a particular scale is not significantly affected

by eddies of much larger or much smaller scale. Our approximate calculation dealt
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with eddies of a particular “effective” scale Υ, realized at a given level n. Thus this

is a very local calculation, and incurred some error. We propose that the corrections

for large deviation can be regarded as an assessment of non-local effects on the cas-

cade. Another approach to non-localness, through the flux of kinetic energy down the

cascade, is considered next.

We have not in our model dealt with the helicity of the cascade. Euler flows con-

serve total helicity, a measure of the knottedness of vortex lines [16], Contributions

to helicity come from both the winding of one filament around another, and from the

winding of vortex lines within a filament, the latter being associated with axial flow

within the filament. Helicity is thus an invariant which is quite sensitive for the dynam-

ics as well as the kinematics of vorticity. We point out that our winding of one filament

around another involves a choice of orientation, and this is immaterial to the scaling

calculations of this paper. Also we believe these calculations are actually insensitive

to the underlying basic structure, so long as there is stretching and the formation of a

succession of self-similar scales. A revisiting of the energy involved would be needed

however. An alternative to the helix could be a configuration of rings encircling the par-

ent filament. The rings might alternate in orientation, which is close to the structures

observed in [12, 13], see [4]. Other windings which conserve helicity are possible. For

these reasons we propose that conservation of helicity is not a determining constraint

on the calculations given in this paper, although it is an essential part of the dynamics.

4.5 Conservation of energy

Kinetic energy is a dynamical quantity, and our model is almost free of dynamical in-

put. The kinematics of vorticity can yield accessible vortex structures but cannot yield

the energy of a free vortex system moving under self-induction. We have considered

in section 3 approximations relevant to the energy of a static system of two helical

filaments. We can thus compare the energy of filament H with the energy of the split

system of two fixed filaments H[0], H[1], including their interaction energy. We shall

apply these computations now to see how well energy is conserved.

We make use of (21) in section 3.2, involvingE, the energy of the unsplit filament,

E[0], E[1], the energy of the two daughters, and E[0, 1], the interaction energy, as

well as the energy fractions e[0], e[1], e[0, 1] defined there. Recall that the quantity

et = e[0] + e[1] + e[0, 1] should therefore be unity if the energy of the split system

is the same as that of the unsplit filament. In our approximate calculations, we have

considered this splitting process in the absence of other elements of the cascade, thus

neglecting interaction energies with these filaments. We show in table 2 the results of

that calculation, for the cases (from the lower b ranch) displayed in table 1.

We see that the splitting of the isolated H filament formally requires some energy,

since et > 1. This discrepancy might be attributed simply to the approximate nature of

the model filaments used. However it is important to recognize that another possibly

significant error is the failure to account for the interaction our starting filament, with

its sibling. If we allocate this interaction energy to each sibling in proportion to their

energies, and if the resulting corrected energies sum to unity, in effect each energy is

divided by their sum. To account for this in the calculations of table 2, we should obtain

a corrected et by multiplyinget by e[0]+e[1]. We denote this corrected value by e∗t , and
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Table 2: Calculations relevant to energy conservation of a filament H and daughters

H[0] and H[1], withm = 10, ε = 0.01. The values in table 1 having s0 > s1 are used.

β0 s0 s1 b/c m[0]/m m[1]/m e[0] e[1] e[0, 1] et e∗t ε̄total

0.31 1.362 1.314 0.274 2.855 1.813 0.152 0.682 0.414 1.247 1.039 1

0.28 1.424 1.274 0.500 3.211 1.694 0.1301 0.711 0.354 1.195 1.006 1

0.25 1.497 1.237 0.683 3.663 1.588 0.111 0.740 0.318 1.169 0.995 1

0.23 1.554 1.213 0.801 4.039 1.522 0.098 0.760 0.298 1.156 0.992 1

0.21 1.619 1.191 0.922 4.495 1.461 0.086 0.780 0.279 1.144 0.990 1

0.18 1.737 1.158 1.117 5.396 1.377 0.068 0.810 0.251 1.128 0.990 1

show it in table 2. These values are indeed close to unity and so we propose that there

is reasonable evidence that the splitting process is consistent with energy conservation.

In section 5.3 we shall explicitly assume this, by taking e[0, 1] = 1 − e[0] − e[1] to

calculate energy flow through the cascade.

4.6 Probability density function (p.d.f.) of the vorticity

It is of interest to see what our bimodal model yields in terms of a probability dis-

tribution function of velocity differences, measured here by the vorticity within our

filaments. That is, we shall simply define a δu as the length scale of the filament times

the vorticity of the filament. We stipulate that We shall further assume that filament

vorticity among cascades is symmetric in sign so that the p.d.f is symmetric. This is

not simply related to any conventional p.d.f. of a signed δu, involving velocity compo-

nents parallel or perpendicular to the vector of separation and not symmetric in sign,

but could model the p.d.f. of |δu|.
To make this particularly simple we assume λ0 = λ1 to that at a given level of the

cascade all eddies have the same scale and so the spread of the distribution comes from

the bimodal distribution of vorticity. We take β = 0.562, s0 = 1.52, s1 = 1.18. We

compute the p.d.f. for vorticity and normalize to obtain the p.d.f. for this definition

of velocity differences. We show the result in figure 10. It has the characteristic non-

Gaussian shape of the observations. The decrease for small values of δu is real for

our model, and we regard it as a feature of “inviscid turbulence”. These eddies would

normally lie in the dissipation range and have a Gaussian structure. If λ0 6= λ1 we

expect the tails of the distribution to broaden, assuming the the cascade is cut off at the

same scale.

5 Timing and the loss of energy

We turn now to the study of a single cascade as an initial value problem starting from

the root filament. Our object is to calculate the flow of energy through our cascade, as

well as the time associated with each splitting event. This will allow us to determine the
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Figure 10: The velocity p.d.f. for velocity differences δu = `ω for the case λ0 = λ1,

β0 = 0.562, s0 = 1.52, s1 = 1.18, calculated for levels n up to N = 30.

disappearance of kinetic energy into arbitrarily small spatial scales in the inviscid limit.

We shall say that energy delivered to the smallest scale, which can be arbitrarily small

in the inviscid limit, “dissipates”. The implication is that the energy will be removed

by viscous dissipation, the time of delivery of the energy being the time of initiation

of dissipation. The time history of the actual process of dissipation is another matter,

which we take up briefly at the end of this section.

5.1 Timing

In this section times will be in the units of the inverse root vorticity L/U = ω−1
0 ,

and we will assume that s0 > s1. Consider first the times of the cascade steps. We

shall focus on the inviscid limit and we shall show that as n → ∞ every filament has

a specific time of formation. These times will be distributed over a finite temporal

window where energy is dissipated. This sequence of times will thus determine the

decay history of energy in the inviscid limit.

We assume that the steps of the cascade take a time inversely proportional to the

vorticity of the filament being formed. Let τ be the dimensionless time, and κ the

filament vorticity in units of the root vorticity. We introduce the splitting map

(κ, τ ) →
(

s1κ, τ +
Λ

s1κ

)

⊕
(

s0κ, τ +
1

s0κ

)

. (57)

We have introduced only one time adjustment factor Λ since there is an arbitrary unit of

time. Introducing Λ1, Λ0 leads to a calculations involving only Λ1/Λ0. This parameter

is needed to account for the binary cascade, each splitting producing two different

structures. Their interaction could then affect how each filament evolves to the next

splitting.

We can also express this map in terms of operators O1,0 defined by

O1(κ, τ ) =
(

s1κ, τ +
Λ

s1κ

)

, O0(κ, τ ) =
(

s0κ, τ +
1

s0κ

)

. (58)
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These are commuting operators if and only if Λ(s0 − 1) = (s1 − 1). Thus n steps of

the cascade can be represented by

(O1 ⊕O0)
n, (59)

as an ordered product.

We summarize now the various orderings satisfied by s0, s1, as they will be needed

below:

s1 > 1, s0 > 1,
s1 − 1

s0 − 1
<
s1
s0

< 1, s0 + s1 − s0s1 > 0. (60)

The first two express our assumption that thin filaments will always be stretched. The

middle inequalities follow from the need to stretch the [0] helix in order that it wrap

around the [1] helix. The last inequality expresses results of the computations within

our model: it is found to be easily satisfied for the parameter values used, as indicated

in figure 7.

Referring to figure 4, we start at the root with (κ, τ ) = (1, 0). Then H[1] cor-

responds to state O1(1, 0) = (s1,Λ/s1) and H[01] to (s1s0, 1/s0 + Λ/(s1s0). Time

ordering will be indicated by � or ≺. Thus H[11]�H[10] if and only if Λ/s1+Λ/s21 ≥
Λ/s1 + 1/(s0s1), which here amounts to Λ/s1 ≥ 1/s0. In fact if the latter ordering

holds then at any step we will have H[b1] � H[b0] for any binary b, i.e. it holds for all

pairs of filaments with a common parent. What about other adjacent filaments? For ex-

ample H[10] � H[01] iff Λ/s1+1/(s0s1) ≥ 1/s0+Λ/(s1s0), or (s1−1) ≤ Λ(s0−1).
We thus see the relevance of the inequalities in (60)

Turning to the inviscid limit, consider the filaments H[0] and H[1], where the line

over a binary sequence means continuation periodically of the digit(s) beneath. We

have

H[0] =
1

s0
+

1

s20
+ · · · = 1

s0 − 1
, H[1] =

Λ

s1 − 1
. (61)

The ordered pair H[1], H[0] determines what we call the root branch. A branch B(b)
will consist of an ordered pair of the form H[b1], H[b0]. Thus a branch is an inverted

V with vertex determined by the binary numbers b. As we progress down the tree on

B(b) we can define each subsequent V as a sub-branch SB(b) of B(b).
The time span of the branch will be the difference in times between two limbs

extended to infinity. We write this as
[

H[b1], H[b0]
]

. Thus

[

H[1],H[0]
]

=
Λ

s1 − 1
− 1

s0 − 1
≡ T (62)

is the time span of the root branch.

Referring to figure 11, consider the sub-branches of the root SB[0] = (H[01],H[0])
and SB[1] = (H[1],H[10]). We have

[

H[1],H[10]
]

=
Λ

s1 − 1
− Λ

s1
− 1

s1(s0 − 1)
=

T

s1
. (63)

Similarly
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root

A B

H[1] H[10] H[01] H[0]

A

H[1] H[10]H{110] H[101]

Figure 11: A representation of filament times. Here the dashed extensions indicate

continuation to infinite steps. The lower tree is a branch of the upper one.
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[

H[01],H[0]
]

=
T

s0
. (64)

Carrying this one step further we find

[

H[1],H[110]
]

=
T

s21
,

[

H[101],H[10]
]

=
T

s1s0
. (65)

These are the two sub-branches SB[11] and SB[10] emanating from point A in figure

11. From point B of the figure (not the root branch label) we similarly have, for the

sub-branches SB[01], SB[00]

[

H[01],H[010]
]

=
T

s0s1
,

[

H[001],H[0]
]

=
T

s20
. (66)

The pattern should be now clear. A binary distribution of factors in s−1
0 , s−1

1 of

the time span of the root branch apply to the sub-branches. Since at every step, each

filament terminates at one end of a branch, we can determine the sequence of times

provided we know the temporal separation of branches.

We thus introduce gaps. The root gap is the ordered pair G = (H[10],H[01]).
We see that this pair consists of the right limb of SB[1] and the left limb of SB[0].
The gap referred to is the gap between these two sub-branches. Proceeding down

the tree, in general a sub-gap SG[b] consists of an ordered pair of the form G[b] =
(H[b10],H[b01]).

We are interested in the time interval associated with a gap. The time interval of

the root gap is

[

H[10],H[01]
]

=
Λ

s1
+

1

s1(s0 − 1)
− 1

s0
− Λ

s0(s1 − 1)
= −DT

s1s0
, (67)

where D = s0 + s1 − s0s1 > 0. We now note that a sequence of binomial factors in

s−1
0 , s−1

1 will apply also to gaps. For example the sub-gaps SG[1] and SG[0] have time

intervals

[

H[110],H[101]
]

= − DT

s21s0
,

[

H[010],H[001]
]

= − DT

s1s20
. (68)

Thus the time spans of adjacent branches overlap, irrespective of the sign of T . For

example the time spans of B[1] and B[0] sum toT (1/s1+1/s0) > T with gap T (1/s1+
1/s0 − 1).

If Λ > (s1 − 1)/(s0 − 1) then the first filament dissipated is the last [0] filament,

which seems reasonable physically. But the value of Λ cannot be determined within

our model. If Λ < (s1 − 1)/(s0 − 1) the last [1] filament formed dissipates first.

5.2 The commutative case Λ = (s1 − 1)/(s0 − 1)

We now show that for this limit case all time spans shrink to zero and all filaments

terminate together. To see this, select a large value of n and select any path through the
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cascade, up to level n. Because O1 and O0 commute, we can compute the time from

the operator Ok
0On−k

1 for some k, 0 ≤ k ≤ n. The time so computed is then given by

τn ≡ Λ

s1 − 1
(1− s

−(n−k)
1 )+

1

s0 − 1
s
−(n−k)
1 (1− s−k

0 ) =
Λ

s1 − 1
(1− s

−(n−k)
1 s−k

0 ).

(69)

Then, since s0 > s1
∣

∣

∣
τn − Λ

s1 − 1

∣

∣

∣
<

Λ

s1 − 1
s−n
1 → 0, n→ ∞. (70)

Thus all filaments terminate at time Λ/(s1 − 1) = 1/(s0 − 1). The dissipation history

is thus instantaneous. Of course this is improbable as a realistic Euler limit because it

depends so much on our highly structured and carefully scaled cascade.

5.3 The flow of energy

We now introduce the other element we must follow, namely the energy within the

cascade of helical filaments. This study is complicated by the fact that a given branch

of our tree must be considered with the neighboring branch, the two making up a pair of

filaments which interact, affecting the total energy calculation. We want to replace this

situation by an energy associated with a single state, which divides up the interaction

energy, along the lines already described in section 4. Again we often use “energy”

when we mean “energy factor”. As an example we shall give specific numbers for the

case β0 = 0.28, s0 = 1.5, s1 = 1.2735. From the root filament H[0] receives roughly

e[0] = 0.14 of the energy, H[1] receives about e[1] = 0.71. We will now however

deal with the first step of the cascade and assume energy conservation. That is, we

disregard for this step the slight energy excess we calculated for the splitting of an

isolated filament. Thus at this stage the interaction energy is 1 − e[0] − e[1] = 0.15.

Distributing this as before, we associate energy e[0](1+(1−e[0]−e[1])/(e[0]+e[1]) =
e[0]/(e[0] + e[1]) with H[0] and e[1]/(e[0] + e[1]) with H[1]. The denominator here is

precisely the amplification factor or ‘renormalization’ that was invoked in section 4.5,

although there we did not have exact conservation of energy in the splitting.

Consider now H[11] and H[10], with energies e[1]
2

and e[1]e[0] when not interact-

ing. Their pairwise interaction would then yield, by the same division of interaction

energy and addition of part to e[1]
2
,

e[1]
2

+

(

e[1]
2

e[1]
2

+ e[1]e[0]

)

(e[1]− e[1]
2 − e[1]e[0]) =

e[1]
2

e[0] + e[1]
. (71)

Similarly the addition of interaction energies to H[10], H[01], H[00] results in division

of the bare energies by e[0] + e[1]. If we now sum these four modified energies we get

not unity but rather e[0] + e[1]. Thus conservation of energy in going from step 1 to

step two requires a modification that should reflect interaction between the two pairs of

filaments. We take this to be the same for all four filaments and so divide the modified

energies by e[0] + e[1], the renormalized energy for H[11] now being

e[1]2

(e[0] + e[1])2
. (72)
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Figure 12: Energy versus time with dissipation at step N = 11. Here s0 = 1.5,

s1 = 1.2735, e[0] = 0.14, e[1] = 0.71. The left curve is for Λ = 1, the right for Λ = 3.

Time τ is in units of the inverse vorticity of the root helix.

and similarly for the other three.

This renormalization is the same at each step, leading to the binomial distribution

of energies at step n:

(e[0] + e[1])−n

(

n

k

)

e[0]ke[1]n−k. (73)

We show in figure 12 plots of the resulting dissipation history. We follow levels n for

0 ≤ n ≤ N with N = 10 and assume that energy disappears at the N th step. There

is at any finite N a slight error since all eddies should have a common size (physically,

the Kolmogorov length). Here we are really takingN = 10 so all eddies are small but

not exactly the same. In this inviscid limit the error disappears. In the figure the curves

are for Λ = 1, 3, and in figure 13 we show short time windows for the case Λ = 3.

Note the lack of self-similarity: the dissipation history resembles a devil’s staircase,

often cited as an example of intermittency, as discussed in for example [1], p. 123.

5.4 “Inviscid” decay of energy and viscous dissipation

We have calculated the time sequence of delivery of energy to arbitrarily small scales.

By simply removing energy at some agreed upon small scale, we achieve the energy

decay of figure 12. In reality, decay of energy is determined by viscous dissipation,

however small viscosity may be. The question remains of the dynamics of this vis-

cous decay. One of the remarkable properties of a straight vortex filament carrying

circulation Γ can be seen by considering the exact solution

ω(r, t) =
Γ

4πνt
e−r2/4νt (74)

of the 2D Navier-Stokes equations. The resulting dissipation is Γ2/8πt per unit length,

and is independent of viscosity. When multiplied by a length this becomes a rate of
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Figure 13: Two small time windows from the case Λ = 3 in figure 12.

energy decay. This result might apply locally in space and time to an arbitrary closed

filament, for which the total kinetic energy is finite. This could yield the initial rate

of dissipation, but then nonlinear effects come into play as the filament evolves, per-

haps involving splitting and reconnection with other filaments. In that case a complex

dynamic is needed to determine the ultimate decay of energy. One possibility is that

filamentary modelling continues to apply but that reconnection changes the energy, so

that the decay of total energy E(t) is described by

dE

dt
= −C E

t
. (75)

Then E would decay as 1/tC . Kolmogorov calculated C as 10/7, and Saffman has

proposed a value of 1.2 [15]. An estimate of C would appear to lie outside the scope

of the present model. This is an important, outstanding problem of cascade modelling,

and the subject of future study.

5.5 Filament geometry

We have exploited helical geometry as a convenient way to visualize the binary self-

similarity of the cascade. We have also made explicit use of it in the calculation of

energy and the flow of energy down the cascade. However we must recognize that

once filaments are created, even if almost helical, they will rapidly undergo distortion.

Thus insofar as placement of the helical filaments is concerned, it only makes sense to

consider a few steps of the cascade. We have seen that our cascade is highly localized

in that energies need only be calculated for a small few steps of the cascade. Here

we shall assume that only three steps are needed to account adequately for the energy

of interaction between filaments. With that assumption we can view each splitting as

the winding of an H[b0] filament around an H[b1] filament, or the other way around,

depending on s0, s1. If we take λ0/λ1 ≈ 0.5, which roughly corresponds to case

β0 = 0.25 of table 1, the resulting structure is depicted in figure 14. We are showing

the intersection with a plane passing through the cores of the eight descendants of a

single filament, the effective root, after three steps of the cascade. The circles represent
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H[000]

H[001

H[011]

H[010]

H[111]

H[100]

H[101]

H[110]

]

Figure 14: Helical filaments generated by three steps from a root filament assuming

that the smaller filament is wound around the larger one.

the surface of the tori on which the filaments are wound. Any two filaments having

the same first and second digits, but differing in their third digit, represent a splitting

event and are closely interacting. We can think of this sketch as an attempt to find order

in a cascade of vorticity by focusing on a short time window and a small Lagrangian

domain moving with the root filament.

6 Discussion

The present study was inspired by the beautiful experimental results reported recently

by McKeown et al. [12, 13]. In these experiments and related simulations vortices gen-

erated by colliding vortex rings are found to undergo an elliptical instability, leading

to the formation of smaller structures, presumably capable again, through their interac-

tion, of another instability. This suggested that the models considered in [4], involving

vortex rings upon rings, or helices upon helices, might be worthy of further study.

The model proposed here does not pretend to be more than a toy model of the in-

ertial range. Indeed the mechanism observed in [12] for the production of daughter

vortices from a parent involves the pulling out of a hairpin structure from the surface of

the vortex, forming perpendicular daughter rings encircling the parent. The elliptical

instability causing these rings is on the scale of the vortex core. This is somewhat rem-

iniscent of “rings on rings”, but quite different from the splitting of thin helices which

we invoke here. Nevertheless the structure we propose does bear some resemblance to
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shredding of unstable vortices seen by McKeown et al. [12]

In this regard we mention other possibilities for a cascade different from the one

we have examined in this paper, but accessible to a similar analysis. In appendix B we

outline the basic scalings for a model where the splitting breaks a filament into three

pieces, two of which are identical, accept possibly for the sign of vorticity. Such a

model allows for the circulation of the filament “left behind” to be equal to that before

splitting, but is also able to match observed ζp.

We emphasize that the physical structures considered here can reproduce with re-

markable accuracy the She–Leveque expression for ζp. For example, with λ0 = λ1

and β0 = 0.4376 the ratio of the two expressions varies from 0.9954 to 1.0037 for p
up to 10. Dubrulle and others have shown that the She–Leveque curve corresponds to

a log-Poisson distribution; see [1], sec. 8.9.2, and [17]. Our model may thus be viewed

as a particular realization of this distribution through the splitting and stretching of

vorticity.

Our model does have some features which may be applied more generally. We have

shown that the presence of two distinct scaling factors leads to a workable model of the

inertial range which is quite different from the Richardson–Kolmogorov cascade with

δu/U ∼ (r/L)1/3. While it is to be expected that a model with so few global Eulerian

constraints will have free parameters, it is surprising that we cannot vary β0 and s0 that

much and still achieve good agreement with experiment as well as realistic splitting

geometry. This bodes well for the possibility of more realistic vortical cascade models

of the inertial range.

The geometry of our model has some appealing features. The structure is built

up with minimal surgery on the vorticity. It is true that splitting of vortex tubes by a

smooth velocity field will necessarily produce thin sheets connecting the vortex tubes

and these sheets are neglected here. But cutting across a vortex tube is avoided in

our model. Such cutting and the accompanying pasting must be expelled from an

essentially inviscid inertial range, although viscous reconnection very likely plays an

important role in the dissipation range of stationary turbulence and in the decay of free

vorticity at large Reynolds numbers.

The fact that the model involves two distinct scalings suggests that there might be

some connection to the multi-fractal models of velocity intermittency [1], since in prin-

ciple any ζp can be so represented. However there is as yet no physical description of

the mechanism of the multi-fractals. The bifractal model involves a piecewise linear

ζp(p) and essentially pieces together two beta models, which are operative over adja-

cent intervals of p (see [1], section 8.5.2). Our branching model blends two cascades

seamlessly and leads easily to the non-linear dependence of ζp upon p associated with

intermittency.

A Calculation of energy for a helical filament

For our calculation of energy E of an isolated closed helical filament we start with

(9). We can think of this integral as that part giving the sum of 1
2
|u|2 integrated over

the exterior of the filament, and that giving the sum of 1
2 |u|2 over the interior of the

filament, the exterior and interior energies. Now the exterior energy depends only on
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the circulation, not the distribution of vorticity over the core. If we concentrate the

vorticity at the edge of the tube, then there is no internal velocity and (9) yields the

external energy. But if this is computed from velocity with u = ∇ × A we see by the

divergence theorem, assuming sufficent fall-off of ω at infinity, and for the concentrated

vorticity assumed, that

Eext =
1

2

∫

A · ω dV =
Γ

2

∮

axis

Aboundary · dR, (76)

since for slender tubes A is approximately constant on the tube boundary. Also we

have

A ≈ Γ

4π

∮

axis

dR′

|R − R′| , (77)

and make a standard regularization of the singularity for a thin filament vortex with a

circular core. Consider a integral over a closed filament,

I =

∮

dR

|R0 − R| , (78)

where R0 is a point of the filament axis. Let r be the radius of the core. We choose

a scale ∆ large with respect to r but small compared to the filament length. We then

divide the integral into two parts:

I =

∮

|R0−R|>∆

dR

|R0 − R| +

∫

|R0−R|≤∆

dR

|R0 − R| . (79)

The first integral, I1, may be reduced to a line integral of the circulation with respect

to arc length around the axis. The second integral, I2, is over a small thin cylinder of

length 2∆ and diameter 2r. If t0 is the tangent vector at R0 we find

I2 ≈ 2t0 log
2∆

r
=

∫

r/2≤|R0−R|≤∆

dR

|R0 − R| , ∆ � r. (80)

Using this in (79) we obtain the regularization

I =

∮

axis, |R0−R|>r/2

dR

|R0 − R| . (81)

Thus

Aboundary ≈ Γ

4π

∮

axis, |R−R′|>r/2

dR′

|R − R′| , (82)

and

Eext ≈
Γ2

8π

∮

axis

∮

axis, |R−R′|>r/2

dR · dR′

|R − R′| . (83)

We now apply this to the helical winding of interest to our model. We first do a

computation of energy for a helical filament of turn radius b wound around a large
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torus of radius R = mc. The equation for the points of the filament in Cartesian

coordinates is

R(t) = ((mc + b cos t) cos(t/m), (mc + b cos t) sin(t/m), b sin t), 0 ≤ t ≤ 2πm.
(84)

Thus there will be m turns of the helix on the torus. We are interested in the limit of

E/m for large m. The exterior energy is given, according to (83), by

Eext =
Γ2

4π

∫ 2πm

0

∫ t′+πm

t′+ε

t · t′
|R(t) − R(t′)| dt dt

′, (85)

where ε = 1
2
r/
√
b2 + c2. Note that here t = dR/dt and is not the unit tangent vector.

After some calculation we find

|R(t)−R(t′)|2 = 4b2 sin2((t − t′)/2) + 4(mc+ b cos t)(mc + b cos t′) sin2[(t− t′)/2m],
(86)

t · t′ = b2
[

sin t sin t′ cos[(t− t′)/m] + cos t cos t′
]

+ c2 cos[(t− t′)/m]

+ bc
[

sin(t/m) sin t′ cos(t′/m) + sin(t′/m) sin t cos(t/m) (87)

− cos(t′/m) sin t sin(t/m) − cos(t/m) sin t′ sin(t′/m)
]

+ O(1/m).

The estimate is uniform in t, t′.
Let us first check that we get the right result when b = 0. Then we have

Eext =
Γ2cm

4

∫ π

r/2mc

cosψ

sin 1
2
ψ
dψ, (88)

which is precisely the exterior energy of a ring filament of radius R = mc.
Now consider the full problem for large m. The mc terms of |R(t) − R(t′)| make

this O(m) unless (t − t′)/m is small. We may divide up the integral into two parts.

First, assume that in the t integral t− t′ is less than Amα for some 0 < α < 1 that we

can specify later. Then

t·t′ ≈ b2
[

sin t sin t′+cos t cos t′
]

+c2+bc
[

sin(t′/m) sin t′ cos(t′/m)+sin(t′/m) sin t cos(t′/m)

− cos(t′/m) sin t sin(t′/m)−cos(t′/m) sin t′ sin(t′/m)
]

= b2 cos(t− t′)+c2. (89)

Thus we find the inner contribution

Ein
ext ≈

Γ2m

2

∫ Amα

ε

b2 cosψ + c2

(4b2 sin2 1
2ψ + c2ψ2)1/2

dψ. (90)

For the outer contribution we use the approximation |R(t)−R(t′)| ≈ 2cm| sin[(t−
t′)/2m]|. Also we write t · t′ = c2 cos[(t− t′)/m] + B(t, t′) for (87). Now

∫ 2mπ

0

B(t′ +mψ, t′) dt′ = b2πm cos(mψ)(cos ψ + 1), (91)

for fixed ψ.
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Then we have

Eout
ext ≈ Γ2

4π

∫ π

Amα−1

2πmc2 cosψ + b2πm cos(mψ)

2c sin 1
2ψ

dψ. (92)

Integrating by parts it is straightforward to show that

∣

∣

∣

∫ π

Amα−1

cos(mψ)

sin 1
2ψ

dψ
∣

∣

∣
≤ Cmax

( 1

mα
,

1

m2α−1

)

m� 1. (93)

Thus, taking 1/2 < α < 1,

Eext ≈
Γ2m

2

[
∫ Amα

ε

b2 cosψ + c2

(4b2 sin2 1
2ψ + c2ψ2)1/2

dψ+
1

2

∫ π

Amα−1

c cosψ

sin 1
2ψ

dψ

]

, m� 1.

(94)

It is preferable to add and subtract a term to obtain

Eext ≈
Γ2m

2

[
∫ ∞

ε

(

b2 cosψ + c2

(4b2 sin2 1
2
ψ + c2ψ2)1/2

− b2 cosψ + c2

cψ

)

dψ

− b2

c
Ci(ε) +

c

2

∫ π

ε/m

cosψ

sin 1
2ψ

dψ

]

, m� 1. (95)

For a constant core vorticity we have an internal energy

Eint =
mΓ2

√
b2 + c2

8
(96)

to leading order.

B A model involving a splitting into three daughters

One generalization of the model considered in this paper expands the number of fila-

ments produced by splitting. Instead of splitting the root into one [0] filament and one

[1] filament, we split into d0 identical daughters of type [0] and d1 identical daughters

of type [1]. To illustrate this, we apply the scaling procdures of the present paper to

the case d0 = 2, d1 = 1. The two [0] filaments, termed the “twins”, are identical up to

the sign of vorticity and will together make up a fraction β0 of the root. The relevant

parameters of these twins will carry the [0] label. The third daughter carries again the

[1] label. We have now λ0 =
√

β0/d0s0, d0 = 2, with again λ1 =
√

β1/s1. This is

the only change in our parameterization.

As before we consider first the special case λ0 = λ1. Since then s0 = β0/(2λ
2)

we get a division by 2p in the formula giving ζp:

λ−p
[

β0(β0/2)p + βp+1
1

]

= λζp . (97)

Thus, applying the four-fifths law we obtain,

ζp = 4
log

(

βp+1
0 /2p + βp+1

1

)

log
(

β4
0/8 + β4

1)
− p. (98)
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We find that we are very close to the She–Leveque formula when β0 = 0.6, and of

course K41 is obtained when β0 = 2β1 or β0 = 2/3. Constant flux of energy is

confirmed as β2
0s

2
0/2 + β2

1s
2
1 = 1. For β0 = 0.6 we compute λ = 0.452, s0 =

0.03/λ2, s1 = 0.4/λ2 and α0 = 0.517, α1 = 0.155
For general λ0,1 equation (53) now is replaced by

2(ζp−p)/2β
(p−ζp)/2+1
0 s

(p+ζp)/2
0 + β

(p−ζp)/2+1
1 s

(p+ζp)/2
1 = 1. (99)

Applying the four-fifths law we obtain the results show in table 3. We show here only

results from the lower branch of solutions which seem reasonable physically. Here the

criterion is that the twin filaments should be stretched more than the [1] filament, in

order that the twins might wrap around the [1] filament. The data indicates that that the

preferred cascade is at β0 ' 0.33.

We have not explored these generalizations further. In particular the flow of energy

would need to be examined as part of their validation. However it seems clear that there

are other cascades, possibly of physical relevance, having the same binomial branching

structure of the example we have treated here.

Table 3: For the model d0 = 2, d1 = 1, we show calculations of ζ1 and ζ2 with dif-

ferent values of λ(0,1) and optimal choice of β0, s0, using the modified large deviation

calculation in section 4.3, leading to (99). Here α0 = log(
√

β0s0/2 )/ logλ0.

β0 s0 s1 ζ1 ζ2 λ0 λ1 α0 α1 s0/s
2
1 s1/s

2
0

0.38 1.747 1.424 0.355 0.689 0.330 0.660 0.497 0.150 0.862 0.4665

0.36 1.787 1.391 0.355 0.689 0.317 0.678 0.494 0.149 0.923 0.436

0.34 1.832 1.360 0.354 0.688 0.305 0.697 0.491 0.149 0.990 0.406

0.32 1.880 1.331 0.354 0.688 0.292 0.715 0.488 0.149 1.061 0.377

0.30 1.930 1.303 0.354 0.688 0.279 0.733 0.486 0.148 1.136 0.350

0.28 1.980 1.278 0.354 0.688 0.266 0.751 0.484 0.145 1.213 0.326

0.26 2.030 1.254 0.355 0.689 0.253 0.768 0.485 0.142 1.291 0.304

0.24 2.080 1.231 0.356 0.690 0.240 0.786 0.486 0.138 1.372 0.285
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