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ABSTRACT
With most inventory theory investigating linear models, the dynamics of nonlinear
inventory systems is not well understood. We explore the dynamics of the order-up-
to policy under lost-sales for the case of i.i.d. normally distributed demand and unit
lead times. We consider the ideal minimum mean squared error forecast and two
alternative scenarios: partial demand observation and dynamic demand forecasting,
providing a broad understanding of the operational performance of lost-sales sys-
tems. In each scenario, we obtain analytical expressions for the order, inventory, and
satisfied demand distributions. This allows us to quantify the Bullwhip and inven-
tory variance amplification ratios as well as the fill rate and the inventory cover.
We show the lost sales nonlinearity induces complex behaviors in inventory systems.
Interestingly, lost sales smooth supply chain dynamics, significantly affecting the
trade-off between service level and average inventory holding. We also reveal the
inventory downsides of demand censoring and the production damages induced by
dynamic forecasts. We identify a key parameter, the relative safety margin, that
characterizes the performance of lost-sales systems. We finish by offering some pre-
scriptive results for the optimal safety stock and capacity level in both a retail and
a manufacturing lost-sales setting.

KEYWORDS
Inventory control, Supply chain dynamics, Bullwhip effect, Order-up-to policy,
Lost sales.

1. Introduction

A research study by IHL (2015) estimated that globally inventory inefficiencies cost
retailers $1,106 billion per year, a loss of 7.3% of annual revenue. This includes cost
overruns related to both stock-outs (i.e. when customers want to buy the product but
it is not available), of approx. $634 billion, and overstocks (i.e. holding more inventory
than what is needed), of approx. $472 billion. These are two primary components of
what the study calls the ‘ghost economy’.

An earlier version of this manuscript was presented on 30 August 2019 in Berlin (Germany) at the 9th
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In practice, inventory systems can be broadly categorised into backlog systems and
lost-sales systems (Zipkin 2008a,b; Bijvank and Vis 2011; Gayon et al. 2016). In back-
log systems, when facing an out-of-stock situation, customers are willing to (or must)
wait until the product is available. This is the case in many B2B relationships and
make-to-order products (e.g. cars and laptops), and also occurs frequently in online
sales, where the customer may not even be aware that a stock-out has occurred. In
contrast, customers in lost-sales settings are not willing to postpone the purchase af-
ter encountering a stock-out situation; for example, shopping for daily groceries in a
local supermarket. Not only do lost sales define the generic retail environment for low-
value products, they also apply to other scenarios such as box-office sales (e.g. cinema),
face-to-face services (e.g. restaurants), and online sales of fixed-date services (e.g. hotel
bookings).

It seems reasonable to argue that settings with lost-sales are more sensitive to
stock-outs than settings with backlogs. Lost sales reduce revenue and also provide
competitors with valuable opportunities; the same product could be purchased from
another store or customers may choose a substitute product (Van Woensel et al. 2007).
Becoming aware of the features of the alternative product, customers may then switch
their default brand choice, causing long-term damage to market share. Stock-out in-
stances can also affect the future in other ways; for example, an out-of-stock printer
forgoes the sale of the original printer and also the future ink sales. Furthermore,
out-of-stocks sometimes cause consumers to experience negative emotions (Kim and
Lennon 2011), which adversely impacts customer loyalty and ultimately profitability
through the ‘service-profit chain’ (Heskett et al. 1994).

The issue goes further if we take into account the operational consequences of out-
of-stocks. These situations often provide managers with an inaccurate picture of their
supply chains; under lost sales, actual sales may under-estimate the true demand,
and this would lead to inaccurate forecasts (Gruen, Corsten, and Bharadwaj 2002).
Furthermore, lost sales can lead to rationing and gaming. Both these phenomena
induce the so-called Bullwhip effect (Lee, Padmanabhan, and Whang 1997) in supply
chains. This effect creates a climate of instability that threatens efficient operation in
all kinds of industries (Isaksson and Seifert 2016; Li and Disney 2017; Hu 2019).

This research seeks to provide an analytical understanding of the complex dynamics
of supply chains governed by the rules of lost-sales inventory systems. As we will discuss
later, the behaviour of such systems has received much less attention in the literature
than that of backlog systems, probably due to the complexity of the analysis involved.

In the remainder of this section, we motivate and position our work, posing five
research questions that encapsulate our contribution to the literature. Section 2 de-
scribes our analytical model and the key performance metrics. In Section 3, we explore
the forces that shape the dynamics of the lost-sales order-up-to policy, providing exact
expressions for the metrics. We consider three types of demand forecasting, account-
ing for different lost-sales scenarios in practice. Section 4 presents a numerical study
of the long-term operational performance of these systems, offering detailed insights
from the analytical results. Section 5 analytically investigates the economics of the
lost-sales inventory systems, deriving closed-form expressions for the safety stock and
capacity levels that minimise inventory and production costs. Finally, in Section 6, we
conclude by answering the research questions posed, reflecting upon the managerial
implications, and highlighting future research challenges.
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1.1. Motivation: The need to investigate lost-sales systems

Two decades ago, Verbeke, Farris, and Thurik (1998) investigated the reaction of 1,750
customers when facing stock-outs. They found that only 20% of them would return to
the same store to buy the same product. In a similar study, Corsten and Gruen (2003)
surveyed more than 70,000 customers of retail products worldwide and observed that
only 15% of customers facing stock-outs would wait until the item is available again. In
contrast, 31% would look for it in another store, 45% would buy a substitute product,
and 9% would abandon the purchase. Later, Van Woensel et al. (2007) analysed 3,800
responses to stock-outs in a Dutch grocery retailer, reporting that only 12% of regular
customers and 6% of occasional customers would opt to delay a purchase.

These studies reveal that most retail customers facing a stock-out do not postpone
the planned purchase. They also illustrate that many practical settings are driven by
the principles of lost-sales inventory systems. Indeed, it seems reasonable to hypothe-
sise that customers’ tolerance to stock-outs decreases when more purchasing options
are available (Dawn and Chowdhury 2011; Essila 2019).

Despite lost sales being practically relevant, with wide-ranging implications for or-
ganisations, the majority of inventory theory is based upon backlog systems (Bijvank
and Vis 2011). That is, most inventory models assume unmet demand is accumulated
in an order book and the product is delivered as soon as inventory becomes available.
Indeed, Zipkin (2008a,b) argued that while we have a deep understanding of the be-
havior of inventory systems with backlogs, our comprehension of the lost-sales system
is relatively limited.

The lack of exploration of lost-sales systems can be attributed to their complex-
ity, which resides in their nonlinear nature. The assumption of backlogged demand
keeps the system linear, as it provides a physical meaning for negative inventories,
enabling the study of the system through analytical techniques (Ponte et al. 2017). In
contrast, modelling lost sales requires a non-negative constraint to be placed on in-
ventories, which seriously hampers its mathematical study. Indeed, complex dynamic
behaviors emerge in nonlinear systems (Wang, Disney, and Wang 2014), which may
even dominate the supply chain response (Nagatani and Helbing 2004).

Under such circumstances, configurations derived from the much better known back-
log systems are sometimes used to manage real-world lost-sales scenarios. However, it
is a risky practice. Zipkin (2008a) showed that the inventory costs could be inflated by
up to 30% by using theory developed from linear backlogging models in nonlinear lost-
sales settings. Also, Van Donselaar and Broekmeulen (2013) provided evidence that
backorder models dramatically over-estimate the safety stock needed in lost-sales sys-
tems. Importantly, Huh et al. (2009) showed that the linear approximation of lost-sales
inventory systems is only valid under strictly defined conditions. Overall, to reduce the
disproportionate cost of inventory inefficiencies in retailers and other organisations, it
is clear that we need a better understanding of lost-sales inventory systems.

1.2. Scope: The nonlinear dynamics of supply chains with lost sales

A noteworthy line of research has analytically investigated the optimality of traditional
inventory policies in lost-sales environments. Interestingly, Karlin and Scarf (1958)
showed that the optimal reorder quantity with backlogs can be derived from a single
number (the sum of inventory-on-hand and on-order), but in the lost-sales systems
this quantity is a relatively complex function of the on-hand inventory as well as the
timing and quantity of all outstanding orders. Since then, several works have mined
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this research vein, searching for (near-)optimal inventory policies and deriving bounds
of optimal order quantities under various cost assumptions; including Morton (1969),
Johansen (2001), Chen, Ray, and Song (2006), Bijvank and Vis (2012), Johansen
(2013), Goldberg et al. (2016), Cardós, Guijarro, and Babiloni (2017) and Godichaud
and Amodeo (2019). We refer readers to Bijvank and Vis (2011) for a detailed literature
review of replenishment policies for lost-sales systems. They concluded that ‘not much
is known about an optimal replenishment policy when excess demand is lost’ and that
‘there is no structure for an easy-to-understand optimal replenishment policy which
can be implemented in real-life applications’ (Bijvank and Vis 2011, p.10-11).

Our approach differs from these prior works. We aim to investigate the impact of
the lost-sales nonlinearity on the dynamic behaviour and stochastic performance of the
supply chain under the industrially popular order-up-to (OUT) replenishment policy.
In this way, we do not attempt to prove optimality; rather, we are concerned with how
the, well-established in industry, OUT policy dynamically responds to the practically
frequent lost sales. Furthermore, we not only focus on inventory performance, we
also consider its fundamental interactions with efficient production by measuring its
demand variability amplification caused by the Bullwhip effect.

This perspective positions our work within the discipline of supply chain dynamics
(Towill 1991). This is a consolidated operational research domain (see e.g. Dejonck-
heere et al. 2003; Disney et al. 2006; Chen and Lee 2012; Hu 2019; Dolgui, Ivanov,
and Rozhkov 2020) that investigates the time-varying forces among the various supply
chain elements (replenishment policies, forecasting methods, lead times, and so on) by
measuring the stability of the materials and information flows that collectively define
the supply chain behaviour (Goltsos et al. 2019). By doing so, we quantify inventory
variability and performance, as well as order variability, which has significant economic
implications in supply chains1 (Disney and Lambrecht 2008).

Specifically, we address the following research questions (RQs):

• RQ1 : How do the dynamics of lost sales systems compare to the dynamics of
the backlogging systems?
• RQ2 : Can we use the same performance metrics for evaluating both backlogging

and lost-sales inventory systems?
• RQ3 : Under what circumstances can the dynamic behaviour of the nonlinear

OUT policy with lost sales be approximated by the linear OUT policy with
backlogs?
• RQ4 : What is the impact of using dynamic forecasts, compared to static forecasts

in lost-sales settings?
• RQ5 : What are the consequences of observing the full demand, compared to

observing only the satisfied demand?

The last question emerges from the problem of lost sales being intrinsically related
to that of demand censoring (Agrawal and Smith 1996; Besbes and Muharremoglu
2013; Rudi and Drake 2014). That is, as discussed by Lariviere and Porteus (1999),
real businesses may, or may not, be able to observe the lost sales. For instance, ob-
servable lost sales may be present in internet retailers who track browsing history or
in face-to-face services like restaurants. On the other hand, unobservable lost sales
may occur in general retail settings (supermarkets or vending machines, for example)
with customers who, upon experiencing a stock-out, depart without leaving a trace of

1Indeed, meaningful interactions emerge between inventory and order variability, leading to a key concept in

this area, the ‘variability trade-off’ (Disney, Towill, and Van de Velde 2004; Priore et al. 2019).
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their disappointment. This may not only have implications on system performance, it
could also create a gap between the actual, or theoretical, Bullwhip effect (based on
the actual demand) and that perceived by the practitioners (based on the observed
demand or sales), as discussed by Chen, Luo, and Shang (2017).

1.3. Contribution and methodological approach

To the best of our knowledge, no prior study in the supply chain dynamics field provides
a clear understanding of our research questions. In line with previous discussions,
most assume that excess demand is accumulated in an order book, and the product
is delivered once it becomes available. While lost sales have been occasionally studied
via simulation (e.g. see Potter and Disney 2010; Costas et al. 2015; Lin, Naim, and
Spiegler 2019), this research stream has not focused on comprehensively exploring how
the dynamics of supply chains are affected by the presence of lost sales2.

Indeed, due to the ubiquity of lost sales in many practical environments, this has
been often flagged as a key area for future research. For example, Holweg and Dis-
ney (2005, p.713) noted that ‘surprisingly though, there are still a range of unsolved
research questions [in supply chain dynamics]’. In this regard, they highlighted the
‘nonlinearities found in real-life supply chains’, including lost sales, that make math-
ematical analysis difficult. A decade later, in a contemporary review of the Bullwhip
literature, Wang and Disney (2016, p.697) identified six primary research gaps, high-
lighting the study of nonlinearities as the first to explore ‘more realistic supply chain
models, such as [those based on] lost sales’.

To answer our research questions, we analytically derive the expressions for the
Bullwhip (BW ) and inventory variance amplification ratio (IV R) metrics maintained
by the OUT policy, two common indicators in the literature that report on order
and inventory variability, respectively. Also, we quantify the fill rate and inventory
cover, thus providing in-depth understanding of the fundamental inventory trade-off
between customer service level and inventory holding requirements. Due to the an-
alytical complexity, our study is limited to the case of independent and identically
distributed (i.i.d.) demand and unit lead times. In line with our research questions, we
study three forecasting approaches that represent different types of lost-sales systems
in practice:

(1) A static approach where the forecast always matches the mean demand. This is
the minimum mean squared error (MMSE) forecast for the i.i.d. demand that
implicitly assumes that lost sales are observed.

(2) A static approach that targets the mean demand, knowing its i.i.d. nature, but
under-estimates it due to unobserved lost sales. This is a variant of the above
that considers partial demand observation (PDO).

(3) A dynamic demand forecasting (DDF) approach based on the industrially pop-
ular exponential smoothing forecasting mechanism. Despite being sub-optimal,
it seems to be a reasonable choice when the true demand process is unknown.
Like the MMSE case, we assume the demand is fully observable in this scenario.

Finally, we use the analytical understanding of the operational dynamics induced
by lost sales in OUT policies to explore the economics of the inventory system. From

2Due to the complexity of the analysis involved, simulation is the most common approach to explore nonlinear
supply chains. Previous research efforts have also provided a fair understanding of other nonlinearities via

simulation techniques, such as Ponte et al. (2017) for capacity constraints (an upper limit on orders) and

Chatfield and Pritchard (2013) for forbidden returns (non-negative orders).
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Figure 1.: The structure of, and the sequence of events, in the lost-sales OUT policy.

this viewpoint, we provide closed-form expressions to optimally adjust the safety stock
and the production capacity in the MMSE case, which defines the efficient frontier in
the lost-sales system under study.

2. The order-up-to inventory system with lost sales

We study a single-product production and distribution system formed by a customer
placing demands on a retailer who is supplied by a factory that has enough capacity to
always serve the retailer on time. We focus on a single echelon of a supply chain that
we generally term the ‘retailer’ for ease of reference as this node frequently operates
under lost-sales scenarios (Verbeke, Farris, and Thurik 1998; Gruen, Corsten, and
Bharadwaj 2002; Van Woensel et al. 2007). However, the single echelon could also be
a manufacturer. Indeed, we have experience of working with a automotive assembler
who dual sourced a single product from two different suppliers. When one supplier was
out of stock, demand was diverted to the other supplier. Here, the suppliers experienced
lost sales, rather then a backlogging, when they had a stock-out.

Fig. 1 illustrates the sequence of events that governs the discrete-time operation in
our model. The sequence of events consists of three stages in each time period t. At
the beginning of t, the retailer receives the product from the factory. Then, during
the course of t, the retailer satisfies the demand of consumers as on-hand inventory
permits. When inventory is not available, the retailer incurs lost sales. At the end of t,
the inventory levels are observed, a forecast of future demand is calculated, and finally
the retailer releases an order to the factory calculated with the OUT replenishment
policy. Table 1 introduces the notation of the main variables, parameters, metrics, and
costs we use in our study.

2.1. Mathematical model and key assumptions

Our discrete-time system can be modelled through a set of difference equations. First,
the retailer receives the products delivered by the factory at the start of t, rt, corre-
sponding to the orders, qt, placed by the retailer in the previous period,

rt = qt−1. (1)

This means that the factory is always able to deliver what was ordered in the previous
period. That is, production and transportation constraints are not present in our study;
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Table 1.: Notation of variables, parameters, metrics, and costs in our lost-sales inventory
system.

Notation of variables Notation of parameters
dt customer demand α exponential smoothing constant
ft demand forecast γ demand’s coefficient of variation
it on-hand inventory level δ safety factor
qt order quantity η estimate of mean demand
rt receipts of new products µ mean of the demand
st satisfied demand σ standard deviation of the demand
lt lost sales k capacity in regular working hours
Notation of metrics Notation of costs
BW Bullwhip ratio h unit inventory holding cost
IV R inventory variance ratio p unit penalty cost for lost sales
β fill rate u unit production cost
τ inventory cover w unit overtime cost
Note: When present, subscripts m, p, and d refer to the MMSE, PDO, and DDF systems, respectively.

moreover, we consider a unit lead time.
The consumer demand, dt, is assumed to be an i.i.d. random variable, zt, drawn

from a normal distribution with mean µ and variance σ2,

dt = zt : zt ∈ N [µ, σ2]. (2)

Let γ be the demand’s coefficient of variation, γ = σ/µ. We adopt the normality
assumption as this statistical distribution captures the behaviour of many demand
patterns in the real world (Schneeweiss 1974; Disney et al. 2016). For example, normal
demand may occur when demand that originates from many independent customers
is aggregated into daily or weekly buckets, as the central limit theorem can be evoked.
Our i.i.d. demand fluctuates randomly around a constant mean; that is, no trends,
seasonal effects, or auto-correlation exists here.

At the end of each period, the on-hand inventory level, it, can be calculated as the
accumulated difference between receipts and demand. Under lost sales, the inventory
is constrained to be non-negative,

it = [it−1 + rt − dt]+, (3)

where [·]+ = max{·, 0} is the maximum operator; by truncating negative values it is
here that we capture the influence of the lost sales. We highlight that it=0 indicates
that stock-outs have occurred in t (except in the particular case when demand is
exactly equal to the available inventory, i.e., dt=it−1+rt). We do not consider any
other nonlinear effects, e.g. limited storage capacity or quality loss.

A key variable in our lost-sales system is the demand satisfied by the retailer, st.
The satisfied demand is the minimum of the available inventory (at the start of t) and
the demand,

st = (it−1 + rt) ∧ dt, (4)

where the operator ∧ means ‘take the minimum of both sides’.
We model three different forecasts in our study. The base forecast assumes the

retailer can observe the full consumer demand, despite only satisfying a portion of it,
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and recognises its i.i.d. nature. Thus, the retailer forecasts by minimising the mean
squared error between the future demand and its forecast (Disney et al. 2016; Ponte
et al. 2017), by using

ft = µ. (5)

This represents an ideal scenario that we refer to as the MMSE system.
We consider two extensions to the base system. The first assumes that the retailer

is not able to observe the lost sales, but only the satisfied demand, st. However, the
retailer is aware of the i.i.d. nature of customer demand. Therefore, we assume the
retailer employs a static forecast that tends to under-estimate the mean demand,

ft = η : η < µ. (6)

We term this the PDO system. The only difference with the base system stems from
the modelling of partial vs. full demand observation, which allows us to provide insights
into the implications of demand censoring.

The second extension is aimed at investigating the impact of ‘incorrectly’ using
exponential smoothing to forecast the i.i.d. demand via

ft = αdt + (1− α)ft−1, (7)

where 0 ≤ α ≤ 1 is the exponential smoothing constant. This may occur if the retailer
does not know the true demand distribution and wishes to use an ‘adaptive’ forecasting
approach. This is the DDF system. We assume again that demand is fully observable,
so that the only difference with the base MMSE system emerges from the static vs.
dynamic forecasting approach.

Finally, orders are generated with the industrially prevalent OUT replenishment rule
(Lalwani, Disney, and Towill 2006). For our lead time, the order quantity is the sum
of the demand forecast and the discrepancy between the target and actual on-hand
inventory. The target inventory represents the safety stock. Following common practice
(Lin et al. 2017), the target inventory is the product of a decision parameter, the safety
factor δ, and the forecasted demand, ft. Thus, the order quantity is calculated with

qt = ft + (δft − it) = (1 + δ)ft − it. (8)

Note, (1 + δ)ft represents the OUT level (that is, the desired position of the on-hand
inventory at the start of t), while it accounts for the actual inventory level.

2.2. Operational performance indicators

To measure performance, we employ two common approaches in the literature due
to their industrial relevance. First, we analyse operational variability, a key source
of inefficiencies in production and distribution systems. Indeed, popular management
paradigms, like Lean Production, focus on mitigating such variability by tackling its
sources; see Ohno (1988) and Womack and Jones (1997)3. Inventories and orders are
two major, interrelated ways through which variability manifests itself in companies

3We highlight the Lean wastes of mura and muri are closely related to the Bullwhip effect.
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(Disney and Lambrecht 2008). We measure order variability via the Bullwhip ratio,

BW =
V[qt]

V[dt]
, (9)

where V[·] is the variance operator. BW is directly related to capacity-related produc-
tion costs (Disney and Lambrecht 2008).

To explore inventory variability, we employ the inventory variance ratio, IV R met-
ric,

IV R =
V[it]

V[dt]
. (10)

In backlogging systems, IV R is known as the Net Stock Amplification ratio (NSAmp),
and it is a very useful indicator as it is directly related to inventory costs (Disney and
Lambrecht 2008). The term ‘net stock’ is used as the inventory can be both positive
(indicating stock holding) and negative (indicating a backlog). A key trade-off for
supply chain managers exists between BW and NSAmp under backlogging, as it is
often possible to decrease one at the expense of increasing the other (Disney, Towill,
and Van de Velde 2004). However, negative inventory (backlogs) do not exist in lost-
sales settings; hence the change in moniker.

Second, we analyse inventory performance by looking at customer service and hold-
ing investment. This is another key business concern that may be expressed in the
form of a trade-off; the service levels can be easily improved at the cost of holding
extra inventory. We measure customer service through the fill rate, β. This is a pop-
ular metric in the fast-moving consumer goods industry, representing the proportion
of demand satisfied immediately from stock4 (Disney et al. 2015). The fill rate is the
ratio of the mean positive satisfied demand to the mean positive demand (Sobel 2004;
Disney et al. 2015),

β =
E[(st)

+]

E[(dt)+]
. (11)

Here, E[·] is the expectation operator. Note, the double-accounting-of-backlogs prob-
lem (Cachon and Terwiesch 2006; Disney et al. 2015), which may distort the fill rate
measure in linear inventory systems, does not occur under the lost-sales condition.

In order to measure the inventory investment required to meet consumer demand,
we consider the inventory cover, τ , which is the ratio of the mean inventory to the
mean demand5,

τ =
E[it]

E[dt]
. (12)

4In lost-sales systems the definition simplifies to the proportion of customer demand that is satisfied, given

that demand not satisfied immediately is lost.
5Note, in the linear backlog system it would be necessary to use E[(it)+] in the numerator, so that τ becomes

indicative of the mean inventory held by the retailer.
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3. Analytical study of the lost-sales supply chain operation

We aim to provide closed-form expressions of the four operational performance metrics
for our three lost-sales inventory systems. We first look to the statistical distributions of
the on-hand inventory, satisfied demand, and orders, as these state variables determine
the performance, see (9)-(12). For all three systems, the following relations can be
obtained from (1)-(4) and (8):

it =[it−1 + qt−1 − dt]+, (13)

st =(it−1 + qt−1) ∧ dt, (14)

qt =(1 + δ)ft − it. (15)

Before performing our analysis, we first make some introductory remarks on the
statistical techniques we employ in our study.

3.1. Preliminary matters

We make extensive use of the normal distribution in our analysis. Let X be a random
variable with support over (−∞,∞) and realizations x. Let φ[x] and Φ[x] be the
probability density function (pdf) and cumulative distribution function (cdf) of the
standard normal distribution, N [0, 1], with zero mean and unit variance. We may scale
the pdf of a standard normal distribution, φ[x] into a specific normal distribution with
mean µ and variance σ2, N [µ, σ2], via

φ[x|µ, σ] =
1

σ
φ

[
x− µ
σ

]
. (16)

Translations by a constant y, X + y, are incorporated into the mean,

φ[x|µ+ y, σ] =
1

σ
φ

[
x− (µ+ y)

σ

]
. (17)

Reflections about the origin, −X, are dealt with via

φ[x|(−µ), σ] =
1

σ
φ

[
x+ µ

σ

]
. (18)

As discussed before, we make use of the maximum operator [x]+ = max{0, x} to
truncate negative values in our analysis. The pdf of [X]+, is given by

φ[x|µ, σ]+ = θ[x]
1

σ
φ

[
x− µ
σ

]
+ ∆[x]

∫ 0

−∞
φ[x|µ, σ2]dx. (19)

Here θ[x] = {1, if x ≥ 0; 0, otherwise} is the Unit Step function and ∆[x] = {1, if x =
0; 0, otherwise} is the Dirac Delta function6.

6Note, while we call this operation ‘truncation of the pdf’, our defined pdf is different to the pdf of the regular

‘truncated normal distribution’ (Wikipedia 2020).
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The distribution of the minimum of two normally distributed, correlated random
variables also occurs in our analysis. Cain (1994) and Nadarajah and Kotz (2010),
building upon the work of Basu and Ghosh (1978) and Nagaraja and Mohan (1982),
provided the following expression for the pdf of the minimum of two normally dis-
tributed, correlated random variables, a and b:

φa,b[x] = Ψ[x] + ξ[x], (20)

where

Ψ[x] =
1

σa
φ

[
x− µa
σa

]
Φ

[
ρ(x− µa)
σa
√

1− ρ2
− x− µb

σ2
b

]
, (21)

and

ξ[x] =
1

σb
φ

[
x− µb
σb

]
Φ

[
ρ(x− µb)
σb
√

1− ρ2
− x− µa

σ2
a

]
. (22)

Here, {µa, µb} is the mean of {a, b} and {σa, σb} the standard deviation of {a, b}, and ρ
is the Pearson correlation coefficient between a and b, −1 ≤ ρ = cov(a, b)/(σaσb) ≤ 1.

3.2. Lost sales with minimum mean squared error forecasts (MMSE)

3.2.1. Fundamental relations in the MMSE system

Using (5), an important property of this system emerges from (15); for all periods,

qt + it = (1 + δ)µ. (23)

Substituting (23) into (13) and (14) leads to

it = [(1 + δ)µ− dt]+, (24)

and

st = (1 + δ)µ ∧ dt. (25)

Using the relation [a− b]+ = a− (a∧ b) in (24) reveals it = (1 + δ)µ− ((1 + δ)µ∧ dt),
which together with (23) leads to

qt = st. (26)

Importantly, the lost-sales OUT model here results in the retailer ordering every period
exactly what they sold during the period, qt = st. Notice the difference with the linear
backlog model, where the retailer orders exactly what was demanded during the period,
qt = dt, a ‘pass-on-orders’ strategy (Disney et al. 2016; Ponte et al. 2017).
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3.2.2. Distribution of the MMSE state variables

The fundamental relations (24)-(26) show the state variables of the first lost-sales
system as functions of constants and the demand. We now discuss their statistical
distributions, which will allow us to derive the analytical expressions needed for our
performance metrics.

Inspection of (24) reveals the inventory is a translated, scaled, and truncated de-
mand distribution, see §2.1. These operations leads to the following pdf,

φi,m[x] =
θ[x]

σ
φ

[
x

σ
− λm

]
+ ∆[x]Φ[−λm], where λm =

δµ

σ
=
δ

γ
. (27)

To derive (27) we exploit (16)-(19). The translation and scaling is dealt with by chang-
ing the mean and standard deviation of the normal distribution, while the Unit Step
function attends to the truncation. The pdf at x = 0 is captured by the product of the
Dirac Delta function and the cdf at x = 0. Lastly, we define the relative safety margin
as the ratio of the safety factor to the coefficient of variation, λm = δ/γ, to simplify
our expressions7.

Through a similar procedure, we can obtain the pdf of the satisfied demand and
orders in this lost-sales system from (25), taking (26) into account. This is given by

φq,m[x] = φs,m[x] =
1

σ
θ

[
λm −

x− µ
σ

]
φ

[
x− µ
σ

]
+ ∆

[
λm −

x− µ
σ

]
Φ[−λm]. (28)

Note, in this system, the pdf of the orders (and the satisfied demand) is a translated
reflection of the pdf of the inventory, as per (23). This reveals an important insight:
the variance of the orders is equal to the variance of the inventory levels, and

BWm = IV Rm. (29)

3.2.3. Deriving the MMSE performance metrics

From the distribution of the state variables, we can derive the expressions of the four
operational metrics. First, we investigate the mean of the variables to consider the
trade-off between the fill rate, β, and the inventory cover, τ . The inventory pdf can be
used to obtain the inventory cover,

τm =
E[it]

µ
=

1

µ

∫ ∞
0

xφi,m[x]dx = γ(φ [λm] + λmΦ [λm]). (30)

Denoting the pdf of the demand by φd[x], the fill rate is given by

βm =
E[(st)

+]

E[(dt)+]
=

∫∞
0 xφs,m[x]dx∫∞
0 xφd[x]dx

= θ[1 + γλm]

(
1− φ[λm] + λm(Φ[λm]− 1)

φ [γ−1] + γ−1Φ [γ−1]

)
. (31)

7As safety stock= δµ, λm can be interpreted as the safety stock divided by the standard deviation of demand.
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Second, consider the variances. The variance of the inventories is given by

V[it] = σ2
i,m =

∫ ∞
0

(x− µτm)2φi[x]dx

=σ2
((
λ2
m + 1

)
Φ[λm]− (λmΦ[λm] + φ[λm])2 + λmφ[λm]

)
. (32)

As discussed, the variances of the three state variables are identical in this system,
V[qt] = V[st] = V[it] = σ2

q,m = σ2
s,m = σ2

i,m. Thus, (32) allows us to obtain the IV R
metric, and by (29) also the BW metric, in the MMSE system,

BWm =IV Rm =
(
λ2
m + 1

)
Φ[λm]− (λmΦ[λm] + φ[λm])2 + λmφ[λm]. (33)

At this point, it is convenient to note that the equivalent MMSE linear system, with
backlogs rather than lost sales, has BWm = IV Rm = 1 (Disney et al. 2006). Note,
this can be easily obtained by substituting8 Φ[λm] = 1 and φ[λm] = 0 into (33).

3.3. Lost sales with partial demand observation (PDO)

We now assume the retailer is tempted to use a constant forecast of demand (knowing
the i.i.d. nature of the demand) but cannot observe the lost sales. In such cases, the
estimated mean demand, η, would tend to be less than the true mean demand, µ.

3.3.1. Fundamental relations in the PDO system

Using the forecast under the PDO scenario, (6), in (15) leads to

qt + it = (1 + δ)η, (34)

which highlights again in all periods the sum of the orders and inventory is a con-
stant, (1 + δ)η. Through the same procedure as before, the following fundamental
relationships for the state variables in this lost-sales supply chain can be found:

it = [(1 + δ)η − dt]+, (35)

st = (1 + δ)η ∧ dt, (36)

qt = st. (37)

3.3.2. Distribution of the PDO state variables

Employing the same procedure used to study the MMSE system, the following expres-
sions for the pdf of the inventory, satisfied demand, and orders can be derived from
(35)-(37):

φi,p[x] =
θ[x]

σ
φ

[
x

σ
− λp

]
+ ∆[x]Φ[−λp], where λp =

(1 + δ)η − µ
σ

, (38)

8When δ is sufficiently high, the relations Φ[λm] = 1 and φ[λm] = 0 hold, lost sales do not occur and the
nonlinear system behaves as the linear system would.
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and

φq,p[x] = φs,p[x] =
1

σ
θ

[
λp −

x− µ
σ

]
φ

[
x− µ
σ

]
+ ∆

[
λp −

x− µ
σ

]
Φ[−λp]. (39)

Notice the similarity in the form of the distributions of the MMSE and PDO systems;
compare (27)-(28) to (38)-(39). They only differ in the definition of the relative safety
margin, now called λp. As (1 + δ)η is the initial position of the on-hand stock in every
period, λp represents the protection level, (1 + δ)η − µ, against shortages in relative
terms to the standard deviation of demand σ. From λm and λp, a PDO system with
δp behaves as a MMSE system with

δ̃m =
η

µ
(1 + δp)− 1. (40)

δ̃m is an insightful parameter; it shows the equivalent safety factor if we were using the
MMSE system (with δp being the safety factor used in the PDO system). Note, due

to η < µ, δ̃m < δp; that is, the protection level is lower than δp suggests it should be.
This shows that the target balance between fill rate and inventory cover in lost-sales
inventory systems is strongly affected by the unobserved demand9.

3.3.3. Deriving the PDO performance metrics

As the pdf’s of the state variables differ only by the definition of λ, the performance
metrics for the PDO case can be readily obtained from the MMSE case by making the
substitution λm → λp (indicated by ·|λm→λp

). The inventory cover is

τp = τm|λm→λp
= γ(φ [λp] + λpΦ [λp]). (41)

The fill rate is given by

βp = βm|λm→λp
= θ[1 + γλp]

(
1− φ[λp] + λp(Φ[λp]− 1)

φ [γ−1] + γ−1Φ [γ−1]

)
. (42)

IV R and BW are also identical in the PDO system. These metrics are given by

BWp = IV Rp = BWm|λm→λp
= IV Rm|λm→λp

=
(
λ2
p + 1

)
Φ[λp]− (λpΦ[λp] + φ[λp])

2 + λpφ[λp]. (43)

Again, the equivalent linear system, characterised by Φ[λm] = 1 and φ[λm] = 0, results
in BWp = IV Rp = 1. This might seem surprising, but this is how the linear system
reacts; the linear system is indifferent to mean values.

3.4. Lost sales with dynamic demand forecasts (DDF)

We now study a variant of the MMSE system where exponential smoothing forecasts
are used within the OUT policy. Again, we consider the lost sales to be fully observ-

9For instance, consider a safety factor of δp = 0.2, and η/µ = 0.9. With (40), we obtain δ̃m = 0.08, a 60%
reduction to the 20% target.
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able, so that the differences with the base case emerge only from the use of dynamic
forecasts.

3.4.1. Fundamental relations in the DDF system

In the DDF system, the sum of inventory and orders is no longer a constant. From
(15), we see that

it + qt = (1 + δ)ft. (44)

Using (44) in (13) and (14) results in the following expressions for the inventory levels
and satisfied demand,

it = [(1 + δ)ft−1 − dt︸ ︷︷ ︸
x1

]+, (45)

st = dt ∧ (1 + δ)ft−1︸ ︷︷ ︸
x2

. (46)

The previous forecast, ft−1 does not depend on the current demand, dt. Thus, the
satisfied demand, st, is the minimum of two independent normally distributed random
variables, dt and (1 − δ)ft−1. With [a − b]+ = a − (a ∧ b), the inventory equation
becomes it,d = (1 + δ)ft−1 − ((1 + δ)ft−1 ∧ dt). Using this relation in (15), we can
express the order quantity as the minimum of two correlated normally distributed
random variables,

qt =(1 + δ)ft − (1 + δ)ft−1 + ((1 + δ)ft−1 ∧ dt)
=(1 + δ)(ft − ft−1) + ((1 + δ)ft−1 ∧ dt)
=(dt + (1 + δ)(ft − ft−1)︸ ︷︷ ︸

x3

) ∧ (1 + δ)ft︸ ︷︷ ︸
x4

. (47)

Notice, we have defined four auxiliary variables, {x1, x2, x3, x4}, whose study will allow
us to understand the dynamics of the DDF system.

3.4.2. Distribution of the DDF state variables

In order to derive the distribution of the state variables, we first need to identify the
mean and variance of the x variables. Under the assumption of normally distributed
demand, these four variables are also normally distributed.

Consider first x1. Expectation provides its mean, µ1. As E[dt] = E[ft−1] = µ,

µ1 = E[(1 + δ)ft−1 − dt] = δµ. (48)

The variance of x1, V[x1] = σ2
1, can be obtained by noting that dt and ft−1 are

independent. The variance of the difference (or sum) of independent random variance
is the sum of the variances of the random variables. By definition the variance of the
demand is V[dt] = σ2. The stationary variance of ft−1 is the same the stationary
variance of ft. From (7), the following expression exists,

V[ft] = α2σ2 + (1− α)2V[ft] (49)
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Table 2.: The mean and variance of the x variables

Auxiliary variable E[x] V[x] = σ2
x

x1 = (1 + δ)ft−1 − dt µ1 = δµ σ2
1 = σ2

(
1 + α(δ+1)2

2−α

)
x2 = (1 + δ)ft−1 µ2 = (1 + δ)µ σ2

2 = σ2
(
α(δ+1)2

2−α

)
x3 = dt + (1 + δ)(ft − ft−1) µ3 = µ σ2

3 = σ2
(
α(2δ(α(1+δ)+2)+3)+2

2−α

)
x4 = (1 + δ)ft µ4 = (1 + δ)µ = µ2 σ2

4 = σ2
(
α(δ+1)2

2−α

)
= σ2

2

which can be re-arranged for the variance of an exponential smoothing forecast of

i.i.d. demand; V[ft] = σ2α
2−α . The variance of V[(1 + δ)ft] = σ2α(1+δ)2

2−α , which leads to
the following expression for the variance of x1:

σ2
1 = σ2

(
1 +

α(δ + 1)2

2− α

)
. (50)

We can obtain the expressions for the mean and variance of the other x variables
using exactly the same mechanism as for x1. To save space, we simply state their
values in Table 2 (which also details x1 for completeness and ease of reference).

The mean and variance of {x1, x2, x3, x4} allow us to determine the distribution
of our three state variables, it, st, and qt. First, the pdf of the distribution of the
inventory, φi,d[x], is a translated, scaled, and truncated x1 distribution, and can be
obtained in much the same way as the distributions for the MMSE and PDO systems.

φi,d[x] =
θ[x]

σ1
φ

[
x− δµ
σ1

]
+ ∆[x]Φ

[
−δµ
σ1

]
. (51)

The pdf’s of the distribution of st and qt require a different approach. Eq. (46) shows
that the satisfied orders are the minimum of two independent normally distributed
random variables, dt and x2. Using (20)-(22), and considering the independence (ρ =
0), the pdf of the distribution of st is given by

φs,d[x] =
1

σ
φ

[
x− µ
σ

]
Φ

[
−x− µ2

σ2

]
+

1

σ2
φ

[
x− µ2

σ2

]
Φ

[
−x− µ

σ

]
. (52)

Eq. (47) shows that the orders, qt,d, are also minimum of two normally distributed
random variables, x3 and x4. However, now they are correlated random variables. Thus
to determine the distribution of the the orders, φq,d, we need the Pearson correlation
coefficient, ρ3,4, between x3 and x4. This can be obtained with the relation ρ3,4 =
(
∑∞

t=0(x̃3x̃4)) /(σ3σ4), where {x̃3, x̃4} are the impulse responses10 of {x3, x4}. The

impulse response is the output of a system when the demand is given by d̃0 = 1 and
d̃t = 0, ∀t > 0. We can determine the impulse response of x3 and x4 from the impulse
response of the exponential smoothing forecast f̃t. By applying the relation in (7)
recursively under an impulse demand it is easy to see f̃t = α(1 − α)t. From this, the
required impulse responses for x̃3 and x̃4 can be easily obtained,

x̃3 =(1 + δ)(α(1− α)t − α(1− α)t−1θ[t− 1]) (53)

10We use the tilde to highlight when the impulse response is taken.
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x̃4 =(1 + δ)α(1− α)t. (54)

By means of (53) and (54), we may obtain the correlation coefficient

ρ3,4 =
σ4(αδ + 2)

σ3(δ + 1)
, (55)

which allows us to derive the pdf of the orders, φq,d[x]. From (20)-(22),

φq,d[x] =
1

σ4
φ

[
x− µ4

σ4

]
Φ

[
ρ(x− µ4)

σ4

√
1− (ρ3,4)2σ4

− x− µ3

σ3

√
1− (ρ3,4)2σ3

]
+

1

σ3
φ

[
x− µ3

σ3

]
Φ

[
ρ(x− µ3)

σ3

√
1− (ρ3,4)2σ3

− x− µ4

σ4

√
1− (ρ3,4)2σ4

]
. (56)

3.4.3. Deriving the DDF performance metrics

With φi,d, φs,d, and φq,d, we can obtain expressions for the four performance metrics.
First, the inventory cover is given by

τd =
E[it]

µ
=

1

µ

∫ ∞
0

xφi,d[x]dx = δ(Φ[λd] + φ[λd]/λd), where λd =
δµ

σ1
. (57)

Note, the definition of a relative safety margin, λd = δµ/σ1, also simplifies our expres-
sions in the DDF system. Using (52) the fill rate, β, is given by

βd =
E[(st)

+]

E[(dt)+]
=

∫∞
0 x

(
1
σφ
[x−µ

σ

]
Φ
[
−x−µ2

σ2

]
+ 1

σ2
Φ
[
−x−µ

σ

]
φ
[
x−µ2

σ2

])
dx

µΦ [γ−1] + σφ [γ−1]
, (58)

which provides an exact solution, but it is not possible to find a closed-form expression
for the integral in the numerator. However, it is easy to numerically evaluate with the
Excel Add-in detailed in Appendix A of Disney et al. (2015)11.

Next we look to the variances. The inventory variance is given by

V[it] =σ2
i,d =

∫ ∞
0

(x− µτd)2φi[x]dx (59)

=Φ [λd]
(
δ2µ2 (1− Φ [λd]) + σ2

1

)
− σ2

1φ[λd]
2 + δµσ1 (1− 2Φ [λd])φ [λd] .

The metric IV R can be readily obtained from (59),

IV Rd =
V[it]

V[dt]
=

1

σ2

(
Φ [λd]

(
δ2µ2 (1− Φ [λd]) + σ2

1

)
−

σ2
1φ[λd]

2 + δµσ1 (1− 2Φ [λd])φ [λd]

)
. (60)

11This Excel Add-in is also available to download from http://www.bullwhip.co.uk/#shiny.
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With Φ[λd] = 1 and φ[λd] = 0, we obtain IV Rd = σ2
1/σ

2, the expression for IV R in
the equivalent linear DDF system.

The variance of the orders can be found using the first and second moments of
the distribution of the minimum of two normally distributed random variables. The
first moment, E[q], and the second moment, E[q2], were given in Nadarajah and Kotz
(2008). Via V[q] = E[q2]− E[q]2; they can be combined to yield the variance of q,

V[qt] = σ2
q,d =

(
µ2

3 + σ2
3

)
Φ

[
µ4 − µ3

ψ

]
+
(
µ2

4 + σ2
4

)
Φ

[
µ3 − µ4

ψ

]
− (61)

ψ(µ3 + µ4)φ

[
µ4 − µ3

ψ

]
−
(
µ4Φ

[
µ3 − µ4

ψ

]
+ µ3Φ

[
µ4 − µ3

ψ

]
− ψφ

[
µ4 − µ3

ψ

])2

,

where ψ =
√
σ2

3 + σ2
4 − 2ρ3,4σ3σ4 = σ1. That ψ = σ1 is serendipity—there is no x1

variable in this problem. However, it does allow us to define a compact notation as,
considering µ4−µ3

θ = δµ
σ1

= λd, we can arrive at the following BW expression,

BWd =
V[qt]

V[dt]
=

1

σ2

((
µ2

3 + σ2
3

)
Φ [λd] +

(
µ2

4 + σ2
4

)
Φ [−λd]− ψ(µ3 + µ4)φ [λd]−

(µ4Φ [−λd] + µ3Φ [λd]− ψφ [−λd])2

)
. (62)

Finally, substituting Φ[λd] = 1, Φ[−λd] = 0, and φ[λd] = φ[−λd] = 0 into (62) results
in the Bullwhip expression for the equivalent linear DDF system, BWd = σ2

3/σ
2.

4. Numerical analysis of the OUT policy under lost sales: Operational
performance

This section analyses the response of our three lost-sales systems by numerically eval-
uating the metrics obtained in Section 3. We first consider the BW and IV R ratios;
later we study the trade-off between the fill rate and inventory cover.

4.1. BW and IVR: Smoothing the operation of lost-sales systems

In the linear inventory system with backlogging, BW and IV R are generally used to
characterise their dynamics. We now study the behaviour of the OUT policy with lost
sales via these metrics, and assess their value in this nonlinear setting.

4.1.1. MMSE system

As discussed, the equivalent linear system with backlog has BW = IV R = 1. In our
nonlinear lost-sales system, however, (33) reveals that BW and IV R depend upon λm.
Due to λm = δ/γ, the dynamic behaviour and stochastic performance of the lost-sales
system with i.i.d. demand and MMSE forecasts is determined by the safety factor, δ,
and the demand’s coefficient of variation, γ.

Fig. 2a displays the S-shaped relation between the variance ratios and λm. Notice,
BW and IV R are both increasing in λm. When λm is sufficiently high, the retailer
rarely experiences lost sales and the lost-sales system operates as a linear system
would. To ensure BW = IV R > 0.95, we obtain λm > 1.9. That is, only when
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(a) As a function of λ = {λm, λp}

(b) As a function of γ and δ under MMSE (c) As a function of η/µ and δ under PDO

Figure 2.: BW and IV R in the MMSE and PDO systems.

δ > 1.9γ can the dynamics of the lost-sales inventory system be approximated by the
backlog system (with less than 5% error). Smaller values of λm significantly reduce
supply chain volatility, and the linear approximation does not hold.

Fig. 2b represents BW and IV R in the MMSE system as functions of δ for γ ∈
{15%, 30%, 45%}, typical of retail time series (Dejonckheere et al. 2004). In line with
our previous arguments, when δ becomes sufficiently high, the lost sales are negligible,
and the nonlinear system behaves as the linear system does. However, for small to
medium values of δ, the variability of orders and inventory decreases significantly.
Importantly, larger γ requires a greater δ to ensure linear operation. γ has no impact
upon the variance ratios for δ = 0 (which is the value for λ = 0 in Fig. 2a).

4.1.2. PDO system

Due to the equivalence of the MMSE and PDO behaviours for λm and λp respectively,
the relationship of BW and IV R with λp is also that shown in Fig. 2a. However, λp
adopts a more complex form (compared to λm), being a function of {µ, σ, δ, η}. Note,
λm > 1.9 now results in (1 + δ)(η/µ) > 1 + 1.9γ. This means that as more demand
is unobserved, the conditions to mimic linear operation become more restrictive. For
η = µ (MMSE), the relation leads to the previous condition δ > 1.9γ. For η/µ =
{0.85, 0.7}, this becomes δ > 2.2γ + 0.2 and δ > 2.7γ + 0.4, respectively. That is, the
linear approximation of lost-sales systems becomes more unrealistic under censored

19

Disney, S.M., Ponte, B. and Wang, X., (2020), Exploring the nonlinear dynamics of order-up-to inventory systems with lost sales. 
Accepted for publication in the International Journal of Production Research, 27th June.



(a) BW (b) IV R

Figure 3.: BW and IV R as a function of δ and α in the DDF scenario.

demand.
Consider now η, the static forecasting parameter that defines the difference between

the PDO and the MMSE lost-sales systems. We do not study here the impact of γ,
whose main effects were explored in the MMSE system; for this reason, we use γ = 30%
(with σ = 30 and µ = 100). Fig. 2c shows BW and IV R as a function of δ for η/
µ ∈ {1, 0.85, 0.7}. While η/µ = 1 degenerates into the MMSE model (for γ = 30%), η/
µ ∈ {0.85, 0.7} represents the case when unobserved demand leads to biased forecasts.
Fig. 2c shows that BW = IV R is very sensitive to the the ratio η/µ and PDO leads to
lower BW and lower IV R. That is, operational variability reduces as η/µ decreases.
Note, unlike γ, η does impact the variance ratios for δ = 0; this occurs because δ = 0
does not result in λp = 0 under PDO. In line with prior discussions, Fig. 2c confirms
that lower η requires a larger δ to ensure linear operation.

4.1.3. DDF system

Just as the PDO system may be interpreted as a generalisation of the MMSE system
(for η = µ), the DDF system is a different generalisation of the MMSE system (for
α = 0). Here we study the dynamics of the DDF system by exploring the impact of
the exponential smoothing constant when α > 0. As illustrated by (60) and (62), BW
and IV R are complex functions of µ, γ, δ, and α. Also, the relation BW = IV R no
longer holds. For consistency, we again adopt µ = 100 and σ = 30.

Fig. 3a and 3b represent BW and IV R as functions of α for δ ∈ {0, 0.5, 1, 2, 10}.
In general terms, we can see that as α increases, a large amount of BW and IV R is
present; this is not a surprising result as in linear systems, MMSE is the inventory
optimal forecasting method when used in the OUT policy, and the OUT policy with
exponential smoothing is known to always generate Bullwhip (Dejonckheere et al.
2003).

There is a remarkable interaction between α and δ. Consider first BW (Fig. 3a). For
low δ, the BW measure is relatively robust to variations in α. However, as δ grows, it
becomes more sensitive to α. For instance, when δ = 0, as α increases from 0.1 to 0.2,
BW only increases from 0.5 to 0.6 (approx.); however, when δ = 1, BW increases from
1.4 to 2 (approx.). Similar conclusions can be drawn about IV R (Fig. 3b); although
IV R is generally less sensitive to α than BW (except for high δ).

Finally, δ impacts BW and IV R differently in the DDF system compared to the
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previous cases. In linear MMSE systems, ∀δ, BW = IV R = 1; in the DDF system,
large δ generates BW >> 1 and IV R >> 1. This highlights an important drawback of
using large dynamic safety stocks; while safety stocks are generally adjusted to balance
holding costs with the stock-out risk in backlog systems, dynamic safety stocks can
induce a large amount of BW and IV R in lost sales systems.

4.2. τ and β: Efficiently meeting customer demand in lost-sales settings

The variance study suggests the lost-sales nonlinearity creates some dynamic benefit.
However, the lost-sales condition introduces other differences that should be taken
into account. We emphasise that the expected order matches the expected demand in
linear backlog systems (as unmet demand will be satisfied later). However, in a lost-
sales system this equality does not hold. Indeed, the expected order is less than the
expected demand, and a portion of the demand is not satisfied, E[ot] = E[st] < E[dt].

In light of this, BW may be reduced in our nonlinear system as a consequence of an
increase in the lost sales; IV R may also decrease due to the unobserved demand12. This
has important implications for theory and practice of lost-sales supply chains. While
the simultaneous consideration of BW and IV R provides a complete picture of the
performance of replenishment policies in linear supply chains, (Disney and Lambrecht
2008), to be meaningful in lost-sales scenarios they need to be considered alongside
other metrics that account for the fact that E[ot] < E[dt]. Specifically, while IV R is
a useful indicator in backlogged inventory systems for providing key information on
the trade-off between service level and inventory investment, its physical meaning may
be distorted in lost-sales systems due to the nonlinearity. Therefore, we also analyse
inventory performance in our three systems by measuring the fill rate, β, and the
inventory cover, τ .

4.2.1. MMSE system

Here, β and τ depend on γ and λm, which in turn depend on {σ, µ, δ}, see (30)-(31).
Fig. 4a represents the inventory metrics for γ = 30% (again, σ = 30, µ = 100). For
λm << 0, the fill rate β = 0 and the inventory cover τ = 0. For larger λm, τ is
increasing and convex in λm. In contrast, β is increasing and concave in λm, with
β = 1 for λm >> 0. The impact of γ can be understood by comparing Fig. 4a to Fig.
4b, which shows the same information for γ = 45%. Increasing γ shifts the β curve
to the right and the τ curve to the left; the fill rate is reduced despite holding more
stock when the co-efficient of variation of demand increases from 0.3 to 0.45.

In the MMSE system, λm = δ/γ; Fig. 4c and 4d display respectively τ and β for
the same three levels of demand variability considered before: γ ∈ {15%, 30%, 45%}.
Similar to a linear system, higher δ increases τ and also improves β. Note, for higher
γ and small δ, τ deviates further from the linear slope τ = δ. Importantly, the fill
rate, β, is the same as for the linear backlog version. This is a consequence of the
unit lead-time assumption. Indeed, despite the difference between the orders (qt = dt
in the linear system; qt = st in the nonlinear system), the unit lead time ensures all
backlogs are cleared in the next period and β measures the demand satisfied without
delay, which is the same in both the linear and nonlinear systems.

12When all demand is lost, ∀t, it = 0, qt = 0, which explains why BW = IV R = 0 when λ << 0 (Fig. 2a).
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(a) As a function of λ = {λm, λp} for γ = 30% (b) As a function of λ = {λm, λp} for γ = 45%

(c) τ as a function of γ and δ under MMSE (d) β as a function of γ and δ under MMSE

(e) τ as a function of η/µ and δ under PDO (f) β as a function of η/µ and δ under PDO

Figure 4.: τ and β in the MMSE and PDO systems.
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4.2.2. PDO system

Fig. 4a and 4b are also valid under PDO, where λp = [(1+δ)η−µ]/σ. Recall, the PDO

system may be interpreted as a MMSE system with a safety factor of δ̃m, see (40).
From this perspective, the impact of unobservable lost sales on inventory performance
is a reduction (determined by the ratio η/µ) of the ‘effective’ protection against stock-
outs. In practical terms, for a selected safety factor, the partial observation of demand
reduces the fill rate and the holding requirements, in relation to the target.

To better understand such effects, we focus again on a scenario with γ = 30%. Fig.
4e and 4f represent the relation between τ and β with δ for three values of η/µ. In line
with the previous discussion, not being able to observe consumer demand reduces β
significantly, even with a relatively large δ. For example, if η = µ, δp ≈ 0.2 is required
to achieve 95% fill rate, while if η = 0.7µ, δp ≈ 0.7 is needed to reach the same

β (δp = 0.7 implies δ̃m = 0.19). This highlights that using inventory configurations
derived from linear models in scenarios with unobserved lost sales is particularly risky,
as it results in dramatically decreased service levels.

Importantly, our analysis suggests the existence of a vicious circle that has not been
modelled in our study but may be an interesting area of further study; reducing the
percentage of observed demand, η/µ, reduces the fill rate β, which in turn will tend
to reduce the portion of demand that is observed.

4.2.3. DDF system

To study the impact of using exponential smoothing forecasts on the inventory perfor-
mance of lost-sales systems, we consider again the decision parameter α. Fig. 5a and
5b represent τ and β, respectively, in the DDF system as functions of the exponen-
tial smoothing constant, α, for different safety factors, δ ∈ {0, 0.5, 1, 2}. Inspection of
these figures reveal that increasing α has a relatively small impact on holding costs,
indicated by τ/µ (Fig. 5a), but significantly affects the fill rate β (Fig. 5b). Also, the
sensitivity of the metrics to α grows as δ decreases. Specifically, high α values reduce
β significantly. When δ ≥ 1, the fill rate is barely affected as long as α < 0.5; however,
for δ ≤ 0.5, even small increases of α induce a considerable reduction in the fill rate. In-
creasing α, not only reduces the fill rate, but also tends to (slightly) increase inventory
cover. From the perspective of α, our findings in these section are well aligned with the
previous BW and IV R analysis; we emphasise the control parameters δ and α need
to be set correctly to avoid inefficiencies originating from their interaction effects.

4.3. Summary of operational insights

To summarize, Table 3 provides an overview of the key conceptual findings related to
the impact of the parameters of the lost-sales system on the key performance metrics
under the three scenarios under consideration. The insights for the MMSE system
are derived by comparing the lost-sales OUT policy to the linear (backlogging) OUT
policy. The insights for the PDO and DDF systems are derived by comparing their
behaviour to the MMSE system with lost sales.
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Table 3.: Main effects of the parameters in the lost-sales order-up-to inventory systems.

MMSE scenario PDO scenario DDF scenario

Parameter
setting

η/µ = 1
α = 0

η/µ < 1
α = 0

η/µ = 1
0 < α ≤ 1

Bullwhip ratio

(BW )

Increases in δ/γ, with

linear behavior (BW

= 1) when δ/γ >> 0

Reduces as η/µ lowers,

with the reduction rate

strongly influenced by δ/γ

Increases in α, with the

increase rate strongly

influenced by δ/γ
Inv. var. ratio

(IV R)

= BW = BW 6= BW , but the main effects

of α and δ/γ are similar

Fill rate (β) Same as the linear system

due to the unit lead-time

Reduces significantly as

η/µ reduces, unless δ >> 0

Decreases in α,

unless δ >> 0
Inv. cover (τ) Idem Reduces as η/µ reduces, but

the trade-off β-τ is still

efficient(i)

Slightly increases in α,

moving away from

the efficient frontier

Note: (i) The efficient frontier in the β vs. τ trade-off is defined by the MMSE system. Varying η/µ

deviates the real from the target trade-off, but does not make the system inefficient.

(a) τ (b) β

Figure 5.: τ and β as a function of δ and α in the DDF scenario.

5. Economic analysis of the lost sales OUT policy

The operational analysis in the previous section provided an in-depth understanding
of our five research questions, which we will revisit in Section 6. Our analytical un-
derstanding of the lost sales inventory system also allows us to explore the economic
optimisation of the lost sales OUT policy.

The economic analysis is here carried out for the MMSE system, as it defines the
(cost-)efficient frontier in our lost sales inventory system. Note, it is not possible to
provide prescriptive results for the PDO system as we need to know the mean de-
mand13; by assumption, this is not known under PDO (indeed, knowing µ would lead
us to the MMSE system). Furthermore, it would not be possible to do the same anal-
ysis for the DDF system as there is no closed-form expression for the fill rate in this
system.

13For interested readers the ‘optimised’ PDO parameters and associated costs can be easily obtained from the

following MMSE analysis using the relation in (40).
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5.1. Cost models and lost-sales settings

In the economic study of the lost-sales inventory system, it is interesting to consider
two practically relevant settings. First assume a pure retail setting where the OUT
policy is designed to optimise the inventory trade-off between customer service level
and holding investment. In this case, we assume that a per-unit inventory holding
cost of h and a per unit penalty cost, p, for lost sales lt is incurred in each period.
Therefore, the inventory cost in t becomes

πi,t = hit + plt, (63)

where lt = [dt]
+ − [st]

+ measures the stock-out size in period t.
Using expectation, the average inventory is E[it] = τE[dt], see (12), where E[dt] = µ,

see (2), and if unit holding costs of h were applied, the expected, per period, inventory
holding cost would be hτµ.

The average lost sale can be determined from the fill rate expression in (11). The
positive satisfied demand is given by E[[st]

+] = βE[[dt]
+]. Using E[lt] = E[[dt]

+] −
E[[st]

+], E[lt] can be written as E[lt] = (1 − β)E[[dt]
+]. With a unit penalty cost of p

for each lost sale, the expected, per period, stock-out cost would be p(1− β)E[[dt]
+].

As the demand dt is normally distributed, the expected value of (63) can be written
as

πi = E[πi,t] = hτµ+ p(1− β)(σφ
[
γ−1

]
+ µΦ

[
γ−1

]
). (64)

Second, we consider an alternative scenario where order variability also creates
costs. This could apply to many practical settings; but for the sake of simplicity we
will call this the manufacturing setting. In this case, in addition to the aforementioned
inventory costs, we may also incur capacity-related production costs.

We consider the practically common situation where a pre-installed capacity is
present that can produce k units within a nominal working week at a unit production
cost of u. If the weekly production requirement was less than k units, the labour is
paid to stand idle for part of the week; labour is guaranteed their nominal weekly wage
and a per period capacity cost of uk is incurred. If the weekly production requirements
(qt) is larger than the pre-installed capacity (k), the flexible labour is required to work
over time (at a unit cost of w > u) to make-up the shortfall. This leads to the following
production cost being incurred,

πq,t = uk + w[qt − k]+; (65)

see Disney, Gaalman, and Hosoda (2012) for further details behind the rationale of
this economic model.

Taking expectation of (65), the expected, per period, production cost is given by

πq = E[πq,t] = uk + wE[qt − k]+. (66)

Adding in the inventory holding and lost sales costs (64) to the production costs (66)
gives a total cost in the manufacturing setting of

πq+i = E[πq] + E[πi]. (67)
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In the following subsections we investigate the consequences of these two costs
settings, and offer prescriptive advice on how to set to the safety factor δ and the
production capacity k.

5.2. The economics of retailing

Consider the MMSE system with only inventory holding and lost-sales costs as given
by (64) are present. Using τm and βm from (30) and (31), we obtain the following
inventory cost equation for the MMSE system,

πi =hγ(φ [λm] + λmΦ [λm])µ+ (68)

p
(
σφ
[
γ−1

]
+ µΦ

[
γ−1

])(
1− θ[1 + γλm]

(
1− φ[λm] + λm(Φ[λm]− 1)

φ [γ−1] + γ−1Φ [γ−1]

))
;

recall λm = δ/γ.
Assuming δ > −1 (to eliminate the Heaviside function in (68)), the following deriva-

tive of πi with respect to δ can be found

dπi
dδ

= µ

(
(h+ p)Φ

[
δµ

σ

]
− p
)
. (69)

Setting dπi/dδ = 0 and solving for δ = 0 provides the first-order conditions for an
optimal safety factor δ?i ,

δ?i = γΦ−1

[
p

h+ p

]
. (70)

That is, the optimal safety factor is proportional to the coefficient of variation of
customer demand, γ, and to the inverse cdf at the critical fractile p/(h + p). Fig. 6a
illustrates how δ?i is influenced by the costs (via the critical fractile p/(h + p)) and
the demand’s co-efficient of variation, γ. Note, for p > h, δ?i > 0 and δ?i is increasing
convex in the critical fractile and increasing in γ. When p < h, δ?i < 0 and δ?i is
increasing concave in the critical fractile and δ?i is decreasing in γ.

Finally, using (70) in (68), the minimised sum of the inventory holding and lost-sales
costs is given by

π?i = σ(h+ p)φ

[
Φ−1

[
p

h+ p

]]
. (71)

The minimised inventory and lost sales costs are linear in the standard deviation of
demand, σ. The critical fractal has a similar structure to the linear backlogging system,
albeit with the backlog cost replaced with the lost sales penalty cost.
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(a) The optimal parameters in our lost-sales system (b) The optimal δ in the manufacturing setting

Figure 6.: Optimisation of the safety factor in the MMSE lost-sales OUT policy.

5.3. The economics of manufacturing

From (66) and using the analytical understanding of E[qt] in the MMSE case offered
in Section 3.2, the expected production cost in the MMSE system is given by

πq =uk + wΦ[−λm](µ(1 + δ)− k) + w

∫ µ(1+δ)

k

(x− k)φ
[x−µ

σ

]
σ

dx

=uk − w
(
δµΦ[λm]− (δ + 1)µ+ σ

(
φ[λm]− φ

[
k − µ
σ

])
+ (72)

(µ− k)Φ

[
k − µ
σ

]
+ k

)
.

Using (68) and (72) in (67), taking derivative of πq+i w.r.t. k yields

dπq+i
dk

= u+ w

(
Φ

[
k − µ
σ

]
− 1

)
, (73)

which is independent of δ. This allows the optimal capacity level to be set indepen-
dently from the safety stock. Setting the derivative to zero provides the first-order
condition for the optimal capacity k?,

k? = µ+ σΦ−1

[
w − u
w

]
. (74)

We notice the optimal installed capacity in the MMSE lost-sales system is the same
as the linear OUT policy, Hosoda and Disney (2012). Note, when u < w < 2u then
k? < µ. The fundamental nature of k? is the same as the for δ?i , as shown in Fig. 6a.

To determine the optimal safety factor in the manufacturing setting, denoted by
δ?q+i, we now take the derivative of πq+i w.r.t. δ,

dπq+i
dδ

= µ

(
(h+ p− w)Φ

[
δµ

σ

]
− (p− w)

)
. (75)
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Setting the derivative to zero and solving for the first-order conditions yields the safety
stock gain that minimizes total costs,

δ?q+i = γΦ−1

[
p− w

h+ p− w

]
. (76)

Notice, δ?q+i is different to δ?i in (70). δ?q+i is independent of k, but is a function of
w, but not u (as the derivative (75) does not contain u). Moreover, while k? exists
whenever w ≥ u, δ?q+i only exists if p ≥ w ≥ u. That is, πq+i has no minimum in δ
when p < w. Indeed, as the order variability costs dominate, they drive δ?q+i → −∞
so as to reduce the order variability, and hence production costs, to zero.

To understand how δ?q+i changes to the critical fractile we may use Fig. 6a again;
the curves have the same form as δ?i . In addition, Fig. 6b shows how the ratios w/h
and p/h affect δ?q+i (as the influence of γ was explored in Fig. 6a, here γ = 0.3). δ?q+i
is decreasing in w/h, but increasing in p/h.

Finally, substituting in (74) and (76) into (67) provides the total minimised inven-
tory holding, lost sales and production cost,

π?q+i = µu+ σ

(
(h+ p− w)φ

[
Φ−1

[
p− w

h+ p− w

]]
+ wφ

[
Φ−1

[
w − u
w

]])
. (77)

Notice, the total costs are linear in the standard deviation of the demand, σ, but offset
by µu.

6. Conclusions

The lack of literature on lost-sales inventory systems together with their relevance in
real inventory settings motivated our research. We contribute to this area by providing
an analytical understanding of the behaviour of lost-sales supply chains under the
industrially popular OUT replenishment policy. We study three forecasting procedures
under i.i.d. demand and unit lead times; this allowed us to investigate a wide spectrum
of practical settings affected by lost sales.

Our insights have emerged from the derivation of expressions of the Bullwhip and
IVR ratios, the fill rate, and the inventory cover in the three lost-sales settings; key
performance metrics that report upon the stability of operations and the efficiency in
satisfying consumer needs. The analysis answers the research questions posed earlier
in the following ways:

• RQ1: How do the dynamics of lost sales systems compare to the dynamics of
the backlogging systems? The lost-sales condition significantly influences the be-
haviour of supply chains in comparison to backlogging systems. In particular,
lost sales help to mitigate the Bullwhip effect. Under full demand observation
and MMSE forecasting, the degree of variability reduction only depends on the
ratio of the safety factor δ to the demand’s coefficient of variation γ, which we
denote by relative safety margin, λm. This proves to be a key parameter for
inventory managers; if δ ≤ γ (i.e. λm ≤ 1), BW can be reduced by at least 25%.

• RQ2: Can we use the same performance metrics for evaluating both backlogging
and lost-sales inventory systems? High inventory variability is symptomatic of
poor inventory control under backlog. Indeed, it determines one’s ability to meet
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a defined fill rate in a cost-effective manner. However, the non-negative constraint
in the inventory distorts the value of IV R, which may wrong-foot managers and
it cannot be assumed that reducing IV R always improves inventory control.
Therefore, the order-inventory variability trade-off, of fundamental importance
in backlog systems, should be reconsidered carefully in lost-sales environments.
• RQ3: Under what circumstances can the dynamic behaviour of nonlinear OUT

policy with lost sales be approximated by linear OUT policy with backlogs? The
dynamics of lost-sales inventory systems can only be approximated by backlog-
ging systems when the safety stock is sufficiently high. Our research contributes
to industrial practice by clarifying what ‘sufficiently’ means. In the ideal MMSE
case, when customer demand can be fully observed, the linear approximation
should be avoided when δ < 1.9γ (otherwise, the error is higher than 5%). As
δ > 1.9γ generally results in very high fill rate, we may conclude the linear model
is not a good approximation in settings with more humble fill-rate targets.
• RQ4: What is the impact of using dynamic forecasts, compared to static forecasts

in lost-sales settings? Employing dynamic forecasts of i.i.d. demand has negative
implications on the lost-sales supply chains. This applies to both production
smoothing and inventory performance. For low values of the safety parameter,
however, the system is robust to ‘moderate’ increases in the smoothing constant
(α < 0.3). In this sense, the impact of dynamic forecasts is similar in lost-sales
and backlogging inventory systems. However, under lost sales, the BW increase
is attenuated by λ, especially for low safety stocks. In light of this, managers
should recognise that using simultaneously high α and high δ is potentially very
harmful; e.g., α = 0.2 and δ = 2, BW increases from ≈ 1 (MMSE) to ≈ 4
(DDF).
• RQ5: What are the consequences of observing the full demand, compared to ob-

serving only the satisfied demand? Observing full demand allows for a more
accurate control of lost-sales supply chains. When lost sales are unobservable,
the effective protection against out-of-stocks decreases, and the fill rate achieved
is significantly lower than the fill rate targeted. This may lead supply chain man-
agers into a dangerous circle, with lower fill rates in turn resulting in a reduced
observation of the actual demand. For this reason, when the demand cannot
be fully observed, it may be reasonable (at least, temporarily or intermittently)
to set safety stocks to moderately higher values than those calculated, given
that under PDO, the safety stock needs to compensate for both the demand
variability and the censored demand.

After discussing the operational characteristics of our four performance metrics, we
combined three of them into two economic cost functions. One of the cost functions
consisted of inventory holding and lost sales costs, relevant in retail settings. We were
able to obtain prescriptive results for the optimal safety stock gain in this setting.
The other cost function included the inventory holding and lost sales costs together
with production costs that consisted of an installed capacity base for production with
regular hours with a guaranteed wage for labour and a flexible overtime to meet large
orders above the installed capacity. This cost function is relevant in production settings
dominated by labour costs. Here we obtained prescriptive results for the safety stock
gain and the required production capacity.

Finally, we underline important avenues for future research. We restricted our study
to unit lead times in an OUT policy. Subsequent studies could be directed to under-
standing the general lead time case as well as the dynamics induced by other replen-
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ishment policies. Also, starting from the base MMSE case, we considered censored
demand and dynamic forecasts; however, the interaction between these characteris-
tics makes the analysis considerably more difficult, and was not been studied herein.
Similarly, we only modelled one source of nonlinearity in our study. Investigating the
interactions of the lost-sales condition with other nonlinearities, such as capacity con-
straints or forbidden returns, is a important area for future research to increase our
comprehension of real-world, nonlinear supply chains.
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