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Abstract

Vascular endothelial cells lining the arteries are sensitive to wall shear stress (WSS) exerted by 

flowing blood. An important component of the pathophysiology of vascular diseases, WSS is 

commonly estimated by centerline ultrasound Doppler velocimetry (UDV). However, the accuracy 

of this method is uncertain. We have previously validated the use of a novel, ultrasound based, 

particle image velocimetry technique (echo PIV) to compute two-dimensional velocity vector 

fields, which can easily be converted into WSS data. We compared WSS data derived from UDV 

and echo PIV in the common carotid artery of 27 healthy participants. Compared with echo PIV, 

time-averaged WSS was lower using UDV (28 ± 35%). Echo PIV revealed that this was due to 

considerable spatio-temporal variation in the flow velocity profile, contrary to the assumption that 

flow is steady and the velocity profile is parabolic throughout the cardiac cycle. The largest WSS 

underestimation by UDV was found during peak-systole (118 ± 16%) and the smallest during mid-

diastole (4.3 ± 46%). The UDV method underestimated WSS for the accelerating and decelerating 

systolic measurements (68 ± 30% and 24 ± 51%) whereas WSS was overestimated for end-

diastolic measurements (−44 ± 55%). Our data show that UDV estimates of WSS provided limited 

and largely inaccurate information about WSS and that the complex spatio-temporal flow patterns 

do not fit well with traditional assumptions about blood flow in arteries. Echo PIV derived WSS 

provides detailed information about this important but poorly understood stimulus that influences 

vascular endothelial pathophysiology.
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Introduction

Hemodynamic wall shear stress (WSS) plays an important role in the development and 

progression of vascular endothelial dysfunction and atherosclerosis (Ku et al., 1985; 

Gimbrone, 1999; Reneman et al., 2006; Caro, 2009; Markl et al., 2013). Endothelial cells 

lining the arterial walls are sensitive to the mechanical forces exerted by flowing blood and 

respond to the different types of WSS transduced (Barakat & Lieu, 2003). For example, the 

low and oscillatory type of WSS is known to be atherogenic (Reneman et al., 2006; Caro, 

2009). However, it is difficult to accurately quantitate in vivo WSS in humans and this has 

limited our mechanistic understanding of the significance of low and/or oscillatory flow in 

endothelial dysfunction, atherogenesis and plaque rupture (Nagel et al., 1999; White et al., 
2001; Barakat & Lieu, 2003; Li et al., 2009; Peiffer et al., 2013). In particular, it is difficult 

to measure flow with the spatial and temporal resolution sufficient to determine accurate 

estimates of WSS. High spatio-temporal resolution means flow patterns can be measured 

near the vessel walls throughout the cardiac cycle to determine any time-varying 

characteristics in WSS that might be physiologically and clinically important. This is 

relevant because spatial gradients in shear enhance activation of endothelial transcription 

factors (Nagel et al., 1999) and temporal gradients that are caused by high flow pulsatility 

are known to stimulate endothelial cell proliferation and inflammatory gene expression 

(White et al., 2001; Li et al., 2009).

Current methods to estimate in vivo WSS are primarily based on two imaging modalities: 

Phase-contrast magnetic resonance imaging (PC-MRI) and ultrasound imaging. PC-MRI 

provides volumetric flow visualization but is relatively expensive, time consuming, and has 

limited spatial and temporal resolution (Wu et al., 2004; Zhang et al., 2011a; Markl et al., 
2011). Because of this, ultrasound Doppler velocimetry (UDV) has become a popular 

method to estimate WSS in studies of the natural history of atherosclerotic plaque (e.g. 

carotid artery plaque) and endothelial function (e.g. flow-mediated dilatation; Reneman et 
al., 2006). This method is inexpensive and readily available, but it uses a one-dimensional 

velocity component rather than measuring the whole velocity vector field. Thus, it is not 

possible to measure the spatial gradient of the velocity profile near the vessel wall, which is 

required to calculate WSS. Instead, UDV measures the centerline peak velocity (Vmax), 

which is then extrapolated over a theoretical parabola from near to far wall, in accordance 

with the assumptions of the Hagen-Poiseuille Law and/or Womersley’s oscillatory flow 

theory. However, problems arise if pulsatile arterial flow does not exhibit a parabolic 

velocity profile, because any discrepancy between the actual and the assumed velocity 

profiles introduces error into the WSS measurement (Reneman et al., 2006; Mynard et al., 
2013; Mynard & Steinman, 2013).

With the convenience of ultrasound imaging, a method that uses a two-dimensional (2D) 

ultrasound image of the arterial segment to measure the local flow velocity distribution 
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could provide additional information about blood flow and WSS. We have developed an 

ultrasound based method called echo particle image velocimetry (echo PIV) that produces a 

2D velocity vector field within an arterial segment, from which spatial and temporal local 

WSS measurements are obtained. Our in vitro and in vivo validation studies have shown that 

echo PIV can accurately measure WSS with high spatial and temporal resolution (Kim et al., 
2004; Zheng et al., 2006; Liu et al., 2008; Zhang et al., 2011a; Gurung et al., 2017). The 

purpose of this study was to compare common carotid artery WSS measurements obtained 

from UDV to those obtained from echo PIV.

Methods

Ethical approval

This study conformed to the Declaration of Helsinki and was approved by the UK National 

Research Ethics Service Southwest (09/H0202/49). All participants gave written informed 

consent.

Participant screening and baseline characteristics

Participants were apparently healthy men and women recruited at the National Institute for 

Health Research Exeter Clinical Research Facility, UK. Participants were asked to refrain 

from food or drink (except water) at least 2 hours before the visit, and to avoid smoking, 

drinking tea or coffee, alcohol and strenuous exercise on the study day. Medical history, 

electrocardiogram (ECG), height, body mass, waist circumference, and blood pressure were 

obtained. Twelve-hour-fasting blood samples were collected in accordance with the U.K. 

National Quality Assessment Scheme. Doppler ultrasound measurements were collected 

before contrast agent injection (SonoVue, Bracco, Italy) and echo PIV imaging. Twelve 

participants were involved in the initial experimentation to determine optimal micro-bubble 

concentration as guided by our prior work (Zheng et al., 2006; Liu et al., 2008). Exclusion 

criteria included: History of uncontrolled hypertension, pulmonary hypertension, renal 

disease, hepatic disease, claudication, hypersensitivity to the contrast agent and individuals 

outside the age range of 20 to 80 years. Inclusion criteria for analysis of subject data files 

were: clear delineation of the lumen boundary on the B-mode image and comparable peak 

velocity measurements between UDV and echo PIV. Data files were excluded if contrast 

agent density was inadequate to obtain accurate PIV results.

UDV based WSS measurement

Pulsed wave Doppler imaging (Ultrasonix 500 RP, Analogic BK Ultrasound, Richmond, 

BC, Canada) was used to measure maximum blood flow velocity (Vmax) from the right 

common carotid artery with the sample volume placed in the center of the vessel at a 

recorded location upstream of the carotid bifurcation. The pulse repetition frequency was set 

at 5 kHz with the transducer (L14-5/38) parallel to the centerline axis of the artery and 

Doppler angle set at 60° (Bushberg et al., 2002). WSS was calculated from the centerline 

Vmax using the standard Hagen-Poiseuille’s equation (Ford et al., 2008; Mynard & 

Steinman, 2013):
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WSSVmax
= μ

4Vmax
D (1)

where D is carotid artery inner diameter and μ is dynamic viscosity assumed constant at 

0.032 Poise (Figure 1). Equation (1) uses the Poiseuillean assumptions that flow is steady, 

fully developed (i.e. shape of the flow velocity profile does not change and the mean 

velocity is half the maximum flow velocity) and has a parabolic velocity profile. The UDV 

derived WSS measurement (WSSVmax) provides an estimate of the mean flow WSS within 

the Poiseuillean flow assumptions.

Echo PIV derived flow variables

We have previously shown that echo PIV accurately measures velocity profiles in vivo and 

in vitro by tracking grayscale image patterns of microbubbles in flow (Kim et al., 2004; 

Zheng et al., 2006; Liu et al., 2008; Zhang et al., 2011a; Gurung et al., 2017). Echo PIV uses 

ultrasound B-mode rather than Doppler for flow measurement and is inherently capable of 

measuring two-dimensional velocity vector fields. The use of contrast microbubbles gives 

excellent signal discrimination between tissue and blood and allows velocity measurement 

close to the vessel walls. The echo PIV imaging window was selected to overlap with the 

location of the UDV measurements such that both UDV and echo PIV measured a similar 

flow region. The long axis of the transducer probe was aligned longitudinally with the 

centerline of the blood vessel such that blood flow was orthogonal to the ultrasound beam 

direction. This alignment provides a longitudinal view of contrast-enhanced flow that is 

recorded as a time-series of images acquired at very high frame rates (480 – 680 frame per 

second), with ECG-gating for post-processing synchronization.

The echo PIV velocity vector field was computed by cross-correlating consecutive frames 

(1100 to 3200) in the time sequence, as reported in our prior work (Zhang et al. 2011). The 

spatial and temporal local velocity vector field was used to construct the flow velocity 

profile spanning the arterial diameter at different time points. The shape of the velocity 

profile was quantified by an estimation parameter called the shape-index (s-index). The s-

index (s) was derived by fitting the following analytical velocity profile (Reneman et al., 
2006):

V(y) = Vmax 1 − y
R

s
(2)

Using equation (2), an s-index of 2 generates a parabolic profile representative of fully 

developed laminar flow (i.e. the shape of the velocity profile does not change); this also 

represents the foundational assumption behind the UDV-method for calculating WSS. S-

index values greater than 2 represent velocity profiles that are blunted at the center with 

sharp spatial gradients at the vessel walls. We extracted the echo PIV measured velocity 

profiles at five different time points in the cardiac cycle, as follows: 1) accelerating systole 

past the time-averaged value (C1), 2) peak systole (C2), 3) decelerating systole coinciding 
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with the first notch (C3), 4) mid-diastole (about 60% into the cardiac cycle; C4) and 5) end-

diastole (C5). These five time points were selected to investigate WSS distribution at 

characteristic points in the cardiac cycle where flow patterns vary significantly, e.g. 

accelerating flow (C1) is known to be less turbulent compared to mid-late systole (C3) and 

early-mid diastole (C4) (Fung, 1984; Salsac et al., 2006; Nichols et al., 2011; Heffernan et 
al., 2013). Characterizing the spatial and temporal variation of these velocity profiles 

allowed us to compare the mean flow WSS estimate, obtained via the conventional UDV 

method with instantaneous and time-averaged echo PIV WSS.

Characterization of flow pulsatility using the Womersley number

The non-dimensional Womersley (α) number was also obtained for each participant, which 

is a ratio of the unsteady inertial force governed by the fluid density (ρ) and the angular 

frequency (ω), defined as 2Π/T where T is the time duration of one cardiac cycle (Salsac et 
al., 2006):

α = D ρω
μ (3)

At a lower α, the viscous force dominates, favoring a parabolic velocity profile. Therefore, 

α of 1 or less indicates a fully developed parabolic velocity profile whereas a value larger 

than 1 indicates a blunter profile. The UDV method of estimating WSS assumes α of 1; thus 

echo PIV WSS measurements with values larger than 1 indicate larger differences between 

the two methods.

Echo PIV based WSS measurement

WSS was calculated directly from the echo PIV derived local velocity vector field by 

computing its spatial gradient (dv/dy, also known as shear rate, where v is the radial velocity 

and y is the spatial position) at the radius (R):

WSS = μdv
dy (4)

Equation (4) estimated at y = R provides the shear stress at the wall (Figure 1 in (Liu et al., 
2008)). Accuracy of wall segmentation was improved by using a semi-automated, intensity-

based edge detection technique that employs a series of filtering and thresholding schemes 

to obtain a boundary-enhanced and lumen-uniformed image. We have previously shown that, 

using this method, a mean absolute difference from the ground truth of 4 pixels can be 

achieved (Zhang et al., 2009). The time sequence of velocity vector fields obtained from 

echo PIV allowed extraction of detailed shear rate information. Spatially local WSS 

measurements (i.e. WSS measured at one spatial point along the vessel length within the 

field of view) were used to compare against the UDV estimates. Temporal WSS values were 

extracted at the five different points in the cardiac cycle (i.e., C1 - C5) described above. 

Mean WSS was calculated as the time-averaged WSS across one full cardiac cycle. Echo 
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PIV WSS measurements were obtained from both the near and far walls of the artery and 

averaged (Figure 2a).

Ensemble averaged WSS waveform analysis

Because Echo PIV produces more detailed characterization of WSS than UDV, we 

performed a qualitative and quantitative analysis on an ensemble averaged waveform. To 

construct the ensemble averaged waveform, WSS waveforms obtained from each individual 

in the cohort were spatially and temporally phase averaged. Spatial averaging was performed 

by taking the average of WSS values over 4 mm along the length of the CCA (WSS was 

steady across the vessel length; no significant difference was found). Phase averaging 

involved averaging the WSS values across three to four cardiac cycles at each of the five 

characteristic phases selected (i.e. phases C1-C5). We then derived: 1) the time-averaged 

(TA) WSS; 2) the decay rate of the systolic peak shear, calculated by fitting an exponential 

decay curve to data points extracted from the systolic peak to the base of the first notch; and 

3) the time duration of the systolic shear force calculated by the time difference between the 

initial systolic upstroke and the first prominent notch post systole (systolic shear stress 

pulse).

Statistical analysis

Our primary variable of interest was the time-averaged WSS derived from UDV and Echo 

PIV. We also determined differences between UDV-derived WSS and instantaneous WSS 

measurements at five time-points in the cardiac cycle derived from echo PIV. Percent 

difference in WSS measurements between the UDV and the echo PIV methods was 

calculated:

% Difference =
(WSSi − WSSVmax)

mean(WSSi + WSSVmax) ∗ 100 % (5)

where WSSi [i = (1, 5)] indicates the echo PIV WSS measurements extracted at the five 

characteristic time points. The percent difference between the two mean WSS estimates was 

calculated in a similar manner. Paired t-test was used for all comparisons. A one-way 

balanced ANOVA was conducted to determine differences in WSS at different time points in 

the cardiac cycle (C1-C5). A probability of p<0.05 was considered statistically significant 

for both tests. WSS measurements obtained from the two methods are presented as mean ± 

standard deviation. Statistical analyses were performed using MATLAB 2013b (MathWorks, 

Inc., Natick, MA, USA).

Results

Participant characteristics

The study population comprised 37 apparently healthy participants. Evaluation of data from 

12 participants was needed to determine the quality and density of contrast agent required 

within the arterial lumen for optimal echo PIV analysis. After excluding inadequate data 
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files, datasets from 27 participants were included in the analysis. Characteristics from these 

participants are presented in Table 1.

Differences between UDV and echo PIV

Mean WSS calculated from UDV was lower than the time averaged WSS measured using 

echo PIV (10.1 ± 2 dyn/cm2 versus 14.8 ± 5 dyn/cm2, p<0.001, Figure 2a). Compared with 

echo PIV WSS at C1-C5, the UDV method underestimated WSS at C1, C2 and C3 (22.2 ± 8 

dyn/cm2, 41.2 ± 12 dyn/cm2 and 14.5 ± 7 dyn/cm2 respectively) and over-estimated at C5 

(7.34 ± 4 dyn/cm2, all p<0.005) (Figure 2b). No significant difference was found between 

the two WSS estimates at C4 (11.9 ± 5 dyn/cm2). These differences remained when WSS at 

the near and far walls of the artery were derived from echo PIV and compared with UDV 

WSS (Table 2). There were no differences between WSS measured with echo PIV at the 

near and far walls at C1-C5 or when time-averaged across the cardiac cycle.

Percent differences in WSS measurements between the echo PIV and UDV methods are 

presented in Table 3. The largest percent difference was found during peak-systole (C2; 

underestimation by 119 ± 17%) and the smallest during mid-diastole (C4; underestimation 

by 3.7 ± 48%). Compared with echo PIV, the UDV method overestimated WSS values 

during end-diastole (C5; 43.5 ± 55%).

Blood flow velocity profiles and shape index

Compared with the parabolic profile assumed in UDV, the shape of the velocity profile 

measured using the echo PIV method varied spatially across the vessel diameter and 

temporally within the cardiac cycle (Figure 3). In contrast to a constant value of 2 assumed 

in the UDV method (i.e. a parabolic velocity profile throughout the cardiac cycle), echo PIV 

measurements revealed that the mean s-index was 4.3 ± 3 at C1, 7.4 ± 4 at C2, 6.4 ± 5 at C3, 

4.5 ± 2 at C4 and 3.6 ± 3 at C5. The s-index was significantly different at different phases of 

the cardiac cycle (p<0.001). S-index distribution and its influence on the shape of the 

velocity profile are shown in Figure 3. Womersley numbers (α) ranged from 3.48 to 6.88, 

indicating that the actual velocity profile tended to be less parabolic and more blunt at the 

center of the blood vessel with sharp gradients at the walls (that is, the assumed parabola 

was not fully formed).

Ensemble averaged WSS waveform analysis

We observed considerable inter-individual variability in WSS, evident in the standard 

deviation in the WSS distribution (Table 2). The archetypal WSS waveform was obtained by 

taking the ensemble average and is presented in Figure 4. The systolic shear stress pulse was 

sustained for a mean duration of 0.14 ± 0.06 s. The decay constant for the peak systolic 

shear stress towards the first notch of the pulse was 9.9 ± 6 s−1. WSS at different phases of 

the cardiac cycle were significantly different (p<0.001).

Discussion

In this study, we measured carotid arterial WSS using echo PIV and compared it with the 

single value WSS estimated from the commonly used ultrasound Doppler velocimetry 
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method. The key findings were that: 1) compared with echo PIV, time-averaged WSS was 

lower using the UDV method; 2) the degree of under- or over- estimation of WSS by UDV 

varied across the cardiac cycle because of temporal variation in WSS that was not accounted 

for by the UDV method; 3) echo PIV revealed considerable spatio-temporal variation in the 

flow velocity profile that is contrary to the assumptions that flow is steady and that the 

velocity profile is parabolic throughout the cardiac cycle.

Hemodynamic WSS is currently measured because of its importance to vascular endothelial 

cell shape, size, orientation, function and permeability (Chatzizisis et al., 2007). Alterations 

in WSS influence endothelial cell signaling, protein expression and synthesis of vasoactive 

molecules (Chatzizisis et al., 2007). Wall shear stress plays a prominent role in vessel 

remodeling and in the process of atherogenesis and atheroma progression. Endothelial cells 

discern different hemodynamic WSS stimuli at the cellular level (Chatzizisis et al., 2007) 

and independent mechano-chemical transduction pathways are activated in the endothelial 

cells depending on the type of shear stress exerted (Frangos et al., 1996; Bao et al., 1999). 

For example, turbulent blood flow generates low and oscillatory WSS that causes 

endothelial cells to express a pro-atherogenic phenotype (Chatzizisis et al., 2007). In adult 

humans, atheroma tends to occur at bends, branches and bifurcations in the arterial tree 

where WSS can be low, oscillatory, disturbed, and sometimes turbulent (Chatzizisis et al., 
2007). For these reasons, the measurement of WSS has become important in understanding 

vascular biology and circulatory pathology. The UDV method is convenient and has become 

a popular estimate of WSS. However, our data suggest that UDV does not accurately 

estimate mean WSS and illustrates that it misses much of the important information about 

WSS that may have relevance to understanding its role in vascular physiology.

Echo PIV allowed analysis of WSS at five discrete time points, revealing that there was large 

temporal variation in the WSS distribution across the cardiac cycle and that WSS varied 

significantly between these time points. The UDV method does not estimate temporal 

variations in WSS and comparison of the mean WSS revealed significant discrepancies at 

four of the five time points. The largest discrepancy was in peak systolic WSS; the UDV 

method underestimated this by 74 to 142%. Mynard et al. (2013) also found that UDV 

underestimated peak-systolic WSS, irrespective of profile-skewing, using either Poiseuille’s 

or Womersley’s profiles. They calculated an underestimation of 30 to 50% using 

computational fluid dynamics simulations. The discrepancy with our data may result from 

their use of spatially averaged, image-based simulations of velocity profiles extracted from 

the common carotid artery, rather than local velocity profiles measured in-vivo, as reported 

here. We also found that the end-diastolic WSS was overestimated by UDV and that there 

was considerable variation in the discrepancy between echo PIV and UDV. This resulted 

from wide-ranging, individual-dependent variability in WSS at end diastole detected by echo 

PIV. The significance of variability in WSS at specific phases of the cardiac cycle is 

uncertain, but given the sensitivity of endothelial cells to variation in WSS, this may reveal 

important insight into endothelial physiology and the focal susceptibility to vascular disease.

The proximity of the measured shear stress to the vessel wall depends on the spatial 

resolution of the PIV system. The spatial resolution of in vivo echo PIV is about 0.5 mm 

(Zhang et al., 2011). Based on the extrapolation of shear stress data as a function of vessel 
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radius, shear stress determined at 0.25 mm to 0.3 mm from the vessel wall leads to an 

underestimation of WSS by about 10% (Reneman & Hoeks, 2008). This is comparable to 

the measurement uncertainty of our echo PIV system (15–19%, (Gurung et al., 2017)) but 

smaller than the UDV technique (25–50%) and the computational fluid dynamics 

simulations (30–50% (Mynard et al., 2013)). Likewise, Walker et al. (2014) reported good 

agreement between echo PIV measured centerline velocities and digital PIV, but larger 

discrepancies were found in near-wall velocity measurements attributable to inferior spatial 

resolution of echo PIV compared to digital PIV (Walker et al., 2014). Contrast-specific non-

linear imaging schemes such as pulse inversion imaging substantially enhance blood-tissue 

boundaries while preserving both contrast and resolution, potentially improving the accuracy 

of shear stress calculations closer to the wall (Simpson et al., 1999; Jensen, 2007; Leow et 
al., 2015). Walker et al. (2009) also reported large differences between echo PIV and pulsed 

wave Doppler measurements of steady flow velocities in a latex tube designed to simulate 

the brachial artery. The discrepancy could result from several factors, including sub-optimal 

PIV parameters, ultrasound beam thickness, off-centerline measurements, and the angle of 

interrogation for pulsed wave Doppler measurements (Kagiyama et al., 1999; Kim et al., 
2004a; Kim et al., 2004b; Zheng et al., 2006; Liu et al., 2008; Walker et al., 2009; Walker et 
al., 2014; Mynard et al., 2013, Poelma, 2017). Thus, the measurement accuracy of echo PIV 

depends on establishing optimal parameter settings specific to the experiment of interest.

In this study, we quantified the flow velocity patterns using a shape metric (s-index) and 

found that the shape of the local velocity profile varied both spatially across the vessel 

lumen and temporally within the cardiac cycle. This spatial and temporal variation in the 

velocity distribution translated into variation in WSS distribution that was not detected using 

the UDV method. The UDV method is one-dimensional, necessitating flow assumptions to 

estimate multi-dimensional flow velocity and shear stress near the arterial walls, whereas 

echo PIV produces actual 2-D velocity vector fields that allow velocity measurement close 

to the wall. A critical assumption of the UDV method is that blood flow is steady and the 

shape of the velocity profile is parabolic with its maximum located at the center of the 

vessel, but echo PIV showed that this was not always the case (Figure 3). Our findings agree 

with those of Reneman and Hoeks (Reneman & Hoeks, 2008) who used a similar analysis of 

the profile shape. They reported a substantially flattened velocity profile during systole 

instead of the fully developed parabolic velocity profile assumed in the Doppler method. The 

authors also reported a mean WSS of 11 to 14 dyn/cm2 (within the limits of the theoretically 

predicted value of 15 dyn/cm2 ± 50% (Reneman & Hoeks, 2008) in the human CCA, which 

is comparable to our finding of 15 ± 5 dyn/cm2 derived from echo PIV. The mean WSS 

derived from our Doppler method was 10 ± 2 dyn/cm2. Likewise, peak WSS reportedly 

varied between 25 and 43 dyn/cm2 which is comparable to the peak WSS of 41 ± 12 

dyn/cm2 derived from echo PIV. Furthermore, Reneman et al. (2008) highlighted the 

variability in wall shear stress along the arterial tree, indicating the importance of measuring 

shear stress locally.

The effect of the pulsatile flow pattern on the shape of the local velocity profile was also 

quantified using the Womersley number, a mechanical gauge for the degree of bluntness 

present in the velocity profile. Consistent with previous reports (Ku, 1997; Nichols et al., 
2011) the Womersley number ranged from 4 to 7, indicating that the velocity profiles were 
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blunt during most of the cardiac cycle. As noted by Mynard et al. (Mynard & Steinman, 

2013) and also shown in this study, the UDV technique cannot detect WSS variations caused 

by profile blunting. Although some studies employing the UDV method now use a 

Womersley’s profile to estimate WSS, the underlying assumption remains that flow velocity 

exhibits an axis-symmetric and fully-developed profile (Ponzini et al., 2010; Mynard et al., 
2013). Furthermore, this flow assumption neglects any variations in the arterial diameter 

during the cardiac cycle which results in compounded error during WSS estimation, 

particularly during peak-systole. Our finding is in agreement with that of Tortoli et al (2003) 

who showed that velocity distribution during the mid-late systolic phase was markedly 

asymmetric (“M-shape”) due to the presence of secondary flows during deceleration (Tortoli 

et al., 2003). As our data show, complex velocity patterns resulting from disturbed flow 

patterns during the deceleration of systolic flow can result in a WSS distribution that is 

different from the values predicted by the time-averaged mean WSS (Fung, 1984; Reneman 

et al., 2006; Markl et al., 2013).

Instantaneous WSS measurement using echo PIV allowed us to construct an ensemble 

averaged WSS phenotype with detailed time-varying markers. The WSS waveform revealed 

a highly transient peak systolic WSS decaying at a rate of 9.9 ± 6 s−1 with systolic pulse 

duration of 0.14 ± 0.06 s. We found that the decelerating systolic minimum (17 dyn/cm2) 

and the mid-diastolic (12 dyn/cm2) WSS values approximated each other (and the time-

averaged value of 14 dyn/cm2), showing that the temporal gradient in WSS is followed by a 

sustained steady shear stress. White et al. (White et al., 2001) showed that the temporal 

gradient in shear stress affected endothelial cell proliferation differently based on the 

presence or absence of steady shear stress, and that the sustained steady WSS suppressed the 

proliferative stimulus of the gradient. Because endothelial cells are sensitive to the spatial 

and temporal flow patterns experienced at the arterial walls, this could be an important 

determinant of endothelial and vascular health. Further elaboration of WSS characteristics, 

their consequences and how they change with age, health and disease is required to fully 

exploit the utility of WSS information. To this end, we are currently investigating WSS in 

patients with a recent history of transient ischemic attack and interrogating arterial regions 

where flow disturbance may occur.

Our study is limited to a two-component, two-dimensional (2C-2D) velocity vector field for 

WSS estimation. Three-component, three-dimensional velocity field measurement is optimal 

to visualize and quantify complex flow dynamics, including tracking of highly transient flow 

features in both space and time. Furthermore, the accuracy of PIV measurement is affected 

by the particle displacement in the direction perpendicular to the imaging plane. This 

problem may be overcome by 3D echo PIV techniques (also known as ultrasound imaging 

velocimetry, UIV), as described by Poelma et al. (2009). This in vitro study demonstrated 

that the third out-of-plane velocity components could be reconstructed from slice-by-slice 

scans from a linear array transducer by using the correlation peak heights of the acquired 

2C-2D velocity vector fields. Estimation of 3D velocity vectors in vivo has also been 

performed using advanced beamforming techniques such as the 3D transverse oscillation 

method that uses a 2D transducer and special autocorrelation scheme to estimate 3D velocity 

vectors in two orthogonal planes (Pihl et al., 2013). Another limitation of echo PIV is the 

maximum resolvable flow velocity, which is dependent upon maximum imaging frame rate. 
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Fraser et al. (2017) recently validated the interleaved technique (Poelma & Fraser, 2013) for 

pulsatile arterial flow measurements (Fraser et al., 2017) to overcome frame rate limitations 

associated with conventional line-by-line beam sweeping. The interleaved technique 

increases the maximum resolvable velocity by reducing the effective inter-frame separation 

time because two image frames are acquired concurrently; a maximum velocity of 180 cm/s 

has been reported (Fraser et al., 2017). Leow et al. (2015) successfully applied plane wave 

imaging for UIV that increased the frame rate to 2000 frames per second (fps), substantially 

faster than 680 fps used in our study. Although our current echo PIV system is able to 

resolve normal arterial flow velocities (50–80 cm/s in the CCA with a luminal diameter of 

6–7.5 cm (Schaeberle, 2011)), abnormally high velocities present problems (150 – 180 cm/s 

in the CCA with 50% stenosis and as high as 202 cm/s with 75% stenosis). This limitation 

may be overcome by the interleaved and the high frame rate UIV techniques that allow 

higher flow velocities to be resolved in both space and time (Poelma & Fraser, 2013; Leow 

et al., 2015; Fraser et al., 2017). Our study is also limited by sample size. A larger clinical 

study is warranted to further investigate the significance of the WSS patterns revealed in this 

report. A study design involving direct correlative comparison between the WSS markers 

and the serological biomarkers indicative of endothelial dysfunction could also extend our 

understanding of the WSS role in the disease process of atherosclerosis. Nonetheless, with 

this study we have identified new features of in vivo carotid wall shear stress distribution in 

a healthy population and provided a basis for such a study by identifying detailed markers of 

WSS that may serve as important biomechanical stimuli for vascular health.

In summary, detailed and accurate markers of physiological and pathophysiological WSS are 

needed to fully understand the role of WSS in vascular biology and vessel disease. Our data 

show that spatial and temporal flow patterns are complex, dynamic and do not fit well with 

conventional assumptions about blood flow in arteries. Importantly, our data suggest that the 

use of ultrasound Doppler and extrapolation from centerline peak velocity provides limited 

and largely inaccurate information about WSS. Echo PIV offers a potentially useful tool to 

accurately measure detailed WSS in humans in vivo, an important yet poorly understood 

hemodynamic stimulus known to regulate endothelial cell physiology and pathophysiology.
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Figure 1. 
Flow diagram of two different methods of measuring arterial wall shear stress in vivo.
Ultrasound Doppler Velocimetry calculates flow induced shear stress on the vessel walls by 

assuming a parabolic velocity profile across the arterial lumen. In contrast, echo particle 

image velocimetry measures actual velocity profiles by statistically tracking ultrasound 

images of seeded particles (micro-bubble contrast agent) at consecutive time points. Spatial 

change in the velocity is calculated near the near and far walls, from which wall shear stress 

(WSS) is computed.
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Figure 2. 
Comparison of echo PIV-derived wall shear stress with the ultrasound Doppler velocimetry 

estimates.

No significant difference was found in WSS measurements obtained by echo PIV at the near 

and far carotid artery walls (a); average of the two walls is also shown and used for further 

analysis. Time Averaged (TA) WSS was significantly different between the two methods (a). 

Doppler WSS measurement differed significantly from echo PIV measurements at different 

cardiac phases (b): at the accelerating (C1), peak (C2) and decelerating (C3) systolic phases, 

and end-diastole (C5). No difference was found during mid-diastole (C4). Statistical 

significance was obtained at p<0.05.
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Figure 3. 
Spatial and temporal variation in velocity profiles at C1-C5 for each participant.

Distribution of the s-index for all participants extracted at five different time points (C1-C5) 

reveals spatio-temporal variation in the velocity profile within a cardiac cycle. An s-index of 

2 indicates a parabolic profile (as shown by the parabolic velocity profile in the inset figure, 

labeled with an s-index of ‘2’ and also indicated by the dashed line labeled “Poiseuille” in 

the scatter plot) that is symmetric across the center axis of the vessel, whereas a value larger 

than 2 indicates a blunted profile (inset figure labeled with a s-index of ‘7’).
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Figure 4. 
Ensemble average common carotid artery wall shear stress.

The ensemble average wall shear stress (WSS) waveform derived from 27 apparently 

healthy individuals reveals the distribution of WSS across the cardiac cycle. Characteristic 

features on the waveform include instantaneous WSS measurements at five different time 

points in one complete cardiac cycle (Table 2), the decay rate for the systolic peak, the time 

duration of the systolic shear pulse, and the spatial and phase averaged WSS (note that 

spatial averaging acts as a low pass filter that reduces the WSS magnitudes for both 

instantaneous and cycle averaged measurements).
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Table 1

Participant characteristics

Parameter (n=27) Mean ± SD

Age (y) 55.2 ± 12

Male/Female 18/9

Body mass (kg) 72.4 ± 10

Height (m) 1.7 ± 0.1

Body mass index 24.4 ± 3

Waist circ. (cm) 85.6 ± 9

Hip circ. (cm) 96.3 ± 8

Waist-Hip Ratio 0.9 ± 0.1

Systolic BP (mmHg) 124 ± 13

Diastolic BP (mmHg) 77.5 ± 9

Pulse Pressure (mmHg) 46.4 ± 8.9

Heart Rate (b/min) 63.8 ± 9

Cholesterol (mmol/L) 5.4 ± 0.9

Triglycerides (mmol/L) 1.2 ± 0.5

HDL-Chol (mmol/L) 1.5 ± 0.4

LDL-Chol (mmol/L) 3.4 ± 0.8

Chol:HDL 3.9 ± 1

Sodium (mmol/L) 139.3 ± 2

Potassium (mmol/L) 4.5 ± 0.4

Creatinine (mmol/L) 78.8 ± 13

Albumin (g/L) 45.1 ± 3

Circ = circumference; BP = blood pressure; Chol = Cholesterol; HDL = high density lipoprotein; LDL = low density lipoprotein; TG = 
triglycerides
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