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Abstract

Our species possesses the peculiar ability to accumulate cultural innovations over

multiple  generations,  a  phenomenon termed cumulative  cultural  evolution  (CCE).

Recent years have seen a proliferation of empirical and theoretical work exploring

the interplay between demography and CCE. This has generated intense discussion

about whether demographic models can help explain historical patterns of cultural

changes. Here, we synthesise empirical and theoretical studies from multiple fields

to  highlight  how  both  population  size  and  structure  shape  the  pool  of  cultural

information  that  individuals  can  build  upon  to  innovate,  present  the  potential

pathways through which humans’ unique social structure might promote CCE, and

discuss  whether  humans’  social  networks  might  partly  result  from  selection

pressures linked to our extensive reliance on culturally accumulated knowledge.
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Problem-solving in populations over multiple generations

A central feature of our species is  our  unprecedented  capacity  to  develop

sophisticated cultural practices that have allowed us to colonize and permanently

occupy environments for which we are poorly suited genetically [1, 2]. This capacity

can be viewed as a form of problem-solving by which humans have successfully

solved complex ecological  challenges.  This form of  problem solving, however,  is

peculiar  in  that  it  operates  at  the  population  level,  rather  than  solely  within

individuals, and over multiple generations [2, 3]. Both traditional and more modern

technologies have not been produced by a single individual but have emerged over

centuries through incremental improvements resulting from the efforts of multiple

generations of individuals. This process - known as cumulative cultural evolution

(CCE)  -  is powered by our  ability  to selectively  learn adaptive social  information

which  results  in  the  gradual  accumulation  of  innovations,  and  can  give  rise  to

cultural traits (such as technologies) that are beyond individuals’ inventive capacities

[2-7]. 

Drawing predominantly  on  ideas from evolutionary  theory,  anthropologists,

biologists and psychologists have developed a rigorous theoretical framework that

applies  the  notion  of  descent  with  modification  to  material  culture,  and  have

investigated the role of population dynamics in the production, transmission and

maintenance of cultural traits [8-10]. An influential finding of early theoretical models

is that our social  learning abilities interact with  demography to affect CCE, and,

more specifically, that the size of the population within which cultural information is

shared strongly constrains CCE [11].
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Recent  years  have  seen  a  proliferation  of  empirical  and  theoretical  work

exploring  the  interplay  of  demography  and  CCE,  and  demographic  factors  are

increasingly invoked to explain historical patterns of cultural changes [11-19]. While

this research has advanced our understanding of the link between demography and

CCE and opened up promising new avenues, it has also revealed a need to better

articulate empirical  research and theoretical models.  Here we present the theory,

discuss misconceptions, outline future challenges, and highlight new directions in

research on demography and CCE.

Strength in numbers

Demography has long been considered a potential explanation for cultural changes

documented in the archaeological record [20-22], but it is with the theoretical work

of  Shennan  [23] and  Henrich  [11] that  the  idea  gained  prominence  among

evolutionary  human  scientists.  The  main  idea  behind  demographic  models  of

cultural  evolution  is  that,  given  that  CCE  only  operates  when  at  least  some

information  is  transmitted  socially  between  generations  [24-26],  the  effective

population size (which depends on both population size and interconnectedness)

can  buffer the risk of losing cultural information (see Box 1). In Henrich’s seminal

model  [11],  for instance, individuals belong to a population of  constant size and

possess  a  psychological  propensity  to  learn  from  successful  individuals.  This

propensity creates a selective force that  promotes the transmission of  beneficial

cultural  traits  and  outweighs  the  degrading  effects  of  learning  errors  when

populations are large enough (Figure 1).  These results suggest that decreases in
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effective  population  size  (due  to  phenomena  such  as  plagues,  war  or  volcanic

eruptions) might result in losses in individuals’ level of skills (often proxied in the

archaeological  literature  as  the  number  of  tools,  or  toolkit  complexity)  by

constraining  CCE.  Several  regional  losses  of  cultural  traits  documented  in  the

archaeological  record,  such  as  prehistoric  Tasmania,  have  consequently  been

attributed to decreases in population size and connectedness [11, 19]. Conversely,

the emergence of more complex cultural  traits have been hypothesized to result

from increases in population sizes and/or densities [13, 14]. 

Experimental tests of the relationship between population size and

CCE 

One  approach  that  has  been  used  to  evaluate  the  plausibility  of  demographic

models  of  CCE involves  lab experiments.  Typically,  participants  who are  part  of

groups of different sizes are tasked to improve a piece of technology. To date, 5

experiments from 4 different research groups provide support for a positive effect of

group size on cultural complexity [27-31] (but see [32, 33]). One study, for instance,

exposed naïve participants in groups of 2, 4, 8 and 16 to demonstrations showing

how to produce virtual arrowheads and fishing nets, and tracked the efficiency of

those tools  across time  [27].  The larger  the  group,  the less  likely  tools  were to

deteriorate, the more likely they were to improve, and the more likely a diversity of

tool types were to be maintained. Using chains of participants and alternative tasks

involving image-editing and knot-tying techniques, another study similarly showed

that the deterioration of a technique is less likely (and its improvement more likely) in
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larger groups  [29]. Additionally, these experiments  show that individuals use cues

such  as  success  to  choose  from  whom  they  learn,  lending  plausibility  to  the

assumption of  Henrich’s  model  that  individuals  selectively  learn  from successful

demonstrators. 

Importantly, some of these experiments relied on designs that only loosely

reflect Henrich’s initial assumptions (Box 2). Most, for instance, provide individuals

with the opportunity to simultaneously learn and combine information from multiple

demonstrators  (a  several-among-many  design)  [28-31] while  Henrich’s  model

assumes that individuals always select a single source of information from a larger

pool of demonstrators. Some experiments that have relied on the former design,

however,  allowed  participants  to  allocate  their  learning  time  strategically,  which

means that individuals’ learning strategies might still, in practice, be consistent with

Henrich’s assumptions  [29]. Yet mechanisms that are not part of Henrich’s model,

such  as  combining  information  from  multiple  demonstrators  to  generate  new

solutions,  certainly  did  play  a  role  in  these  experiments  [29-31].  Due  to  this

disconnect between experimental tests and theoretical models, it is not always clear

whether experimental studies showing positive effects of demography offer genuine

support for specific theoretical claims, nor whether purported failures to detect any

effect  of  demography  are  valid  challenges  to  theoretical  models  (see  Box 2  for

further discussion).

Real-world tests of the relationship between population size and

CCE 
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A  complementary  and  more  direct  approach  to  test  the  relationship  between

population  size  and  CCE is  to  look  for a  correlation  between  toolkit  size  and

population size using real-world ethnographic and archaeological data. Results with

this approach have been mixed. Some studies support the hypothesis [13, 14, 34,

35], but others do not [36-39] (although [40] point out that some of these studies rely

on the same datasets, and should not count as independent tests). 

The difficulty with testing demographic models using real-world data is that

human populations are  typically  embedded within  extended networks of  cultural

exchange, making it difficult to gather meaningful estimates of population size. This

constitutes  a  major  obstacle  for  anthropologists  and  archaeologists  because

theoretical models explicitly link cultural complexity to the size of the population that

shares information (i.e. the effective cultural population size)  [11]. This implies that

tests of demographic hypotheses should control for contact rates between inter-

connected populations, which is typically challenging (but see [34]). Proponents of

demographic hypotheses have therefore argued that  studies  which reported null

results are invalid because they do not take contact rates into account and typically

treat culturally connected groups as independent, culturally isolated populations [40]

(see Box 3 for other mismatches between models and empirical tests). 

Other  studies  have  tested  demographic  effects  where  they  may  not  be

predicted  to  occur.  One  study,  for  instance,  found  no  evidence  that  larger

populations support  more complex folk tales,  with complexity operationalised as

number  of  tale  types,  number  of  narrative  motifs  within  tales,  and  number  of

component details within tales [41]. Yet folk tales are very different to the technology
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that is the focus of most demographic models. Tools that are more efficient and

have  higher  payoffs  are  typically  associated  with  an  increasing  number  of

component  elements  [42],  which  means  that  they  tend  to  be  more  complex.

However, if complexity is not associated with higher payoffs, then theoretical models

do  not  predict  that  population  size  should  necessarily  affect  it.  The  function  of

folktales, for instance, is to convey meaning. If similar meaning can be conveyed by

simpler folktales, we should not necessarily expect to observe the most complex

folktales in larger populations. The same line of reasoning applies to the evolution of

language, which functionally adapts to the needs of efficient communication  [43].

Studies that have investigated the relationship between speaker population sizes

and phoneme inventory  sizes  [44-46] or  rates  of  language change  [47-49] have

yielded mixed results.  However,  because language also evolves to become more

learnable [50], we should not necessarily expect larger populations to produce more

new words nor  have larger  phoneme inventory  size.  Furthermore,  folk  tales  and

other forms of expressive culture may serve as markers of group membership and

some  models  have  suggested  that  smaller  groups  will  have  more  exaggerated

markers  [51]. This suggests that a clearer picture about the relationship between

demography and the evolution of expressive cultural traits might emerge by moving

away from arbitrarily chosen measures of complexity and by taking into account that

functional and symbolic cultural traits exhibit different evolutionary dynamics [52].

It is also worth stressing that, contrary to recent claims  [53], no theoretical

work ever predicted that population size should solely determine the number of tools

(or any other measure of cultural  complexity) found in human populations. Many
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factors are expected to affect toolkit  complexity in natural  populations, including

mobility,  subsistence  practices  and  ecological  factors.  The  risk  hypothesis,  for

instance, holds that populations living in harsh environments create more numerous

and  specialised  tools  to  mitigate  the  risk  of  resource  failure  due  to  stochastic

variation  [36-39, 54, 55]. Importantly, the risk hypothesis and the population size

hypothesis differ in what they aim to explain [56]. The risk hypothesis explains what

determines the size and complexity of toolkits (i.e. what creates the need for cultural

complexity).  The population size hypothesis is about the constraints imposed on

CCE. Claims that the absence of correlation between population size and toolkit

complexity  disprove  demographic  models  are  based  on  misconceptions  about

those models (see Box 3).

Inconclusive studies about the relationship between population size and CCE

have had the merit of stimulating new work and led to important refinements to early

theoretical work. Models with different assumptions have shown that the effects of

effective population size hold when  more conservative or alternative assumptions

are  considered (e.g.  restricting  potential  demonstrators  to  a  limited  number  of

acquaintances  [57]; conformist transmission  [58, 59] but see  [60]; adding costs to

acquiring knowledge  [61];  and alternative pathways to innovation  [62]).  However,

recent studies also suggest that the relationship between effective population size

and CCE can be mediated by numerous factors ([58, 62-66]),  and that there are

numerous challenges in detecting demographic effects on CCE in real-world data

(see Box 3).

Despite these challenges, there is little doubt that changing the effective size
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of a population will alter the cultural information available to subsequent generations

of learners, which will most likely constrain what can be achieved by individuals. In

this  context,  promising  new  work  has  started  to  investigate  more  broadly  how

constraints on information flow within populations can further promote or hinder the

gradual accumulation of cultural innovations.  

Beyond numbers: CCE in social networks

Human populations do not consist of a collection of isolated groups of varying sizes.

Multiple  groups  are  typically  connected  by  migratory  and trade activities,  which

results in wide, heterogenous social networks. The role of connectedness on CCE

was already acknowledged in early theoretical models [11, 13].  A simulation model

that  explicitly  implemented  migratory  activity among subdivided populations,  for

instance, showed that increasing the migration rate has a similar effect to increasing

the size of an isolated population [13]. This is because increases in both population

size and migratory activity increase the effective number of individuals available as

demonstrators, and so reduce the risk of losing cultural information. 

More recent work, however, has started to  investigate in greater detail how

the structure of  the population impacts  the accumulation of  cultural  information.

Unlike early models, recent studies decouple the maintenance of existing traits and

the production of new traits, more explicitly modelling the pathways that give rise to

innovation [62, 67-69]. Recent models, for instance, assume that existing traits can

not  only  be  refined  but  also  combined  with  other  existing  cultural  traits.  When

recombination between  existing  traits  is  incorporated  as  a  pathway  towards
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innovation,  increases  in  population  size  and  connectedness  can  have  different

effects  on  CCE  [68,  69].  This  is  because,  while  increases  in  population  size

systematically  benefit  CCE  by  reducing  the  risk  of  cultural  loss,  increases  in

connectedness can  reduce opportunities for innovation by homogenising cultural

behaviours. This effect is illustrated by a recent lab experiment in which individuals

could  innovate  by  producing  incremental  changes  within  path-dependent

technological  trajectories (refinement)  and by combining traits that have evolved

along different  trajectories  (recombination)  [67].  Results  show that  high  levels  of

connectedness make individuals more likely to converge on similar solutions, which

results in lower levels of cultural diversity and slower rates of innovation compared

with less connected groups. 

These results suggest that understanding the effect of demography on CCE

requires us to consider not only how changes in connectedness affect the number of

individuals available as demonstrators, but also how it shapes the cultural diversity

to  which  individuals  are  exposed.  When  these  two  effects  are  considered

simultaneously,  models show that optimal  rates of  accumulation are reached for

intermediate  levels  of  connectedness  [68,  69].  This  is  because  low  levels  of

connectedness  increase  the  risk  of  cultural  loss  by  decreasing  access  to

demonstrators, while high levels of connectedness reduce opportunities to innovate

by  homogenising  cultural  behaviours.  At  intermediate  levels  of  connectedness,

groups can accumulate cultural information while remaining culturally distinct, which

keeps fueling innovation. 

These  results  have  implications  for  CCE both  at  the  macroscale  and  the
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microscale. At the macroscale, human population have been historically fragmented

due to geographic barriers,  conflicts and other factors, resulting in  long-standing

culturally  differentiated  sub-populations.  In  this  context,  increased  levels  of

between-group  connectedness  are  unlikely  to  homogenise  cultural  behaviours.

Nevertheless,  recent  models  suggest  that,  because  of  new  opportunities  for

recombination,  contacts  between  culturally  differentiated  groups  should  result  in

rapid cultural changes whose magnitude far exceed what is predicted by models

that  incorporate  cultural  loss  alone  [68].  This  also  suggests  that  population

structures that allow for contacts between culturally differentiated groups might act

as endogenous drivers of cultural  change  [67, 68],  even though it  should not be

assumed  that  populations  will  develop  and  maintain  more  complex  cultural

repertoires without appropriate incentives to do so (Box 3).

Patterns  of  connectedness  might  also  affect  CCE  at  the  microscale  by

influencing individuals’ exploration of the design space. Network and organization

scientists, for instance, have jointly shown that behaviours are more likely to become

homogeneous in well-connected than in partially-connected groups when learners

preferentially acquire information from the same demonstrator [70-72] (but see [73,

74]).  Sociologists  have  similarly  argued  that  behaviors  tend  to  be  more

homogeneous within groups than between groups and that  individuals with ties to

otherwise  unconnected groups  have greater  opportunities  to  develop new ideas

because they are exposed to a broader diversity of information [75]. 

These studies illustrate how patterns of connectedness impact the quantity

and diversity  of  information that  individuals are exposed to and can draw on to
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make inferences,  which in  turn can impact  populations’  abilities  to  develop and

maintain cultural traits. The benefits of sparsely interconnected networks on CCE in

natural  populations,  however,  remain  to  be properly  evaluated.  Complex  cultural

traits  are  typically  hard  to  learn  and  several  experiments  have  stressed  the

importance  of  multiple  demonstrations  and  multiple  learning  attempts  in  the

acquisition  of  complex  skills  [27,  76].  This  suggests  that  occasional  contacts

between  different  individuals/groups  might  not  allow  complex  skills  to  spread

properly.  Additionally,  network  scientists  have  stressed  the  importance  of  the

number of sources of exposures for the adoption of unproven new solutions  [77].

Experiments  typically  provide  participants  with  accurate  information  about

alternative solutions, which allows them to confidently adopt the most rewarding

ones. In noisy environments, however, interactions with multiple carriers might be

critical for individuals to adopt alternative solutions [77] (see also [78] for an example

of how the mean number of  connections within a network affects the spread of

cultural  traits).  Future  research  should  test  whether  the  optimal  level  of

connectedness differs depending upon the characteristics of the cultural traits one is

looking at. Dense networks, for instance, might be critical for the cultural evolution

of hard to learn traits (for which transmission is the key bottleneck), while the cultural

evolution of easy to learn traits whose efficiency can be readily assessed might be

faster in sparsely connected networks.

Characterizing human social networks in the wild

The  effects  of  population  interconnectedness  on  CCE  suggests  that  cultural
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changes might be better understood by paying greater attention to the structure and

evolution of human social networks. Mapping past, or even recent, social networks,

however,  is challenging. Archaeologists and geneticists are still  struggling to infer

past  population sizes  [15,  79,  80],  let  alone population structures  [81].  In  recent

years,  approaches  relying  on  social  network  analyses  have  seen  a  rise  among

archaeologists,  but many challenges have still  to be solved before being able to

distinguish  spatio-temporal  patterns  in  social  interactions  from  noise  in

archaeological data [82-84]. 

Comparative  and  ethnographic  studies,  however,  are  already  providing

valuable  information  about  human  population  structure.  Comparisons  between

human hunter-gatherer  societies  and  non-human primate  societies,  for  instance,

have  shed  light  on  what  has  been  called  the  deep  social  structure  of  human

societies [85]. Contrary to most non-human primate societies, which are composed

of  independent,  single-group  structures,  human  societies  are  federations  of

multifamily  groups  [85,  86].  This  unique multigroup structure results  in  extensive

networks of  unrelated individuals that  might  be conducive to CCE  [87].  Data on

interactions  between  same-sex  adults  from two  hunter-gatherer  populations,  for

instance,  reveal  that  individuals  typically  interact  with  more  than  300  same-sex

adults in a lifetime (although including opposite-sex adults and children results in

estimates  as  high  as  1000).  In  comparison,  male  chimpanzees are  estimated  to

interact  with  only  about  20  other  males  in  a  lifetime  [87] (see  also  [88] for  a

discussion on the large-scale social networks of hunter-gatherer groups). 

Other studies among hunter-gatherer populations have started to more finely
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characterize  hunter-gatherer  networks.  One study,  for  instance,  used trackers  to

map  in-camp  networks  in  two  hunter-gatherer  populations  and  showed  that

individuals invest early in their childhood in a few close friends who bridge densely

connected families  [89]. These strong friendships increase the global efficiency of

hunter-gatherer  in-camp  networks,  which  might  facilitate  the  flow  of  social

information (Figure 2). More recently, characterization of hunter-gatherer networks

has been extended to between-camp interactions and has been used to simulate

the accumulation of cultural innovations over real networks [90]. Results confirm that

hunter-gatherers’  social  structures  are  made of  multiple  levels  of  clustering,  and

simulations suggest that this sparsely interconnected hierarchical network structure

might accelerate CCE by allowing the coexistence of multiple cultural lineages and

promoting the emergence of innovations (but see Box 4).

The few studies that have investigated networks in hunter-gatherers, however,

have been limited to interview data and proximity  measures  [87,  89,  90].  Actual

measurements  of  cultural  transmission  remain  scarce,  and  the  extent  to  which

proximity networks accurately reflect transmission networks is currently unknown.

Investigation of  the co-occurrence of  plant uses in dyads in one hunter-gatherer

population, for instance, showed that not all knowledge is equally shared [91]. More

specifically, results show that medicinal plants were mostly shared between spouses

and kin, while plants that serve other functions were shared much more widely. This

suggests that knowledge-sharing networks are content-specific and supports the

idea that hunter-gatherer multi-level social structure enables culturally differentiated

units to remain stable despite occasional co-residence [90]. This work also suggests

15

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327



that  both  structural  barriers (i.e.  lack  of  contact  between  individuals)  and

behavioral barriers (i.e. unwillingness to share cultural knowledge) have to be taken

into account to properly evaluate the effects of population structure on CCE. Indeed,

structural  and  behavioral  barriers  combine  to  result  in  an  effective  population

structure that ultimately determines opportunities for cultural transmission. Contact

between different ethnolinguistic groups, for instance, can potentially bring different

cultural traits together due to significant between-group cultural distance. However,

language barriers, endogamy, rivalry and other behavioural barriers such as in-group

conformity might limit opportunities for cultural exchange between those groups [92,

93]. 

These  results  suggest  that  our  understanding  of  the  relationship  between

demography and CCE would benefit from a better understanding of how and why

individuals form social ties both within- and between-groups and the extent to which

different types of ties (such as kin-based, affine-based and friendship-based) are

conducive to cultural transmission. This will permit more realistic implementation of

cultural  transmission  into  theoretical  models.  Indeed,  while  the  combination  of

vertical cultural transmission (i.e. learning from parents) and success-biased learning

is empirically supported and provides a useful first approximation of the dynamics of

social learning in groups  [40], multiple factors are likely to affect opportunities for

social learning. Anthropological studies, for instance, have shown that social ties are

more likely to form between people who share similar traits (i.e. homophily [94, 95]).

Furthermore, understanding how individuals form social ties is an important avenue

for future research because the way individuals form ties ultimately feeds back into
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the evolution of social networks (homophily, for instance, is known to introduce local

structure into networks [95, 96]). 

How did human social networks get their shape? 

Even if  questions remain regarding the effects  of  specific network properties on

CCE, it seems clear that humans live within unusually large and uniquely structured

social networks. This raises questions about how and why humans have come to

form large networks of unrelated or weakly related individuals. 

Recently,  it  has  been  argued  that,  because  individuals  from  culturally

differentiated groups might have greatly benefited from increased between-group

interactions, selection might have acted at the individual level to affect individuals’

propensity  to  interact  with  out-group  members  [17].  This  might  have  involved

changes in conscious behavioural choices (e.g. adjustments to out-group contacts

due to perceived immediate benefits)  and/or unconscious influence on behaviour

(e.g.  decreased  fear  of  foreigners  or  tendency  to  disperse)  [17].  Congruently,  a

recent simulation model that investigated whether network structure itself can evolve

as  a  result  of  ecological  pressures  related  to  skill  acquisition  confirmed  that

selection can impact individuals’ propensity to form random ties (such as non kin

ties)  [97].  Yet, it  is not clear whether the acquisition of social information creates

sufficiently  strong  incentives  for  individuals  to  overcome  rivalry  and  other

behavioural  barriers  that  tend  to  reduce  opportunities  for  cultural  transmission

between unrelated individuals. Moreover, increasing contacts is only one part of the

problem,  as  many  cultural  traits  are  unlikely  to  be  properly  acquired  without  a
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demonstrator’s willingness to share information [98-100].

Another  possible  way  by  which  selection  might  have  promoted  the

emergence of networks that are conducive to CCE is by acting on variation that

exists at the group level  [17, 101]. Indeed,  anthropologists have long stressed the

role of cultural  institutions in promoting both information sharing and interactions

between non-kin  [87,  101-103].  Among the Ache and Hadza,  for  instance,  ritual

relationships, mediated by activities such as club fight rituals, have been shown to

promote  inter-band  interaction.  Quantitative  analyses  have  revealed  that  ritual

relationship  is  a  more  important  predictor  than  kinship  for  different  types  of

interactions, including opportunities for cultural transmission (such as observing tool

making skills)  [87]. Furthermore, anthropologists have stressed that certain groups

have cultural beliefs that connect envy and harm, which make successful individuals

more  likely  to  hide  information  from other  group  members,  thus  inhibiting  CCE

compared to other groups  [101].  This suggests that groups that possess cultural

institutions that  promote information sharing and/or  mobility might  have attained

higher cultural complexity and outcompeted groups with cultures less conducive to

CCE  [17, 101].  It  is also worth noting that the maintenance of large networks of

unrelated or weakly related individuals might have been further supported by the

emergence of cultural innovations such as kin naming systems and stylistic markers

of group identity that typically promote cooperative interactions between unrelated

individuals [103].  Kin naming systems, for instance, allow familial  relationships to

extend to affine, distant kin and even non-kin [103] and might permit individuals to

maintain privileged relationships with large numbers of individuals without requiring
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much cognitive effort nor physical cohabitation [104].

The question of whether humans’ social structure might in part result from

selection  pressures  linked  to  our  extensive  reliance  on  culturally  accumulated

knowledge will have to be carefully evaluated. Indeed, chimpanzees also live among

nonrelatives [105] and humans’ propensity to form ties with non-kin might be due to

reasons  unrelated  to  CCE  and  that  just  happened  to  be  conducive  to  the

accumulation  of  cultural  innovations.  Archeologists,  for  instance,  noted  that  an

incest  avoidance  rule  would  give  rise  to  the  same  kind  of  sparsely  connected

networks that might benefit CCE [56]. Alternative determinants of outgroup contacts

include  resource  distribution  [56],  reciprocal  cooperative  exchange  [106] and

coalition formation  [107], among others. Specific predictions should be formulated

and  properly  tested  to  disentangle  the  respective  effects  of  these  various

mechanisms on network structure. The hypothesis that CCE directly shapes network

structure by acting on  conscious behavioural choices, for instance, would predict

that individuals should flexibly reinforce or weaken their investment in non-kin ties

depending on the usefulness of the information they provide. 

Concluding remarks and future directions

The  proliferation  of  work  exploring  the  interplay  of  demography  and  CCE  has

recently led to many misconceptions due to loose interpretations of early theoretical

models (Box 2 and 3). Empirical tests that operationalize models in ways that are

consistent  with  theoretical  assumptions  provide  support  for  the  hypothesis  that

effective population size constrains CCE. However, testing these models using real-
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world data remains difficult because multiple  factors combine with demography to

determine CCE and human populations are  typically  embedded within  extended

networks of cultural exchange. While these extended networks of contacts make it

difficult to gather meaningful estimates of population size, recent research suggests

that  they  might  also  affect  CCE  in  ways  that  are  not  yet  fully  appreciated.

Understanding how population structure affects CCE will require us to  understand

precisely how structural and behavioral barriers constrain information flow in natural

populations (Box 4).

The  effects  of  connectedness  on the  accumulation  of  cultural  information

raise  many  questions  about  the  relationship  between  humans’  unique  social

structure and CCE (see Outstanding Questions). Through the study of the nature and

the emergence of non-kin ties, both within groups and between groups, as well as

knowledge-sharing networks in natural populations, it will be possible to illuminate

how  humans  have  managed  to  accumulate  cultural  information  in  such  an

unprecedented way and determine whether our  unique social  structure results in

part  from  selection  pressures  linked  to  our  extensive  reliance  on  culturally

accumulated knowledge.

20

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436



Box 1: Demographic models of cultural change

Cultural  drift.  Some of  the earliest  cultural  evolution  models  adapted  early  20 th

century models of genetic drift to the cultural case  [8, 22, 23, 108]. Drift, whether

genetic  or  cultural,  is  essentially  sampling  error.  Drift  models  typically  assume

‘unbiased transmission’ or ‘random copying’: each of N individuals within a finite

and fixed-sized population possesses one of a set of discrete cultural traits. Each

generation or timestep, individuals select another individual at random and acquire

their cultural trait. This process results in the inevitable loss of trait variation. The

speed  with  which  traits  are  lost  is  dependent  on  N:  smaller  populations  lose

variation quicker. This is a highly simplistic model, but provides a useful base for

exploring  the  effects  of  processes  such  as  innovation  and  complex  population

structures  such as  island chains or  bottlenecks on CCE,  and has been used to

explain archaeological assemblage diversity [22, 108].

The  ‘Tasmanian’  model.  Perhaps  the  most  influential  demographic  model  of

cultural evolution was formulated by Henrich  [11]. This model was inspired by the

empirical case of prehistoric Tasmania, which apparently lost complex technological

traits (e.g. bone tools, warm clothing) around 10-12kya when Tasmania was cut off

from the Australian mainland, thus decreasing the effective population size [20]. The

model  incorporates  more  psychologically  plausible  processes  than  simple  drift

models. Each of N individuals possesses a value of culturally transmitted ‘skill’ (e.g.

basket-making),  represented  by  a  continuous  variable  z.  Each  timestep,  each

individual attempts to learn the skill value  zh  of the highest-skilled member of the
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previous timestep,  h  (i.e. success biased transmission). Learning is imperfect, and

affected by two kinds of processes. Learning error, determined by ɑ, always results

in worse skill  than  zh.  Another parameter,  β, determines the extent of inferences,

experiments, luck and other factors that on average make skill  levels worse, but

sometimes better,  than  zh.  Combining these, Henrich assumed that the skill  of a

naive individual is drawn from a Gumbel distribution (Figure 1). N interacts with the

latter β term: the more individuals there are, the more likely one of those individuals

is to exceed zh, representing an increase in cumulative cultural knowledge/skill. If N

is too small, then all learners will acquire values around the mode of the distribution,

which is  less than  zh,  resulting in  a  decrease in  cultural  complexity.  Subsequent

empirical  work  has  shown  that  this  Gumbel  distribution  is  a  reasonable

approximation of social learning dynamics [109] (but see [110] for a critique of this

model).

Population structure and trait recombination. Subsequent models have extended

the  Tasmanian  model  to  investigate  in  greater  detail  how  the  structure  of  the

population  impacts  both  the  maintenance  and  the  production  of  cultural  traits.

Stochastic simulations of the Tasmanian model with multiple sub-populations show

that  increasing the migration rate has a  similar effect to increasing the size of an

isolated population on CCE, because both increase variation within sub-populations

and so reduce the risk of losing cultural information [13]. Recent studies have more

explicitly modelled the pathways that give rise to innovation and revealed that the

effect of migration can even be more pronounced when cultural traits can combine
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to form innovations that are “greater than the sum of their parts” [68]. However, too

frequent contact might not be beneficial  to CCE because it  prevents populations

from remaining culturally distinct, and reduces opportunities to innovate [68, 69]. 

Figure 1: Gumbel distribution from Henrich’s Tasmanian model

The distributions depict  the probability of a learner  i acquiring different values of

skill, z (zi), for two different population sizes N. The vertical dotted line shows the z

value  of  the  highest-skilled  demonstrator  being  copied  (zh).  Learning  error,

determined by ɑ, reduces the likelihood of zh being reached. Inferences, experiments

and luck, determined by β, increase the chances of the learner improving on zh (the

area under the curve to the right of the dotted line). Vertical bars show N random
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draws from each distribution, representing N learners’ zi values. Red bars represent

inferior zi relative to zh, green bars represent superior zi relative to zh. On the left, a

small population (N=20) results in a population-level decline in skill, as no learner

matches  or  exceeds  zh.  On  the  right,  a  large  population  (N=100)  features  some

learners who exceed zh, resulting in an improvement in the next generation.
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Box 2: Linking models and data in the lab

Experimental  approaches  are  useful  for  investigating  the  relationship  between

demography and CCE because essential  elements  of  theoretical  models  can be

implemented under tightly controlled conditions, and tested against actual human

behaviour (rather than modellers’ assumptions about human behaviour) [111, 112].

As noted in the main text, the majority of experimental studies have found

support for the general predictions of demographic models [27-31]. This is all the

more  surprising  given  that  these  studies  are  remarkably  diverse  in  experimental

tasks, group sizes and inter-individual interactions. Yet, it is worth highlighting that

most experimental designs significantly deviate from the models they claim to test.

In the main text we discuss one example, where experiments offer social learners

the opportunity to combine information from multiple cultural demonstrators [29-31],

rather  than  learn  from  a  single  successful  demonstrator  as  in  the  most-cited

demographic models (see Box 1). The role of recombination across existing cultural

traits has been stressed by scholars from multiple fields  [113-115], and increased

opportunities  for  recombination  certainly  is  one  pathway  by  which  effective

population size might  affect  CCE  [101].  Yet,  most  experiments are  presented as

tests of  models that do not feature recombination between existing traits and in

which effective population size mostly affects CCE by  buffering the risk of losing

cultural information (see Box 1). Still other experiments have relied on tasks in which

cultural loss is unlikely to occur [31]. Thus, even though these experiments support

the  population  size  hypothesis,  it  is  not  always  clear  whether  they  provide

appropriate tests of the theoretical models which they cite.
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Maybe  more  problematic  are  experiments  where  results  showing  no

relationship between  demography  and CCE are  used to  question  the  validity  of

theoretical models despite featuring different assumptions to those models. A recent

experiment,  for  instance,  had  chains  of  participants  make  and  throw  paper

airplanes, with each participant able to learn from 1, 2 or 4 previous participants

[33].  Apparently  contrary  to  the  demographic  hypothesis,  flight  distance  only

increased  in  the  1-demonstrator  condition,  not  the  2-  and  4-demonstrator

conditions. Yet this experimental design prevented participants from learning from

the  demonstrator  of  their  choice.  Instead  participants  were  forced  to  attend  to

multiple,  randomly  ordered  demonstrators  for  1.5  minutes  each.  Yet,  Henrich’s

model explicitly holds that it is the combination of the amount of beneficial cultural

information (which increases in larger groups) and the selective choices of cultural

learners that promotes CCE. Fay et al.’s results are consistent with the former in

showing that  larger  groups  produce greater  variation  in  distance flight  and give

participants access to more efficient planes. But the constraints imposed on social

learning strategies inhibited CCE in large groups by making learning more difficult in

those groups. 

Discrepancies between experiments and models are not inherently a problem:

the assumptions of models can always be challenged and mechanisms other than

those considered in theoretical models are worth investigating. Yet, the experimental

literature  would  benefit  from  being  more  explicit  about  the  theoretical  basis

underpinning  the  specifics  of  experimental  designs  and  how  they  relate  to

theoretical models. 
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Box 3: Linking models and data in the wild

Several studies have investigated whether there exists a correlation between toolkit

size or composition and population size  in natural populations [13, 14, 34-39], but

there remain serious challenges in testing demographic effects on CCE in real world

data. 

One  difficulty concerns limitations in what can be measured  [58]. Henrich’s

model (see Box 1) describes the level of skill of an individual within a population, a

variable that in an archaeological context can be interpreted as the number of tools

or tool components attributable to an individual. Yet, archaeological studies typically

only have access to population-level rather than individual-level data. This makes

purported tests that use population-level assemblage measures largely irrelevant to

Henrich’s predictions [58]. Even though a recent model incorporating the appropriate

population-level  variable  does predict  a  positive  relationship between population

size and toolkit size [58], these discrepancies illustrate the need to use appropriate

measures when attempting to test a model and/or to adapt models so they can

properly be tested using empirical data.

A  second  difficulty  is  that  demography  has  multiple  aspects  that  can  be

difficult to fully take into account in ethnographic and archaeological studies. In the

main text we discuss one example of this, where empirical data regarding census

population sizes are used to test (and purportedly fail  to support)  the Tasmanian

model  without  taking  contact  rates  into  account.  Furthermore,  recent  models

suggest  that  historical  variations  in  population  size  and  connectedness  are  as

important as immediate demographic contexts in determining cultural complexity in
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a population [58, 64, 68]. Some models, for instance, show that the number of traits

in a population should depend not only on the current population size but also on

the history of population growth and decline [58, 64]. This can blur the relationship

between population size and CCE because growing populations can have fewer

cultural traits than smaller, declining populations. Similarly, two populations of the

same  size  might  be  associated  with  toolkits  of  different  sizes  due  to  different

demographic trajectories. Models also suggest that changes in interconnectedness

can result in different outcomes including transient increases in cultural complexity

[68].  The effects  of  population  histories  represent  a  challenge for  archaeologists

whose data represent a record of aggregated events spanning long periods of time

during  which  both  population  size  and  interconnectedness  might  have  varied.

Further models are needed to determine what testable signatures these dynamics

might have left in the past for archaeologists and historians to detect.

Finally,  demographic  factors  determine  an  upper  boundary  to  the  level  of

cultural  complexity  that  can  be  reached  by  a  population,  but  do  not  entirely

determine the actual level reached by a population. Assuming that increased cultural

complexity is beneficial,  increases in population size should result in increases in

cultural  complexity  but  only  because  this  relaxes  constraints  on  CCE.  A  full

understanding  of  CCE  in  natural  populations  requires  both  drivers  of  CCE  and

constraints  to  be  taken  into  account.  To  that  end,  more  research  is  needed  to

identify  the  factors  that  combine  with  demography  to  determine CCE in  natural

populations,  such  as  environmental  harshness  [54] and  instability  [116] or

accumulated cultural traits themselves [61, 117, 118].
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Box 4: Is human multilevel social structure beneficial to CCE? 

Recent theoretical and experimental studies have challenged the assumption that

anything that  maximizes the flow of  cultural  information should positively impact

innovation rates (Figure 2A-B). These results have led scholars to wonder whether

CCE in human populations has benefited from our unique multilevel social structure

via the partial constraints it imposes on information flow  [67]. A recent simulation

study  provided  support  for  this  by  showing  that  real  hunter-gatherers’  social

networks allow  the coexistence of  multiple  cultural  lineages,  thus promoting the

emergence of innovations [90]. 

However,  while  characterizing  actual  networks  is  useful  for  understanding

how  cultural  information  is  expected  to  spread,  many  (still  largely  unknown)

parameters need to be taken into account before establishing whether, and if so

why, human multilevel social structure promotes CCE. Previous work has shown, for

instance, that the effect of network structure on CCE is mediated by factors such as

individuals’  probabilities  of  innovating  (because  even  strong  constraints  on

information flow prevent cultural diversification if innovation rates are low [69]) and

the extent to which innovation depends on cultural diversity (because constraints on

information flow both slow down and limit CCE when innovation does not depend

on recombination [69]). In the aforementioned simulation study [90], both individuals’

opportunity to innovate, and possibilities for recombination, were determined by the

properties  of  an  artificial  cultural  fitness  that  was  designed to  permit  innovation

through incremental  improvement and recombination  [67], but whose relevance to

rates of CCE in natural populations is uncertain. 
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Maybe more importantly, the effect of network structure on cultural loss was

not  considered  in  those  simulations  [90].  When  cultural  loss  is  not  taken  into

account,  constraints  on  information  flow  necessarily  benefit  CCE  by  promoting

cultural diversification. In more realistic situations, constraints on information flow

expose  populations  to  higher  rates  of  cultural  loss,  which  can  prevent  cultural

diversification  [119].  Moreover,  even  if  they  have  diverse  cultural  repertoires,

sparsely  connected  populations  can  be  unlikely  to  reach  high  levels  of  cultural

complexity because of their inability to maintain complex cultural traits [69].  Thus,

given  our  current  limited  knowledge  about  rates  of  loss  and  innovation,  and

opportunities for recombination, in real-world populations, it is not clear whether the

network structure  documented in  [90] positively  affects  CCE or  whether  cultural

complexity in hunter-gatherer populations would benefit from more connectedness

by being less susceptible to cultural loss. Answering this question will  require an

evaluation of how sparse networks made of strong ties (e.g. kin and friendship ties)

balance cultural loss and cultural diversity (Figure 2C).  
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Figure  2:  Trading  cultural  loss  and  diversity  in  structured  populations. (A)

Experimental  results  show that  moderately  connected  populations  are  slower  at

accumulating innovations but eventually reach higher levels of cultural complexity

than highly connected populations when innovation depends on cultural diversity.

Adapted from [67]. (B) Simulation models show that  optimal rates of accumulation

are reached for intermediate levels of connectedness when populations are exposed

to  cultural  loss. Relative  rates  of  accumulation  between  variously  connected

populations depend on parameters such as rates of innovation and cultural  loss,

and  the  extent  to  which  innovation  depends  on  cultural  diversity  (not  shown).

Adapted  from  [69].  (C)  Patterns  of  connectedness  affect  both  cultural  loss  and

diversity. (i) In fully connected networks made of permanent links (solid lines),  the
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average number of steps required to connect any two individuals (i.e. path length) is

minimal and the efficiency with which information spreads is maximal. This reduces

the risks of cultural but decreases cultural diversity. (ii) Removing ties increases the

average path length between individuals and results in less efficient networks (e.g.

from i  to  ii).  (iii)  Networks  composed of  individuals  tied to  the  same number  of

neighbors  can  also  vary  in  efficiency  due  to  differences  in  average  clustering

coefficients  (a  measure  that  reflects  the  “cliquishness”  of  a  network  [120]).

Increasing the average clustering coefficient results in less efficient networks (e.g.

from ii to iii). (iv) Intermittent links between different parts of a network (dotted lines)

further constrain information flow and result in substructures that are more likely to

culturally diverge by isolation (illustrated by different colors) but also more likely to

suffer from cultural loss. 
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Glossary

Demography: the size and structure of a population of individuals within which CCE

occurs

Cumulative cultural evolution (CCE): the repeated modification and social learning

of behavioural traits from individual to individual and over successive generations,

such that the cultural traits improve in some desired measure of efficiency (typically

a proxy for fitness)

Innovation: the  generation  of  novel  cultural  variation,  either  via  refinement  or

recombination

Refinement: improving an existing cultural trait, typically through a small, gradual

change

Recombination: the  bringing  together  of  existing  cultural  traits  to  form  a  new

functional trait

Tasmanian model: an influential early model of how population size constrains CCE

(see Box 1)

Cultural  drift: cultural  change  due  to  random  sampling  error,  which  is  heavily

dependent on population size and structure (see Box 1)
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Structural  barriers: blocks  on  information  flow  due  to  the  structure  of  the

population, e.g. individuals simply not coming into contact with one another

Behavioural  barriers:  blocks on information  flow due to  behavioural  tendencies

such as an unwillingness to teach hard-to-learn skills, despite contact

Effective population structure: the structure, resulting from the combined effects

of structural and behavioral barriers, that constraints the flow of cultural information

Demonstrator: an individual who serves as a source of social information
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