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Abstract
Aim: Amazonian forests predominantly grow on highly weathered and nutrient poor 
soils. Anthropogenically enriched Amazonian Dark Earths (ADE), traditionally known 
as Terra Preta de Índio, were formed by pre-Columbian populations. ADE soils are 
characterized by increased fertility and have continued to be exploited following 
European colonization. Here, we evaluated the legacy of land-use and soil enrichment 
on the composition and structure in ADE and non-ADE (NDE) forests.
Location: Eastern and southern Amazonia.
Time period: Pre-Columbia – 2014.
Methods: We sampled nine pairs of ADE and adjacent NDE forest plots in eastern 
and southern Amazonia. In each plot, we collected soil samples at 0–10 and 10–20 cm 
depth and measured stem diameter, height, and identified all individual woody plants 
(palms, trees and lianas) with diameter ≥ 10 cm. We compared soil physicochemical 
properties, vegetation diversity, floristic composition, aboveground biomass, and per-
centage of useful species.
Results: In the nine paired plots, soil fertility was significantly higher in ADE soil. We 
sampled 4,191 individual woody plants representing 404 species and 65 families. The 
floristic composition of ADE and NDE forests differed significantly at both local and 
regional levels. In southern Amazonia, ADE forests had, on average, higher above-
ground biomass than other forests of the region, while in eastern Amazonia, biomass 
was similar to that of NDE forests. Species richness of both forest types did not differ 
and was within the range of existing regional studies. The differences in composition 
between large and small diameter tree recruits may indicate long-term recovery and 
residual effects from historical land-use. Additionally, the proportion of edible spe-
cies tended to be higher in the ADE forests of eastern and southern Amazonia.
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1  | INTRODUC TION

The degree to which pre-Columbian people modified Amazonia is 
one of the most debated topics in ecology, botany, archaeology, 
palaeoecology, soil science and conservation (Balée, 2013; Barlow, 
Gardner, Lees, Parry, & Peres, 2012; Clement et  al., 2015; Glaser, 
Balashov, Haumaier, Guggenberger, & Zech, 2000; Heckenberger 
et al., 2008; Lehmann, Kern, Glaser, & Woods, 2003; Levis et al., 
2017; McMichael, Feeley, Dick, Piperno, & Bush, 2017; McMichael, 
Matthews-Bird, Farfan-Rios, & Feeley, 2017; McMichael et al., 2012; 
Schaan et  al., 2012; Willis, Gillson, & Brncic, 2004; Woods et  al., 
2009). Recent work conducted across the Amazon Basin also sug-
gests potential landscape-scale legacies contributing to the floristic 
composition and diversity of modern forests (Levis et al., 2017). A 
disproportionate number of plants are hyperdominant (ter Steege 
et  al., 2013) and domesticated species are five times more likely 
to be hyperdominant than non-domesticated species (Levis et al., 
2017). These data suggest that modern forest composition was 
influenced by past populations. However, it is unclear to what ex-
tent the pre- and post-Columbian peoples may have affected the 
observed floristic patterns and structure of modern Amazon forests 
(McMichael et al., 2017).

One of the most compelling lines of evidence for widespread 
anthropogenic influence comes from the presence of the anthro-
pogenically made Amazonian Dark Earth (ADE) soils (Glaser et al., 
2000; Lehmann et al., 2003; Woods et al., 2009). Previous studies 
from the eastern Amazon have shown that pre-Columbian crop cul-
tivation and agroforestry altered the modern composition, enriching 
modern ADE forests in edible plant species (Maezumi et al., 2018). 

Following the arrival of European colonialists in the 15th and 16th 
centuries, the pre-Columbian populations were estimated in the mil-
lions (Nevle, Bird, Ruddiman, & Dull, 2011). This population rapidly 
declined by up to 90% due to introduced diseases, with entire civili-
zations permanently lost, leaving behind the legacy of enriched ADE 
soils (Koch, Brierley, Maslin, & Lewis, 2019; Nevle et al., 2011).

Today, ADEs continue to be used by local farmers for planting, 
given their high fertility (Clement, McCann, & Smith, 2003). ADEs 
are formed from the anthropic addition of organic matter, house-
hold wastes, ceramics, and charcoal (Sombroek et al., 2002). Organic 
matter and nutrients from household waste are retained in the soil 
through chemical–physical interactions with pyrogenic carbon, 
which enhances soil fertility (Kämpf, Woods, Sombroek, Kern, & 
Cunha, 2003; Lehmann, Pereira da Silva, et al., 2003). This effect 
is due to the properties of macro- and microscopic pyrolysed car-
bon formed from incomplete combustion of biomass during burning 
(Glaser, Haumaier, Guggenberger, & Zech, 2001). This fertilization 
process contributes to the soil retention/availability of water and 
nutrients, conferring advantages for agriculture (César et al., 2011) 
and native forest productivity (Aragão et al., 2009) over Amazonian 
dystrophic soil types, such as nutrient poor latosols.

As a result of the anthropogenic enrichment of ADE soils, the for-
ests growing on abandoned ADEs may be characterized by different 
growth and structure (Aragão et al. 2009), such as lower and more 
closed canopies and more understorey trees (Sombroek et al., 2002). 
ADE forests also allocate more carbon to plant biomass gain than 
non-ADE (NDE) soils (Doughty et  al., 2013). ADE sites can there-
fore be considered a long-term fertilization experiment to test leg-
acy effects on current native vegetation of landscape management 
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by ancient human populations (Cook-Patton, Weller, Rick, & Parker, 
2014). To date, there is little information to determine which species 
occur in these environments at a broader scale or whether ADEs 
can accumulate more species due to their stability, productivity and 
fertility (Aragão et al., 2009; Cunha et al., 2007; Glaser et al., 2000). 
Diameter distributions can reveal patterns of tree species dynamics, 
e.g., whether a forest is recovering from disturbance (Lima, Bufalino, 
Alves Júnior, Silva, & Ferreira, 2017), and can be an important tool to 
detect some legacy of old land-use in forest structure, for the ADEs’ 
land-use legacy can remain recorded in the structure of present-day 
forests (Junqueira, Shepard, & Clement, 2011; Woods & McCann, 
1999).

Additionally, the edaphic changes associated with ADE soils that 
increase fertility and water retention can create distinct habitats 
that persist for centuries after abandonment (Glaser et al., 2001). 
Some studies suggest that forests growing on ADEs can be com-
positionally and structurally distinct from surrounding vegetation 
(Clement et al., 2009; Junqueira, Shepard, & Clement, 2010; Palace 
et al., 2017) and may contribute to the diverse and heterogeneous 
tree flora of Amazonia (Aragão et  al., 2009; Sombroek, 1966). To 
date, understanding the mechanisms that determine the composi-
tion, structure and diversity of Amazonia forests is a major challenge 
(Bicudo, Sacek, Almeida, Bates, & Ribas, 2019; Hoorn et al., 2010; 
Levis et al., 2017). While studies have suggested the importance of 
past land-use as a factor in increasing the diversity and distribution 
of current species (Cook-Patton et  al., 2014; Levis et al., 2017), it 
is unclear whether edaphic factors associated with ADE soils also 
influence species richness in Amazonia.

The aim of this study was to evaluate the potential legacy of 
ADEs and their contribution to the structure and floristic composi-
tion of modern forests with the following questions: (a) Do forests 
that grow on ADEs have different richness and floristic composition 
than adjacent forests? (b) Does forest structure and aboveground 
biomass differ between ADEs and NDEs? (c) Is the diversity of edible 
species in ADE forests greater than in NDE forests? Our study takes 
a novel approach by studying ADE and NDE forests in two distant 
regions, with contrasting environments and occupation history, to 
evaluate whether differences between ADE and NDE forests that 
were already identified in local studies are consistent across broader 
scales. We also focus on mature forests growing on ADEs, which are 
less studied than secondary forests or agroecosystems growing on 
ADEs.

2  | MATERIAL AND METHODS

2.1 | Study area

We carried out the study in forests growing on ADEs and NDEs in 
southern (S) and eastern (E) Amazonia, in the states of Mato Grosso 
and Pará, Brazil. In southern Amazonia, Cerrado-Amazonia for-
est zone of transition, we sampled three ADE forests (ADE-S-01, 
02 and 03) and three NDE forests (NDE-S-01, 02 and 03) within 

the municipalities of Ribeirão Cascalheira, Gaúcha do Norte and 
Querência, all in the state of Mato Grosso. In eastern Amazonia, 
we sampled six ADE forests (ADE-E-01, 02, 03, 04, 05 and 06) and 
six NDE forests (NDE-E-01, 02, 03, 04, 05 and 06) in the FLONA 
reserve (Tapajós National Forest), municipality of Belterra, state of 
Pará (Figure 1; Supporting Information Table S1).

The forests in southern Amazonia are seasonal evergreen, a for-
est type found in seasonal climates with a dry season longer than 
120 days (Ivanauskas, Monteiro, & Rodrigues, 2008). These forests 
have little leaf loss during the dry season, which differs from the 
semi-deciduous or deciduous seasonal forests of eastern Brazil 
(Oliveira-Filho & Ratter, 1995). The forests of eastern Amazonia 
are classified as terra firme dense rain forest (IBAMA, 2004, sensu 
RADAMBRASIL, 1982). This phytophysiognomic type represents 
most vegetation of northern Brazil and is characterized by a closed 
canopy, large individual trees, and high temperature and humidity 
(Veloso, Rangel-Filho, & Lima, 1991).

Southern Amazonian sites have two well-defined seasons with a 
dry season from April to September and a rainy season from October 
to March. Eastern Amazonian sites have a dry season from July to 
October and wet season from November to June. The average an-
nual rainfall is 1,613  mm in Gaúcha do Norte municipality (Mato 
Grosso state) and 1,997  mm in Belterra (Pará state). The average 
annual temperature varies between 24.1 and 25.5  °C (Supporting 
Information Table S1). All climatic variables were extracted from 
WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Some regions of Pará and Mato Grosso have a long history of 
pre-Columbian occupation. In the Xingu River region (Mato Grosso 
state), dozens of pre-Columbian settlements have been documented, 
fortified by ditches and connected by a regional network of roads 
in a ‘galactic’ system of regional polities extending over 20,000 km2 
that peaked around c. 750–500 cal bp (Heckenberger et al., 2008). 
The Santarem region (Pará state) has one of the earliest occupation 
histories in Amazonia, with archaeological evidence of Palaeoindian 
occupation of Pedra Pintada Cave (c. 13,000 cal bp; Roosevelt et al., 
1996). Later Archaic occupations in the region are represented by 
the Taperinha shell-midden, which contains the earliest ceramics in 
Amazonia (c. 7,900 cal bp; Roosevelt, Housley, Silveira, Maranca, & 
Johnson, 1991). The Formative Period occurred between c.  4,500 
and 1,000 cal bp (Gomes, 2011) followed by the Late pre-Columbian 
Tapajó Period (LPTP) from c. 1,000 to 400 cal bp (Stenborg, Schaan, 
& Amaral-Lima, 2012). The LPTP exhibits extensive landscape modi-
fications including the development of ADE sites, a network of ditch 
and causeway trails connecting sites, and numerous water collect-
ing pools constituted by natural pools that have been artificially 
enhanced as reservoirs. Archaeological investigations in one of our 
study regions, the Tapajos National Forest (FLONA Tapajos), show 
indications of human occupation since at least 4,500 yr bp and the 
development of ADEs in this region occurred between c. 530 and 
450  cal  bp corresponding to the phase of the LPTP (Alves, 2018; 
Maezumi et al., 2018).

ADE patch size in Amazon varies from less than one hectare to 
several hundred hectares, with most of the recorded sites < 2 ha (Kern 
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et al., 2003). ADEs are estimated to cover c. .1–.3% (6,000–18,000 km2) 
of the forested portion of the Amazon Basin (Woods & Denevan, 2009), 
although the predictive model used by McMichael et al. (2014) estimated 
that ADEs may cover as much as 3.2% (approximately 154,063 km2). 
ADEs are generally found along major rivers, and in certain regions, 
such as Santarém (Schaan, 2012) and on the middle Purus and Madeira 
Rivers (Levis et al., 2012), are also found in interfluvial areas. In the cen-
tral and lower portion of Amazonia, ADE formation began around or 
after 2,000 cal bp (Arroyo-Kalin, 2010; Heckenberger & Neves, 2009; 
Maezumi et al., 2018), although ADEs appear to be older in the Upper 
Madeira River (Miller, 1992). After the Columbian Encounter around 
500 cal bp, indigenous populations began to decline (Denevan, 1992) 
and indigenous land-use on ADEs was largely abandoned.

2.2 | Data collection

2.2.1 | Experimental design

In the southern Amazonian (S) sites, we set up three pairs of 1  ha 
plots (100 m × 100 m): three in ADE and three in NDE. In the eastern 
Amazonian (E) sites, we set up six pairs of .25 ha plots (50 m × 50 m). 
Due to the current use of ADE by local populations, we reduced plot 
size to allocate to the most preserved forest patches. The NDE plots 
were established at least 150 m from ADEs in soils without traces of 
ceramic artifacts and charcoal. The southern Amazonian sites were 
isolated until recent large-scale farms were established and prior post-
colonial land-use was unlikely (Vilas-Bôas & Vilas-Bôas, 2012).

2.2.2 | Soil sampling and analyses

ADE soils were characterized according to Lehmann, Kern, et al. 
(2003), being recognized for the high amount of pyrogenic car-
bon (charcoal, incompletely burned organic matter) and archae-
ological artifacts, mainly shards of ceramic and lithic material 
found in soil pits (Costa, Kern, Pinto, & Souza, 2004; Denevan, 
1992; Glaser et  al., 2001; Kern et  al., 2003). In each 100  m × 
100  m plot in southern Amazonia, we collected soil samples at 
0–10 and 10–20 cm depth from five random points. In the 50 m 
× 50 m plots of eastern Amazonia, we collected a single soil sample 
at 0–10 and 10–20 cm depth at the centre of each plot. Samples 
were air-dried at ambient temperature and analysed for physical 
(clay, silt and sand) and chemical properties [pH(H2O), P, K, Ca, Mg 
and Al], and sum of bases (SB, cmolc/dm3), organic matter (OM, g/
dm3), cation exchange capacity (CEC, cmolc/dm3) and the ratios 
Ca:Mg, Al3 + H:CEC (%), Ca:CEC (%) and Mg:CEC (%) (Supporting 
Information Table S2) using standard protocols (F. C. Silva, Eira, 
Barreto, Pérez, & Silva, 1998).

2.2.3 | Vegetation sampling, biomass estimates, 
useful species

In each study plot, we sampled all live woody plants (including palms, 
trees and lianas) with diameter (D) ≥ 10 cm at breast height (1.3 m) and 
measured their heights with a Leica (Heerbrugg, Switzerland) DISTO 
TMD5 laser measurement device. The lianas were measured at 1.3 m 

F I G U R E  1   Plot locations in forests in 
southern Amazonia represented by the 
state of Mato Grosso (MT) and eastern 
Amazonia represented by the state of 
Pará (PA), Brazil. The black line in the 
inset indicates the boundaries of Brazilian 
states. The areas in Pará overlap and, due 
to their proximity, they are represented 
as a single dot. Archaeological sites - ADE 
(Amazonian Dark Earth) data sourced from 
the National Register of Archaeological 
Sites (CNSA) (IPHAN, 2018)
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along the stem. We identified species in the field and when necessary 
collected vouchers for confirmation by specialists. The material was 
deposited in the NX Herbarium, Nova Xavantina, Mato Grosso State. 
We determined the aboveground biomass (B) of each tree based on 
a pantropical model (Chave et al., 2005) B =  .0509 ×  (ρD2H); where 
D is individual diameter (cm) at 130 cm height or above deformities 
and buttress roots, H is total tree height (m), and ρ is wood density  
(g/cm3) compiled from the DRYAD global database (Chave et al., 2009; 
Zanne et al., 2009) and summed biomass per hectare (Mg ha-1). Where 
individual tree height estimates were lacking, we estimated tree height 
using the pantropical allometric equation [H  =  a(1  −  exp(−b Dc)) by 
Feldpausch et al. (2012), where the coefficients a, b and c were deter-
mined for each region (e.g., eastern/central and southern Amazonia)]. 
These equations together minimize the error in biomass estimation 
[Feldpausch et al. (2011) and Feldpausch (2012)].

We classified tree species as ‘useful species’ (medicinal, food, 
construction, and fibre) and edible based on the literature (Clement, 
1999; Junqueira et al., 2010, 2011; Levis et al., 2017, 2012; López 
Zent & Zent, 1998; Maezumi et  al., 2018; Prance, Balée, Boom, & 
Carneiro, 1987). Due to the lack of information on which species 
indigenous people previously used in the Cerrado-Amazonia forest 
zone of transition, we used the same classification for useful species 
for both southern and eastern Amazonian sites.

2.3 | Statistical analysis

To evaluate the physicochemical properties of the ADE and NDE 
soils in the two regions, including grain size (clay, silt and sand), 
chemical properties [pH(H2O), P, K, Ca, Mg and Al], sum of bases, 
organic matter, cation exchange capacity, and the ratios Ca:Mg, 
Al3 + H:CEC, Ca:CEC and Mg:CEC, we used a permutational multi-
variate analysis of variance (PerMANOVA) test with 1,000 randomi-
zations (Anderson, 2001).

We assessed the sampling effort (rarefaction curves) based 
on the interpolation and extrapolation method in iNEXT (Chao 
et al., 2014; Hsieh, Ma, & Chao, 2016). This analysis enabled the 
calculation of the richness of samples by extrapolation of the 
plot abundance based on plot size. We compared local commu-
nities and estimated the richness of each area generating value 
for estimators incidence coverage-based estimator, abundance 
coverage-based estimator (ACE), Chao1 Chao2, Jackknife1 and 
Jackknife2, whose values were obtained from 1,000 randomiza-
tions in the program EstimateS 8.0 (Colwell, 2008). The estimators 
were selected using abundance data following Hortal, Borges, and 
Gaspar (2006). These estimators infer the richness when plot size 
is unequal and/or small, e.g., Chao 1 and ACE are highly precise 
regarding variation in sample size. However, the most precise 
estimator was selected using the highest R2 value from a regres-
sion analysis between the observed and estimated values (Brose, 
Martinez, & Williams, 2003).

We determined tree species diversity using the Shannon index 
(H’) and evenness with the Hurlbert index (probability of interspecific 

encounter, PIE), in the program EcoSim 7.0 (Gotelli & Entsminger, 
2001). To test whether the local diversity varied between ADE 
and NDE forests, we used a PerMANOVA (Anderson, 2001) based 
on 1,000 randomizations. We consider the estimated richness (S), 
Shannon index (H’) and Hurlbert evenness index (PIE), highly depen-
dent values, as a measure of local diversity. To minimize sampling 
bias, we determined the values estimated for S, H’ and PIE using the 
rarefaction method (1,000 randomizations) in the program EcoSim 
7.0 (Gotelli & Entsminger, 2001), taking as reference the community 
with the lowest abundance.

We used one-way ANOVA to compare the total aboveground 
biomass between ADE and NDE forests at a local scale (southern 
and eastern Amazonia), and a t-test to compare the biomass between 
forest types (ADE versus NDE) regardless of the region (Legendre 
& Legendre, 1998). We tested the normality of residuals and ho-
mogeneity of variance with Shapiro–Wilk (mean = 209.1, w = 0.92, 
p = .142) and Levene tests [F(1, 3) = 1.19, p = .352], respectively.

To test the potential legacy effects of soil fertility on the veg-
etation composition and species abundance in ADE and NDE for-
ests through time, we categorized stems into three diameter classes 
(10–20, > 20–40 and > 40 cm) and applied a Bray–Curtis dissimilarity 
index. This index includes presence and absence and the abundance 
of species in all diameter classes. We considered that those classes 
represented a chronological order in which individual trees in the 
class > 40 cm are the oldest in the forests. While larger diameter 
classes can contain fast-growing, young trees, we considered that 
on average the largest trees are the oldest in structurally intact for-
ests and therefore serve as a metric of long-term legacy effects of 
soil modifications on forest composition. Therefore, comparisons of 
different classes, e.g., 10–20 cm versus > 40 cm, indicate whether 
forests are changing over time. In addition, we used the same diam-
eter classes and applied the PerMANOVA test using the Bray–Curtis 
distance to test whether ADE forests are more similar to present 
(smallest diameter class) or past NDE forests (largest diameter class). 
Due to the small number of individual trees in the class > 40 cm in 
ADE and NDE forests of Pará (eastern Amazonia), we used the three 
plots together (totaling .75 ha ).

We evaluated dissimilarities in floristic composition and species 
abundance in ADE and NDE forests using non-metric multidimen-
sional scaling (NMDS; Legendre & Legendre, 1998). The sampling 
deficit (size of plots) can affect comparisons of richness and floristic 
composition between areas because the smaller plots harbour only 
a subset of the regional floristic composition and a reduced number 
of individuals (Chao & Jost, 2012). Thus, we calculated the dissim-
ilarity expected for a rarefied community considering the smallest 
number of individuals sampled among all communities (53 living 
individuals) and applied the extended dissimilarities using an ex-
tended version (path  =  “extended”) with the vegan package in the 
R program (R Development Core Team, 2018). The dissimilarity was 
also calculated with the Raup–Crick probabilistic estimator consid-
ering probability of occurrence greater than zero as presence and 
equal to zero as absence based on the rarefied matrix. The matrix 
was ordered using the meta MDS function of the vegan, a nonmetric 
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multidimensional scalin function with stable solutions from random 
starts, axis scaling and species scores (Oksanen et al., 2018). The 
result of the analyses showed little or no ‘arc effect’, while keeping 
the groupings of the sites homogeneously distributed within the dif-
ferent areas, congruent with the analysis based on the Bray–Curtis 
dissimilarity. Thus, we maintained NMDS based on the Bray–Curtis 
dissimilarity matrix.

Our general objective was to compare key abiotic (soil) and biotic 
(vegetation) attributes between ADEs and NDEs forests, including (a) 
soil; (b) vegetation richness, diversity and evenness; (c) aboveground 
biomass; (d) species composition and size classification; (e) useful 
and edible species. To gain further insights, we conducted these 
comparisons at two organizational scales: plot and region. Given 
that we conducted multiple comparisons using the same data, but 
organized at different scales, we used Bonferroni-adjusted p-values 
to take account of multiple tests of the PerMANOVA. We divided 
the level of significance adopted (.05) by the number of statistical 
tests performed (three) (Dunn, 1961). For these tests, we adopted 
a p-value of .0167. However, as the p-values were obtained based 
on randomization, we suggest using both approaches (original and 
Bonferroni-adjusted p-values).

All tests where a specific program was not stated were executed 
in R (R Development Core Team, 2018), with the vegan package 
(Oksanen et al., 2018).

3  | RESULTS

3.1 | Soil and vegetation patterns of ADEs

In general, ADE forests had significantly higher pH and fertility, with 
P, K, Ca, Mg (magnesium), OM, SB and CEC all higher than in NDE 
forests. Ca:Mg, Ca:CEC, Mg:CEC ratios were also higher in ADE 
forests. Only Al and the Al3 + H:CEC ratio were lower for this type 
of soil. The soils of eastern Amazonia had higher clay and silt con-
tent than the sandier soils of southern Amazonia (see Supporting 
Information Table S2 and the PerMANOVA results in Supporting 
Information Table S3).

We sampled a total of 4,191 individual trees of 404 species 
and 65 families: 3,035 individuals of 194 species and 47 families 
in southern Amazonia (S) and 1,156 individuals of 247 species and 
53 families in eastern Amazonia (E). The families with the greatest 
distribution (present in all plots) and highest species richness in-
cluded: Fabaceae, Annonaceae, Lauraceae, Burseraceae, Moraceae 
and Sapotaceae (Figure 2). The other families had a more re-
stricted distribution (Supporting Information Table S4). The families 
Melastomataceae and Apocynaceae occurred only in NDE forests 
in both regions and Myrtaceae only in NDE-S forests. Malvaceae 
and Arecaceae were restricted to ADE-E and Bignoniaceae and 
Rubiaceae to ADE-S.

At the species level, 20 taxa showed a broad distribution among 
the ADE forests [among them Apuleia leiocarpa (Vogel) J.F. Macbr., 
Guazuma ulmifolia Lam., Hymenaea courbaril L., Inga laurina (Sw.) 

Willd. and Maclura tinctoria (L.) D. Donex steud.] and 15 between 
the NDE forests, with the other species showing a local distribution. 
Jacaranda copaia (Aubl.) D. Don, Hymenaea courbaril L., Schefflera 
morototoni (Aubl.) Maguire, Steyerm. & Frodin occurred in all forests 
in both regions (Supporting Information Table S4).

After accounting for sampling effort, we recorded a marked in-
crease in rarefaction curves for ADE and NDE-E forests (Figure 3) 
and a moderate increase in ADE and NDE-S forests (Figure 3).

At regional scales, NDE forests showed similar richness (S), diver-
sity (H’) and evenness values (PIE) (ADE versus NDE, PerMANOVA, 
F(1, 17) = 1.58, r2 = .08, p = .22) (species S, H’ and PIE in Table 1) and 
higher aboveground biomass (mean  =  256.18) than ADE forests 
(mean = 162.02) (t = 2.39, df = 16, p = .03).

At the local scale, richness (S), diversity (H’) and evenness val-
ues (PIE) (alpha diversity) did not differ (ADE-S versus NDE-S, 
PerMANOVA, F(1, 5) = 1.11, r2 = .03, p = .90 and ADE-E versus NDE-E, 
PerMANOVA, F(1, 11) = 4.40, r2 = .31, p = .06, individual values shown 
in Supporting Information Table S5). However, there was larger 
variation in aboveground biomass values (Supporting Information  
Table S5): NDE-E showed, on average, higher values than NDE-S and 
ADE-E, and similar values to ADE-S forests (Figure 4).

When we compared the ADE and NDE forests using the quan-
titative matrix (richness and abundance), we observed differences 
in floristic composition in both southern and eastern Amazonia 
(PerMANOVA, NDE versus ADE in general, F(1, 17) = 2.99, r2 =  .16, 
p < .001; NDE-S versus ADE-S, F(1, 5) = 2.03, r2 = .34, p < .001, and 
NDE-E versus ADE-E, F(1, 11) = 5.29, r2 = .35, p = .002).

Partitioning the abundance matrix by diameter class indicated 
that there were significant differences between ADE and NDE (all 
sites combined) for the larger diameter classes (> 40 cm). The small-
est diameter classes of ADE and NDE forests, in both southern and 

F I G U R E  2   Number of species for each family sampled in 
Amazonian Dark Earth (ADE) and non-Dark Earth (NDE) forests 
located in eastern (NDE-E and ADE-E) and southern Amazonia 
(NDE-S and ADE-S)
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eastern Amazonia, were more similar to one another (Table  2). At 
the forest level, in general, we observed low similarity between the 
first (smallest) and the third (largest) diameter classes (Supporting 
Information Tables S6 and S7). However, there was no significant 
difference based on the Bonferroni p-value.

Four distinct groups were formed in the NMDS analysis (see 
sampling coverage in Supporting Information Figure S1): the for-
ests of eastern Amazonia were clearly separated from the forests of 
southern Amazonia on axis 1 (r2 = .35) and ADE and NDE forests of 
each region individually were grouped on axis 2 (r2 = .48) (Figure 5 
and Supporting Information Figure S1), with the two axes represent-
ing 83.3% of the proportion of the variance in the original distance 
matrix.

We found a high number of useful and edible species in ADE and 
NDE forests in both regions. The proportion of edible species tended 
to be higher in the ADE forests of eastern and southern Amazonia 
(Table 3). In eastern Amazonia, we found 31% edible species in NDE 
forests and 33% in ADE forests. In southern Amazonia, we observed 
25% edible species in NDE forests and 31% in ADE forests (Table 3 
and Supporting Information Tables S8 and S9). Among them, the use-
ful species Hymenaea courbaril (West Indian locust = fruit/food) and 
Spondias mombin (locally known as Taperebá = fruit/food) occurred 
more broadly, dominating the floristic composition of ADE forests 
of both regions. At a local scale, we observed useful species such as 
Bertholletia excelsa (Brazil nut, food), Inga alba and Inga edulis (fruit/
food) shared among the sampling units of Amazonia and Buchenavia 

F I G U R E  3   Rarefaction curves for Amazonian Dark Earth (ADE) and non-Dark Earth (NDE) forests located in eastern (NDE.E and ADE.E) 
and southern Amazonia (NDE.S and ADE.S). Continuous and dashed lines refer to observed and extrapolated sample coverage, respectively, 
and the area around the curve represents a 95% confidence interval

TA B L E  1   Total observed and estimated richness (Jackknife1); Shannon diversity index (H’); Hurlbert evenness (PIE = probability of 
interspecific encounter); abundance, richness/ha (richness per hectare); biomass (average aboveground biomass Mg ha-1); and families 
(number of families sampled in Amazonian Dark Earth (ADE) and non-Dark Earth (NDE) forests in southern (S) and eastern (E) Amazonia, 
Brazil. SD = standard deviation

Sites
Total estimated 
richness

Total 
richness H’ PIE Abundance

Richness/ha 
(SD) Biomass (SD) Families

NDE-S 158 122ª 3.69ª .95a 1,634 59 (27) 152 (7) 42

NDE-E 256 171b 4.42b .98b 694 146 308 (48) 40

ADE-S 171 117a 3.60ª .95a 1,401 60 (5) 214 (66) 40

ADE-E 199 132b 4.22b .97b 462 118 135 (78) 39

Note.: Numbers followed by different letters in the same column differ significantly at p < .05 by the permutational multivariate analysis of variance 
(PerMANOVA) test.



8  |     de OLIVEIRA et al.

tomentosa Eichler, Myrciaria floribunda (H.West ex Willd.) O.Berg and 
Psidium sartorianum (O.Berg) Nied. shared among the sampling units 
of southern Amazonia.

4  | DISCUSSION

This is the first landscape-scale comparison of soil and vegetation 
from ADEs and NDEs of eastern and southern Amazonia and one 

of the few studies to focus on mature forests growing on ADEs. 
Previous studies focused on secondary forests or agroforestry on 
ADE and NDEs within a region (Junqueira et al., 2010). The floristic 
composition and aboveground biomass of ADEs of our study show 
strong differences from the surrounding NDE soils. The dissimilari-
ties in floristic composition between ADEs and NDEs increase the 
regional species richness, an important consideration for regional 
biodiversity conservation. These findings highlight the small-scale 
long-term legacy of pre-Columbian inhabitants on the soils and veg-
etation of Amazonia.

Species richness in ADE and NDE forests was within the range 
recorded in forests in both southern (Kunz, Ivanauskas, Martins, & 
Silva, 2008; Kunz, Martins, & Ivanauskas, 2010; Lopez-Gonzalez, 
Lewis, Burkitt, & Phillips, 2009) and eastern Amazonia (Gonçalves & 
Santos, 2008). However, in general, the southern Amazonian forests 
showed species richness approximately two or three times lower 
than those of central Amazonia (Korning, Thomsen, & Ollgard, 1991; 
S. G. W. Laurance et al., 2010; Valencia, Balslev, & Paz Y Miño C, 
1994). The southern Amazonian vegetation growing on dystrophic 
soils has been considered hyperdynamic (region with high dynamism 
from major intra- and inter-year climate variation), with lower spe-
cies richness (Marimon et al., 2014); in contrast, forests located on 
higher fertility soils of Andean-Amazon lowland forests are dynamic 
but have higher species richness. Low species richness may result 
from more complex trophic interactions in environments with re-
source limitations, such as water and nutrients (Huston, 1980).

Our study sites in both southern and eastern Amazonia showed 
neither a positive nor negative soil fertility effect on the richness 

F I G U R E  4   Biomass comparison 
(Mg ha-1) between Amazonian Dark 
Earth (ADE) and non-Dark Earth (NDE) 
forests in eastern (ADE-E and NDE-E) 
and southern Amazonia (ADE-S and 
NDE-S), Brazil. Different letters indicate 
differences significantly at p < .05

TA B L E  2   Permutational multivariate analysis of variance 
(PerMANOVA) comparing the floristic matrix between diameter 
classes in Amazonian Dark Earth (ADE) and non-Dark Earth (NDE) 
forests in southern (ADE-S and NDE-S) and eastern Amazonia 
(ADE-E and NDE-E), Brazil, including the F-statistic, R2 and p-value

Sites
Classes 
(cm) F R2 p

ADE versus NDE (all 
sites)

10–20 1.28 .14 .19

> 20–40 1.75 .18 .03

> 40 2.00 .20 < .001

ADE-S versus 
NDE-S

10–20 1.62 .29 .17

> 20–40 2.20 .35 .10

> 40 .57 .12 .80

ADE-E versus 
NDE-E

10–20 2.55 .56 .33

> 20–40 2.62 .57 .04

> 40 2.78 .58 .04

Note.: Value in bold indicates statistically significant difference 
according to Bonferroni test. [p-values divided by three (.05/3 = .0167)].
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of woody species, suggesting that long-term fertilization does not 
contribute to increasing local richness in plots within ADE patches. 
However, the dissimilarities in floristic composition between ADEs 
and NDEs in the present study indicate a contribution to the re-
gional species richness. In Amazonia, in the case of a positive effect, 
ADE forests with fertile soil and higher productivity (Aragão et al., 
2009; Cunha et al., 2007) would be similar to the forests of western 
Amazonia (close to the Andes), where Gentry (1988) sampled species 
richness between 165 and 300 per hectare on the more fertile soils 
of the region. In the case of a negative effect, the fertilization could 
be favouring the growth of species that better compete on mesotro-
phic soils, and therefore, decreasing species richness, as predicted in 
the enrichment paradox (Rosenzweig, 1971), as observed in experi-
ments with artificial fertilization (Tilman & Isbell, 2015), and in field 

observations in tropical forests (Huston, 1980; Nadeau & Sullivan, 
2015). In our case, the assembly of local species may be allowing a 
balanced exchange of tree species between the ecosystems of ADE 
and NDE forests, which would explain the similar local species rich-
ness between forest types.

Among the families assessed in our study, Fabaceae showed the 
largest number of species in all forests as also observed by Junqueira 
et al. (2010). This family is usually among the most important in terms 
of species number of the Amazonian flora (Valencia et al., 1994). 
According to ter Steege et al. (2006), sites with poor soils in South 
America have fewer species of Fabaceae; however, seed mass in 
these species was 20% higher, which could be a possible explanation 
for the high importance and success of Fabaceae in South American 
ecosystems with dystrophic soils. Nevertheless, both ADE forests 
on mesotrophic soil and NDE forests on dystrophic soil showed 
Fabaceae as the family with the largest number of species. A pos-
sible explanation for the higher number of species in Fabaceae and 
Annonaceae families in our study could be related to their adapt-
ability and early appearance in South America (Doyle & Le Thomas, 
1997; Doyle & Luckow, 2003; Lavin & Luckow, 1993). Alternatively, 
the occurrence of the species Apuleia leiocarpa, Spondias mombin and 
Maclura tinctoria only in ADE forests could be related to the prefer-
ence of these species for more fertile soils, management of these 
species by indigenous communities in the past (Clement, 1999), 
or both. However, only S. mombin was cited as semi-domesticated 
in the study by Junqueira et  al. (2010) with secondary forests on 
ADE soil. S.  mombin was observed among the main tree species 
with seeds or fruits that are commonly eaten or used by humans 

F I G U R E  5   Bi-dimensional ordination 
(NMDS = non-metric multidimensional 
scaling) of Amazonian Dark Earth (ADE) 
and non-Dark Earth (NDE) forests based 
on the species-abundance matrix for 
southern (ADE-S and NDE-S) and eastern 
Amazonia (ADE-E and NDE-E), Brazil. 
Stress = .000081

TA B L E  3   Edible and useful species sampled in forests growing 
on Amazonian Dark Earth (ADE) and non-Dark Earth (NDE; control) 
in eastern Amazonia (ADE-E and NDE-E, state of Pará) and southern 
Amazonia (ADE-S and NDE-S, state of Mato Grosso), Brazil. For 
more details see Supporting Information Tables S8 and S9

Sites
Species 
total

Edible 
species

% Edible 
species

Useful 
species

% Useful 
species

NDE-E 171 53 31 99 58

ADE-E 132 43 33 75 57

NDE-S 122 30 25 71 58

ADE-S 117 36 31 71 60
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in anthropogenic soils in Bolivia (Paz-Rivera, 2009); nevertheless, it 
was not exclusive to ADE, suggesting that the inhabitants could have 
enriched the NDE with edible species.

Regarding the difference in the composition matrix, the me-
sotrophic soil (medium fertility) is possibly acting as a species filter 
that determines the difference in species composition between ADE 
and NDE forests. Hence, in ADE environments with higher nutri-
ent availability and where pyrogenic carbon may increase soil water 
holding capacity (Lehmann & Joseph, 2009), tree species, such as 
Hymenaea courbaril, Copaifera langsdorffii and Apuleia leiocarpa, may 
have greater competitive advantages. Thus, the mesotrophic soils of 
the ADEs may be a key factor that affects species composition in the 
present study, selecting the species most favourable for the trophic 
conditions of these ecosystems.

There was a significant difference between tree size in ADE and 
NDE forest plots. In the smallest diameter classes, there was greater 
sharing of species in the tree community among species typical of 
ADE and those typical of NDE. This pattern could indicate that a 
fertility filter acts by favouring size, by selecting the larger species 
when they begin to surpass the smallest diameter classes and sub-
sequently dominate the community. Alternatively, the similarity 
between the smallest size classes for ADE and NDE may indicate 
ADE composition will eventually become more NDE-like as the small 
classes mature.

The aboveground biomass of ADE forests sampled in eastern 
Amazonia was similar to those observed in open, alluvial and dense 
forests in southwestern and central Amazonia (Cummings, Boone 
Kauffman, Perry, & Flint Hughes, 2002; W. F. Laurance et al., 1999). 
However, as we observed, there is high variation in biomass values in 
different regions in Amazonia, in part due to differences in tree height 
(Feldpausch et al., 2012). Two of the ADE-S (southern) forests sampled 
also showed relatively high biomass values, similar to those of microre-
gions in southwestern and eastern Amazonia and the higher biomass 
NDE-E (eastern) sites in the present study. The considerable number 
of species and individuals of the family Fabaceae (Hymenaea courbaril, 
Copaifera langsdorffii and Apuleia leiocarpa), which usually have high 
wood density, also contribute to the high biomass of these forests (ter 
Steege et al., 2006). These results show the importance of soil fertil-
ity in the structural development of forests and support studies that 
considered soil fertility as one of the biomass predictors in Amazonia 
(Doughty et al., 2013; S. G. W. Laurance et al., 2010; Vicca et al., 2012). 
Moreover, the high variation in biomass stocks in ADE forests in south-
ern and eastern Amazonia could also be related to each ‘cultural for-
est’ having a unique history of creation, use, and selection of plants 
and post-Columbian regrowth (Balée, 2013). Due to the long history 
of post-colonial land-use in the Santarem region, past land-use prior to 
formation of the FLONA reserve, with colonizers often selecting ADEs 
for production, could have reduced the biomass at the ADE-E sites.

We observed few useful species shared among different ADE 
forests at the Amazon Basin scale [only Acrocomia aculeata (Jacq.) 
Lodd. ex Mart., Guazuma ulmifolia Lam. Inga laurina, Cupania scrobic-
ulata Rich., Pseudolmedia macrophylla Trécul, Spondias mombin and 
Hymenaea courbaril as edible], usually explained by the low similarity 

between the two regions. We observed a moderate number of use-
ful species at a local scale. The slightly higher number of useful spe-
cies in the ADE (proportionally) in eastern Amazonian plots may be 
due to the differences in how ADE and NDE sites were historically 
managed by pre-Columbian people or by the distance between the 
studied areas (Maezumi et al., 2018). The relatively small ADE areas 
were often used for annual crops, while the surrounding area may 
have been enriched in useful tree species (Paz-Rivera, 2009). There 
is evidence of enrichment of edible plants in ADE soils (Maezumi 
et al., 2018). Some factors that could explain the low similarity be-
tween useful species at the Amazon Basin scale include (a) low spe-
cies adaptability to a new climate; (b) limited forms of seed transport 
between the two regions; (c) or if the ADE forests of the Mato Grosso 
region were colonized by indigenous populations with ethnicity or 
from regions different from those of eastern Amazonia. Souza et al. 
(2019) argued that differences in landuse and socio-political organi-
zation may be key to understanding vulnerability versus resilience 
to environmental stress; by comparing archaeological data with data 
from palaeoclimate proxies and regional-scale burning, they showed 
that some Amazonian cultures flourished during periods of climate 
change, whereas others collapsed. Defining ‘useful’ and accounting 
for regional variation in use are challenges since a large number of 
useful species are used by different indigenous populations in other 
regions of Amazonia (Boom, 1985; Prance et al., 1987), with up to 
82% of the species with different utility levels occurring in only 1 ha. 
In the present study, this value varied between 57 and 60%.

Studies combining archaeology, ecology and botany identi-
fied variation in early practices that may have resulted in regional 
variation in the creation, use and subsequent post-abandonment 
regrowth of ADEs. An interdisciplinary study demonstrated that 
pre-Columbians enriched the forests c.  2,500  years ago with 
above 30% increase in edible plants that persist to present (Maezumi 
et al., 2018). However, we do not yet know which species have distri-
butions influenced by humans (Gordon, Barrance, & Schreckenberg, 
2003). A well-known example is the strong relationship between the 
distribution of the Brazil nut (Bertholletia excelsa) and the range of 
human populations in the Amazon Basin (Levis et al., 2017; Mori & 
Prance, 1990; Shepard & Ramirez, 2011). Therefore, the distribution 
of other species with potential fibre, medicinal and food use, such as 
S. mombin (currently used in sweets and juices), H. courbaril (cakes 
and bread), Aspidosperma desmathum (medicinal), Psidium sartori-
anum (fruit) and Cochlospermum orinocense (fibres), may have been 
altered by past indigenous people. In addition, the large numbers of 
P.  sartorianum, Cheilochlinium cognatum and Myrciaria floribunda in 
ADE forests in southern Amazonia suggest high adaptability to this 
soil type or management by pre-Columbian people.

5  | IMPLIC ATIONS FOR CONSERVATION

ADE soils throughout Amazonia, including those in our study, are 
under risk of loss, as they are located at the Brazilian agricultural fron-
tier, where there is accentuated deforestation and fire at the Amazon/
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Cerrado savanna zone of transition (ZOT; Alencar et  al.,  2004; 
Nogueira, Fearnside, Nelson, & Franca, 2007; Nogueira, Nelson, 
Fearnside, França, & Oliveira, 2008). In eastern Amazonia, where the 
flora differs from the ZOT, this soil type with high fertility and po-
tential rapid biomass accumulation has been used by contemporary 
farmers for subsistence agriculture, rubber tree plantation (Schroth, 
Coutinho, Moraes, & Albernaz, 2003; Weinstein, 1983), and timber 
(Junqueira et al., 2010, 2011). To address these threats, conservation 
programmes should include these unique environments to improve 
understanding of local pre-Columbian histories, identity, and role in 
regional floristic diversity. Moreover, ADE forests have peculiar char-
acteristics such as: (a) high productivity and biomass (preserved sites), 
usually within a matrix of dystrophic soils (Cunha et al., 2007; Doughty 
et  al., 2013; Falcão & Borges, 2006; Glaser & Birk, 2012; Madari 
et al., 2009; M. G. G. Silva, 2011); (b) presence within a region of cli-
matic uncertainties (Bonan, Levis, Sitch, Vertenstein, & Oleson, 2003; 
Feldpausch et  al., 2016; Gloor et  al., 2015); (c) potential as a long-
term carbon sink (Lehmann et al., 2008); and (d) importance for future 
studies to reduce the use of chemical fertilizers in agriculture (Hunt, 
Duponte, Sato, & Kawabata, 2010).

6  | CONCLUSION

In ADE forests, the absence of long-term soil fertilization effects 
on local diversity (species number) points to the importance of the 
regional species pool in determining the diversity at plot scales. 
However, the dissimilarities in floristic composition between ADEs 
and NDEs indicate a contribution at regional scales to species rich-
ness. Moreover, the marked difference in species composition and 
structure (biomass) between ADE and NDE forests shows that soil 
fertility can influence other community attributes in Amazonian 
forests. Therefore, it is important to consider the role of changes 
in nutrient levels at different scales and ecosystems (e.g., forest 
burning). In addition, the differences in composition and abundance 
linked to tree diameter classes suggest a legacy influence of histori-
cal land-use and soil enrichment in ADE on the structure of ADE for-
ests (highest biomass), which may have favoured some species, for 
example, Hymenaea courbaril, Copaifera langsdorffii and Apuleia leio-
carpa. The presence of a relatively large number of useful and edible 
species at a local scale, associated with both ADE and NDE forests, 
suggests indigenous populations likely used ADE for crop cultiva-
tion and the adjacent NDE forests for agroforestry. Combined, our 
results indicate a pre-Columbian, small-scale, long-term, land-use 
legacy in Amazonian forests.
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