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Abstract 18 

Butterflies are among the most colourful organisms in the world and colour plays a central role in many of 19 

their life-history strategies. However, the efficacy of coloration strategies in these and other animals could be 20 

affected by sudden environmental changes, including anthropogenic disturbances such as habitat loss and 21 

fragmentation. Here we investigate the effect of forest disturbance gradients on the colours of fruit-feeding 22 

butterflies in the Amazon Rainforest. The disturbance gradients tested represented habitat-size (continuous 23 

primary forests versus forest fragments of 1, 10 and 100 ha) and succession gradients (continuous primary 24 

forests, 30 year old secondary forests, and three year old early successional forests). Using digital image 25 

analysis, we obtained intrinsic measures of butterfly colour patches corresponding to hue, saturation, 26 

brightness, in addition to measures of the contrast among patches and of the overall wing-colour diversity 27 

corresponding to 220 individuals, belonging to 60 species. Our results showed that butterflies in the secondary 28 
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forest and continuous primary forest are more colourful than those found in early succession and fragments of 29 

forests. Individuals occurring in forests of early succession showed higher average values of hue and 30 

saturation, but lower brightness. Accompanying changes in colour composition, wing-colour diversity among 31 

species was lower in human-disturbed habitats, such as those of early forest succession and secondary forest. 32 

Forest fragments have smaller effects on butterfly colour composition, indicating that well-structured forest 33 

habitats can house butterfly assemblages with more diverse phenotypic features and colours. We show how 34 

high deforestation rates in recent years is linked with negative changes in functional coloration strategies (e.g. 35 

camouflage, warning colours), something that has to date been poorly explored or demonstrated for 36 

butterflies. Specifically, human interference has apparently placed butterflies are under strong selection for 37 

lower diversity in their colours and range of defensive strategies. Those species that are most colourful are the 38 

first to be locally extinguished, likely due to removal of native vegetation and increased exposure to 39 

predators, and more broadly owing to inhospitable environmental conditions. This illustrates an accelerated 40 

loss of local fauna and a "discolouration" of the Amazonian butterflies due to anthropogenic impacts. 41 

 42 

Keywords: Anthropogenic gradients. Colour diversity. Conservation. Forest succession. Fruit-feeding 43 

butterflies. Tropical forest 44 

 45 

Introduction 46 

Research on animal coloration is a classical issue that has long fascinated naturalists, including back to the 47 

great expeditions of influential naturalists during the 1800s (Bates 1863). This interest is partly due to the 48 

relevance of colours for understanding intra- and interspecific interactions, links to the abiotic environment, 49 

and the importance of such traits in illuminating our understanding of ecological and evolutionary processes 50 

(Stevens 2016; Endler and Mappes 2017). Through coloration, animals display broad repertoires in anti-51 

predator and mating strategies, aiming to maximize survival and reproductive success (Cuthill et al. 2017). 52 

Regardless of the specific strategies (e.g. anti-predatory or reproductive) employed by an organism, 53 

environmental characteristics work as key aspects selecting phenotypic patterns (Roslin et al. 2017). For 54 

example, recent research continues a long tradition in testing how visual signal transmission is related to the 55 

habitat in which animals occur and their contrast with the visual environment (e.g. Cheng et al. 2018; 56 
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Willmott et al. 2017; Walton and Stevens 2018). Therefore, environmental changes are expected to impact the 57 

adaptive value of individual coloration (Delhey and Peters 2017), in the same way that species assemblages 58 

from different habitats may house individuals with specific functional features and adaptations (Spaniol et al. 59 

2019). 60 

In butterflies, their evolutionary history and current selection pressures acting on phenotypic 61 

variation are printed on their wings, ranging from conspicuous colours or camouflage, to wing-eyespots and 62 

mimetic complexes (rings), which together are responsible for colour diversity in nature (Joshi et al. 2018). 63 

Environmental changes can affect colour patterns on butterfly wings in different ways. One of these is 64 

through the supply of host plants as food resources to immature individuals (Talloen et al. 2004). Caterpillar 65 

diet is often essential for chemical compound synthesis (e.g. flavonoids), which leads to diverse phenotypic 66 

expression, including of body and wing colours (Johnson et al. 2014). In addition, abiotic conditions may 67 

change wing patterns along different microhabitat gradients (Papageorgis 1975). Given that resource 68 

availability is linked to the abiotic conditions of each habitat, once plant community species composition is 69 

modified, more specialized butterflies (in terms of food resources) may disappear (Soga et al. 2015), or differ 70 

in colour pattern due to the nature and amount of available resources. A second way to understand the process 71 

of evolution and adaptation in butterfly colours consists of knowing how visual signals are transmitted when 72 

natural habitats are modified. Different communication strategies, including those used to mediate prey-73 

predator and potential mating interactions may be affected by structural changes in the environment (Briolat 74 

et al. 2018; Dalrymple et al. 2018). Abiotic components (e.g. temperature, humidity, brightness), besides 75 

affecting animal thermoregulation, also have important roles determining energy and resource inputs in 76 

ecosystems (Dalrymple et al. 2018), impacting factors such as vegetation structure, visual backgrounds, and 77 

the light environment. In turn, in environments modified by anthropogenic impacts, the visual environment 78 

for signalling or against which animals would normally be hidden may change. This will affect the efficacy of 79 

colour strategies, either those relying on visual conspicuousness (e.g. mating and warning signals), or on 80 

concealment, affecting fitness. 81 

In tropical forests, high biological diversity can lead to the coevolution of several adaptive strategies, 82 

including butterfly interactions with predators, competitors, mutualists, or even potential mates. This makes 83 

the tropical region not only rich in species but also in their phenotypic and behavioural diversity, including 84 
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colour related strategies (Adams et al. 2014). The Amazon Rainforest is an ideal region to test the above 85 

issues because it is still largely preserved, yet is under great threat and suffering extensive deforestation, 86 

affording the potential to study organismal responses to human-induced environmental disturbance (Mesquita 87 

et al. 2015). In recent decades, this region has been widely transformed with high deforestation rates driven 88 

by the advance of agricultural frontiers, with concerning consequences for tropical biodiversity (Vieira et al. 89 

2019). At present, public policies and interventions adopted are sparse and have promoted insufficient results 90 

for controlling the loss of huge areas of forest every year (Arima et al. 2014), which is accompanied by high 91 

species extinction rates (Stork 2010; Barlow et al. 2016). The immediate consequences of forest 92 

transformation are often unpredictable and require careful monitoring of ecological and evolutionary 93 

responses from different species (Caro et al. 2017). 94 

Butterflies represent ideal study models for environmental assessments and allow relatively easy 95 

monitoring in nature (Freitas et al. 2014). These insects manifest a large repertoire of colours, which may be 96 

associated with the different habitats they occupy and different strategies for distinct signalling functions 97 

(Endler 1993; Dalrymple et al. 2015). Because butterflies play a diversity of ecological roles within complex 98 

networks, their responses can be extended to evaluate the effects of environmental degradation in the tropics 99 

(Spaniol et al. 2019). The fruit-feeding guild, in particular, comprises approximately 50-75% of all butterfly 100 

species belonging to the family Nymphalidae found in the Neotropics. This group is represented by four 101 

subfamilies: Charaxinae, Biblidinae, Satyrinae, and also a few tribes within Nymphalinae (Brown 2005). 102 

From the perspective of different coloration properties (hue, saturation, brightness, wing-colour diversity), our 103 

study aims to advance knowledge on how deforestation and habitat-size decrease may influence the colour 104 

patterns observed in those species that remain, and the potential effects on their anti-predator strategies. 105 

Environmental selection for specific colour combinations in species assemblages will be less intense in the 106 

primary forest, given that a variety of strategies and colour types should be able to thrive here with a greater 107 

range of visual backgrounds and light conditions. This should be reflected in greater colour diversity in more 108 

intact forest habitats, owing to a higher species richness and greater butterfly assemblages. In comparison, in 109 

forests of greater levels of fragmentation and earlier succession, fewer colour strategies may thrive, reducing 110 

overall species diversity, and this may be especially true for phenotypes that rely on specific linkages between 111 

colour phenotype and visual background or light conditions.  112 
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We analysed the coloration of butterflies found in different forest patches of different human impact, 113 

and classified butterflies based on putative defensive strategies (crypsis, transparency, warning signals, and 114 

eyespots). We hypothesized that fruit-feeding butterflies along anthropogenic gradients would be distinct with 115 

regards to their colour patterns, and that prevalent phenotypic characteristics should change according to 116 

habitat size and regeneration stage after a disturbance, including changes in the visual environment (light 117 

conditions, background contrast) (Fig. 1). From this viewpoint, we expect that: (i) with a decline of vegetation 118 

structure and changes in abiotic characteristics, as well as homogenization due to human activities will result 119 

in conspicuous butterflies being removed first, while broadly cryptic individuals (mainly brown winged 120 

butterflies) may persist by avoiding detection against generally brown substrates along the gradient. (ii) 121 

Colourful butterflies may be those most affected by forest disturbances, being the first to disappear due to 122 

increased exposure in more open habitats. This way, colour diversity and richness should be lower in 123 

disturbed habitats when compared to the preserved primary forest. As a counter-prediction, some types of 124 

intrinsically conspicuous coloration may be effective to a certain extent regardless of the visual environment 125 

(e.g. aposematism) and therefore persist even in degraded habitats. In contrast, specialist species with 126 

camouflage that is specifically effective on a limited range of backgrounds may decline if those backgrounds 127 

are removed. 128 

 129 

Materials and Methods 130 

Study area 131 

Butterflies were sampled in areas of the Biological Dynamics of Forest Fragments Project (PDBFF) 132 

(2°21'36.14"S, 59°57'45.60" W), belonging to the National Amazon Research Institute (INPA). These are 133 

spread over 1000 km², 90 km north of Manaus, Amazonas State (AM), in a Brazilian Federal Protected Area 134 

created in the late 1970s to investigate the consequences of deforestation and forest fragmentation in the 135 

Amazon (Biereegaard et al. 1992). Three farms (Dimona, Porto Alegre, and Esteio) were defined as study 136 

areas. Each study area includes the following habitats: forest fragments of 1, 10, and 100 hectares, and 137 

habitats varying in succession, from in an initial stage of succession around the previous fragments, to 138 

secondary forests, and large extensions of primary continuous forest (Fig. 2). The initial succession comprised 139 

vegetation with approximately three years of regeneration, and isolated fragments from the other habitats. The 140 
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secondary forest covers areas formerly used as cattle pasture, and which now have forests with 30 years of 141 

regeneration. Forest fragments are isolated patches of primary forest, structurally similar to the large areas of 142 

continuous forest (Laurance and Vasconcelos 2009). The primary continuous forest occupies extensive 143 

adjacent regions, and is used in this study as a control. In these landscapes, two distinct environmental 144 

gradients can be identified and monitored to understand the response of organisms to habitat variations: 145 

habitat-size and forest succession. We refer to the forest succession gradient as including the areas in initial 146 

succession, secondary forest and continuous forest; the habitat-size gradient, in turn, includes fragments of 1, 147 

10 and 100 hectares, and the continuous forest as a control. 148 

 149 

Data sampling 150 

Two field expeditions were performed between August and September 2015 and 2016, at the beginning of the 151 

dry season in the Amazon region. Each farm received a total of 12 sample units (SUs), each of them with five 152 

portable traps, containing attractive bait made with bananas fermented in sugar cane juice for 48 hours 153 

(Freitas et al. 2014). Sample units were installed on each farm, with three SUs in early successional sites, 154 

three in secondary forest sites, one for each forest fragment size (1, 10, and 100 hectares) and three points in 155 

the adjacent continuous forest, totalling 60 traps per farm. A minimum distance of 20 meters between 156 

neighbouring traps was observed, placed between 100 – 130 cm above the ground (Freitas et al. 2014). SUs 157 

were kept at least 500 meters from each other within each farm.  158 

At each sampling occasion, traps remained exposed for eight consecutive days in each farm, being 159 

reviewed at 48h intervals to renew the bait, collect, identify, mark and release the captured butterflies. During 160 

the review process, two samplers equipped with entomological nets performed active samples of fruit-feeding 161 

butterflies around the traps, as long as they were visibly attracted by the bait. These combined methods allow 162 

us to complement the representation of butterfly species, including especially those species attracted but not 163 

caught by the traps (Checa et al. 2018). At least 10 individuals of each species were collected for subsequent 164 

lab measurement, and about three to four individuals per species were included, on average, for colour 165 

analysis (Fig. 3). Whenever possible, we selected the same number of males and females per species to 166 

account for sexual dimorphism. 167 

 168 
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Colour measurements 169 

The collected butterflies were fixed and deposited in an entomological collection (Laboratório de Ecologia de 170 

Interações - UFRGS) for gathering individual information. From 60 fruit-feeding butterfly species, we 171 

selected 220 individuals with well-preserved colour characteristics. Under natural light conditions, each 172 

individual was photographed in a ventral position. We took all pictures using a Nikon D5300 camera with 18-173 

55 mm lens, accompanied with a scale bar and a grey card (18%) to correct for variation in light conditions 174 

among photographs (Stevens et al. 2007). The photographs were taken in RAW format and selected for 175 

appropriate exposure in RawTherapee software (version 5.3). All images were imported into the ImageJ 176 

program and through the MICA Toolbox add-on (version 1.22), and we generated multispectral images 177 

".mspec" calibrated from the grey card (Troscianko and Stevens 2015). For every image, we drew “regions of 178 

interest” (ROI’s) around the wing areas that we wished to measure, based on the principle colours found on 179 

the wings. ROI’s were chosen based on identifying colour spots that could transmit visual information, such 180 

as wing areas with strong colour contrast with the wings as a whole. All photographed butterflies had their 181 

colour patterns quantified following a previous approach that made use of calibrated digital images (Stevens 182 

et al. 2007). 183 

From the standardized images, we obtained colour data corresponding to reflectance in the three 184 

camera colour channels: red, green, and blue (RGB) on a scale of 0–255 for each colour channel. From these 185 

values, we were able to calculate several colour variables for each butterfly colour patch: hue (the colour type, 186 

e.g. orange or blue), saturation (colour ‘richness’ or intensity when compared to white light), brightness (the 187 

sum of the reflectance values along the spectral range, 300–700 nm), maximum contrast between patches (the 188 

greatest Euclidean distance measured between two patch colours on an individual in a colour space; see Data 189 

Analysis below), and wing-colour diversity (diversity of colours achieved on a single individual) (see Stevens 190 

et al. 2007). Finally, we present the frequency of four main putative anti-predator strategies: camouflage, 191 

transparency, warning colours, and wing eyespots. Each species and its type of defence was categorically 192 

classified by their general composition and likely interaction with the visual environment, observing the 193 

predominance of brown/cryptic colours, translucent wings, highly contrasting colours (for example, yellow, 194 

red, orange combined with black or white), and circular features on the wing resembling an eye. 195 

Brown/cryptic colours are categorized based on ecophysiological (thermoregulation) and defence (predation 196 
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and detection avoidance) features. These colour patterns provide evidence on the habitat used by the species 197 

characterized by dark or light coloration, in which dark colours are essential for both camouflage and 198 

thermoregulation (Kingsolver 1985) in forested habitats, since dark colours increase radiant heat absorption. 199 

On the other hand, light colours are expected to be found in sites in which overheating is more likely (Ellers 200 

& Boggs, 2004), leading to higher chances of desiccation. Despite contrasting information about the 201 

functional role of eyespots, they can be characterized by the combination of ocellus on the ventral surface of 202 

wings, and have one of two anti-predator functions: (i) deflection, whereby a predator attack is redirected to 203 

non-vital body parts of the insect (many small ocellus occur on the border of the hind wing on the ventral 204 

surface) (Stevens, 2005); (ii) intimidation, in which the pattern of the wings may imitate a dangerous 205 

organism that is a threat to the predators themselves, such as the mimicry of owl eyes, or simply by generating 206 

a conspicuous display (one big spot on the hind wing in the ventral surface) (Stevens & Ruxton 2014). We 207 

appreciate that this is to a certain extent subjective but full categorisation of the type of defence each species 208 

primarily relies on methods beyond the scope of this study (requiring, for example, toxicity analysis and 209 

behavioural experiments). 210 

 211 

Data analysis 212 

We converted standardized RGB reflectance values to XY coordinates in a triangular colour space, whereby 213 

the centre of the space represents the achromatic point and the location around this corresponds to a given 214 

colour type and saturation. This approach is a common method used to characterise the nature of colour 215 

variation that exists, and quantify aspects of colour such as saturation and contrast, given a certain dimension 216 

of colour space, here based on three colour channels (see Stevens et al. 2009). We calculated saturation as the 217 

Euclidian distance from the centre of the colour space, whereby greater distances equate to higher levels of 218 

colour richness (Endler and Mielke 2005; Stevens et al. 2014). To calculate hue, we followed a range of past 219 

approaches in describing hue in the form of colour channels that describe the variation in colours present in 220 

the dataset (Komdeur et al. 2005; Spottiswoode and Stevens 2012; Stevens et al. 2014). This is not intended to 221 

directly mimic how visual systems process colour types with specific opponent colour channels, but is 222 

broadly similar in nature. To determine the most appropriate channels, a principal component analysis (PCA) 223 

was used to summarize the importance of each colour channel in butterfly phenotypic variation and to define 224 
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the colour types that exist along relevant axes of variation in colour space. To eliminate achromatic variation 225 

and to analyse only colour differences, we removed brightness from the dataset by standardizing the colour 226 

values to proportions (Cuthill et al. 1999; Spottiswoode and Stevens 2012), and then from the resulting PCA 227 

derived colour channels that best described the variation in colour that existed among species and colour 228 

patches (Spottiswoode and Stevens 2012, Stevens et al. 2014). These colour channels define types of colour in 229 

the form of a ratio, which corresponds to an axis of variation running through the colour space. To quantify 230 

wing-colour diversity, we use the Mean Euclidean Distance between x, y colour space coordinates for all 231 

individuals within each treatment. Through a resampling analysis (random sampling with replacement) we 232 

corrected the differences in sample size among habitats in each gradient. The number of resampled butterflies 233 

was equal to the smallest group in the analysis (see Spottiswoode and Stevens 2012). For brightness, we 234 

calculated the average brightness in reflectance across the RGB channels. 235 

 All colour variables (hue, brightness, saturation, differences between patches, and colour diversity) 236 

were then individually analysed along the habitat-size and forest succession gradients, using generalized 237 

linear mixed models. For these analyses, we input a colour variable (the response) and environmental data 238 

(the explanatory variables) as fixed factors, and we also controlled for differences in abundance among 239 

species as a random factor. In order to make the coloration results independent of the butterfly assemblages in 240 

each habitat, we also controlled for the effects of species composition incorporating species identification in 241 

the generalized linear mixed models, and running it as random factor. We also present butterfly richness data 242 

for each habitat in a Venn diagram, and composition changes across habitats using a non-metric 243 

multidimensional scaling (NMDS) ordination, complemented with statistical testing by permutation via 244 

Adonis, using 999 permutations and Bray-Curtis index. All computations were performed with R, using 245 

PAVO and lmer4 statistical packages (Maia et al. 2013; Bates et al. 2015; R Core Team 2018). Sample 246 

coverage for each habitat was calculated to estimate the representativeness of fruit-feeding butterflies through 247 

the q statistics as proposed by Chao et al. (2013). This analysis was performer using the software iNEXT 248 

online (Hsieh et al. 2016). 249 

 250 

Results 251 
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From the 60 species sampled in field, 30 species (95 individuals) were found in primary forest, 33 (85) in 252 

secondary forest and 29 (229) in early successional habitats. Primary forest and early successional 253 

assemblages harboured most unique species, but just one species was common for both habitats. Eight species 254 

were common to all habitats across this gradient (Fig. 4), and several were found in at least two kind of 255 

habitats. In general, there were important changes in butterfly composition among the successional habitats 256 

(Fig 5). Forest fragments (1, 10, and 100 hectares) housed 10 species (18 individuals), 11 (17) and 13 (27), 257 

respectively (Fig 4). No significant changes were found in assemblage composition among the forest 258 

fragments (S1). The representativeness of fruit-feeding butterflies for each habitat as measured by sample 259 

coverage was respectively: 3 years = 0.97; 30 years = 0.87; Primary/Continuous Forest = 0.84, 01 hectare = 260 

0.73, 10 hectares = 0.61, 100 hectares = 0.78. 261 

First, we checked if there was structure in colour composition of the fruit-feeding butterfly 262 

assemblages along both habitat-size and forest succession gradients. From the achromatic central point (grey) 263 

in the colour space triangles, we observed a trend for longwave (LW) colours in all the habitats, and the 264 

colour values cross through the centre of the colour space from long to shortwave (SW) and mediumwave 265 

(MW) parts (Fig. 6). This was confirmed by Principal Component Analysis (PCA) using a covariance matrix 266 

with standardized values for each colour channel. 267 

For the forest succession gradient, the first two axes of the PCA expressed 99% of all variation in 268 

butterfly colour. The first axis separated LW from the other colour channels, explaining 79% of the 269 

phenotypic patterns (i.e. LW / [SW+MW]). Larger values correspond to patches that are more red in colour, 270 

whereas lower values to patches that are more blue or green. The second axis contained 20% of the variation, 271 

separating SW from LW and MW (SW / [LW + MW]: PC1 coefficients: SW: 0.554; MW: 0.525; LW: -0.645. 272 

PC2: SW: 0.660; MW: -0.749; LW: -0.042). Larger values correspond to blue colours, and smaller values to 273 

those that are more yellow/brown. The first two axes of the PCA also expressed 99% of the phenotypic 274 

variation of the butterflies to the habitat-size gradient. In a similar pattern, the first axis separated LW from 275 

MW and SW, explaining 72% of the phenotypic patterns observed. The second axis contained 27% of the 276 

variation, separating SW from LW and MW (PC1 coefficients: SW: 0.553; MW: 0.483; LW: -0.677. PC2: 277 

SW: 0.634; MW: -0.771; LW: -0.031). 278 
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Significant changes were found along the forest succession gradient for the following colour 279 

variables: hue, saturation, brightness, and wing-colour diversity. Higher hue values were observed in primary 280 

forest regions (F-value = 6.60, P = 0.01). In other words, longer wavelength rich colours (LW) such as 281 

brown/red prevail in older forested areas regarding succession. For saturation, we detected lower values in 282 

areas of early succession (F-value = 4.48, P = 0.03). This means that butterflies are less colourful in recently 283 

disturbed habitats when compared with continuous forest. Brightness values were higher in the early 284 

succession and secondary forest habitats (F-value = 3.93, P = 0.05) (Fig. 5), in which butterflies with lighter 285 

colours are more common. The forest interior may be housing melanic patterns, phenotypically darker 286 

individuals. We found a larger wing-colour diversity for the continuous forest (P <0.05 for 75.6% of 287 

resamples with N = 40) when compared to the treatments under succession. A similar pattern was also 288 

observed for forest patches (P <0.05 for 67.1% of resamples with N = 7), which showed a lower colour 289 

diversity than continuous forest (Fig. 7). Larger forest habitats can house butterfly assemblages with more 290 

diverse phenotypic features and colours. Boxplots of the non-significant variables of colour for fruit-feeding 291 

butterflies are attached in the supplements (S2). 292 

Among putative anti-predatory strategies using colour patterns (Fig. 8), camouflage appears as a 293 

predominant feature in all studied habitats. As the forest succession progresses, wing-eyespots become more 294 

important and appear frequently. Transparency seems to be an exclusive strategy for the well-preserved 295 

continuous forest. Thus, the co-occurrence of all different phenotypic manifestations is observed exclusively 296 

under areas of intact vegetation, and reinforces our results on colour diversity. 297 

 298 

Discussion 299 

In agreement with our predictions, the colour composition of butterfly assemblages is in close association 300 

with habitat features. Several butterfly colour variables changed among habitats, especially along the forest 301 

succession gradient. The butterfly species composition followed the same patterns for this gradient, indicating 302 

segregation among butterfly communities in initial stage of succession, secondary forests, and primary 303 

continuous forest. Butterflies using conspicuous colour patterns seem to be the most affected by human-304 

activities, appearing among the first to disappear from recently disturbed forest regions in the Amazon. On the 305 

other hand, this study also demonstrates the positive effect of natural regeneration in recovering colour 306 
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composition and ecological structure in modified tropical forests (Crouzeilles et al. 2017). The maintenance 307 

of both primary and secondary forests in human-modified landscapes might be helpful for re-colonization of 308 

plant species and interaction networks (Pellissier et al. 2018; Rozendaal et al. 2019). In the same way, the 309 

regeneration of perturbed habitats over decades of succession may also assist in the maintenance of species 310 

composition, and of the diversity of protective coloration and signalling in butterflies associated with forest 311 

interiors. Our results are supported by the large sampling coverage calculated for all types of studied habitats 312 

in the Amazon. 313 

Whatever the kind of interaction, environmental features can produce effects on species assemblages 314 

through individual colour composition, and this was observed for butterfly response to the forest degradation 315 

and habitats loss in the Amazon (Spaniol et al. 2019). Firstly, camouflage appears as a dominant feature 316 

against predation in many animal groups across the tropics, including birds and butterflies (Dalrymple et al. 317 

2015). With a predominance of individuals with cryptic colours (especially browns) throughout the forest 318 

succession gradient, including in continuous forest, this study supports that idea, suggesting that camouflage 319 

is one of the main defence strategies for Lepidoptera and is a valuable defence even as the habitat 320 

composition is altered. This also suggests that generally dull cryptic colour patterns may enable concealment 321 

in a range of habitats. Moreover, a lower colour saturation of butterflies occurring in recently disturbed sites 322 

reveals that conspicuous individuals may be receiving greater predatory pressures, especially in open habitats. 323 

While one may expect that conspicuous markings may operate across a range of visual backgrounds, it is 324 

possible that these conspicuous species may become too exposed when contrasting with new backgrounds 325 

created by disturbances. Consequently, more colourful butterflies, with the exception of aposematic patterns, 326 

may be among the first to disappear locally soon after the deforestation process. The above mentioned results 327 

are corroborated with changes in beta diversity of fruit-feeding butterflies in the different habitats of the 328 

successional gradient. In this case, species composition is directly linked to changes in colour patterns in the 329 

Amazon region. In addition, habitat degradation may alter the composition of predators and allow a greater 330 

number of naïve predators into the forest area (Bruno and Cardinale 2008; Ciuti et al. 2012). This may result 331 

in greater attack rates on butterflies that normally can rely to a great extent on the learnt avoidance by 332 

predators of their conspicuous warning, startle, or mimicry signals. From a high diversity regional pool of 333 
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species, selection may therefore lead to lower diversity in butterfly colours, as well as in their protective and 334 

signalling strategies, in degraded habitats. 335 

Furthermore, we note that conspicuousness is not necessarily an exclusive feature of butterflies 336 

living in primary continuous forests. There is a remarkable variance in the colour properties we analysed (hue, 337 

brightness, saturation and colour diversity), showing that conspicuous and cryptic individuals even with 338 

patterns conferring different communication roles can make use of the same habitats. In addition, habitats in a 339 

preserved forest are capable of harbouring greater colour diversity and subsequently more anti-predator 340 

strategies. This may be possible because of the large supply of substrates such as leaves, trunks, branches, 341 

stones, with which the individuals can "interact" in terms of their phenotypic appearance (Pinheiro et al. 342 

2016). Such environmental resources are not always readily available after a severe disturbance, where abrupt 343 

and intense changes can lead to modifications in the habitat structure and vegetation resilience trajectories 344 

(Jakovac et al. 2015). Differences may also be strongly controlled by changes in predator communities 345 

(Mappes et al. 2014).  346 

Analysing the habitat-size gradient, we discovered that forest patches with different sizes might have 347 

smaller effects on butterfly assemblage colour composition. Our study areas comprise an already well-348 

developed forest matrix, which may be permeable to many species, including forest specialists (Schtickzelle 349 

et al. 2007). Reduced forest patches do not necessarily lead to strong changes in vegetation composition or 350 

structural features (Brown and Hutchings 1997), which however are easily identified along the forest 351 

succession (Mesquita et al. 2015). Therefore, the supply of immature host plants, adult food and substrates 352 

may remain. Complementarily, the way visual signals are propagated may remain mostly unchanged since 353 

forest characteristics are substantially maintained. This means butterflies with distinct phenotypes may be 354 

able to move among forest patches with a relatively reduced risk of predation. Environmental conditions and 355 

resources such as leaves, twigs, trunks and light entry through the forest canopy may also remain available 356 

and relatively constant, helping colour patterns remain the same within forest habitats patches. 357 

Our findings suggest that butterflies from a regional species pool are under selection for lower 358 

diversity in their colours as well as in their defence strategies due to human interference. The same has been 359 

observed for species richness and composition (Spaniol et al. 2019). Coloration is only one of several 360 

organismal traits offering quick responses to environmental changes, but this has been seldom applied in our 361 



 
 

14 
 

quest to understand threats to biodiversity and processes that lead to species extinctions (Hook et al. 1997; 362 

Caro et al. 2017). We highlight the study of animal coloration as an excellent basis for the evaluation of 363 

environmental health and in the planning for management and conservation of forest ecosystems. Colour 364 

shifts are important markers of several anthropogenic changes (Caro et al. 2017), and by observing 365 

phenotypic aspects in animals, we can systematically monitor the performance of protective coloration and 366 

signalling under different environmental conditions. Certainly, the colour patterns observed here are not only 367 

due to increased predation but might have alternative explanations. Species composition changes could be 368 

caused by many drivers aside from predation rates on adults mentioned above. Changes could also be caused 369 

by decreased host plants, increased larval predation rates in more opened forest structures, increased 370 

parasitoid abundances, or increased predator populations (for both butterfly and caterpillar). Therefore, a next 371 

important step is to investigate whether the reported pattern reflects ecological filtering or adaptation 372 

processes. 373 

At a time when deforestation rates are increasing again in the largest tropical forest in the world 374 

(INPE 2019), this study draws attention to the importance of maintaining well-preserved forest remains in the 375 

Amazon. In addition, forested habitats that have been recovering for 30 years (secondary forest) show 376 

increasing in colour diversity, allowing the movement and permanence of organisms near the primary forests, 377 

maintaining ecosystem services. Thus, the maintenance of legal reserves inside private properties and 378 

restoration programs in degraded areas with higher biological importance (Metzger et al. 2018; Vieira et al. 379 

2019) should be encouraged, being key factors aiming conservation of biodiversity in tropical forests. We also 380 

suggest that the presented results and actions should be incorporated into public policy, reinforcing that 381 

information based on scientific research is crucial to the decision-making process. Once unplanned, forest 382 

conversion leads to constant uncertainties about the compliance with Brazilian environmental legislation, we 383 

provide strong evidence that a significant portion of the butterfly fauna may be facing disappear from tropical 384 

forests in the near future. This is just the visible part of the Amazonian fauna - in the literal sense of the word, 385 

where the most colourful butterflies are the first to be locally extinguished by removing the native vegetation. 386 

It is necessary to use pragmatism, and this insect group holds the public eye enabling effective warnings about 387 

the limits of forest exploitation. Otherwise, the largest rainforest in the world will be less colourful without 388 

some of its main inhabitants. 389 
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 525 

Figure captions 526 

Fig. 1 Conceptual framework and predictions on colour-habitat patterns for fruit-feeding butterfly 527 

communities in the Amazon Rainforest. From the regional species pool, we expect that butterfly assemblages 528 

under similar habitats in the intact forest can have a higher colour composition compared to degraded habitats, 529 
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where selection pressures on phenotypes may change and select for a fewer colour patterns. Under human-530 

induced changes, anti-predator strategies may display different performances, leading to differences in some 531 

colour properties. Colour richness and intensity (saturation), differences between colour patches, and wing 532 

colour diversity may decrease with a greater homogenization. In forests made more open and brighter, 533 

conspicuous colours that are highly contrasting with altered backgrounds may not have the same performance 534 

due to increased exposure of those butterflies to threats. Camouflage involving a resemblance to the 535 

remaining substrate after a disturbance, combined with the presence of wing-eyespots may increase the 536 

survival chances of some butterflies, avoiding detection or directing predator attacks to less vital parts of the 537 

body. Overall, we expect a shortage of colourful butterflies associated with deforestation in the Amazon 538 

Rainforest, such that the Amazonian fauna is currently undergoing a process of discolouration. 539 

 540 

Fig. 2 Map with the three study areas at the Biological Dynamics of Forest Fragments Project (PDBFF), 541 

indicating the location of Dimona, Porto Alegre and Colosso farms. White patches represent deforested areas 542 

initially used for grazing purposes. The green portion corresponds to primary intact forest areas, including all 543 

the forest fragments used for the experiments in each study area (1, 10, and 100 hectares). The inset reveals the 544 

habitat disposition on each farm: green is for primary forest (either continuous or in fragments), white for 545 

secondary forest (30 years of regeneration), and black for early succession patches (three years after a 546 

disturbance - around fragments). 547 

 548 

Fig. 3 We measured the colours of 220 individuals belonging to 60 species of fruit-feeding butterflies. (a) 549 

Transparent butterfly (Cithaeria andromeda) with camouflaged wings. Photograph by Iserhard CA. (b) Owl 550 

butterfly (Caligo teucer) with typical wing eyespot. Photograph by Spaniol RL. (c) The colourful Prepona 551 

narcisus with highly contrasting wings. Photograph by Spaniol RL. 552 

 553 

Fig. 4 Venn diagram comparing species richness among habitats that make up the a) Sucessional gradient and 554 

b) Habitat-size gradient. 555 

 556 
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Fig 5. Non-metric multidimensional scaling (NMDS) ordination of Bray-Curtis distance matrices for butterfly 557 

assemblage composition in samples from early successional habitats (three years after a disturbance), secondary 558 

forests (30 years of regeneration), and primary intact forest in the Amazon Rainforest. The diagram was 559 

constructed by using the 'ordispider' function of vegan package to illustrate the habitat and samples. Each dot 560 

represents the sample unit ensemble from one site. Statistical testing by permutation (999 times) via Adonis 561 

indicates differences in composition among the habitats: R²=0.14, P=0.001. 562 

 563 

Fig. 6 Butterfly reflectance in a colour space triangle. Each dot represents the reflectance values for each 564 

individual observed along the forest gradients in the Biological Dynamics of Forest Fragments Project 565 

(BDFFP) areas: a) Forest Succession; b) Habitat-size. All dots were coloured according to the treatments 566 

identified through the legend. S = shortwave; M = mediumwave; and L = longwave refers to the wavelength 567 

according to the RGB reflectance values. 568 

 569 

Fig. 7 Boxplots of colour variables for fruit-feeding butterflies. Wing-colour diversity in the different habitats 570 

in areas in the Biological Dynamic of Forest Fragmentation Project (BDFFP) of the (a) habitat-size and (b) 571 

forest succession gradients. c) Hue; d) Saturation and e) Brightness in habitats of the forest succession 572 

gradient (Early Succession – three years after a disturbance, Secondary Forest – 30 years of regeneration and 573 

Primary Continuous Forest). 574 

 575 

Fig. 8 Main defence strategies manifested by butterflies (camouflage, transparency, warning-colour, and wing 576 

eyespots) for different habitats that make up the succession (a) and habitat-size (b) gradients in the Amazon 577 

Rainforest (for details see text). 578 
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