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ABSTRACT
Bayesian optimisation is a popular approach for optimising ex-

pensive black-box functions. The next location to be evaluated

is selected via maximising an acquisition function that balances

exploitation and exploration. Gaussian processes, the surrogate

models of choice in Bayesian optimisation, are often used with a

constant prior mean function equal to the arithmetic mean of the

observed function values. We show that the rate of convergence

can depend sensitively on the choice of mean function. We empiri-

cally investigate 8 mean functions (constant functions equal to the

arithmetic mean, minimum, median and maximum of the observed

function evaluations, linear, quadratic polynomials, random forests

and RBF networks), using 10 synthetic test problems and two real-

world problems, and using the Expected Improvement and Upper

Confidence Bound acquisition functions.

We find that for design dimensions ≥ 5 using a constant mean

function equal to the worst observed quality value is consistently

the best choice on the synthetic problems considered. We argue

that this worst-observed-quality function promotes exploitation

leading to more rapid convergence. However, for the real-world

tasks the more complex mean functions capable of modelling the

fitness landscape may be effective, although there is no clearly

optimum choice.
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1 INTRODUCTION
Bayesian optimisation (BO) is a popular approach for optimising

expensive (in terms of time and/or money) black-box functions that

have no closed-form expression or derivative information [37, 38]. It

is a surrogate-based modelling approach that employs a probabilis-

tic model built with previous function evaluations. The Gaussian

process (GP) model typically used in BO provides a posterior pre-

dictive distribution that models the target function in question and

quantifies the amount of predictive uncertainty. A GP is a collection

of random variables, any finite number of which have a joint Gauss-

ian distribution [34]. It can be fully specified by its mean function

and kernel function (also known as a covariance function) [34].

The kernel and mean functions may be regarded as specifying a

Bayesian prior on the functions from which the data are generated.

The kernel function describes the structure, such as the smoothness

and amplitude, of the functions that can be modelled, while the

mean function specifies the prior expected value of the function at

any location [37].

In BO, the location that maximises an acquisition function (or

infill criterion) is chosen as the next location to be expensively

evaluated. Acquisition functions combine the surrogate model’s

predictions and the uncertainty about its prediction to strike a

balance between myopically exploiting areas of design space that

are predicted to yield good-quality solutions and exploring regions

that have high predicted uncertainty.

In the literature, many acquisition functions have been proposed

in a number of works [12, 17, 25, 28, 39, 42], and, in general, no

one strategy has been shown to be all-conquering due to the no

free lunch theorem [44]. However, recent works have shown that

purely exploiting the surrogate model becomes a more effective

strategy as the dimensionality of the problem increases [12, 35].

Similarly, the role of the kernel function in BO has been investigated

[1, 26, 29, 32, 33]. One of the most popular kernels is the radial

basis function (also known as the squared exponential kernel) [38].

However, it is generally regarded as being too smooth for real-

world functions [34, 40], and the Matérn family of kernels is often

preferred.

Contrastingly, little attention has been paid to the role of the

mean function in BO, with general practise being to use a constant

value of zero [12, 17, 42], although the constant value can also

be inferred from the data [37]. In general regression tasks, other

mean functions have been considered, such as polynomials [5, 23,

43], and, more recently, non-parametric methods such as neural

https://doi.org/10.1145/3377929.3398118
https://doi.org/10.1145/3377929.3398118
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Algorithm 1 Sequential Bayesian optimisation.

Inputs:
𝑀 : Number of initial samples

𝑇 : Budget on the number of expensive evaluations

Steps:
1: 𝑋 ← SpaceFillingSampling(X, 𝑀) ⊲ Initial samples

2: for 𝑡 = 1→ 𝑀 do
3: 𝑓𝑡 ← 𝑓 (x𝑡 ) ⊲ Expensively evaluate all initial samples

4: D ← {(x𝑡 , 𝑓𝑡 ) }𝑀𝑡=1

5: for 𝑡 = 𝑀 + 1→ 𝑇 do
6: 𝜽 ← TrainGP(D) ⊲ Train a GP model

7: x′ ← argmaxx∈X 𝛼 (x, 𝜽 ) ⊲ Maximise infill criterion

8: 𝑓 ′ ← 𝑓 (x′) ⊲ Expensively evaluate x′
9: D ← D ∪ {(x′, 𝑓 ′) } ⊲ Augment training data

10: return D

networks [13, 19]. In light of the lack of previous work into the role

of the mean function in BO, we investigate the effect of different

mean functions in BO in terms of both the convergence rate of the

optimisation and quality of the best found solution. Specifically, we

compare the performance of using different constant values, linear

and quadratic functions, as well as using random forests and radial

basis function networks.

Our main contributions can be summarised as follows:

• We provide the first empirical study of the effect of using

different Gaussian process mean functions in Bayesian opti-

misation.

• We evaluate eight mean functions on ten well-known, syn-

thetic test problems and two real-world applications. This

assessment is on a range of design dimensions (2 to 10) and

for two popular acquisition functions.

• We show empirically, and explain in terms of the exploration

versus exploitation trade-off, that choosing the mean func-

tion to be the constant function equal to the worst-seen so

far evaluation of the objective function is consistently no

worse and often superior to other choices of mean function.

We begin in Section 2 by briefly reviewing Bayesian optimisa-

tion. In Section 3 we review Gaussian processes, paying particular

attention to the mean function and introduce the various mean

functions we evaluate in this work. Extensive empirical experi-

mentation is carried out on well-known test problems and a two

real-world applications in Section 4. We finish with concluding

remarks in Section 5.

2 BAYESIAN OPTIMISATION
Bayesian optimisation (BO), also known as Efficient Global Opti-

misation (EGO), is a surrogate-assisted global search strategy that

sequentially samples design space at likely locations of the global

optimum, taking into account both the surrogate model’s predic-

tion 𝜇 (x) and the associated prediction uncertainty 𝜎 (x) [22]. See
[7, 14, 37] for comprehensive reviews of BO. Without loss of gener-

ality, we can define the problem of finding a global minimum of an

unknown objective function 𝑓 : R𝑑 ↦→ R as

min

x∈X
𝑓 (x), (1)

where X ⊂ R𝑑 is the feasible design space of interest. We assume

that 𝑓 is a black-box function, i.e. it has no simple closed form,

but that we can have access the results of its evaluations 𝑓 (x) at
any location x ∈ X, although evaluating 𝑓 (x) is expensive so that

the number of evaluations required to locate the global optimum

should be minimised.

Algorithm 1 outlines the BO procedure. It starts (line 1) with a

space filling design, typically Latin hypercube sampling [27], of the

feasible space. These samples 𝑋 = {x𝑡 }𝑀𝑡=1
are then expensively

evaluated with the function 𝑓𝑡 = 𝑓 (x𝑡 ), and a training dataset D
is constructed (line 4). Then, at each iteration of the sequential

algorithm, a regression model, usually a Gaussian process (GP),
is constructed and trained (line 6) using the current training data.

The choice of where next to expensively evaluate is determined

by maximising an acquisition function (or infill criterion) 𝛼 (x)
which balances the exploitation of regions of design space that are

predicted to yield good-quality solutions and exploration of regions

of space where the predictive uncertainty is high. The design x′
maximising 𝛼 (x) is expensively evaluated and the training data is

subsequently augmented (lines 7 to 9). This process is then repeated

until the budget has been expended.

Two of the most popular acquisition functions are Expected

Improvement (EI) [28] and Upper Confidence Bound (UCB) [39]. EI

measures the positive predicted improvement over the best solution

evaluated thus far, 𝑓 ★:

𝛼𝐸𝐼 (x) = 𝜎 (x) (𝑠Φ(𝑠) + 𝜙 (𝑠)) , (2)

where 𝑠 = (𝑓 ★ − 𝜇 (x))/𝜎 (x)) is the predicted improvement at x
normalised by the uncertainty, and Φ(·) and 𝜙 (·) are the Gaussian
cumulative density and probability density functions respectively.

UCB is a weighted sum of the mean prediction and its associated

uncertainty:

𝛼𝑈𝐶𝐵 (x) = −
(
𝜇 (x) −

√
𝛽𝑡𝜎 (x)

)
, (3)

where 𝛽𝑡 ≥ 0 is a weight that depends on the number of function

evaluations 𝑡 and explicitly controls the exploitation vs. exploita-

tion trade-off. Note that both EI and UCB are presented here in

the form used for minimisation. While other acquisition functions

have been proposed, such as probability of improvement [25] and

entropy-based methods such as predictive entropy search [17] and

max-value entropy search [42], we limit our investigation to the

commonly used EI and UCB to allow the focus on the mean func-

tions themselves.

3 GAUSSIAN PROCESSES
Gaussian processes are a common choice of surrogate model due to

their strengths in uncertainty quantification and function approxi-

mation [34, 37]. A GP is a collection of random variables, and any fi-

nite number of these have a joint Gaussian distribution [34]. We can

define a Gaussian process prior over 𝑓 to be GP(𝑚(x), 𝜅 (x, x′ | 𝜽 )),
where𝑚(·) is the mean function and 𝜅 (·, · | 𝜽 ) is the kernel func-
tion (covariance function) with hyperparameters 𝜽 . Given data

consisting of 𝑓 evaluated at 𝑡 sampled locations D = {(x𝑛, 𝑓𝑛 ≜
𝑓 (x𝑛))}𝑡𝑛=1

, the posterior distribution of 𝑓 at a given location x is

Gaussian:

𝑝 (𝑓 | x,D, 𝜽 ) = N(𝑓 | 𝜇 (x), 𝜎2 (x)) (4)
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c = fmin = min{f1, f2, … , ft} c = f = 1
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Figure 1: GP models with identical training data (blue) and kernel hyperparameters, along with different constant mean func-
tions. The mean function used in each GP is shown (grey, dashed) and corresponds to the value of the smallest (left), arith-
metic mean (centre), and largest (right) seen function values. The lower row shows the corresponding EI and its maximiser
(red dashed). Note how the min and max models lead EI to prefer exploring and exploiting respectively.

with posterior mean and variance

𝜇 (x | D, 𝜽 ) =𝑚(x) + 𝜿 (x, 𝑋 )𝐾−1 (f −m) (5)

𝜎2 (x | D, 𝜽 ) = 𝜅 (x, x) − 𝜿 (x, 𝑋 )⊤𝐾−1𝜅 (𝑋, x). (6)

Here 𝑋 ∈ R𝑡×𝑑 is the matrix of design locations, f = {𝑓1, 𝑓2, . . . , 𝑓𝑡 }
is the corresponding vector of true function evaluations and m =
{𝑚(x1),𝑚(x1), . . . ,𝑚(x𝑡 )} is the vector comprised of the mean

function at the design locations. The kernel matrix 𝐾 ∈ R𝑡×𝑡 is
given by 𝐾𝑖 𝑗 = 𝜅 (x𝑖 , x𝑗 | 𝜽 ) and 𝜿 (x, 𝑋 ) is given by [𝜿 (x, 𝑋 )]𝑖 =
𝜅 (x, x𝑖 | 𝜽 ). In this work we use an isotropic Matérn 5/2 kernel:

𝜅 (x, x′ | 𝜽 ) = 𝜃0

(
1 +
√

5𝑟 + 5

3

𝑟2

)
exp

(
−
√

5𝑟

)
, (7)

where 𝑟 = 𝜃1∥x − x′∥ and 𝜽 = [𝜃0, 𝜃1], as recommended for mod-

elling realistic functions [38]. The kernel’s hyperparameters 𝜽 are

learnt via maximising the log marginal likelihood (up to a constant):

log 𝑝 (f |𝑋, 𝜽 ) = −1

2

log|𝐾 | − 1

2

(f −m)⊤ 𝐾−1 (f −m) (8)

using a multi-restart strategy [37] with L-BFGS-B [8]. Henceforth,

we drop the explicit dependencies on the data D and the kernel

hyperparameters 𝜽 for notational simplicity.

3.1 Mean Functions
It is well-known that the posterior prediction (4) of the GP reverts

to the prior as the distance of x from the observed data increases, i.e.

as minx𝑖 ∈D ∥x−x𝑖 ∥ → ∞. In particular, the posterior mean reverts

to the prior mean, i.e. 𝜇 (x) ≈ 𝑚(x); and the posterior variance

approaches the prior variance, 𝜃0 for the Matérn kernel. The upper

row of Figure 1 illustrates this effect for three different constant

mean values: the best, average (arithmetic mean), and worst func-

tion values observed thus far. Note how the predicted values of the

GP tend to the mean function (dashed) as the distance from the

nearest evaluated location (blue) increases. The figure also shows

another important, and often overlooked, aspect of the mean func-

tion: its effect on the acquisition function (lower). In this case three

different locations maximise EI for the three mean functions, and it

is not known a priori which location is preferable.

Practitioners of BO usually standardise the observations 𝑓𝑡 be-

fore fitting the GP at each iteration, i.e. they subtract the mean

of the observations and divide by the standard deviation of the

relevant feature/variable after which the mean function is taken

as the constant function equal to zero; that is, the effective mean

function is the constant function equal to the arithmetic mean of

the observed function values. In addition, the prior variance of

the GP is matched to the observed variance of the function values.

Although the standardisation is not usually discussed in the litera-

ture, it is commonplace in standard BO libraries, e.g. GPyOpt [2],

BoTorch [3] and Spearmint
1
. It is, however, unclear whether this is

the best choice for BO or whether a different mean function may

be preferable. We now introduce the mean functions that will be

evaluated in this work.

Here, we consider the mean function to be a set of basis functions

h(x) with corresponding weights w [34]:

𝑚(x) = h(x)⊤w. (9)

A constant mean function with value 𝑐 , for example, can be written

as h(x) = 𝑐1 with w = 1. In addition to the standard constant

function equal to the arithmetic mean of the data 𝑐 = ¯𝑓 = 𝑡−1
∑𝑡
𝑖 𝑓𝑖 ,

we consider three other constant values: using the best and worst

seen observation’s value at each iteration, i.e. 𝑐 = 𝑓𝑚𝑖𝑛 = 𝑓 ★ =
min{𝑓1, 𝑓2, . . . , 𝑓𝑡 } and 𝑐 = 𝑓𝑚𝑎𝑥 = max{𝑓1, 𝑓2, . . . , 𝑓𝑡 }, and the me-

dian observed value 𝑐 = 𝑓𝑚𝑒𝑑 = median{𝑓1, 𝑓2, . . . , 𝑓𝑡 }. In compari-

son to using the data mean 𝑐 = ¯𝑓 , using 𝑐 = 𝑓𝑚𝑖𝑛 leads to acquisition

functions becoming more exploratory, as illustrated in Figure 1 (left

panel). This is because locations far away from previously evalu-

ated solutions D will have predicted means 𝜇 (x) equal to the 𝑓 ★

and with large predicted uncertainty, leading to large values of,

for example, EI and UCB. Conversely, using 𝑐 = 𝑓𝑚𝑎𝑥 will, as illus-

trated in Figure 1 (right panel), lead to increased exploitation due

to regions far from D having large uncertainty, but poor predicted

values and hence small 𝛼 (x). Interestingly, the effect of using 𝑐 = ¯𝑓

or 𝑐 = 𝑓𝑚𝑒𝑑 will change over the course of the optimisation. When

there are relatively few function evaluations
¯𝑓 and 𝑓𝑚𝑒𝑑 will be

approximately (𝑓𝑚𝑖𝑛 + 𝑓𝑚𝑎𝑥 )/2. However, as the number of expen-

sive function evaluations increases and the optimisation converges

1
https://github.com/HIPS/Spearmint

https://github.com/HIPS/Spearmint
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towards the (estimated) optimum,
¯𝑓 and particularly 𝑓𝑚𝑒𝑑 will tend

to approach 𝑓𝑚𝑖𝑛 , thus leading to increased exploration.

We also consider linear and quadratic mean functions. Linear

mean functions are defined as h(x) = [1, 𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑑) ], with
corresponding weights w ∈ R𝑑+1 and where 𝑥 (𝑖) refers to the

𝑖th element of x. Quadratic mean functions are defined similarly,

with polynomial terms up to degree 2 and with weights w ∈ R𝑞 ,
where 𝑞 =

(𝑑+2
𝑑

)
. To avoid overfitting to the data, these regressions

are typically trained via a regularised least-squares approximation,

i.e. ridge regression (also known as Tikhonov regularization). The

optimal regularised weights w∗ are estimated by solving

w∗ = argmin

w
∥f − 𝐻w∥2 + 𝜆∥w∥2, (10)

where𝐻 = [h(x1), h(x2), . . . , h(x𝑡 )] and 𝜆 ≥ 0 controls the amount

of regularisation. The ordinary least squares estimator is

w∗ =
(
𝐻⊤𝐻 + 𝜆I)−1

𝐻⊤f, (11)

In this work, the regularisation parameter 𝜆was chosen via five-fold

cross-validation for 𝜆 ∈ {10
−6, 10

−5, . . . , 10
1, 10

2}.
Another choice of basis functions are radial basis functions

(RBFs), which have the property that each basis function only de-

pends on the Euclidean distance from a fixed centre [4]. These are

known as RBF networks and can be thought of as either linear

neural networks using RBF activation functions [31] or as finite-

dimensional Gaussian processes [4]. A commonly used set of ba-

sis functions, and the ones used in this work, are the Gaussian

RBFs 𝜙𝑖 (x) = exp(−𝛾 ∥x − z𝑖 ∥). While any set of locations can

be used as the centres z𝑖 , we place a Gaussian RBF at each of

the previously-evaluated locations, i.e. z𝑖 ≡ x𝑖 ∀𝑖 = 1, . . . , 𝑡 , re-

sulting in h(x) = [𝜙1 (x), 𝜙2 (x), . . . , 𝜙𝑡 (x)]. Similarly to the lin-

ear and quadratic mean functions, the regularisation parameter

𝜆 and length scale 𝛾 were chosen via five-fold cross validation.

Values of 𝜆 were selected in the same range as for the linear and

quadratic mean functions, and the values of 𝛾 were selected from

𝛾 ∈ {10
−3, 10

−2.5, . . . , 10
1.5, 10

2}. A more fine-grained selection of

values were chosen following a preliminary investigation which

revealed the modelling error to be more sensitive to changes in 𝛾

than 𝜆. We note here that the use of regularisation is particularly

important when placing an RBF on each evaluated location because

the RBF network will otherwise be able to perfectly interpolate the

data. This would lead to f ≡ m and therefore (8) would reduce to

− 1

2
log|𝐾 |, which can be maximised by either 𝜃0 → 0 or 𝜃1 → ∞

in (7). This results in the posterior variance estimates 𝜎2 (x) being
over-confident and thus having small variance everywhere with

predictions determined by the mean function.

Lastly, we include a non-parametric regressor, extremely ran-

domised trees, better known as Extra-Trees (ET, [15]), a variant

of Random Forests (RF, [6]). RFs are ensembles of classification

or regression trees that are each trained on a different randomly

chosen subsets of the data. Unlike RFs, that attempt to split the

data at each cut-point of a tree optimally, the ET method instead

selects the cut-point as the best from a small set of randomly cho-

sen cut-points; this additional randomisation results in a smoother

regression in comparison to RFs. Given that ETs use randomised

cut-points, they typically use all the training data in each tree. How-

ever, to counteract the overfitting that this will produce, we allow

each item in the training set to be resampled, instead of using all

elements of the set for each tree. Note that, while not presented as

such here, RFs can also be interpreted as a kernel method [10, 36].

4 EXPERIMENTAL EVALUATION
We now investigate the performance of the mean functions dis-

cussed in Section 3.1 using the EI and UCB acquisition functions

(Section 2) on ten well-known benchmark functions with a range

dimensionality and landscape properties, and two real-world ap-

plications. Full results of all experimental evaluations are available

in the supplementary material. The mean functions to be evalu-

ated are the constant functions, 𝑐 = ¯𝑓 , 𝑐 = 𝑓𝑚𝑒𝑑 , 𝑐 = 𝑓𝑚𝑖𝑛 , and

𝑐 = 𝑓𝑚𝑎𝑥 , labelled Arithmetic, Median, Min, and Max respectively,

as well as the Linear, Quadratic, Extra-Trees (RandomForest), and
RBF network-based (RBF ) mean functions.

A Gaussian process surrogate model with an isotropic Matérn

5/2 kernel (7) was used in all experiments. The Bayesian optimisa-

tion runs themselves were carried out as in Algorithm 1, with the

additional step of fitting a mean function before training the GP

(Algorithm 1, line 6) at each iteration. All test problems evaluated

in this work were scaled to [0, 1]𝑑 , and observations were stan-

dardised at each BO iteration, prior to mean function fitting. The

models were initially trained on𝑀 = 2𝑑 observations generated by

maximin Latin hypercube sampling [27], and each optimisation run

was repeated 51 times with different initialisation. The same set of

51 initial observations were used for each of the mean functions

to enable statistical comparisons. The hyperparameters 𝜽 of the

GP were optimised by maximising the marginal log likelihood (8)

with L-BFGS-B [8] using 10 restarts. Following common practise,

maximisation of the acquisition functions was carried out via multi-

start optimisation; details of the full procedure can be found in

[3]. The trade-off between exploitation and exploration in UCB,

𝛽𝑡 , is set to Theorem 1 in [39], which increases logarithmically

with the number of function evaluations, with

√
𝛽𝑡 approximately

in the range [3, 6]. The Bayesian optimisation pipeline and mean

functions were implemented with BoTorch [3] and code is available

online
2
to recreate all experiments, as well as the LHS initialisations

used and full optimisation runs.

Optimisation quality is measured with simple regret 𝑅𝑡 , which

is the difference between the true minimum value 𝑓 (x∗) and the

best value found so far after 𝑡 evaluations:

𝑅𝑡 = |𝑓 (x∗) −min{𝑓1, 𝑓2, . . . , 𝑓𝑡 }|. (12)

4.1 Synthetic Experiments
The mean functions were evaluated on the ten popular synthetic

benchmark functions listed in Table 1 with a budget of 200 func-

tion evaluations that included the initial 2𝑑 LHS samples. These

functions were selected due to their different dimensionality and

landscape properties, such the presence of multiple local or global

minima (Ackley, Eggholder, Hartmann6, GoldsteinPrice, Styblinski-

Tang, Shekel) deep, valley-like regions (Branin, Rosenbrock, Six-

HumpCamel), and steep ridges and drops (Michalewicz).

2
http://www.github.com/georgedeath/bomean

http://www.github.com/georgedeath/bomean
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Name 𝑑 Name 𝑑

Branin 2 Ackley 5

Eggholder 2 Hartmann6 6

GoldsteinPrice 2 Michalewicz 10

SixHumpCamel 2 Rosenbrock 10

Shekel 4 StyblinskiTang 10

Table 1: Synthetic functions used and their dimensionality
𝑑 . Formulae for all functions can be found at http://www.sfu.
ca/~ssurjano/optimization.html.

Table 2 shows the median regret over the 51 repeated experi-

ments, together with the median absolute deviation from the me-

dian (MAD) for themean functions using the EI acquisition function.

Due to space constraints, the corresponding table for UCB is in-

cluded in the supplementary material. The method with the lowest

(best) median regret on each function is highlighted in dark grey,

and those highlighted in light grey are statistically equivalent to the

best method according to a one-sided paired Wilcoxon signed-rank

test [24] with Holm-Bonferroni correction [18] (𝑝 ≥ 0.05).

The convergence of the various mean functions on 8 illustrative

test problems are shown using the EI (Figure 2) and UCB (Figure 3)

acquisition functions. Convergence plots for the Branin and Gold-

steinPrice test problems were visually similar to Eggholder and

SixHumpCamel respectively; they are available in the supplemen-

tary material. As one might expect, because points are naturally

less distant from one another, the choice of mean function has less

impact in 2 dimensions. Although, interestingly, optimisation runs

with the UCB algorithm in 𝑑 = 2 achieve lower regret with the

constant mean functions compared to the others evaluated.

Perhaps surprisingly, the non-constant mean functions, Linear,
Quadratic, RandomForest and RBF, appear to offer no advantage

over the constant mean functions despite their ability to model

the large scale optimisation landscape. The Quadratic model, in

two dimensions where there are only three parameters to be fitted,

appears to be well suited to the SixHumpCamel function which

is roughly bowl-shaped (albeit with quartic terms); however, this

appears to be an exceptional case.

In higher dimensions with the EI acquisition function, using the

worst observation value as the constant mean function (Max) con-
sistently provides the lowest regret on the test functions evaluated.

This is consistent with recent work [12, 35] showing that being

more exploitative in higher dimensions is preferable to most other

strategies. However, for the UCB acquisition function this is not

the case and no mean function is consistently best. We suspect that

this is because the value of 𝛽𝑡 is so large that the UCB function

(3) is always dominated by the exploratory term (

√
𝛽𝑡𝜎 (x)) so that

the mean function has relatively little influence. This is in contrast

to EI, which has been shown [12] to be far more exploitative than

UCB.

The standard choice of using a constant mean function equal

to
¯𝑓 the arithmetic mean of the observations (Arithmetic) is, in

higher dimensions (𝑑 ≥ 5), only statistically equivalent to the best-

performing method on one of the five test functions for both EI

and UCB. This result calls into question the efficacy of the common

practise of using the
¯𝑓 constant mean function in all Bayesian opti-

misation tasks. Based on these results we suggest that an increase

performance may be obtained by using the Max mean function

with EI. Although there does not appear to be such a clear-cut an-

swer as to which mean function should be used in conjunction with

the UCB acquisition function, we posit that this is less important

because, based on these optimisation results, one would prefer the

performance of EI over UCB in general.

4.2 Active Learning for Robot Pushing
Like [11, 12, 21, 42] we optimise the control parameters for two

active learning robot pushing problems [41]; see [12] for a diagram-

matic outline of the problems. In the 𝑑 = 4 push4 problem, a robot

should push an object towards an unknown target location and is

constrained such that it can only travel in the initial direction of the

object. Once the robot has finished pushing, it receives feedback in

the form of the object-target distance. The robot is parametrised

by its initial location, the orientation of its pushing hand and how

long it pushes for. This can therefore be cast as a minimisation

problem in which the four parameter values are optimised with

respect to the object’s final distance from the target. The object’s

initial location is fixed to the centre of the problem domain [42]

and the target location is changed for each of the 51 optimisation

runs, with these kept the same across mean functions. Thus, the

optimisation performance is considered over problem instances

rather initialisations of a single instance.

The second problem, push8, two robots push their respective

objects towards two unknown targets, with their movements con-

strained so that they always travel in the direction of their object’s

initial location. The 𝑑 = 8 parameters controlling the robots can

be optimised to minimise the summed final object-target distances.

Like push4, initial object locations were fixed for problem instances

and the targets’ locations were chosen randomly, with a constraint

enforcing that both objects could cover the targets without over-

lapping. This means, however, that in some problem instances it

may not be possible for both robots to push their objects to their

respective targets because they will block each other. Thus, for

push8 we report the final summed object-distances rather than the

regret due to the global optimum not being known.

Figure 4 shows the convergence plots using the various mean

functions with the EI and UCB acquisition functions. Tabulated

results are available in the supplementary material. In the four-

dimensional push4 problem, one of the worst-performing mean

functions on the synthetic functions, RandomForest, had substan-

tially lower regret than the other mean functions using UCB on both

problems and for EI on push4. However, in the eight-dimensional

push8, all mean functions were statistically equivalent when using

EI, apart from Min, Linear and RBF, which were worse. However,

when using UCB, the RandomForest mean function was statisti-

cally better than all other mean functions, and it achieved results

comparable to using EI.

It might be suspected that the superior ability of the Random

Forest (and RBF on some problems) to represent the inherently

difficult landscape features of these problems would account for the

better performance of RandomForest. The landscape for these prob-
lems has sharp changes (high gradients) in the function, e.g. when

http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html
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Table 2: Mean function performance using the EI acquisition function. Median regret (column left) and median absolute de-
viation from the median (MAD, column right) after 200 function evaluations across the 51 runs. The method with the lowest
median performance is shown in dark grey, with those statistically equivalent shown in light grey.

Mean function Branin (2) Eggholder (2) GoldsteinPrice (2) SixHumpCamel (2) Shekel (4)
Median MAD Median MAD Median MAD Median MAD Median MAD

Arithmetic 1.35 × 10
−5

1.82 × 10
−5

1.58 1.93 4.18 × 10
−2

5.32 × 10
−2

2.51 × 10
−5

2.58 × 10
−5

8.13 × 10
−2

1.19 × 10
−1

Median 9.35 × 10
−6

1.17 × 10
−5

3.02 2.67 5.03 × 10
−2

5.59 × 10
−2

1.40 × 10
−5

1.49 × 10
−5

1.54 × 10
−1

2.24 × 10
−1

Min 1.18 × 10
−5

1.31 × 10
−5

2.82 3.13 6.25 × 10
−2

8.03 × 10
−2

2.25 × 10
−5

2.29 × 10
−5

7.02 9.75 × 10
−1

Max 7.21 × 10
−6

8.81 × 10
−6

2.69 2.48 6.87 × 10
−2

7.40 × 10
−2

1.52 × 10
−5

1.84 × 10
−5

7.16 × 10
−2

1.05 × 10
−1

Linear 5.13 × 10
−6

5.58 × 10
−6

2.82 2.85 1.05 × 10
−1

1.19 × 10
−1

7.98 × 10
−6

8.14 × 10
−6

6.47 1.57

Quadratic 1.05 × 10
−5

1.09 × 10
−5

3.59 4.03 5.55 × 10
−2

6.03 × 10
−2

6.27 × 10
−6

6.52 × 10
−6

6.47 1.30

RandomForest 5.35 × 10
−4

4.86 × 10
−4

3.93 4.22 2.41 2.14 2.96 × 10
−4

3.56 × 10
−4

2.84 2.76

RBF 1.36 × 10
−4

1.07 × 10
−4

3.27 3.45 1.76 2.39 3.76 × 10
−5

4.63 × 10
−5

7.95 1.05

Mean function Ackley (5) Hartmann6 (6) Michalewicz (10) Rosenbrock (10) StyblinskiTang (10)
Median MAD Median MAD Median MAD Median MAD Median MAD

Arithmetic 4.27 6.06 4.00 × 10
−3

5.46 × 10
−3

7.22 × 10
−2

1.03 × 10
−1

8.38 × 10
2

3.27 × 10
2

6.47 × 10
1

2.58 × 10
1

Median 2.10 2.06 8.31 × 10
−4

1.02 × 10
−3

7.88 × 10
−2

1.12 × 10
−1

7.14 × 10
2

2.78 × 10
2

6.72 × 10
1

2.49 × 10
1

Min 4.64 9.59 × 10
−1

3.27 × 10
−3

3.72 × 10
−3

1.39 7.49 × 10
−1

7.00 × 10
2

2.21 × 10
2

8.15 × 10
1

2.78 × 10
1

Max 1.66 1.23 7.47 × 10
−4

9.88 × 10
−4

2.75 × 10
−2

3.72 × 10
−2

6.95 × 10
2

3.64 × 10
2

2.84 × 10
1

2.08 × 10
1

Linear 1.65 × 10
1

2.42 1.21 × 10
−2

1.32 × 10
−2

1.30 8.55 × 10
−1

1.93 × 10
3

1.02 × 10
3

1.10 × 10
2

2.99 × 10
1

Quadratic 9.83 5.81 9.95 × 10
−3

9.63 × 10
−3

1.03 6.84 × 10
−1

1.81 × 10
3

8.90 × 10
2

8.58 × 10
1

4.14 × 10
1

RandomForest 5.16 7.70 × 10
−1

8.12 × 10
−2

5.63 × 10
−2

1.25 × 10
−1

1.43 × 10
−1

4.21 × 10
3

2.29 × 10
3

7.27 × 10
1

1.78 × 10
1

RBF 7.90 1.94 2.75 × 10
−1

1.55 × 10
−1

9.05 × 10
−1

5.57 × 10
−1

2.73 × 10
3

1.32 × 10
3

1.17 × 10
2

2.86 × 10
1
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Figure 2: Illustrative convergence plots for eight benchmark problems using the EI acquisition function. Each plot shows the
median regret, with shading representing the interquartile range across the 51 runs and the dashed vertical line indicating the
end of the initial LHS phase.
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Figure 3: Illustrative convergence plots for eight benchmark problems using the UCB acquisition function. Each plot shows
themedian regret, with shading representing the interquartile range across the 51 runs and the dashed vertical line indicating
the end of the initial LHS phase.
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Figure 4: Convergence plots for the robot pushing problem
using EI and UCB. Each plot shows the median regret, with
shading representing the interquartile range of the 51 runs.

a change of the robot’s starting location results in the object no

longer being pushed towards the target, as well as plateaux where

changes in certain parameter values have little effect, e.g. if the

amount of pushing time results in the robot not reaching the object.

However, we investigated the mean prediction error of each of the

combined mean plus Gaussian process models trained on the first

100 expensively evaluated locations by calculating the normalised

root mean squared prediction error at 1000 locations (chosen by

Latin Hypercube Sampling). As shown in the supplementary mate-

rial, this indicates that, in fact, the RF model has a comparatively

poor prediction error. By contrast, the RBF mean function yields

the most accurate model of the overall landscape, but it only shows

better performance for push4 using UCB. These prediction errors

were evaluated over the entire domain and, therefore, it is possible

that the RF mean function is sufficiently superior in the vicinity of

the optimum to allow the more rapid convergence seen here.

Interestingly, the performance of the Max mean function with

EI on the synthetic test problems is not reflected on these two more

real-world problems. However, both the Arithmetic and Max mean

functions are statistically equivalent on both push4 and push8,

with Max having lower median regret and MAD than Arithmetic.
Nonetheless, it remains unclear why the RF mean function gives

best performance in three of these four cases.

4.3 Pipe Shape Optimisation
Lastly, we evaluate the mean functions on a real-world computa-

tional fluid dynamics (CFD) optimisation problem. The goal of the

PitzDaily CFD problem [9] is to minimise the pressure loss between

a pipe’s entrance (inflow) and exit (outflow) by optimising the shape
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Figure 5: Convergence plots for the PitzDaily test problem
using EI and UCB. Each plot shows the median regret, with
shading representing the interquartile range of the 51 runs.

of the pipe’s lower wall. The loss is evaluated by generating a CFD

mesh and simulating the two-dimensional flow using OpenFOAM

[20], with each function evaluation taking between 60 and 90 sec-

onds. The decision variables in the problem are the control points of

a Catmull-Clark subdivision curve that represents the lower wall’s

shape; see [9] for a pictorial representation of these. In this work

we use 5 control points, resulting in a 10-dimensional decision vec-

tor. The control points are constrained to lie in a polygon, rather

than a hypercube for all previous problems, and, therefore, we

draw initial samples uniformly from within the constrained region

rather than using LHS. Similarly, we use CMA-ES [16] to optimise

the acquisition functions and penalise locations that violate the

constraints.

Convergence plots of the flow loss for the mean functions with EI

and UCB are shown in Figure 5. The Arithmetic, Min and Max con-

stant mean functions, when using EI, are all statistically equivalent

and the best-performing. It is interesting to note the contrasting

performance between the RandomForest mean function on this and

the robot pushing tasks.

As shown in Figure 5, using the UCB acquisition function leads

to the constant mean and Linear mean functions all having a me-

dian flow loss within 10
−4

of one another, with their inter-quartile

ranges rapidly decreasing. This effect can also be seen towards

the end of the optimisation runs with EI. Inspection of solutions

(control points) with a flow loss ≈ 0.084 revealed that they all had

distinct values but that they led to very similar sub-division curves.

This implies that they all represented essentially the same inner

wall shape and thus indicate the presence of either one large, valley-

like global optimum or many, global optima. We suggest that this

may be the actual minimum flow loss achievable for this problem.

All mean functions, in combination with both EI and UCB, were

able to successfully discover solutions that led to a flow loss of less

than 0.0903 found by a local, gradient-based method in [30] that

used approximately 500 function evaluations. This highlights the

strength of Bayesian optimisation in general because the conver-

gence rates shown in Figure 5 are far more rapid for the majority of

mean functions and realise better solutions than the local, adjoint

method.

5 CONCLUSION
We have investigated the effect of using different prior mean func-

tions in the Gaussian process model during Bayesian optimisation

when using the expected improvement and upper confidence bound

acquisition functions. This was assessed by performing BO on ten

synthetic functions and two real-world problems. The constant

mean function Max, which uses a constant value of the worst-seen

expensive function evaluation thus far, was found to consistently

out-perform the other mean functions across the synthetic func-

tions in higher dimensions, and was statistically equivalent to the

best performing mean function on nine out of ten functions. We

suggest that this is because this mean function tends to promote

exploitation which can lead to rapid convergence in higher dimen-

sions [12, 35] because exploration is implicitly provided through

the necessarily inaccurate surrogate modelling. However, on the

two, real-world problems this trend did not continue, but its perfor-

mance was still statistically equivalent to the commonly-used mean

equal to the arithmetic mean of the observations. For this reason

we recommend using the Max mean function in conjunction with

expected improvement for, at worst, the same performance as a zero

mean and generally improved performance in higher dimensions.

Interestingly, the lack of consistency between mean function

performance on the synthetic and real-world problems may indi-

cate a larger issue in BO, namely that synthetic benchmarks do

not always contain the same types of functional landscapes as real-

world problems. In future work we would like to characterise a

function’s landscape during the optimisation procedure and adap-

tively select the best-performing components of the BO pipeline,

e.g. mean function, kernel, and acquisition function, to suit the

problem structure.

This work focused on learning a mean function independent of

the training of the GP. In further work we would like to jointly

learn the parameters of the mean function, i.e. the weights in (9),

alongside the hyperparameters of the GP itself. The efficacy of

the BO approach clearly depends crucially on the ability of the

surrogate model to accurately predict the function’s value in un-

visited locations. We therefore look forward to evaluating a fully-

Bayesian approach that marginalises over the mean function pa-

rameters and kernel hyperparameters. Although the Monte Carlo

sampling required to evaluate the resulting acquisition functions

may be substantial, an important area of investigation is whether

fully-Bayesian models can significantly improve the convergence

of Bayesian Optimisation.
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