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Summary. A modern system of Revenue Administration requires an effective and efficient
management of compliance which in turn requires a well designed taxpayers audit strategy.
The selection of taxpayers to be audited by Revenue Authorities is a non-standard sample size
determination problem, involving an initial random sample from the population and, based on
the statistical information derived from it, a risk-based auditing scheme whose sole objective
is to select for auditing the taxpayers with the highest estimated risk in the population. This
paper provides a methodological approach that estimates the initial optimal random sample
size such that the Revenue Administration Authority maximises their expected tax revenues.
The methodology is illustrated using administrative data from the UK’s Revenue Authority, Her
Majesty’s Revenue and Customs (HMRC).
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1. Introduction

An efficient management of tax compliance—and the promotion of voluntary compliance
amongst taxpayers—necessitates the development of modern approaches based on risk
management. For tax matters, for example, Revenue Authorities (RAs) frequently audit
taxpayers in order to assess whether they comply with the tax law and declare their true
tax liabilities but also to promote voluntary compliance by increasing the probability of
detection perceived (and realised) by non-compliant taxpayers. In practice, of course, not
all tax returns are exhaustively examined by RAs. This would not only be infeasible,
given budgetary and capacity constraints, but it would also be unnecessary to waste
scarce enforcement resources on routinely examining low-risk and compliant taxpayers.
Importantly, international experience shows that a small number of large taxpayers (of
around 1 percent) are responsible for around 60 percent of domestic tax collections, while
a significant number of small taxpayers (of around 30 percent) account for less than 10
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percent of domestic tax collections (the use of ‘taxpayers’ is used generically to describe
taxable entities, including business). This, too, and for RAs whose objective is to (also)
maximise tax revenues, calls for the careful design of the tax audit strategy.

Auditing is not specific, of course, to tax collection matters and Revenue Authorities
only, but it applies to much broader themes and issues—including, for example, regulation,
management—and across many different economic sectors. While the broader theme of
the issue is well recognised the analysis in this paper is primarily motivated by RAs—and
the current policy discussions in many RAs involving optimal auditing strategies—and
thus the discussion will be centered around the compliance issues pertaining RAs. While
the use of random sample audits is common practice in advanced RAs (for example,
Her Majesty’s Revenue Customs (HMRC), U.S Internal Revenue Services (IRS), Canada
Revenue Agency), less advanced RAs have begun considering integrating this in the design
of their risk management strategy. The reason for this is not only to estimate the ‘tax
gap’—defined to be difference between tax voluntarily paid and tax actually owed (the
gross compliance gap)—and its component parts, but, also, importantly, to establish the
criteria for the selection of taxpayers to be audited by identifying characteristics deemed
to be of greatest risk for substantial noncompliance. The selection of taxpayers to be
audited, as well as other types of controls, is based on the assessment of risk and the
development of risk-based selection techniques and risk-scoring systems. This allows tax
audits to be prioritized and enables a more efficient allocation of RA resources; see OECD
(2004) for a review and for a description of various approaches and country experiences,
Khwaja et al. (2011).

The most extensive analysis based on random audits comes from the IRS studies and
the Taxpayer Compliance Measurement Program (TCMP). The studies were conducted
to provide the compliance information needed to gauge performance and to inform direc-
tion of agency resources through efficient prioritization of audits (see, for example, Rotz
et al. (1994)) via the construction of Discriminant Inventory Function scores (Hunter and
Nelson, 1996) which quantifies the evasion risk of each tax return in the sense of assign-
ing probability to each return regarding irregularities or evasion; Andreoni et al. (1998)
provides discussion on the IRS audit program. This research has identified a consider-
able compliance gap. More specifically, the 1992 tax gap of federal individual income tax
based on TCMP audits in 1988, the last year of that program, was estimated to be in the
range of $93 to $95 billion which translates into an individual gross noncompliance rate of
about 17 percent. In response to the need for up-to-date measures of taxpayer compliance,
and better target of audit resources, the IRS developed the National Research Program
(NRP) which is also designed to be less intrusive and burdensome to taxpayers than the
TCMP. Under the NRP, a sample of 30,000 returns were chosen for limited in-person
audit, and about 2,000 returns for calibration audits, (where each line is examined and
supporting documentation is required from a taxpayer). The NRP therefore signifies a
substantial reduction in audits from the 54,000 taxpayers who were required to participate
in face-to-face audits in the earlier TCMP program.

In the UK, and HMRC, the Random Enquiry Programmes (REPs) involve samples of
taxpayers being selected at random and their returns subjected to full enquiries by HMRC
officers, Revenue and Customs (2019b). The purpose of these programmes is to identify
the proportion of taxpayers under-reporting their tax liabilities and the corresponding
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amount of additional tax due. As these audits are randomly selected and constitute a
representative sample it can be used for inference for the amount of under-declared tax
liability for the whole population. The REPs do not identify all incorrect returns or
the full scale of tax gaps, especially where independent information from third parties
is not available to verify the data supplied by the taxpayer. The implication of this is
that tax gap estimates produced through random enquiries will under-estimate the full
extent of the tax gap. To correct for this RAs (such as the IRS and HMRC) use a range
of ‘multipliers’—supplemented with econometric analysis—to make adjustments for non-
detection of under-reported income, (Andreoni et al., 1998). Interestingly, however, RAs
have started relying less on REPs as these programs are time consuming, and therefore,
costly for both the RAs and the taxpayers. For HMRC, for example, for the three main
categories of audits (in terms of tax bases) Self-Assesment, Employer Compliance and
Corporate Tax while the sample sizes in 2004-2005 were, respectively, 6,482, 1,649, and
408, in 2015-2016 they were reduced to 2,522, 925, and 362 cases, Revenue and Customs
(2019a). From a policy perspective the question then that arises is, what should the
optimal size of the random sample be? And this is the aim of the paper, to explore the
random sample size determination problem. This is a very practical problem of significant
economic and social value for governments as they strive to improve the efficiency and
effectiveness of the RA operations.

In the spirit of the HMRC and IRS practices, the analysis will be conducted within
the following structure. There is a fixed number of audits that can be conducted by a
RA due to budgetary constraints which are split into two Steps. In Step 1, a random
sample is drawn from the population and is used to estimate the risk of non-compliance
for all population units. In Step 2, the remaining number of audits are chosen to be those
that generate the maximal estimated risk of non-compliance in the population. Within
this context, we show that optimality of sample size needs to strike a balance: If the RA
under-samples in Step 1, it may get hazy estimates of the drivers of non-compliance, and
this could lead to poor targeting in Step 2 as to offset the fact that it has not used up
many audits in Step 1. If it oversamples at Step 1, it has fewer audits left to make use of,
even though its understanding of non-compliance may be better. This, as will be shown
later on, results in a non-standard sample size determination problem, which is highly
non-linear with a non-trivial analytical solution. We develop a methodological approach
which tackles this problem with an innovative numerical algorithm based on bootstrap.

The structure of this paper is as follows. Section 2 sets up the background within
which the analysis is conducted. Section 3 presents and analyses the methodological
approach devloped. Section 4 presents a numerical illustration based on data provided
by the HMRC, which are capable of creating a simulation example mimicking to some
extend the population characteristics faced by the HMRC. Finally, Section 5 provides
some concluding remarks.

2. Preliminaries

2.1. Notation
Indices i and j are used for sampling units and indices 1 and 2 are used for the two Steps
of the sampling scheme. When information from previous year(s) audits is used, it is
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indexed by old. The indicator function is denoted as I{.} and understood as I{A} = 1 if
A is true and I{A} = 0 otherwise. All vectors are taken to be column vectors.

2.2. The problem
The RA has resources to select and audit a subset of taxpayer (henceforth ‘units’) of size
n from a population U of size N . For simplicity, the cost of an audit is assumed to be the
same for all units (an assumption that can be straightforwardly relaxed). The tax gap of
the i-th unit is denoted by yi and is defined to be, as noted earlier, the difference between
tax actually owed and tax voluntarily paid by that unit. The RA has access to additional
information for each i unit, summarised in a vector of covariates xi ∈ <p+1, which is
correlated to yi. Specific risk-propensity characteristics of the taxpayers may be taken into
account by including appropriate covariates. Denote U := {(yi,xi) , i ∈ J := {1, ..., N}},
where J is the set of indices in the population. It will be further assumed that the
yi’s are independent observations of random variables Yi with expectation and variance,
conditional on the vector of covariates xi, given via a linear model

µi := E (Yi|xi) = xTi β(0), Var (Yi|xi) = σ2, i ∈ J, (1)

where β(0) is a vector of unknown coefficients. Note that the methodology can be easily
extended to cases in which Yi in (1) is replaced by log(Yi) or some other invertible variance-
stabilizing transformation taking values in <. Thus, we assume a super-population model,
inducing the correlation between an individual’s decision on its tax gap Yi and the covari-
ates, as is usual in a model-assisted design-based framework; see, for example, Särndal
et al. (2003) and Brewer (2013) for a nice discussion on the controversy between model-
assisted and model-based approaches. It is worth emphasising that we do not consider
a classical model-assisted design-based estimator, as we do not seek to estimate a pop-
ulation total but rather identify individuals with a potentially high tax-gap. We call µi
the ‘expected tax gap’, but it is only in this context that an expectation is taken with
respect to the generating super-population model. In what follows our approach will be
design-based in that in any other context expectations will be meant with respect to the
sample selection at the Step 1. The assumption of model (1) is however necessary, as
tax payers’ decisions on their tax declaration, and thus on yi, may differ from period to
period; this makes β(0) a link of the induced populations between periods, which will be
required for our methodology. Note that by denoting by XN the design matrix having
rows xTi , i = 1, ..., N , and by β̄ := (XT

NXN)−1XT
NY the LS estimator of β(0) across all N

population units, µ̄i := xTi β̄ is, in the above sense, an unbiased estimator of µi.
The RA seeks an approach to utilize (1) to select the subset of n units. It is common

practice, as touched upon in the introductory section, to perform this task in two Steps.
In Step 1 a random sample of n1 units is drawn from the population. Let J1 denote the
set of indices selected in the Step 1 sample. We assume that this sample is drawn without
replacement according to first order inclusion probabilities πi, i = 1, ..., N , which are all
assumed to be positive. Each one unit of the Step 1 sample is then audited and its tax
gap is determined. This sample is then used to estimate β̄, and implicitly β(0) in (1), by

β̂ := (XT
1 Π−1X1)−1XT

1 Π−1y, (2)
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(Jonrup and Rennermalm, 1976), which yields further estimates µ̂i := xTi β̂. Here X1
denotes the matrix having rows xTi , i ∈ J1 and Π := diag (πi, i ∈ J1). Note that because
under sampling without replacement n1 =

∑
i∈U πi, the sample inclusion probabilities

depend on n1. However, one may still specify them for the entire population because
their proportional dependence on n1 cancels out in (2). In Step 2 the RA selects and
audits n2 = n− n1 units, those with a maximal estimated tax gap µ̂i, after excluding the
units already present in the Step 1 sample. Our objective is to provide a way to select n1
in an optimal way that will be precisely defined below.

The objective of the RA is to detect as much non-declared income as possible and
therefore minimize the overall tax gap. Given the information obtained from Step 1, the
detected tax gap per unit is expected to be higher for the units selected in the Step 2, but it
is not optimal for the RA to allocate all of its resources in Step 2 because the Step 2 sample
selection relies on the accuracy of the estimate of Step 1: n1 should be sufficiently high
so that β̂ provides adequate information to select the Step 2 units. Section 3 provides an
approach that proposes a sample size n1 such that expected tax revenues are maximised.

It is worth emphasizing at this stage that although other sampling designs could be
more efficient, the analysis focuses on the above two-Step scheme as they are used widely
by RAs. Moreover, the proposed methodology can accommodate alternative to LS esti-
mators when this is deemed necessary. For example, models richer than (1) may capture
characteristics such as heteroskedasticity so it might be preferable to use some form of
an iterative weighted LS estimator instead of the LS estimators β̄ and β̂ to improve the
variance in the estimation of β(0); see, for example, Särndal et al. (2003).

3. Maximizing the expected tax revenue

3.1. The target quantity
We now present a methodological approach to choose n1 that aims at maximising the
expected tax revenue. Let the tax revenue of Step 1 be

R1(n1) :=
∑
i∈J1

µi, (3)

Let us consider a fixed parameter value β and define µi(β) := xTi β. For determining
the Step 2 sample we proceed as follows. Let

µ(1)(β) ≤ µ(2)(β) ≤ · · · ≤ µ(N−n1)(β),

be the ordered values of µi(β) for i ∈ J \ J1 and

J2(β) :=
{
i ∈ J \ J1 : µi(β) ≥ µ(1− n−n1

N−n1

)(β)
}
,

be the set of indices of the units not present in the Step 1 sample with maximal µi(β). If
β were the RA’s ‘working’ parameter value, the tax revenue of Step 2 would be given by

R2(β, n1) :=
∑

i∈J2(β)
µi. (4)
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Thus, if the true parameter β(0) were known, the revenue from both Steps would be given
by

R
(
β(0), n1

)
:= R1(n1) +R2

(
β(0), n1

)
.

If β(0) is not known, but estimated in the Step 1 by β̂, then the revenue from Step
1 R1 (n1), remains unaffected, but the revenue from the Step 2 is a random variable
R2
(
β̂, n1

)
and depends on the distribution of β̂. We propose to choose n1 so as to

maximize the expectation of the revenue

R
(
β̂, n1

)
:= R1(n1) +R2

(
β̂, n1

)
.

This expectation is taken over the selection of the sample in Step 1 and is, therefore,
conditional on the generation of the population U . We therefore define:

R̄(U, n1) := E
[
R
(
β̂, n1

)
|U
]

= E [R1(n1)|U ] + E
[
R2
(
β̂, n1

)
|U
]

= E [R1(n1)|U ] +
∑

Pn1

(
β̂ = β|U

)
E
[
R2
(
β̂, n1

)
|U, β̂ = β

]
, (5)

where the summation in the last expression extends over the possible values β of β̂ for
the various outcomes of Step 1 sample and Pn1

(
β̂ = b|U

)
denotes the probability of the

occurrence of each value, which depends on the population U and n1.
For example, in the case of only one continuous covariate, µi := β

(0)
0 +β

(0)
1 xi and under

β
(0)
1 > 0 we would obtain, denoting by µ(r) the r-th order statistic of {µi}i=1,...,N ,

E
{
R2
(
β̂, n1

)
|U
}

= Pn1

(
β̂1 > 0|U

)
E

{∑
i∈J2(β(0)) µi|U, β̂1 > 0

}
+ Pn1

(
β̂1 < 0|U

)
E

{∑
i∈J ′2(β(0)) µi|U, β̂1 < 0

}
= Pn1

(
β̂1 > 0|U

)
E

{∑
i∈J2(β(0)) µi|U

}
+ Pn1

(
β̂1 < 0|U

)
E

{∑
i∈J ′2(β(0)) µi|U

}
,

where
J ′2(β) :=

{
i ∈ J \ J1 : µi(β) ≤ µ( n−n1

N−n1

)(β)
}
.

The reason for the first equality above is that when β̂1 > 0 the n− n1 units with largest
µi(β̂) are those with largest µi, while when β̂1 < 0 the n − n1 units with largest µi(β̂)
are those with lowest µi. This also justifies the second equality since J2

(
β(0)

)
does not

depend on β̂1. Thus, with probability Pn1

(
β̂1 < 0|U

)
the RA selects in the Step 2 the

units with lowest tax gap, instead of those with the highest tax gap. When the number of
parameters is greater than one the expressions involved are getting even more complicated
and so is the analytical solution to the maximization of (5). We therefore propose the use
of a numerical solution based on bootstrap (Efron and Tibshirani, 1994). This approach
is explained in the next subsection.
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The outcomes of the proposed bootstrap approach will be compared in a simulation
study in the last section to two extreme cases. These are (i) The ‘Only-Step-1’ expected
revenue which is achieved by setting n1 = n and thus devoting all available resources to
Step 1 and (ii) The ‘Only-Step-2’ expected-revenue which is achieved by setting n2 = n
and assuming that all µi ∈ J are known. Note that (i) is feasible whereas (ii) is an ‘oracle’
approach in the sense that µi are not available in practice.

3.2. The proposed bootstrap approach
The idea is to approximate the (conditional on U) distribution induced by the selection
of the Step 1 sample, including the distribution of β̂, which is involved in Pn1

(
β̂ = β|U

)
in (5), by a bootstrap analogue based on a past sample of the Step 1. For a survey
of finite population bootstrap methods see, for example, Mashreghi et al. (2016). More
precisely, let us assume that in a previous period a Step 1 sample {(yi,xi) , i ∈ J1,old}
of size n1,old was drawn using the same design which will be used in the current period,
having first order inclusion probabilities {πi, i ∈ J}. We use here a ‘Pseudo-population
bootstrap method’: a pseudo-bootstrap-population U∗ := {(y∗i ,x∗i ) , i ∈ J∗} is constructed
by repeating w∗i times each unit from this old sample, a construction which will be made
precise further below by specifying w∗i . The goal is to do so in a way that U∗ will mimic
the population generating mechanism of U . Then, for each sample size n1 belonging to
a specified grid of values, B bootstrap-samples {(y∗i ,x∗i ) , i ∈ J∗1,b}, b = 1, ..., B of size n1
are drawn from U∗ using the same design of interest, re-scaled for the new sample size n1
and the population size, thus inducing first order inclusion probabilities {π∗i , i ∈ J∗}, in a
way that will also be made precise further below. Note that we drop in our notation the
dependence on n1 of various quantities, as e.g. of J∗1,b, to avoid further complication of
the notation.

For each of the B bootstrap samples we compute the weighted LS estimates β̂∗b as in (2)
and subsequently µi(β̂∗b ) := xTi β̂∗b , from which J∗2,b(β̂∗b ) is also determined. Based on these,
R(U, n1) is estimated by R(U∗, n1) by averaging the sum of the appropriate quantities
involved in R1(n1), see (3), and R2(β̂∗b , n1), see (4), over all b = 1, ..., B bootstrap samples,
while, moreover, substituting µi by µi(β̂old). Thus the following quantity is averaged over
all bootstrap samples to obtain R(U∗, n1)

R∗b :=
∑
i∈J∗1,b

µi(β̂old) +
∑

i∈J∗2,b
(β̂∗

b
)

µi(β̂old). (6)

There are two approximations involved here: the first one is the approximation of µi
by µi(β̂old); the second one concerns mainly picking the units with maximal µi(β̂) by
choosing in the bootstrap world those with maximal µi(β̂∗). This actually relies on the
approximation of the distribution of β̂ by the bootstrap-distribution of β̂∗, which in turn
relies in the quality of the approximation of U by U∗. What still remains to be specified
is the construction of the pseudo-bootstrap-population U∗ and of {π∗i , i ∈ J∗}. This is
done subsequently separately for the case of equal and for the case of unequal selection
probabilities, which are here assumed to depend on µi.
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3.2.1. Bootstrap for equal probabilities sampling
Let us first assume simple random sampling without replacement (SRS) so that the design
used for selecting Step 1 sample of the previous period had first order inclusion probabil-
ities given by πi = n1,old/N , assuming for simplicity that Nold = N . Following Chao and
Lo (1994), the number of times a unit of this sample will be repeated in order to obtain
U∗ will be given by w∗i := trunc(N/n1,old), where trunc() indicates the largest integer
not exceeding the argument. The bootstrap population is then completed to N units, by
selecting Nvar := N−

∑
w∗i units with equal probabilities and with replacement from Step

1 sample, prior to drawing a new bootstrap sample and separately for each one of them.
As the size n1 of the bootstrap samples may differ form n1,old we will use π∗i := n1/N .
Thus, under SRS:

w∗i := trunc(N/n1,old), Nvar := N −
∑

w∗i , π
∗
i := n1/N. (7)

3.2.2. Bootstrap for unequal probabilities sampling
If some prior information on β(0), and thus on µi, is available prior to selection of Step 1
sample, it may be exploited by prioritising, with respect to their selection probabilities,
the units with an anticipated expected high tax gap: one might choose πi to be increasing
in µi. A standard choice here is to choose πi proportional to the size, but as µi may
take negative values and may, moreover, contain a number of extreme outliers, we chose
a robust alternative which is to allow πi to be proportional to the ranks Rai , for some
constant a, of µi, i ∈ J , which is thus here the “size variable”. In what follows we set
a = 1.

In the case of unequal probabilities sampling the pseudo-bootstrap-population is often
based on repeating each Step 1 sample unit w∗HT,i = π−1

i times, appropriately approx-
imated by an integer. We use the proposal of Barbiero et al. (2015) to calibrate those
weights in order to better mimic certain characteristics of U . The idea is to define new
weights w∗CAL,i to be as close as possible to π−1

i , while satisfying the constraints that
the induced pseudo-population size equals the one of U , while the percentage of those
anticipated to have a highly ranked tax-gap remains unaffected in the pseudo-bootstrap-
population. More precisely, the goal is to minimize

∑
i∈J1,old

(
w∗CAL,i − π−1

i

)2

π−1
i

,

under the constraints ∑
i∈J1,old

w∗CAL,i = N,

and further, setting the threshold of ‘highly ranked’ to some q ∈ [0, 1], under∑
i∈J1,old

w∗CAL,iI{Ri ≥ qN} = qN,

since
∑
i∈J I{Ri ≥ qN} = qN . The solution to this problem is given by

w∗CAL := w∗HT + Π−1RT
1 (RT

1 Π−1R1)−1
(
c−RT

1 w∗HT

)
,
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where w∗CAL :=
(
w∗CAL,i

)
i∈J1,old

, w∗HT :=
(
w∗HT,i

)
i∈J1,old

, c := (N, qN), R1 denotes the
matrix having for i ∈ J1,old rows (1, I{Ri ≥ qN}) and, finally, Π := diag (πi, i ∈ J1,old).

Thus, under unequal probability sampling, we use

w∗i := round(w∗CAL,i), Nvar = 0, π∗i := πin1/n1,old. (8)

3.3. The Algorithm
The details are given in Algorithm 1.

Algorithm 1 Calculation of optimum sample size for tax auditing
1: Compute the weights w∗i and Nvar using equation (7) for equal probability sampling

and (8) for unequal probability sampling.
2: for all k of a grid of values n1,k, k = 1, ..., K do:
3: Generate a bootstrap pseudo-bootstrap-population U∗k with index set J∗k by re-

peating each unit in the random sample of the past audit w∗i times.
4: Compute π∗k,i, i ∈ J∗k , as specified in (7) for equal probability sampling and in (8)

for unequal probability sampling.
5: for all b = 1, ..., B do:
6: If Nvar > 0 select Nvar more units from the random sample of the past audit

with SRS with replacement to complete the pseudo-bootstrap-population U∗k to U∗k,b.
Else, set U∗k,b = U∗k .

7: Draw a sample
(
y∗b,i,x∗b,i

)
, i ∈ J∗1,k,b of size n1,k from U∗k,b using the same design

as for the random sample of the past audit but with adjusted first sample inclusion
probabilities π∗k,i, i ∈ J∗k,b.

8: From
(
y∗b,i,x∗b,i

)
, i ∈ J∗1,k,b compute β̂∗k,b as in (2)

9: for all j = 1, ..., N do:
10: Compute µj(β̂∗k,b) := xTj β̂∗k,b
11: end for
12: Determine J∗2,k,b

(
β̂∗k,b

)
, the index set of the n2,k = n − n1,k largest values of

{µj(β̂∗k,b), j ∈ J \ J∗1,k,b }.
13: Compute R∗k,b as in (6)
14: end for
15: Compute ̂R̄(U, n1,k) = R̄(U∗k , n1,k) := B−1∑B

b=1 R
∗
k,b

16: end for
17: Set n1,k′ as the optimal sample size where k′ = arg min

k=1,...,K
( ̂R̄(U, n1,k))

4. Simulation example

In this Section we conduct a simulation experiment based on real data provided to us by
HMRC, in order to check the performance of the bootstrap method proposed in Section
3. The data concern a specific sub-population of taxpayers for which HMRC estimated
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a model based on a random sample. For confidentiality reasons HMRC provided us only
with the first four moments of the nine covariates, the nature of which was not further
specified, and of the residuals, as well as the coefficients β0, β1, . . . , β9 of the estimated
regression model. On the basis of these data we generated an artificial population for our
simulation study so as to mimic as precisely as possible the true population under study.
We generated nine independent vectors of covariates of length N with each one of them
drawn from a distribution having the first four moments identical to those of a covariate
in the HMRC sample. This was done using an algorithm proposed by Devroye (1986), pp.
690-691, see also Dellaportas and Karlis (2001). We thus obtained xi ∈ <10, i = 1, ..., N .
Then, with the coefficient values β(0)T = (β0, β1, . . . , β9) a ‘true’ population of tax sample
units was generated by setting yi := xTi β(0)+εi, where εi, i = 1, ..., N are errors which were
also generated from a distribution having the first four moments identical to those of the
residuals in the HMRC sample. We further re-centered the yi and adjusted the intercept
term accordingly in order to mask the true expected tax gap across the population for
confidentiality reasons. We were also provided with moments of the 10-percent trimmed
data. This had the effect of reducing the standard error of the covariates sometimes
by a factor of 100 or even of 1000, while for some of them it still had a value of a few
thousands after this reduction. We performed simulations under two scenarios, one using
the moments of the raw data (Scenario A) and one using the moments of the trimmed
data (Scenario B).

We used N = 50, 000, although the actual HMRC taxpayer sub-population considered
here is larger, in order to keep the necessary computation time limited. This artificial
population has been considered to be the ‘true’ population so it has been kept fixed
throughout the simulation exercise. This implies that the simulation variability emanated
from the random fluctuations of the estimators β̂old. We further assumed that the budget
constraints restricted the total number of audits to n = 2000, a figure which is arbitrarily
chosen from us, since the true number of total taxpayer audits is not known to us. The
Step 1 sample size of the previous period was set to n1,old = 100 for Scenario A and to
n1,old = 200 for Scenario B, figures which are safely greater than the true optimal values
for each scenario. The grid for optimising across n1 which we used varied from 20 to
150 with a step of 5 and from 160 to 500 with a step of 20. The number of bootstrap
replications was set to B = 400 and the number of the simulation size, i.e. the number
of ‘old’ initial samples for estimating βold was set to M = 1000. The sampling was done
by the ‘sample’ routine of the R-language, which allows for sampling without replacement
and equal-, as well as unequal-, probability sampling with specified weights, which were
set to the desired first order selection probabilities.

We present in Figure 1 a separate simulation of the expected revenue as a function of
n1 based on 10000 samples for Scenarios A and B. We first remark the very low optimal
Step 1 sample sizes n1, particularly under Scenario A. They might be due to the huge
variances of the covariates, which are reciprocally related to the variance of the regression
coefficient: it seems that even with small sample sizes they allow an estimation of the
regression coefficient with sufficient accuracy in order to identify the units in the tail
of the distribution. When the variance of the covariates is reduced in scenario B, the
optimal n1 climbs from about 50 to about 150. A second striking fact is that sampling
with probabilities proportional to the rank of the µi does not increase revenue, at least
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Fig. 1. Expected total revenue versus sample size for Step 1. Solid black: Revenue from equal
probability sampling. Solid grey: Revenue from unequal probability sampling.

not in the neighborhood of the maximum: while R1(n1) is indeed positively affected by
unequal probability sampling, especially for values of n1 larger than the optimal ones, it
is E

[
R2
(
β̂, n1

)
|U
]

that dominates the sum of the two components. This latter tends
to be slightly lower under unequal probability sampling, especially for small values of n1.
This might be due to a possible increase of the variance of the regression coefficient under
unequal probability sampling. The above comparisons rely heavily on the assumption that
the relation between expected tax gap and the covariates is stable across the population.
If, however, this is violated and, for example, different slopes are at work for those with
high values of the covariates, then it would be surely advantageous to favour the presence
of such values in the sample of Step 1 by assigning higher probabilities to their selection.

We now turn to the simulation of our bootstrap-based method. Our goal is to inves-
tigate (i) how the estimated optimal n̂1 which maximises the estimated expected revenue
̂R̄(U, n1) = R̄(U∗k , n1) compares to the true optimal n̄1 which maximises R̄(U, n1) :=

E
[
R
(
β̂, n1

)
|U
]

and (ii) how the achieved true expected revenue R̄(U, n̂1) obtained by
the RA when using the estimated optimal n̂1 compares to the maximal true expected
revenue R̄(U, n̄1) which would have hypothetically been obtained by the RA when the
(unknown) truly optimal n̄1 that maximises the true expected revenue had been used.
We further explore how they both compare to the ‘Only-Step-1’ and ‘Only-Step-2’ ex-
pected revenues. We run the simulation under two sampling designs, with equal and
unequal first order selection probabilities, both without replacement. Unequal selection
probabilities were set proportional to the rank of µi, i ∈ J , thus assuming the true µi, i ∈ J
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are known. In real life they would be estimated based on some previous Step 1 sample.
In Figure 2 it is shown that the estimated optimal n̂1 is, under Scenario A, strongly

skewed with heavy tails on the right. Values of n̂1 in the right tail of the distribution
are the result of a shape of R̄(U∗k , n1), which was quite skewed to the right as compared
to the shape of R̄(U, n1). This was not the case under Scenario B, where outliers were
excluded along with a small percentage of the tails of the distribution of the covariate:
Figure 2c shows that the estimation of n̄1 by n̂1 was more successful than under Scenario
A (Figures 2a,2b). For the revenue, first note that the maximal true expected revenue
indicated by the dashed vertical line, is by definition an upper bound for the achieved true
expected revenue, the distribution of which is indicated by the black line. The densities
were estimated by kernel estimators, the bandwidth of which were chosen empirically
so as to smooth out the effects of evaluating the revenue at a discrete grid of possible
values. The distribution of the revenue is under Scenario A also strongly skewed with
heavy tails on the left, with values close to the maximum revenue resulting from values of
n̂1 close to the mode of their distribution, while values for the revenue further away from
the maximum are due to values of n̂1 in the right tail of its distribution. Between the
two sampling schemes for Scenario A there is virtually no difference in estimated optimal
sample sizes and the achieved revenues, as might be also expected from Figure 1.

Figure 3 reveals that the achieved and maximal expected revenues are relatively close
when compared with the two extremes, namely the ‘Only-Step-1’ expected revenue and
the ‘Only-Step-2’ expected revenue (close to 1.5 108 in Scenario A and to 7.1 107 in
Scenario B). Note that it is natural that the ‘Only-Step-1’ expected revenue will be lower
than the revenue achieved by the risk based method, as it aims at detecting the average
tax gap and not the upper tail of the tax gap distribution, as the risk based method does.
Moreover, in the SRS case it is close to 0 due to the re-centering of the µi and the Yi
which was applied when generating the population in our simulation. Finally, note that
it is also natural that the ‘Only-Step-2’ expected revenue will be higher than the revenue
generated by the method which tries to estimate the individual’s expected tax gap: the
oracle ”knows” exactly which units have the highest expected tax gap, so it does not need
to devote resources in spotting them (n2 = n), and moreover, has still a error probability
of zero in detecting them.

We conjecture that it is important to control for the presence of outliers in the covari-
ates which will act as leverage points for the LS estimates of the regression coefficients,
either by excluding them or by using robust regression estimators. Moewover, unequal
probability sampling might be advantageous in case of a departure from the assumption
of stability of the relation between expected tax-gap and covariates.

5. Concluding remarks

A well functioning economy requires a well-functioning and efficienct RA. Recognising
this policymakers across the globe have become increasingly aware of the importance of
policies that promote voluntary tax compliance. Inspecting, however, every taxpayer is
neither desirable nor feasible, given the availabilitty of resources to RAs. As a consequence
RAs are giving considerable attention to the development of risk management practices.

This paper has contributed to this issue by investigating optimal random sample selec-
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tion in tax audits, providing a statistical methodology aiming at maximizing expected tax
revenues. The analysis is, of course, limited in several respects. The cost of audit has been
assumed uniform (and fixed) across audits. This, clearly, is a simplifying assumption. In
reality the probability of detecting income under-reporting is a function of the intensity
of audit and the quality of information provided to tax auditors. The assumption that
random auditing identifies the tax gap amongst the class of taxpayers who are audited is
also quite strong. In reality, auditors do make errors in their assessment and the outcome
of audits does rely on tax auditors expertise and experience. Indeed, existing estimates
show that there is a considerable heterogeneity in detection rates across examiners for
some income items; see, for example, Erard and Feinstein (2010). Incorporating some of
these elements in the present analysis is feasible at a small cost of computational effort.

An interesting statistical problem also arises when one combines the issue of model
choice and the objective of the RA. Throughout the paper it has been assumed that
the ‘best’ model is fixed and previously estimated by the RA. However, it is clear that
a proper model choice procedure may not be based on standard statistical techniques
but, rather, on the ultimate objective of the RA. Last but not least, the methodology
developed here should be incorporated in a larger audit framework in which audits take
place in a stratified sampling fashion with a series of practical constraints. The analysis
has provided only the first step of such a large, probabilistically sound approach to deal
with this problem.

Although the statistical treatment in the paper is frequentist, one could envisage advan-
tages of a Bayesian treatment. Bayesian updating may be useful in learning the regression
parameters by combining past data and data obtained in Step 1. Such an approach can
only be based on strong Tax authorities expertise combined with sophisticated Bayesian
treatment under model misspecification such as, for example, the one presented in Holmes
and Walker (2017). This might be a very challenging exercise if it is combined with a
Bayesian model determination approach that assigns different posterior model probabili-
ties in different years.

Our simulations showed that treatment of outliers may be inevitable in reality because
their presence affects the estimation of regression parameters. We proposed either the
exclusion of outliers or the use of robust regression estimators. Note, however, that
exclusion of outliers affects n1 and, therefore, optimising n1 needs to take this into account.
On the other hand, the choice of an appropriate robust regression estimator may also have
an indirect similar impact. Both approaches have not been dealt in further detail and are
left for future investigation.

There remains much scope for the analysis of sample selection and risk management.
We hope to have shown that the task is worthwhile and that the conclusions can be
instructive.
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a) Equal probability sampling for Scenario A (raw data)
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c) Equal probability sampling for Scenario B (trimmed data)
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Fig. 2. Optimal samples sizes and expected revenue. Left panel: Optimal sample size for Step
1 (vertical line) and distribution of estimated sample size (histogram). Right panel: Maximal true
expected revenue (vertical line) and distribution of achieved true expected revenue (kernel estimator).
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a) Scenario A (raw data)
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Fig. 3. Expected revenue under equal probability sampling. Solid black: Equal probability sampling,
density of achieved true expected revenue; Solid grey: Maximal true expected revenue; Dashed black:
‘Only-Step-1’ expected revenue; Dashed-dotted black: ‘Only-Step-2’ expected revenue.
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