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ABSTRACT  

 

Large copy number variants (CNVs) are strongly associated with both developmental delay 

and cancer, but the type of disease depends strongly on when and where the mutation 

occurred, i.e. germline versus somatic. We used microarray data from UK Biobank to 

investigate the prevalence and penetrance of large autosomal CNVs and chromosomal 

aneuploidies using a standard CNV detection algorithm not designed for detecting mosaic 

variants. We found 160 individuals that carry >10Mb copy number changes, including 56 

with whole chromosome aneuploidies. Nineteen (12%) individuals had a diagnosis of 

Down’s syndrome or other developmental disorder, while 84 (52.5%) individuals had a 

diagnosis of haematological malignancies or chronic myeloproliferative disorders. Notably, 

there was no evidence of mosaicism in the blood for many of these large CNVs, so they 

could easily be mistaken for germline alleles even when caused by somatic mutations. We 
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therefore suggest that somatic mutations associated with blood cancers may result in false 

estimates of rare variant penetrance from population biobanks.  

 

 

MAIN TEXT 

 

Copy number variants (CNVs) are deletions or duplications of DNA that can vary in size from 

50 basepairs to several hundred megabases1, i.e. entire chromosomes. Individuals typically 

carry several thousand CNVs, most of which are small (<1Mb) and rare (allele frequency 

<1%)2–4. Large, rare pathogenic CNVs have historically been identified through clinical 

microarray testing of two distinct clinical cohorts: firstly, children with developmental 

disorders caused predominantly by germline mutations5–7, and secondly, individuals with 

haematological and other cancers associated with somatically-acquired mutations8–10.  

 

The availability of large, well-genotyped population biobanks offers an opportunity to 

investigate the prevalence and penetrance of monogenic disease-causing variants11. Several 

studies have already been published evaluating known developmental CNVs in 500,000 

adults in the UK and Estonian Biobanks12–19 and the penetrance of X-chromosome 

aneuploidy has been investigated in UK Biobank20. However, given the relatively advanced 

age of UK Biobank participants, ranging from 40–70 years (mean = 56.5 years) at 

recruitment, it is likely that some variants will be due to somatic mutation and age-related 

clonal haematopoiesis21,22 as has previously been observed in genome-wide association 

study cohorts23,24. Importantly, somatic variants in adult population cohorts should not be 
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used to evaluate the penetrance of germline CNVs known to cause developmental 

disorders, as this will result in spurious associations. 

 

We sought to investigate large (>10Mb) autosomal CNVs present in population datasets 

with the aim of determining whether they were likely to be germline (and therefore 

potentially useful for penetrance studies) or somatic (and therefore caused by clonal 

expansions). We used microarray data from UK Biobank, which recruited 502,506 

individuals from across the UK between 2006-201025. Hospital Episode Statistics (HES) and 

cancer registry data were available for the whole cohort up to 31 March 2017, and GP 

records were available for half the cohort; all participants also provided a range of 

information (e.g., demographics, health status, lifestyle) via questionnaires. Genotypes for 

SNVs and indels were generated from blood-extracted DNA using the Affymetrix Axiom UK 

Biobank array (~450,000 individuals) and the UKBiLEVE array (~50,000 individuals) in 106 

batches of ~4,700 samples. This dataset underwent extensive central quality control25.  

 

We called CNVs genome-wide in 488,377 individuals with array genotyping data in UK 

Biobank25 using PennCNV version 1.0.426 with log R ratio and B-allele frequency values for 

805,426 genome-wide probe sets provided by UK Biobank. Very large PennCNV calls (i.e. 

multiple megabases) can sometimes be fragmented into many smaller calls, so we 

additionally calculated the sum of bases either deleted or duplicated on each chromosome 

per individual according to the PennCNV calls. We carried out visual inspection of each 

event in everyone with >10Mb deleted and/or duplicated on a single chromosome to 

confirm breakpoints, event type and level of mosaicism (see examples in Figure 1). Around a 

third of the events showed no evidence of mosaicism in blood (based on a deviation of the 
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B-allele frequencies from 0, 0.5 or 1 with a co-located increase/decrease in log R ratio) while 

two-thirds of events were consistent with the presence of a large CNV in a proportion of 

cells. Based on previous work investigating mosaicism in UK Biobank20,27, we estimate that 

we were able to detect copy number changes present in >20-25% of cells. There was a good 

correlation between the log R ratio and visual inspection of mosaicism28 (Figure 2). 

 

We identified 160 individuals in UK Biobank (61% male versus 46% in the whole of UK 

Biobank; Pearson’s Chi-squared p=0.025) with >10Mb involved in copy number events on a 

single autosome (Figure 3 and Supplementary Table 1). This male bias has been observed 

previously and is thought to be due to higher male-specific rates of certain haematological 

malignancies24. In the majority (134/160) of individuals, this was caused by a single large 

CNV; 19 individuals had two separate events (17 on two different chromosomes), five 

individuals had three separate events (all involving at least two different chromosomes) and 

two individuals had four or five separate events on the same chromosome. Individual events 

ranged in size from 0.9Mb-198Mb (mean=56Mb, stdev=51Mb), and included both unique 

events and recurrent events. There were 64 whole chromosome duplications of 

chromosomes 3, 8, 9, 12, 14, 18, 19 and 21, including four individuals with two trisomies 

and three individuals with three trisomies.  

 

Of the autosomal aneuploidies, only trisomy 21 is compatible with adult life when present 

constitutively and causes Down’s Syndrome 29. Twelve individuals had a duplication of 

chromosome 21, of whom 11 had a diagnosis of Down’s syndrome in their HES or GP 

records (GP records were not available for the remaining individual). A further six individuals 

in UK Biobank had Down’s syndrome recorded in their HES records, but their microarray 
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data showed no evidence of trisomy 21. It is unclear whether these discrepancies are 

caused by sample mix-ups, errors in HES records, or misdiagnoses. Of those with large CNVs, 

a further eight individuals had ICD-10 codes or GP records consistent with various 

developmental disorders, including congenital malformations, developmental disorder 

(intellectual disability/handicap or epilepsy) and bipolar affective disorder (Supplementary 

Table 1).  

 

We suggest that the rest of the whole chromosome duplications and the majority of large 

CNVs are likely to be somatic mutations caused by clonal expansions, some of which are 

compatible with being present in (apparently) healthy individuals. Several lines of evidence 

suggest that the majority of the large CNVs were likely caused by somatic mutations 

associated with either cancer10,30 or age-related haematopoietic clonal expansions22,31. First, 

79/160 (50%) individuals had a recurrent duplication of chromosome 8, 9, 12 or 19 or large 

deletions on chromosome 11q, 13q, 17p and 20q that are consistent with those observed 

previously in lymphocytic and myeloid leukaemias10,30,32,33 and JAK2-related 

myeloproliferative neoplasms34. Second, 98/160 (61%) individuals had neoplasms recorded 

in their HES records or cancer registry data compared with 80,046 (17%) across the whole of 

UK Biobank (p< 2x10-16). Sixty-four (40%) were malignant neoplasms of lymphoid, 

haematopoietic and related tissues (ICD-10 codes: C81-96), a significant enrichment above 

the whole of UK Biobank (n=3869, 0.8%, p< 2x10-16); and a further 20 were polycythemia 

vera, myelodysplastic syndrome and chronic myeloproliferative diseases (ICD-10 codes: 

D45-47), again a significant enrichment above the whole of UK Biobank (n=646, 0.1% p< 

2x10-16). Third, individuals with large CNVs and neoplasms were older and taller versus the 

others with large CNVs but no record of neoplasms, as expected in cancer; in contrast, 
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individuals with large CNVs and a developmental disorder were younger and shorter versus 

the others, as expected with most developmental disorders (Figure 4).  

 

Nonetheless, 43/160 (27%) individuals with a large CNV in UK Biobank have neither a 

developmental disorder nor a neoplasm (of any sort) recorded to date. This observation has 

a range of explanations, including record error, lack of hospitalisation, absence of GP 

records (currently only available for around half the cohort), benign haematopoietic clonal 

expansions, or neoplasms that have not yet developed or been diagnosed. Given the 

prognostic link between chromosomal instability and tumorigenesis30,35, unfortunately the 

latter explanation is likely to be true in many cases. 

 

Mosaic chromosomal alterations27 and Y chromosome loss36 in UK Biobank have previously 

been linked to age-related clonal haematopoiesis, both of which can be easily excluded 

from studies seeking to investigate penetrance of germline CNVs. Indeed, although some 

mosaic variants can be detected by PennCNV, low-level mosaic variants are often not 

detected using standard variant calling algorithms. However, the presence of very rare 

autosomal aneuploidies, some of which do not appear to be mosaic based on intensity data 

from microarrays, suggest that caution should be used when interpreting rare variants (of 

any size) in population biobanks. For example, we note that six individuals in UK Biobank 

have complete or partial trisomy of chromosome 3, of whom 5/6 have non-Hodgkin’s 

lymphoma. Presumed germline duplications of 3q29 have previously been causally linked 

with early death (OR=27.8) and cancer (OR=37.5) in UK Biobank12, but we suggest that these 

associations more likely reflect reverse causality, with cancer causing both the mutations 

and early death. A similar issue has previously been highlighted for sequence variants in 
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cancer driver genes where rare mutations are also a cause of developmental disorders, such 

as ASXL1 and DNMT3A37. Based on our analysis, the issue of somatic mutations confounding 

analyses of variants presumed to be germline can only be partially addressed by assigning 

the mosaic status of each variant; critically evaluating the validity of a variant (such as the 

breakpoints of a CNV), the plausibility of a finding (such as presence of constitutive 

autosomal aneuploidy) and likelihood of different mutational mechanisms (such as clonal 

expansion) are also important. As genome-wide sequencing becomes widely available in 

aging cohorts such as UK Biobank, researchers should be aware of potential confounding 

caused by somatic mutations present in high proportions of cells. 
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FIGURE LEGENDS 

 

Figure 1. Example mean log R ratio (LRR) and B-allele frequency plots.  

(a) Constitutive deletion of half the q-arm of chromosome 20, (b) four small non-mosaic 

deletions on chromosome 4, (c) mosaic deletion of the end of the q-arm of chromosome 6, 

(d) constitutive duplication of the whole of chromosome 21, (e) mosaic duplication of the 

whole of chromosome 19 and (f) triplication of chromosome 9p. Alleles (A and B) 

corresponding to each of B-allele frequencies are indicated. Red = copy number change; 

blue = normal copy number. 

 

Figure 2. Mean log R ratio of CNVs 

Boxplot of mean log R ratios of large CNVs, grouped by whether there was evidence of 

mosaicism based on visual inspection of the data. Red = deletion (DEL); blue = duplication 

(DUP); green = triplication (TRIP).  

 

Figure 3. Summary of large autosomal CNVs identified  

Circos plot of all large autosomal CNVs in UK Biobank; chromosomes 1-22 are indicated, and 

CNVs on the same chromosome in the same person are shown on the same track. Red = 

deletion; blue = duplication; green = triplication.  

 

Figure 4. Characteristics of individuals in UK Biobank with >10MB copy number changes.  

(a) Age in years at recruitment and (b) height of individuals grouped by whether they had a 

neoplasm, developmental disorder or neither coded in their HES or cancer registry records. 
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Red = developmental disorder; green = neoplasm; blue = neither neoplasm nor 

developmental disorder recorded; dotted red line = average for UK Biobank. 

 

TABLES 

 

Supplementary Table 1. List of all >10MB copy number changes in UK Biobank detected 

using SNP-genotyping arrays. DUP = duplication, DEL = deletion, LRR = log R ratio, St Dev LRR 

= standard deviation of the log R ratio, N SNPs = number of SNPs in the call. 

 


