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Abstract—By arranging a large number of inertial sensors in
an array and fusing their measurements, it is possible to create
inertial sensor assemblies with a high performance-to-price ratio.
Recently, a maximum likelihood estimator for fusing inertial
array measurements collected at a given sampling instance was
developed. In this paper, the maximum likelihood estimator
is extended by introducing a motion model and deriving a
maximum a posteriori estimator that jointly estimates the array
dynamics at multiple sampling instances. Simulation examples
are used to demonstrate that the proposed sensor fusion method
have the potential to yield significant improvements in estimation
accuracy. Further, by including the motion model, we resolve the
sign ambiguity of gyro-free implementations, and thereby open
up for implementations based on accelerometer-only arrays.

I. INTRODUCTION

Thanks to recent advances within micro-electrical-
mechanical-system (MEMS) technology, it is now feasible
to construct large arrays of inertial sensors also for low-
cost applications. In comparison with conventional inertial
measurement units (IMUs), inertial arrays offer several
benefits [1]. Obviously, the measurement accuracy can be
increased by simple averaging. However, since spatially
separated accelerometers provide both translational and
rotational information (see Fig. 1), it is possible to further
reduce the estimation errors by fusing information from
accelerometers and gyroscopes1. Moreover, inertial sensor
arrays enable increased dynamic range [2], sensor fault
detection and isolation [3], estimation of measurement
uncertainties [4], [5], and direct estimation (i.e., not requiring
differentiation) of angular acceleration. Recent publications
on inertial sensor arrays have focused on sensor calibration
[6]–[8], measurement fusion for motion estimation [2],
and geometry optimization [9], [10]. There have also
been application-specific studies for pedestrian tracking
[11], [12], ballistic platform guidance [13], gyro-free
navigation [14], biomechanics with safety applications [15],
platform stabilization [16], gesture detection [17], and sports
performance assessment [18]. Refer to [19] for a survey on
inertial sensor arrays.

1As demonstrated in [2], the angular velocity Fisher information gained
from the accelerometers is proportional to the square of the array dimension
and to the square of the angular speed.
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Fig. 1. Spatially separated accelerometers provide both translational and
rotational information. The specific force measured by an accelerometer triad
at some point r with respect to the array frame can be expressed as a function
of the array’s angular velocity ω, the array’s angular acceleration α, and the
specific force s at the origin of the array frame.

Initially, publications on inertial arrays focused on how to
extract angular information from different configurations of
spatially separated single-axis accelerometers. Typically, the
sensor fusion scheme either assumed perfect measurements
[20] or relied on a least-squares-based approach [21]. Today,
focus has shifted to MEMS applications where the sensors
are manufactured in triads and are subject to significant
noise. Consequently, [2] derived a maximum likelihood (ML)
estimator and the Cramér-Rao bound (CRB) for fusing the
measurements from an inertial array with an arbitrary number
of accelerometer and gyroscope triads. The model assumed
Gaussian measurement noise. Moreover, the proposed estima-
tion method processed measurements from different sampling
instances independently, and did not include any motion model
that relates the dynamics of the array at one sampling instant
to the next.

In this article, the array measurement model is combined
with a motion model that couples the angular velocity and
angular acceleration at different sampling instances. Conse-
quently, a maximum a posteriori (MAP) estimator is derived
to estimate the array’s specific force, angular velocity, and
angular acceleration at a sequence of sampling instances.
As will be shown, the MAP estimates can be extracted in
the same way as the ML estimates. In other words, angular
velocity estimates are first computed by numerical means from
a concentrated likelihood function. The remaining estimates
are then obtained as the solution to a weighted least-squares
problem. Further, we discuss identifiability conditions and



derive convenient expressions for the CRB. Last, the accuracy
of the estimates are demonstrated in a simulation study. By
utilizing information from the motion model, it is possible
to both increase the estimation accuracy and improve the
identifiability properties. Thanks to the high sampling rate of
commercial inertial sensors, motion models can be expected
to be of use in a large number of applications, including
pedestrian tracking and gesture detection.

II. ESTIMATION

This section describes ML and MAP estimators for the
problem of fusing measurements from an inertial sensor array
to estimate the array’s angular velocity, angular acceleration,
and specific force. We begin by reviewing the ML estimator
presented in [2]. Following this, we introduce a motion model,
and present a MAP estimator that jointly estimates the dynam-
ics at a batch of sampling instances. Last, we discuss how the
identifiability properties are affected by the inclusion of the
motion model.

A. Model Description

Consider an inertial sensor array with Na accelerometer
triads and Nω gyroscope triads. The specific force sensed by
the nth accelerometer triad is given by [2]

s(n) = s + ([ω]×[ω]× + [α]×)r(n). (1)

Here, s(n) and r(n) denote the specific force and the position
in the array frame of the nth accelerometer triad, respectively.
Further, s denotes the specific force at the origin of the array
frame. Moreover, ω and α denote the array’s angular velocity
and angular acceleration, respectively, and the skew symmetric
matrix [c]× is defined so that [c1]×c2 is equal to cross product
of c1 and c2. The measurements from the nth accelerometer
triad and the mth gyroscope triad at a given sampling instance
are modeled as

s̃(n) = s(n) + ε(n)a , (2a)

ω̃(m) = ω + ε(m)
ω , (2b)

where ε(n)a and ε(m)
ω are measurement noise.

By combining (1) and (2), the measurements y ∆=
[(s̃(1))ᵀ . . . (s̃(Na))ᵀ (ω̃(1))ᵀ . . . (ω̃(Nω))ᵀ ]ᵀ from the iner-
tial sensor array can be parameterized as [2]

y = h(ω) + Hφ+ ε (3)

where ε ∆= [(ε
(1)
a )ᵀ . . . (ε

(Na)
a )ᵀ (ε

(1)
ω )ᵀ . . . (ε

(Nω)
ω )ᵀ ]ᵀ,

φ ∆= [αᵀ sᵀ ]ᵀ,

h(ω) ∆=


[ω]×[ω]×r(1)

...
[ω]×[ω]×r(Na)

1Nω,1 ⊗ ω

, H ∆=


−[r(1)]× I3

...
...

−[r(Na)]× I3
03Nω,3 03Nω,3

.
(4)

Here, 1`1,`2 , I`, 0`1,`2 , and ⊗ denote the matrix of dimension
`1 × `2 with all elements equal to one, the identity matrix
of dimension `, the zero matrix of dimension `1 × `2, and

the Kronecker product, respectively. Thus, the model can be
separated into a nonlinear part h(ω), that only depends on the
angular velocity ω, and a linear part Hφ, that only depends
on the angular acceleration α and the specific force s. Next,
we demonstrate how to use this separation to simplify the
computation of ML estimates.

B. Maximum Likelihood Estimation

Assuming that the measurement noise ε is a zero-mean
Gaussian with covariance R, the ML estimates of ω, α, and
s are given by

{ω̂, φ̂} = arg max
ω,φ

p(y|ω,φ)

= arg min
ω,φ

‖y − h(ω)−Hφ‖2R−1

(5)

where ‖c‖2A ∆= cᵀAc. Since the model is linear in φ, it is
possible to first solve for the optimal φ, as dependent on ω,
by means of weighted least-squares. The result can then be
substituted back into the likelihood function. This yields a
concentrated likelihood function, only dependent on ω, that
can be solved by numerical means.

Computationally, the minimization problem is solved in
a two-step procedure. In the first step, the angular velocity
estimates are computed from

ω̂ = arg max
ω

p(y|ω, φ̂(ω))

= arg min
ω

‖y − h(ω)‖2P
(6)

where

φ̂(ω) ∆= (HᵀR−1H)−1HᵀR−1(y − h(ω)) (7)

and
P ∆= R−1 −R−1H(HᵀR−1H)−1HᵀR−1. (8)

The optimization problem (6) can be solved by using the
Gauss-Newton algorithm [22]. In this case, the estimates are
computed by iterating

ω̂(i+1) = ω̂(i) + (JᵀPJ)−1JᵀP(y − h(ω̂(i))) (9)

until convergence. Here, the matrix

J ∆=


[[r(1)]×ω̂(i)]× − [ω̂(i)]×[r(1)]×

...
[[r(Na)]×ω̂(i)]× − [ω̂(i)]×[r(Na)]×

1Nω,1 ⊗ I3

 (10)

is the Jacobian of h(ω) evaluated at ω = ω̂(i). Once ω̂
has been found, the second step of the procedure extracts the
estimates of φ from (7). Refer to [2] for a discussion on initial
estimates ω̂(0).

C. Maximum a Posteriori Estimation with Motion Prior

In what follows, the estimation procedure presented in [2]
will be extended to enable joint estimation of the array dy-
namics at multiple sampling instances. The notation presented
in the previous sections will be augmented with subindices



to denote the relevant sampling instance. Hence, yk will
for example represent the inertial measurements obtained at
sampling instance k. To couple the dynamics at different
sampling instances, we introduce the motion model

ωk+1 = ωk + ∆tkαk + wk (11)

where wk is a noise term, while ∆tk denotes the sampling
interval between sampling instances k and k + 1.

We will now use information from both the measurement
model (3) and the motion model (11), while assuming that εk
and wk are mutually independent white Gaussian noise pro-
cesses with covariances R and Q, respectively. The MAP esti-
mates of ω1:N

∆= [ωᵀ
1 . . . ωᵀ

N ]ᵀ and φ1:N
∆= [φᵀ

1 . . . φᵀ
N ]ᵀ,

given y1:N
∆= [yᵀ

1 . . . yᵀ
N ]ᵀ, are then

{ω̂1:N , φ̂1:N} = arg max
ω1:N ,φ1:N

p(ω1:N ,φ1:N |y1:N )

= arg max
ω1:N ,φ1:N

p(y1:N |ω1:N ,φ1:N )p(ω1:N ,φ1:N )

= arg max
ω1:N ,φ1:N

∏N
k=1 p(yk|ωk,φk) (12)

· ∏N−1
k=1 p(ωk+1|ωk,αk)

= arg min
ω1:N ,φ1:N

∑N
k=1 ‖yk − h(ωk)−Hφk‖2R−1

+
∑N−1
k=1 ‖ωk+1 − ωk −∆tkαk‖2Q−1

= arg min
ω1:N ,φ1:N

‖ȳ − h̄(ω1:N )−Hφ1:N‖2R−1

where we have used the uninformative priors p(ω1) ∝ 1 and
p(α1) ∝ 1. Hence, no assumption is made on the initial
dynamics. Further, we have defined ȳ ∆= [yᵀ

1:N 01,3(N−1) ]ᵀ,
R ∆= blkdiag(IN ⊗R, IN−1 ⊗Q),

h̄(ω1:N ) ∆=



h(ω1)
...

h(ωN )
ω1 − ω2

...
ωN−1 − ωN


, H ∆=

[
IN ⊗H

H′ 03(N−1),6

]
, (13)

H′ ∆= H′1 ⊕ · · · ⊕ H′N−1, and H′k
∆= [∆tk I3 03 ]. Here,

blkdiag(·, . . . , ·) and ⊕ denote a block diagonal matrix with
block matrices given by the arguments and the direct sum
of two matrices, respectively. Since (12) is on the same
form as (5), it can be solved using the same approach as
in Section II-B. Thus, we would first use the Gauss-Newton
algorithm to obtain ω̂1:N . Here, the Jacobian of h̄(ω1:N )

evaluated at ω1:N = ω̂
(i)
1:N is J̄ ∆= [(Ja)ᵀ (Jb)ᵀ ]ᵀ, where

Ja ∆= J(ω̂
(i)
1 )⊕· · ·⊕J(ω̂

(i)
N ) and Jb ∆= [I3(N−1) 03(N−1),3 ]−

[03(N−1),3 I3(N−1) ]. The initial estimate of ω can be obtained
by using the initial estimates proposed in [2] at each sampling
instance. In the second step, ω̂1:N is used to obtain an estimate
of φ1:N . As a last observation, note that the motion models
αk+1 = αk + wα,k and sk+1 = sk + wa,k, where wα,k and
wa,k are white Gaussian noise processes, can be incorporated
into the estimation in the same manner as the model (11).

D. Identifiability Conditions

The identifiability conditions for the model (3) have pre-
viously been discussed in [2]. Specifically, it was concluded
that necessary and sufficient conditions for the parameters
ω, α, and s to be identifiable are that the array has i) at
least one gyroscope triad; and ii) at least three accelerometer
triads whose locations span a two-dimensional space. By
including the motion model (11), the sign ambiguity of ω
when excluding the gyroscope measurements is resolved (note
that we may have h̄(ω1:N ) 6= h̄(−ω1:N ) also when Nω = 0).
Thus, in this case, only condition ii) remains2.

III. THE CRAMÉR-RAO BOUND

A common way to assess the performance of an estimator
is to compare its mean square error to the CRB. Assuming
that all errors are Gaussians, it is straightforward to derive the
Bayesian CRB for θ ∆= [ωᵀ

1:N φ
ᵀ
1:N ]ᵀ as

Cov(θ) � IB(θ)−1 (14)

where it holds that [24]

IB(θ) = ΦᵀR
−1

Φ (15)

and the linearized measurement matrix is given by Φ ∆= [J̄ H̄].
Here, we have used A � B to denote that A−B is positive
semidefinite. Alternatively, IB(θ) can be decomposed as

IB(θ) = ID(θ) + IP (θ) (16)

where ID(θ) and IP (θ) represent the information gained
from the observed data and from the motion prior, respec-
tively. Specifically, if we reorder the parameters as θ ∆=
[θᵀ1 . . . θᵀN ]ᵀ, where θk

∆= [ωᵀ
k φ

ᵀ
k ]ᵀ, it holds that

ID(θ) = blkdiag(I(θ1), . . . ,I(θN )) (17)

where I(θk) is the Fisher information matrix (FIM) for
estimating θk without any motion prior. Expressions for I(θk)
have previously been presented in [2]. Further, assuming a
constant sampling interval ∆tk = ∆t, it holds that

IP (θ) = D1 ⊗T1 + D2 ⊗T2

+ (D3 ⊗T3) + Dᵀ
3 ⊗Tᵀ

3

(18)

where

D1 =


1 0 · · · · · · 0

0 2
. . .

...
...

. . . . . . . . .
...

...
. . . 2 0

0 · · · · · · 0 1

, D2 =


1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 0

0 · · · · · · 0 0

,
(19)

2Although the idea of using a motion model to facilitate the fusion of
measurements from gyro-free arrays is not new [23], this is the first time that
it is used as an extension of the estimation formulation described in [2].



and

D3 =


0 −1 · · · · · · 0

0 0
. . .

...
...

. . . . . . . . .
...

...
. . . 0 −1

0 · · · · · · 0 0

 (20)

are all matrices of dimension N ×N . Further, we have T1
∆=

blkdiag(Q−1,06,6),

T2
∆=

 0 ∆t 0
∆t (∆t)2 0
0 0 0

⊗Q−1, (21)

and

T3
∆=

 1 0 0
∆t 0 0
0 0 0

⊗Q−1. (22)

Obviously, the motion model (11) provides more information
in applications where the elements of Q are small, i.e., when
the sampling rate is high and the array dynamics are low.

To interpret the different terms in (18), consider the formu-
lation where the CRB is the expectation of a Hessian matrix
[22], [24]. In this case, the term D1⊗T1 reflects second-order
derivatives with respect to ωk. Similarly, D2⊗T2 is associated
with mixed partial derivatives with respect to ωk and αk, and
second-order derivatives with respect to αk, while D3 ⊗ T3

reflects mixed partial derivatives with respect to ωk and ωk+1,
and with respect to αk and ωk+1.

IV. SIMULATIONS

Next, simulations are used to compare the MAP estimator in
Section II-C to the ML estimator discussed in Section II-B and
the CRBs from Section III. We also illustrate estimation using
gyro-free arrays. The examples are inspired by the simulations
presented in [2].

A. Setup

Measurements were simulated from four gyroscope tri-
ads and four accelerometer triads located at r(1) = 0.01 ·
[1 0 0]ᵀ [m], r(2) = 0.01 · [−1 0 0]ᵀ [m], r(3) = 0.01 ·
[0 1 0]ᵀ [m], and r(4) = 0.01 · [0 − 1 0]ᵀ [m]. The sensor
geometry is illustrated in Fig. 2. Temporally and mutually
uncorrelated measurement errors were simulated with standard
deviations of σa = 0.01 [m/s2] and σω = 1 [◦/s] in each
spatial direction (refer to [2] for a discussion on sensor noise
variances).

Once the angular velocity had been specified (see Sections
IV-B, IV-C, and IV-D), the angular acceleration was simulated
as αk = (ωk+1 − ωk −wk)/∆t. Here, we set ∆t = 0.05 [s]
and Q = σ2

q I3 with σq = 0.01 · 180/π [◦/s]. Hence, wk/∆t
had a standard deviation of about 10 [◦/s]. The orientation
of the array was defined by letting the initial orientation
matrix be the identity matrix and then iteratively updating the
orientation matrix based on the specified angular velocities.
The acceleration at the origin of the array was initialized as
a1 = 03,1, and was then iteratively updated according to

accelerometer
triad

x-axis

y-axis

z-axis
out-of-plane

rotation

in-plane
rotation

1 [cm]
1 [cm

]

Fig. 2. Sensor geometry in the simulations.
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Fig. 3. Comparison of ML and MAP estimators.

ak+1 = ak + w
(v)
k . Here, w

(v)
k was assumed to be a white

Gaussian noise process with covariance σ2
a I3, where σa =

0.2 [m/s2]. Finally, the specific force at the accelerometer
positions was computed by adding the gravitational component
(based on the array orientation3) and the centrifugal force and
the Euler force (based on (1) and the array’s angular dynamics
and sensor geometry). The root-mean-square errors (RMSEs)
were computed by applying the estimators to 106 different
data realizations.

B. Example 1 — In-plane Rotation

In the first example, we consider rotations around the x-axis,
so that ωk = 101.6+0.2·k ·[1 0 0] [◦/s] for k = 1, . . . , 13. Fig. 6
illustrates the RMSEs of the MAP estimator and the ML esti-
mator (which processed the measurements from each sampling
instance independently)4. At high angular speeds, the MAP
estimator can be seen to provide substantially better estimates
of the angular velocity in the z-direction. In this example, the
ML estimator gains no information from the accelerometers

3The specific force at the origin of the array frame is s = a− g, where g
denotes the gravity force in the array frame.

4To ensure that the choice of sampling boundary does not have an impact
on the displayed accuracy (see e.g., the information provided by the term
D1 ⊗T1 in (18)), Fig. 6 only shows the RMSEs for ω2, . . . ,ωN−1.
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Fig. 5. Comparison with gyro-free array.

about the angular velocity in the z-direction [2]. Thus, the
corresponding RMSE is equal to the base level that is reached
by simply averaging the gyroscope measurements. However,
by including the motion model, additional information is
gained about the angular velocity at high angular speeds. Both
the MAP and the ML estimator achieve their respective CRBs
(with and without information from the motion model). The
MAP and ML estimators provide similar RMSEs along the x
and y-axes.

C. Example 2 — Out-of-plane Rotation

Here, we used ωk = 101.6+0.2·k · [0 0 1] [◦/s] for k =
1, . . . , 13. While Fig. 5 shows that the ML estimates are at
the base level along the x and y-axes, the MAP estimator
clearly displays better performance at high angular speeds.
Once again, both estimators achieve their respective CRBs.
To summarize, examples 1 and 2 illustrate that in the general
case with rotations along all axes, the MAP estimator can be
expected to provide enhanced angular velocity estimates along
all axes.

D. Example 3 — Gyro-free Arrays

The dynamics from example 1 were reused to demonstrate
how the motion model enables parameter estimation using
gyro-free arrays. Fig. 5 compares the MAP estimator from
example 1 with the corresponding gyro-free MAP estimator,

denoted by MAPgf. As expected, the two estimators display
practically equivalent RMSEs at high angular speeds.

V. CONCLUSIONS

This paper has presented a MAP estimator for estimating
the angular velocity, angular acceleration, and specific force
of an inertial sensor array. The estimator does not only use
information from a measurement model, but also incorporates
a motion model which e.g., enables identifiability of all
parameters also in cases when no gyroscopes are available.
Through simulations, it was found that the estimator achieves
the Cramér-Rao bound and yields a substantial performance
gain in comparison to when no motion model is used.
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