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Abstract
Let X be a proper, smooth, and geometrically connected curve of genus g(X) ≥ 1 over a p-
adic local field. We prove that there exists an effectively computable open affine subscheme
U ⊂ X with the property that period(X) = 1, and index(X) equals 1 or 2 (resp. period(X) =
index(X) = 1, assumingperiod(X) = index(X)), if (resp. if andonly if) the exact sequenceof
the geometrically abelian fundamental group ofU splits. We compute the torsor of splittings
of the exact sequence of the geometrically abelian absolute Galois group associated to X ,
and give a new characterisation of sections of arithmetic fundamental groups of curves over
p-adic local fields which are orthogonal to Pic0 (resp. Pic∧). As a consequence we observe
that the non-geometric (geometrically pro-p) section constructed by Hoshi [3] is orthogonal
to Pic0.

0 Introduction/main results

Let k be a field of characteristic 0 and X a proper, smooth, and geometrically connected curve

over k of genus g(X) ≥ 1 with function field K
def= k(X). Let η be a geometric point of X

with values in its generic point. Thus, η determines an algebraic closure K (resp. k) of K

(resp. k). Let U ⊆ X be a non-empty open subscheme and Uk
def= U ×k k. We have an exact

sequence of fundamental groups 1 → π1(Uk, η) → π1(U , η) → Gk
def= Gal(k/k) → 1

(here η is the geometric point of U , Uk , naturally induced by η). By pushing this sequence
by the maximal abelian quotient π1(Uk, η) � π1(Uk, η)ab of π1(Uk, η) we obtain an exact
sequence

1 → π1(Uk, η)ab → π1(U , η)(ab) → Gk → 1, (1)

where π1(U , η)(ab)
def= π1(U , η)/Ker(π1(Uk, η) � π1(Uk, η)ab) is the geometrically

abelian fundamental group ofU . Similarly, by pushing the exact sequence of absolute Galois
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groups 1 → Gk(X)

def= Gal(K/kK ) → Gk(X)
def= Gal(K/K ) → Gk → 1 by the maximal

abelian quotient Gk(X) � Gab
k(X)

of Gk(X) we obtain an exact sequence

1 → Gab
k(X)

→ G(ab)
k(X) → Gk → 1, (2)

where G(ab)
k(X)

def= Gk(X)/Ker(Gk(X) � Gab
k(X)

) is the geometrically abelian absolute Galois

group of X . For U ⊆ X as above we have exact sequences

1 → IU → π1(U )(ab) → π1(X)(ab) → 1, (3)

where IU
def= Ker(π1(U )(ab) � π1(X)(ab)) = Ker(π1(Uk)

ab � π1(Xk)
ab), and

1 → I → G(ab)
k(X) → π1(X)(ab) → 1, (4)

where I
def= Ker(G(ab)

k(X) � π1(X)(ab)) = Ker(Gab
k(X)

� π1(Xk)
ab). Note that G(ab)

k(X) =
lim←−
U

π1(U )(ab), and I = lim←−
U

IU , where the limits are over all open subschemes U ⊆ X .

Moreover, if P1, . . . , Pn ∈ X are closed points and U
def= X\{P1, . . . , Pn} then we have an

exact sequence

0 → Ẑ(1) →
n∏

i=1

Indkk(Pi ) Ẑ(1) → IU → 0, (5)

as follows from the well-known structure of π1(Uk, η)ab, and (by passing to the projective
limit we obtain) the exact sequence

0 → Ẑ(1) →
∏

P∈Xcl

Indkk(P) Ẑ(1) → I → 0 (6)

of Gk-modules, where in (6) the product is over all closed points P ∈ X cl. More precisely,
for U = X\{P1, . . . , Pn} as above let JU be the generalised jacobian of U which sits in the
following exact sequence

0 → HU → JU → J → 0 (*)

where HU
def= Coker

(
Gm,k → ∏n

i=1 Resk(Pi )/k Gm
)
is a torus and J

def= Jac(X) is the jaco-
bian of X . We have an exact sequence of Tate modules

0 → T HU = IU → T JU → T J → 0 (∗∗)

and T JU is identified with π1(Uk, η)ab (as Gk-modules).
As was observed in [1] Remark 2.3(ii), in the case where k is a p-adic local field,

index(X) = 1 (i.e., X possesses a divisor of degree 1) if and only if the exact sequence
(2) splits. Our first main result is the following. (See [4] for the definition of the period of a
curve.)

Theorem A Assume that k is a p-adic local field for some prime integer p ≥ 2 (i.e., k/Qp

is a finite extension). Then there exists an effectively computable non-empty open affine
subscheme U ⊂ X with the following properties.

(i) If the exact sequence (1) of π1(U , η)(ab) splits then period(X) = 1 (i.e., X possesses a
k-rational divisor class of degree 1) and index(X) equals 1 or 2.
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(ii) Assume period(X) = index(X). Then index(X) = 1 (i.e., X possesses a degree 1
divisor) if and only if the exact sequence (1) of π1(U , η)(ab) splits.

The term effectively computable in Theorem Ameans that one can effectively computeU
if one can effectively compute a set of topological generators of the group of k-rational points

J (k) of the jacobian J
def= Jac(X) (cf. proof of Theorem A and Lemma 1.1). For a p-adic

local field �, write (�×)∧ for the profinite completion of its multiplicative group �× def= �\{0}.
Our second main result is the following, in which we compute the torsor of splittings of the
exact sequence (2).

Theorem B With the assumptions in Theorem A, assume that index(X) = 1. Then there
exists an exact sequence

0 → H1(Gk, I ) → H1(Gk,G
ab
k(X)

) → J (k) → 0, (7)

as well as isomorphisms lim←−
U

JU (k)∧ ∼→ H1(Gk,Gab
k(X)

), lim←−
U

HU (k)∧ ∼→ H1(Gk, I ), where

the projective limit is over all open subschemes U ⊆ X, and JU (k)∧ def= JU (k) ⊗Z Ẑ.
Moreover, if U = X\{P1, . . . , Pn} is affine, then we have an exact sequence

1 → (k×)∧ →
n∏

i=1

(k(Pi )
×)∧ → H1(Gk, IU ) → 0,

and (by passing to the projective limit we obtain) an exact sequence

1 → (k×)∧ →
∏

P∈Xcl

(k(P)×)∧ → H1(Gk, I ) → 0,

where the product is over all closed points P ∈ X cl.

Next, let s : Gk → π1(X , η) be a section of the projectionπ1(X , η) � Gk . Recall that the
section s is called orthogonal to Pic∧ (resp. Pic0) if the homomorphism s� : H2

et(X , Ẑ(1)) →
H2(Gk, Ẑ(1)) induced by s [H2

et(X , Ẑ(1)) is naturally identified with H2(π1(X , η), Ẑ(1))

(cf. [6, Proposition 1.1])] annihilates the Picard part Pic(X)∧ def= Pic(X) ⊗Z Ẑ (resp. the
(image in Pic(X)∧ of the) degree 0 part Pic0(X)) of H2

et(X , Ẑ(1)) (cf. [7, Definition 1.4.1]).
We say that the section s is strongly orthogonal to Pic∧ (resp. Pic0) if for every neighbourhood

Xi
def= Xi [s] → X of the section s and the induced section si : Gk → π1(Xi , η) of the

projection π1(Xi , η) � Gk (cf. loc. cit. 1.3) the section si is orthogonal to Pic∧ (resp. Pic0),
i ≥ 1. (Note that the above definition differs slightly from the definition in loc. cit. where the
notion of having a cycle class orthogonal to Pic∧ was defined as being strongly orthogonal
to Pic∧ in the above sense.) We say that the section s is uniformly orthogonal to Pic∧ (resp.
Pic0) if given a finite extension �/k and the induced section s� : G� → π1(X�, η) of the

projection π1(X�, η) � G�, where X�
def= X ×k �, then s� is orthogonal to Pic∧ (resp. Pic0).

The above definitions carry out in a similar way in the case of sections of geometrically
pro-� arithmetic fundamental groups, where � is a non-empty set of prime integers (cf. loc.
cit.).

To a section s : Gk → π1(X , η) as above one associates naturally, by considering the
composite morphism of s and the natural projection π1(X , η) � π1(X , η)(ab), a section

sab : Gk → π1(X , η)(ab) of the projection π1(X , η)(ab) � Gk . Let J 1
def= Pic1X which
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is a torsor under J . There is a natural morphism X → J 1. In case period(X) = 1, hence
J 1(k) �= ∅, we identify J 1 and J via the isomorphism J 1

∼→ J whichmaps a point z ∈ J 1(k)

to the zero section 0 ∈ J (k) and consider the composite morphism X → J 1
∼→ J . We then

obtain a commutative diagram

1 −−−−→ π1(Xk, η)ab −−−−→ π1(X , η)(ab) −−−−→ Gk −−−−→ 1
⏐⏐�

⏐⏐�
⏐⏐�

1 −−−−→ π1(Jk, η) −−−−→ π1(J , η) −−−−→ Gk −−−−→ 1

where the vertical maps are isomorphisms. We fix compatible base points of the torsors
of splittings of the horizontal sequences in the above diagram. For example, the splitting
sz : Gk → π1(X , η)(ab) of the upper sequence arising from the above point z ∈ J 1(k) (once
we identify π1(X , η)(ab) and π1(J 1, η)), and the induced splitting s0 : Gk → π1(J , η) of
the lower sequence which arises from the zero section 0 ∈ J (k). The section sab : Gk →
π1(X , η)(ab) gives rise to a section sab : Gk → π1(J , η) of the lower sequence in the

above diagram, we will denote by [sab] def= [sab − s0] ∈ H1(Gk, T J ) the cohomology class
(i.e., the cohomology class of the 1-cocycle sab − s0 : Gk → π1(Jk, η)) associated to sab,
where T J is the Tate module of J which we identify with π1(Jk, η). Recall the Kummer

exact sequence 0 → J (k)∧ → H1(Gk, T J ) → T H1(Gk, J ) → 0, we view J (k)∧ def=
J (k) ⊗Z Ẑ as a subgroup of H1(Gk, T J ) via the Kummer map J (k)∧ → H1(Gk, T J )

(cf. [8, §1], for a detailed discussion). If k is a p-adic local field then the natural map
J (k) → J (k)∧ is an isomorphism as follows from the well-known structure of J (k) in
this case. In this paper, if k/Qp is a finite extension, we will identify J (k) and J (k)∧ via
this isomorphism. Our next main result is the following which characterises sections of
arithmetic fundamental groups of curves over p-adic local fields which are orthogonal to
Pic0.

Theorem C With the assumptions in Theorem A, let s : Gk → π1(X , η) be a section of the
projection π1(X , η) � Gk. Then the followings hold.

(i) The section s is orthogonal to Pic0 if (resp. assuming index(X) = 1, if and only if)
the section sab : Gk → π1(X , η)(ab) lifts to a section s̃ab : Gk → G(ab)

k(X) of the exact
sequence (2).

(ii) Assume that X(k) �= ∅. Then s is orthogonal to Pic0 if and only if [sab] ∈ J (k).

The assumption that X(k) �= ∅ in Theorem C(ii) is rather mild. Indeed, in order to
verify that s is orthogonal to Pic∧ (resp. Pic0) one can pass to a finite extension �/k, and
the corresponding section s� : G� → π1(X�, η) of the projection π1(X�, η) � G� (cf.
proof of Theorem C(i)). Thus, Theorem C (especially Theorem C(ii)) can be in principle
used to detect if a section s as above is (strongly) orthogonal to Pic0. As an illustration of
this fact we observe that the non-geometric (geometrically pro-p) section constructed by
Hoshi over p-adic local fields in [3] is orthogonal to Pic0 (cf. Proposition 3.3). Finally, we
observe the following characterisation of sections s as above which are strongly orthogonal
to Pic∧.

Theorem D With the assumptions in Theorem A, let s : Gk → π1(X , η) be a section of the
projection π1(X , η) � Gk. Then the following two conditions are equivalent.
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(i) The section s is strongly orthogonal to Pic∧.
(ii) For every neighbourhood Xi

def= Xi [s] → X of s, i ≥ 1 (cf. above discussion), the
section sabi : Gk → π1(Xi , η)(ab) lifts to a section s̃i : Gk → G(ab)

k(Xi )
of the projection

G(ab)
k(Xi )

� Gk.

1 Proof of Theorem A

In this section we prove Theorem A. First, note that if index(X) = 1 (i.e., X possesses a
divisor of degree 1) then the exact sequence (1) [as well as the exact sequence (2)] splits for
every open subscheme U ⊆ X , as follows from a restriction and corestriction argument in
Galois cohomology. We start with the following Lemmas. ��

Lemma 1.1 There exists an effectively computable open affine subscheme U ⊂ X such that
H1(Gk, JU ) is finite.

Lemma 1.2 There exists an effectively computable open affine subscheme U ⊂ X such that
Ker(H1(Gk, J ) → H2(Gk, HU )) is finite, where the map H1(Gk, J ) → H2(Gk, HU )

arises from (the Galois cohomology of) the exact sequence (*).

Proof of Lemma 1.2 Let U = X\{P1, . . . , Pn} be an open affine subscheme (P1, . . . , Pn ∈
X are closed points). We have an exact sequence (where Br denotes Brauer groups)
H1(Gk, HU ) → Br(k) → ⊕n

i=1 Br(k(Pi )) → H2(Gk, HU ) → 0 arising from the
long Galois cohomology exact sequence associated to the exact sequence 1 → Gm,k →∏n

i=1 Resk(Pi )/k Gm → HU → 1 of Gk-modules [note that by Shapiro’s Lemma we

have H2(Gk,Resk(Pi )/k Gm)
∼→ H2(Gk(Pi ),Gm) = Br(k(Pi )], and we identify the Brauer

group of a p-adic local field with Q/Z. The Pontryagin dual of H2(Gk, HU ) is identi-

fied with Div0(X\U )∧ def= Ker(⊕n
i=1Ẑ.Pi

deg−→ Ẑ) where deg(Pi ) = [k(Pi ) : k]. The
dual of H1(Gk, J ) is (by Tate duality) J (k), and the dual of the map H1(Gk, J ) →
H2(Gk, HU ) is the homomorphism Div0(X\U )∧ → J (k)∧ which is induced by the map
Div0(X\U ) → J (k) which maps a divisor of degree 0 on X supported on X\U to its
class in J (k). Further, J (k) is topologically finitely generated as is well-known (cf. [5]).
Let {x1, . . . , xt } be topological generators of J (k). There exists an integer r ≥ 1 depend-
ing only on g (for example 2 if g = 1, or g − 1 if g > 1) such that r xi = [Di ] is
the class of a degree 0 divisor Di = ∑mi

j=1 ni, j Pi, j on X , for 1 ≤ i ≤ t . Now let

U
def= X\{Pi, j }t,mi

i=1, j=1. Then Im(Div0(X\U )∧ → J (k)) has finite index in J (k), and by

duality Ker(H1(Gk, J ) → H2(Gk, HU )) is finite. ��

Proof of Lemma 1.1 Let U ⊂ X be as in Lemma 1.2. We have an exact sequence
H1(Gk, HU ) → H1(Gk, JU ) → H1(Gk, J ) → H2(Gk, HU ) (arising from the longGalois
cohomology exact sequence associated to (*), cf. diagram below). Further, H1(Gk, HU ) is
finite (cf. [9, II.5.8 Theorem 6]), Ker

(
H1(Gk, J ) → H2(Gk, HU )

)
is finite (cf. Lemma 1.2),

hence H1(Gk, JU ) is finite as follows from the exactness of the above sequence. This finishes
the proof of Lemma 1.1. ��
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Next, we resume the proof of Theorem A. Let U ⊂ X be an open affine subscheme. We
have a commutative diagram

J (k)∧ −−−−→ H1(Gk, T J )
⏐⏐�

⏐⏐�

H1(Gk, HU ) −−−−→ H2(Gk, T HU )
⏐⏐�

⏐⏐�

H1(Gk, JU ) −−−−→ H2(Gk, T JU )
⏐⏐�

⏐⏐�

H1(Gk, J ) −−−−→ H2(Gk, T J )
⏐⏐�

⏐⏐�

H2(Gk, HU ) −−−−→ H3(Gk, T HU ) = 0

where the vertical sequences are exact and arise from the exact sequences (*) and (**), and
the horizontal maps are Kummer homomorphisms arising from the Kummer exact sequences
in Galois cohomology associated to the algebraic groups J , HU , and JU , respectively. The
middle (resp. fourth from the top) horizontal map maps the class [J 1U ] of the universal torsor
J 1U (of degree 1) (resp. the class [J 1] of J 1 = Pic1X/k) to the class [π1(U , η)(ab)] of the group
extension π1(U , η)(ab) (resp. the class [π1(X , η)(ab)] of the group extension π1(X , η)(ab))
(this is a well-known fact, see for example [2, Proposition 2.2 and Remark 2.4]). Further,
[J 1U ] (resp. [π1(U , η)(ab)]) maps to [J 1] (resp. [π1(X , η)(ab)]) under the left third vertical
map from the top (resp. right third vertical map from the top).

Next, we letU be as in Lemma 1.1. We prove that assertions (i) and (ii) in Theorem A are
satisfied in this case.

We prove assertion (i). Assume that the class [π1(U , η)(ab)] is trivial in H2(Gk, T JU )

which implies that the class [J 1U ] is divisible in H1(Gk, JU ). (The map H1(Gk, JU ) →
H2(Gk, T JU ) factors through lim←−

n

H1(Gk, JU )/nH1(Gk, JU ) and the latter group injects

into H2(Gk, T JU )). As the group H1(Gk, JU ) is finite the class of [J 1U ] is then trivial. Thus,
[J 1] = 0 in H1(Gk, J ) (cf. above discussion) which implies that X possesses a k-rational
divisor class of degree 1, i.e., period(X) = 1. The rest of the assertion follows from the fact
that either index(X) = period(X) or index(X) = 2 period(X) (cf. [4, Theorem 7]).

Assertion (ii) follows from (i) for the if part, and the only if part follows from the obser-
vation at the start of the proof of Theorem A. This finishes the proof of Theorem A. ��

2 Proof of Theorem B

In this section we prove Theorem B. We use the same assumptions as in Theorem A and
further suppose that X possesses a degree 1 divisor. We start with the following lemma.

Lemma 2.1 We use the assumptions in Theorem A. Assume that index(X) = 1. Then
lim←−
U

H1(Gk, HU ) = 0 where the limit is over all non-empty open subschemes of X.
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Proof of Lemma 2.1 The exact sequence 1 → Gm,k → ∏n
i=1 Resk(Pi )/k Gm → HU → 1

induces in cohomology an exact sequence 0 → H1(Gk, HU ) → Br(k) → ∏n
i=1 Br(k(Pi ))

(note that H1(Gk,Resk(Pi )/k Gm)
∼→ H1(Gk(Pi ),Gm) = 0, and H2(Gk,Resk(Pi )/k Gm)

∼→
H2(Gk(Pi ),Gm) = Br(k(Pi )), by Shapiro’s Lemma) and by passing to the projective limit
over all U ⊂ X open we obtain an exact sequence 0 → lim←−

U

H1(Gk, HU ) → Br(k) →
∏

P∈Xcl Br(k(P)). Now Ker(Br(k) → ∏
P∈Xcl Br(k(P))) is finite of cardinality index(X)

(cf. [4, Theorem 3]), which equals 1 under our assumption that X possesses a degree one
divisor. ��

Next, we resume the proof of Theorem B. Consider the morphism X → J as in the
introduction, and identify the Gk-modules T J and π1(Xk)

ab. The assertions regarding the
structure of H1(Gk, IU ) and H1(Gk, I ) follow easily from Kummer theory (consider the
long cohomology exact sequences associated to the exact sequences (5) and (6) of Gk-
modules). We establish the exact sequence (7) in the statement of the theorem as well as the
isomorphisms lim←−

U

JU (k)∧ ∼→ H1(Gk,Gab
k(X)

) and lim←−
U

HU (k)∧ ∼→ H1(Gk, I ) therein.

We have a commutative diagram of group homomorphisms

0 0 0
	⏐⏐

	⏐⏐
	⏐⏐

T H1(Gk , HU ) = 0 −−−−−→ T H1(Gk , JU ) −−−−−→ T H1(Gk , J ) −−−−−→ T H2(Gk , HU )
	⏐⏐

	⏐⏐
	⏐⏐

	⏐⏐

0 −−−−−→ H1(Gk , T HU ) −−−−−→ H1(Gk , T JU ) −−−−−→ H1(Gk , T J ) −−−−−→ H2(Gk , T HU )
	⏐⏐

	⏐⏐
	⏐⏐

	⏐⏐

0 −−−−−→ HU (k)∧ −−−−−→ JU (k)∧ −−−−−→ J (k)∧ −−−−−→ H1(Gk , HU )∧
	⏐⏐

	⏐⏐
	⏐⏐

	⏐⏐

0 0 0 0

where the vertical sequences are Kummer exact sequences, and the middle and lower hori-
zontal sequences arise from the exact sequences (*) and (**). Note that since H1(Gk, HU ) is
finite (cf. [9, II.5.8 Theorem 6]), T H1(Gk, HU ) = 0, and the natural map H1(Gk, HU ) →
H1(Gk, HU )∧ is an isomorphism. The middle horizontal sequence is exact and arises from
the long cohomology exact sequence associated to the exact sequence (**). (Note that
H0(Gk, T J ) = 0 as follows from the well-known fact that J (k)tor is finite.)

The map T H1(Gk, JU ) → T H1(Gk, J ) is injective as follows easily from the exact
sequence H1(Gk, HU ) → H1(Gk, JU ) → H1(Gk, J ), the left exactness of the inverse limit
functor, and the fact that H1(Gk, HU ) is finite (cf. [9, II.5.8 Theorem 6]). We claim that the
lower horizontal sequence is exact. Indeed, themap HU (k)∧ → JU (k)∧ is injective as follows
from the commutativity of the far left lower square, and the injectivity of themaps HU (k)∧ →
H1(Gk, T HU ) → H1(Gk, T JU ). Exactness at JU (k)∧ follows from the commutativity
of the lower middle square, the exactness at H1(Gk, T JU ) of the middle horizontal exact
sequence, and the fact that the map HU (k)∧ → H1(Gk, T HU ) is an isomorphism. Let
α ∈ J (k)∧ with trivial image in H1(Gk, HU )∧, its image α ∈ H1(Gk, T J ) is the image
of an element β ∈ H1(Gk, T JU ) by the commutativity of the right lower square and the
exactness of the middle horizontal sequence. As α maps to 0 in T H1(Gk, J ), the image of
β in T H1(Gk, JU ) is 0 by the commutativity of the middle upper square and the injectivity
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of the map T H1(Gk, JU ) → T H1(Gk, J ). Thus β ∈ JU (k)∧ maps to α in J (k)∧ and the
lower sequence is exact at J (k)∧.

By passing to the projective limit over all open subschemes U ⊆ X we obtain a commu-
tative diagram

0 0
	⏐⏐

	⏐⏐

0 −−−−−→ lim←−
U

T H1(Gk , JU ) −−−−−→ T H1(Gk , J ) −−−−−→ lim←−
U

T H2(Gk , HU )

	⏐⏐
	⏐⏐

	⏐⏐
	⏐⏐

0 −−−−−→ H1(Gk , I ) −−−−−→ H1(Gk ,Gab
k(X)

) −−−−−→ H1(Gk , T J ) −−−−−→ lim←−
U

H2(Gk , T HU )

	⏐⏐
	⏐⏐

	⏐⏐
	⏐⏐

0 −−−−−→ lim←−
U

HU (k)∧ −−−−−→ lim←−
U

JU (k)∧ −−−−−→ J (k) −−−−−→ lim←−
U

H1(Gk , HU )

	⏐⏐
	⏐⏐

	⏐⏐
	⏐⏐

0 0 0 0

where the middle horizontal sequence is exact and arises from the long exact cohomology
sequence associated to the exact sequence (4). The left vertical map is an isomorphism
[H1(Gk, I )

∼→ lim←−
U

H1(Gk, T HU )], the second left vertical sequence is exact as follows

from the left exactness of the inverse limit functor, the second right vertical sequence is the
Kummer exact sequence associated to J , and the right vertical sequence is exact since the
H1(Gk, HU ) are finite (cf. loc. cit.), thus the Mittag–Leffler condition is satisfied. The map
lim←−
U

T H1(Gk, JU ) → T H1(Gk, J ) is injective, and the lower horizontal sequences is exact

as follows easily from the left exactness of the inverse limit functor and a similar argument
as the one used for the previous diagram for the exactness at J (k).

Now, lim←−
U

T H1(Gk, JU ) = 0, as lim←−
U

T H1(Gk, JU ) is identified with the intersection of

the images of T H1(Gk, JU ) in T H1(Gk, J ), and Lemma 1.1 implies the existence ofU ⊂ X
open affine such that H1(Gk, JU ) is finite hence T H1(Gk, JU ) = 0. This implies that the
injective map lim←−

U

JU (k)∧ → H1(Gk,Gab
k(X)

) is an isomorphism and Im(H1(Gk,Gab
k(X)

) →
H1(Gk, T J )) is contained in J (k) (we identify the latter with its image via the injective
Kummer map J (k) ↪→ H1(Gk, T J )). Further, lim←−

U

H1(Gk, HU ) = 0 by Lemma 2.1. Hence

Im(H1(Gk,Gab
k(X)

) → H1(Gk, T J )) = J (k) and we obtain the exact sequence (7) as

claimed in Theorem B. This finishes the proof of Theorem B. ��

Remark 2.2 Let � be a non-empty set of prime integers. The same proof as above yields a
pro-� analog of Theorem B. More precisely, let Gab,�

k(X)
(resp. π1(Xk, η)ab,�) be the maximal

pro-� quotient of Gab
k(X)

(resp. π1(Xk, η)ab) which sits in the exact sequence 0 → I� →
Gab,�

k(X)
→ π1(Xk, η)ab,� → 0, where I�

def= Ker(Gab,�
k(X)

� π1(Xk, η)ab,�). Then, with

the same assumptions as in Theorem B, we have an exact sequence 0 → H1(Gk, I�) →
H1(Gk,G

ab,�
k(X)

) → J (k)� → 0, where J (k)� is the maximal pro-� quotient of J (k).
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3 Proof of Theorem C

In this section we prove Theorem C, we use the same assumptions as in Theorem A. The
following Lemma will be useful.

Lemma 3.1 Let s : Gk → π1(X , η) be a section of the projection π1(X , η) � Gk. If s is
orthogonal to Pic0 then s is uniformly orthogonal to Pic0.

Proof Similar to the proof of Proposition 1.6.7 in [7]. ��
Proof of Theorem C(i) First, assume that sab : Gk → π1(X , η)(ab) lifts to a section s̃ab :
Gk → G(ab)

k(X) of the exact sequence (2). We will show that s is orthogonal to Pic0. Let

L ∈ Pic0(X) corresponding to the class of a degree zero divisor D = ∑t
i=1 ni Pi . Given a

finite extension �/k, X�
def= X ×k �, we have a commutative diagram

Pic0(X�) −−−−→ H2(X�, Ẑ(1))
s��−−−−→ H2(G�, Ẑ(1))

	⏐⏐
	⏐⏐

	⏐⏐

Pic0(X) −−−−→ H2(X , Ẑ(1))
s�−−−−→ H2(Gk, Ẑ(1))

where the left lower and upper horizontal maps arise from Kummer theory (they are injec-
tive), the vertical maps are restriction maps, and the map s�

� is induced by the section
s� : Gk → π1(X�, η) of the projection π1(X�, η) � Gk which is induced by s. Identifying
both H2(Gk, Ẑ(1)) and H2(G�, Ẑ(1)) with Ẑ, the far right vertical map is multiplication by
the degree [� : k] of �/k. In particular, this map is injective. To show that the image of L in
H2(Gk, Ẑ(1)) is trivial it thus suffices to show that its image in H2(G�, Ẑ(1)) is trivial. We
can then, without loss of generality, and after possibly pulling back the line bundle L to X�

for a suitable finite extension �/k, assume that the points P1, . . . , Pt ∈ X are k-rational and

deg(L) = ∑t
i=1 ni = 0. Let U

def= X\{P1, . . . , Pt }.
Consider the following commutative diagram of horizontal exact sequences.

Ẑ(1) Ẑ(1)

diag

⏐⏐� diag

⏐⏐�

1 −−−−→ I cnU −−−−→ π1(U , η)c−cn −−−−→ π1(X , η) −−−−→ 1
⏐⏐�

⏐⏐� id

⏐⏐�

1 −−−−→ IU −−−−→ π̃1(U , η) −−−−→ π1(X , η) −−−−→ 1

id

⏐⏐�
⏐⏐�

⏐⏐�

1 −−−−→ IU −−−−→ π1(U , η)(ab) −−−−→ π1(X , η)(ab) −−−−→ 1
⏐⏐�

⏐⏐�
⏐⏐�

1 1 1

Here the group extension π̃1(U , η) is the pull back of the lower horizontal exact sequence
by the map π1(X , η) � π1(X , η)(ab) (i.e., the lower right square is cartesian), π1(U , η)c− cn

is the geometrically cuspidally central quotient of π1(U , η) (cf. [7, 2.1.1]), the surjective
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map π1(U , η)c− cn � π̃1(U , η) is the natural one (π1(Xk, η) acts trivially on IU ), I cnU is

the Gk-module
∏t

i=1 Ẑ(1) (cf. loc. cit. proof of Lemma 2.3.1), Ẑ(1)
diag−→ I cnU = ∏t

i=1 Ẑ(1)

is the diagonal embedding, and we have an exact sequence of Gk-modules 0 → Ẑ(1)
diag−→

I cnU = ∏t
i=1 Ẑ(1) → IU → 0.

By pulling back the group extension π1(U , η)c− cn by the section s : Gk → π1(X , η) we
obtain a group extension 1 → I cnU → FU → Gk → 1. Further, by pulling back the group
extension 1 → IU → π1(U , η)(ab) → π1(X , η)(ab) → 1 by the section sab we obtain a
group extension 1 → IU → EU → Gk → 1, which splits since by assumption sab lifts to
a section sabU : Gk → π1(U , η)(ab) of the exact sequence (1). (More precisely, the section

sabU is induced by s̃ab.) Consider the Galois cohomology exact sequence H2(Gk, Ẑ(1))
diag−→

H2(Gk, I cnU ) = ∏t
i=1 H

2(Gk, Ẑ(1)) → H2(Gk, IU ) → 0. The class of the extension FU
in H2(Gk, I cnU ) coincides with (s�(O(Pi ))ti=1 (cf. [7, proof of Lemma 2.3.1]), and the class
of the group extension EU in H2(Gk, IU ) is the image of the class of FU via the above map
H2(Gk, I cnU ) → H2(Gk, IU ). In particular, since the class of EU vanishes in H2(Gk, IU ),

the class of FU lies in the diagonal image of H2(Gk, Ẑ(1)). Thus, we deduce that s�(O(Pi ))
is independent of 1 ≤ i ≤ t (i.e., equals the same element of H2(Gk, Ẑ(1))), and s�(L) = 0.

Next, we show that the converse holds assuming index(X) = 1. We assume that s is
orthogonal to Pic0, index(X) = 1, and show that the section sab : Gk → π1(X , η)(ab) lifts
to a section s̃ab : Gk → G(ab)

k(X) of the exact sequence (2). Recall the exact sequence 1 →
I → G(ab)

k(X) → π1(X , η)(ab) → 1 (resp. 1 → IU → π1(U , η)(ab) → π1(X , η)(ab) → 1, for

U ⊆ X open). By pulling back this group extension by the section sab we obtain a group
extension 1 → I → E → Gk → 1 (resp. 1 → IU → EU → Gk → 1, for U ⊆ X open),
we will show that the group extension E is a split extension which would imply the above
assertion. Note that E = lim←−

U

EU .

We have a natural identification H2(Gk, I )
∼→ lim←−

U

H2(Gk, IU ), where the limit is over

all U ⊆ X as above. Further, for U ⊆ X as above, we have a Kummer exact sequence
0 → H1(Gk, HU ) → H2(Gk, IU ) → T H2(Gk, HU ) → 0 (cf. far right vertical sequence
in the first diagram in the proof of Theorem B and the identification IU

∼→ T HU of Gk-
modules), and by passing to the projective limit over all U we obtain an exact sequence
0 → lim←−

U

H1(Gk, HU ) → lim←−
U

H2(Gk, IU ) → lim←−
U

T H2(Gk, HU ) → 0, hence an identifi-

cation H2(Gk, I )
∼→ lim←−

U

H2(Gk, IU )
∼→ lim←−

U

T H2(Gk, HU ) since lim←−
U

H1(Gk, HU ) = 0 if

index(X) = 1 (cf. Lemma 2.1). Write ẼU for the image of the class of the group extension
EU in T H2(Gk, HU ) via the above map H2(Gk, IU ) → T H2(Gk, HU ). We will show
ẼU = 0, ∀U ⊆ X as above, from which it will follow that the class of the group extension
E in H2(Gk, I ) is trivial.

Let U = X\{P1, . . . , Pt } be an open affine subscheme, and k′/k a finite extension which
splits the torus HU .We have the following commutative diagramofKummer exact sequences

0 −−−−→ H1(Gk′ , HU ) = 0 −−−−→ H2(Gk′ , IU ) −−−−→ T H2(Gk′ , HU ) −−−−→ 0

res

	⏐⏐ res

	⏐⏐ res

	⏐⏐

0 −−−−→ H1(Gk, HU ) −−−−→ H2(Gk, IU ) −−−−→ T H2(Gk, HU ) −−−−→ 0
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where the vertical maps are restriction maps. We claim res([EU ]) = 0 in H2(Gk′ , IU ).
Indeed, first, usingLemma3.1,wecan (without loss of generality) assume that {P1, . . . , Pt } ⊂
X(k), k = k′, and we have to show that [EU ] = 0. Recall the commutative diagram and
notations in the proof of the if part of Theorem C(i) above, as well as the discussion therein.
The assumption that s is orthogonal to Pic0 implies, by considering the classes of the various
degree zero divisors Pi − Pj with 1 ≤ i ≤ t , 1 ≤ j ≤ t , that s�(O(Pi )) is independent of
1 ≤ i ≤ t , which implies that the class of FU lies in the diagonal image of H2(Gk, Ẑ(1))
and the class of EU is trivial (cf. loc. cit.). Thus, res(EU ) = 0 in H2(Gk′ , IU ) as claimed
which implies res(ẼU ) = 0 in T H2(Gk′ , HU ). Finally, the far right vertical map in the above
diagram is injective, from which it follows that ẼU = 0. Indeed, we have a commutative
diagram

H2(Gk′ ,Gm) −−−−→ ∏t
i=1 H

2(Gk′ , Indkk(Pi ) Gm) −−−−→ H2(Gk′ , HU ) −−−−→ 0

res

	⏐⏐ res

	⏐⏐ res

	⏐⏐

H2(Gk,Gm) −−−−→ ∏t
i=1 H

2(Gk, Indkk(Pi ) Gm) −−−−→ H2(Gk, HU ) −−−−→ 0

where the left vertical map is the map Br(k) = Q/Z → Br(k′) = Q/Z of multiplication
by the degree [k′ : k] of the extension k′/k which has trivial cokernel (we identify the
Brauer group of a p-adic local field withQ/Z), and the middle vertical map has finite kernel,
from which it follows that Ker(H2(Gk, HU )

res−→ H2(Gk′ , HU )) is finite. By passing to Tate
modules we deduce that the map T H2(Gk, HU )

res−→ T H2(Gk′ , HU ) is injective as claimed.
This finishes the proof of Theorem C(i). ��

Proof of Theorem C(ii) Assume that X(k) �= ∅ and let x ∈ X(k). Recall the discussion in
the introduction after the statement of Theorem B. In the following argument we use the

isomorphism J 1
∼→ J as in loc. cit. arising from z

def= O(x) ∈ J 1(k). The section sz : Gk →
π1(X , η)ab

∼→ π1(J , η) lifts in this case to a section s̃z : Gk → G(ab)
k(X) of the exact sequence

(2) since sz arises from a rational point of X . We fix compatible base points of the torsors of
splittings of the exact sequences (2) and (1) with U = X associated to the sections s̃z and
sz , respectively. Assertion (ii) follows then from assertion (i) and the exact sequence (7) in
Theorem B. ��
Remark 3.2 Let� be a non-empty set of prime integers. Similar proofs as above yield pro-�
analogs of Theorem C(i)(ii) (cf. Remark 2.2).

In Hoshi [3] constructed an example of a smooth, geometrically connected, hyperbolic
curve X over a p-adic local field k and a section s̃ : Gk → π1(X , η)(p) of the projection
π1(X , η)(p) � Gk , where π1(X , η)(p) is the geometrically pro-p quotient of π1(X , η),
which is not geometric, i.e., the section s̃ does not arise from a k-rational point of X . (There
is an exact sequence 1 → π1(Xk, η)p → π1(X , η)(p) → Gal(k/k) → 1, and π1(X , η)(p) is
obtained by push-out of the exact sequence 1 → π1(Xk, η) → π1(X , η) → Gal(k/k) → 1
by themaximal pro-p quotientπ1(Xk, η) � π1(Xk, η)p ofπ1(Xk, η).) Our next observation
is the following.

Proposition 3.3 With the above notations, the section s̃ is orthogonal to Pic0.

Proof Indeed in Hoshi’s construction it occurs that X(k) �= ∅, and [(̃s)ab] ∈ J (k)p , where
J (k)p is the maximal pro-p quotient of J (k) (cf. loc. cit., especially Theorem 3.5 and
Corollary 3.6). Thus, the statement follows from the pro-p analog of Theorem C(ii) (cf.
Remarks 2.2 and 3.2). ��
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Remark 3.4 The author doesn’t know at the time of writing this paper (and is interested to
know) if the section s̃ in Proposition 3.3, constructed by Hoshi, is strongly orthogonal to
Pic0.

4 Proof of TheoremD

Next, we prove Theorem D. First, assume that assertion (ii) in Theorem D holds, we prove
that assertion (i) holds, i.e., s is strongly orthogonal to Pic∧. We have a commutative diagram

Pic(Xi+1)
s�i+1−−−−→ H2(Gk, Ẑ(1))

	⏐⏐ id

	⏐⏐

Pic(Xi )
s�i−−−−→ H2(Gk, Ẑ(1))

where the left verticalmap is the pull back of line bundles via the finitemorphism Xi+1 → Xi .

LetMi
def= Im

(
Pic(Xi )

deg−→ Z

)
which is a freeZ-module of rank 1with generator ei , for i ≥

1. The map Pic(Xi )
s�i−→ H2(Gk, Ẑ(1)) factorises as Pic(Xi )

deg−→ Mi
ρi−→ H2(Gk, Ẑ(1)),

since s is strongly orthogonal to Pic0 by assumption and Theorem C(i), and we have a
commutative diagram

Mi+1
ρi+1−−−−→ H2(Gk, Ẑ(1))

	⏐⏐ id

	⏐⏐

Mi
ρi−−−−→ H2(Gk, Ẑ(1))

where the left vertical map is defined by ei �→ [Xi+1 : Xi ]ei+1 and [Xi+1 : Xi ] is the degree
of the finite morphism Xi+1 → Xi . Thus ρi (ei ) is infinitely divisible in H2(Gk, Ẑ(1)),
hence ρi (ei ) = 0, for all i ≥ 1, since H2(Gk, Ẑ(1))

∼→ Ẑ. This shows that the map

Pic(Xi )
s�i−→ H2(Gk, Ẑ(1)) is the zero map for all i ≥ 1 as required.

Conversely, assume that assumption (i) holds, i.e., the section s is strongly orthogonal to
Pic∧. Then the section s has a cycle class uniformly orthogonal to Pic∧ in the sense of [7],
Definition 1.4.1 (cf. loc. cit. Proposition 1.6.7). Assertion (ii) follows then from [7] Theorem
2.3.5 applied to each Xi , i ≥ 1 (note that with the notations of loc. cit. G(ab)

k(Xi )
is a quotient

of Gc− ab
k(Xi )

).
This finishes the proof of Theorem D. ��

Remark 4.1 Let � be a non-empty set of prime integers. Similar proofs as above yield a
pro-� analog of Theorem D.
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