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Abstract—Real-time positioning of emergency personnel has
been an active research topic for many years. However, studies on
how to improve navigation accuracy by using prior information
on the idiosyncratic motion characteristics of firefighters are
scarce. This paper presents an algorithm for generating pseudo
observations of position and orientation based on standard search
patterns used by firefighters. The iterative closest point algorithm
is used to compare walking trajectories estimated from inertial
odometry with search patterns generated from digital maps. The
resulting fitting errors are then used to integrate the pseudo
observations into a map-aided navigation filter. Specifically, we
present a sequential Monte Carlo solution where the pattern
comparison is used to both update particle weights and create
new particle samples. Experimental results involving professional
firefighters demonstrate that the proposed pseudo observations
can achieve a stable localization error of about one meter, and
offer increased robustness in the presence of map errors.

I. INTRODUCTION

Reliable indoor localization is a capability that would be of
great help for firefighters in their mission to save lives and
secure property [1]. However, emergency scenarios preclude
the use of pre-deployed infrastructure and labor-intensive
fingerprinting databases. Consequently, proposed navigation
solutions have been based on odometry derived from body-
worn cameras or inertial sensors. Unfortunately, stand-alone
dead-reckoning systems will always be subject to position
errors that accumulate with time. Moreover, dead-reckoning
systems require knowledge of the initial navigation state. In
the absence of measurements from positioning technologies,
these problems can be mitigated by applying different types
of navigation constraints. The two most common sources of
navigation constraints are map information and motion models.

Map information is often fused with odometry by the use
of particle filters. This means that the posterior density of the
navigation state is represented by a weighted set of samples
(particles). When a particle collides with a wall, it is either
eliminated or has its weight reduced. In this way, the navi-
gation estimates are continuously adjusted based on the floor
plan [2]. The incorporation of accurate map information will
typically yield a significant performance improvement. How-
ever, in emergency scenarios, floor plans are often outdated.
Hence, one of the key challenges of firefighter positioning is
the design of algorithms that are robust to map errors.

An example of a motion model is the zero-velocity update
(ZUPT) that is used in foot-mounted inertial navigation sys-
tems (INSs) [3]-[5]. A ZUPT-aided INS uses a zero-velocity
detector to determine when the foot is approximately station-
ary. When this is the case, the navigation system performs
a measurement update based on pseudo observations of zero
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Fig. 1. Firefighters often search a building by walking along the wall in

what is known as a directional search. The arrows indicate the direction of
a right-hand directional search. A left-hand search is obtained by traversing
the trajectory in the opposite direction.

velocity. Conducted experiments indicate that this constraint
is still useful in firefighter positioning. However, this is only
the tip of the iceberg; there is much more information hidden
in the standardized motion patterns of firefighters (see Fig. 1),
which so far has been overlooked. The literature contains little
information on how to transform knowledge about firefighting
procedures into useful motion models.

This paper presents the first method for firefighter localiza-
tion that fuses inertial odometry and map information with a
motion model describing firefighters’ tendency to follow left-
or right-hand search patterns. Our contributions are as follows:

« We propose the idea of using standardized search patterns
within firefighting to improve localization accuracy.

« We explain how to generate such patterns from a digital
map, and how to compare the generated search patterns
with position trajectories derived from odometry.

o We tackle the challenging cases of i) unknown initial
position and ii) map errors, and demonstrate the benefits
of the proposed navigation system in these scenarios.

o We evaluate the proposed approach with data from sim-
ulated emergency scenarios in two different buildings.

In principle, the proposed navigation system can be used with
any odometry system (e.g., camera, inertial, mmWave radar,
etc.). This paper uses inertial odometry, which is attractive
due to the low cost of inertial sensors, and their robustness
to adverse environment conditions such as heavy smoke. The
pattern comparison is particularly useful when the uncertainty
of the navigation state is large. Therefore, it is ideal for the
unprepared emergency scenario where map errors may cause
the navigation system to repeatedly lose track of the true



navigation state.

The remainder of the paper is organized as follows: Section
IT provides the necessary background on firefighter move-
ments in emergency scenarios, while Section III provides
an overview of the system architecture. Section IV provides
a detailed description of the different system components.
Further, Section V analyses the performance of the proposed
and competing approaches in two distinct settings. The paper
is concluded in Section VI.

II. FIREFIGHTER MOVEMENTS IN EMERGENCY SCENARIOS

The motion characteristics of firefighters in emergency
scenarios are in many ways different from those of civilians
during normal day-to-day walking [6]-[9]. Firefighters may
for example sweep the area around them with their hands
and feet to increase visibility and detect loose cables, casu-
alties, or other unseen objects; get down on their knees for
protection against flashovers and backdrafts before opening
doors; and walk backwards down through stairs or when
carrying casualties. Searches tend to fall in two categories.
A primary search is performed when living victims may still
be inside the building, and must therefore be conducted as
quickly as conditions warrant (the walking speed still tends to
be slow in comparison to the typical human walking speed).
The search is generally conducted in a harsh environment
with intense heat and poor visibility. Subsequently, a more
thorough secondary search is performed to ensure that no
one is left in the building. At this point, the fire is usually
under control or fully extinguished [10]. Next, we discuss
standardized search procedures for primary searches, where
the need for localization solutions is the greatest.

Searches are conducted in teams of two to four (typically
two) firefighters who maintain physical contact during the
search. By following established search patterns, a team of
firefighters can quickly and thoroughly search a building, with
low risk of disorientation. In residential and small commercial
buildings, firefighters often perform a directional search. Di-
rectional searches follow either a left- or a right-hand search
pattern. During a right-hand search, the firefighter turns right
at each entry point, and turns left in each corner. Analogous
statements can be made regarding left-hand searches. The team
will normally walk around large items of furniture, such as
beds or tables, while carefully searching them. Directional left-
and right-hand search patterns are illustrated in Fig. 1.

In complex multi-compartment structures (rooms “behind”
rooms), the directional search may be replaced by the com-
partmental search which provides a methodological approach
for mapping out compartments. In a compartmental search,
the team first searches the room or compartment they are
currently in using a left- or right-hand search pattern. During
the search, the firefighters make sure to identify all of the
doors in the compartment (excluding the one from which they
entered the compartment), without immediately searching the
rooms that they lead to. After completing a full left- or right-
hand search of a compartment, they walk back the same way to
the first identified door. The procedure is then iterated, starting

in the compartment behind this door. One problem with both
directional and compartmental searches is that inner walls
not connected to the outer walls will not be searched when
adhering to standard search patterns. Assuming that such inner
walls are detected, this problem can be tackled by performing
a separate, targeted search around these inner walls.

The choice of whether to perform a directional or a compart-
mental search is made by the incident commander and is then
communicated using voice radio to all firefighters. According
to informal estimates from firefighters at Hampshire Fire and
Rescue Service, UK, their team start off with a directional
search in more than 90 % of their searches. Accordingly, this
paper focuses on motion models based on directional search
patterns. However, the general idea can equally well be applied
to compartmental searches after a small adjustment of the
pattern extraction algorithm. Most of the information in this
section has been gathered from firefighters at Hampshire Fire
and Rescue Service, UK. Although the routines of other fire
departments may differ, directional searches are widely used
by firefighters all over the world.

III. ESTIMATION ARCHITECTURE

The high-level information flow of the proposed navigation
system is shown in Fig. 2. The blue boxes in the figure describe
components in standard map-aided odometry. To begin with,
sensor measurements are collected from foot-mounted inertial
sensors (see the top left of Fig. 2). These measurements
are used to estimate the displacement in between sampling
instances. Position estimates are then computed by recursively
integrating the estimated displacements. To prevent the sensor
errors from causing the position error to grow without bound,
a digital map is generated from an available floor plan (see
the bottom left of Fig. 2). Finally, the information from the
odometry and the map is fused to produce the final navigation
solution (see the right part of Fig. 2).

The white boxes in Fig. 2 give a conceptual description
of the proposed method for generating and utilizing pseudo
observations of position and orientation. The digital map is
used to extract sequences of positions typically present in
directional searches. Similar segments can be obtained by inte-
grating the displacement estimates produced by the odometry
over a given time period, just as one would during dead-
reckoning. Each trajectory generated from the odometry is
then compared to trajectories generated from the digital map.
The similarity between a pair of trajectories acquired from
the two sources is used to weight the pseudo observations.
Specifically, if a search pattern generated by the odometry is
very similar to a search pattern generated from the map, the
positions in the latter search pattern can be used to construct
an observation that is assigned a high likelihood. In the last
step, the observations generated from the pattern comparison
are fused with information from the odometry and the map to
increase the update rate and enhance the performance of the
navigation solution (see the right part of Fig. 2).
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Fig. 2. Process diagram illustrating the information flow within the proposed navigation system. The boxes “Odometry”,
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fusion” describe components in standard map-aided navigation based on odometry, while the boxes “Pattern comparison” and “Pattern extraction” make up
the novel method for generating pseudo observations based on common search routines within firefighting.

IV. COMPONENTS IN NAVIGATION SYSTEM

This section describes our implementation of the different
subcomponents illustrated in Fig. 2.

A. Odometry

The odometry is based on measurements collected from
foot-mounted, six degrees of freedom inertial measurement
units. By integrating the measurements in a ZUPT-aided
INS [11], we obtain three-dimensional estimates of position,
velocity, and orientation with the same update rate as the
measurements. These estimates are then fed to the pattern
comparison algorithm and to the information fusion filter.

B. Map Generation

A digital map is constructed by letting each wall in a
floor plan! be represented by an edge in a topological graph.
Thus, each node is associated with a two-dimensional position,
representing the start or end point of a wall. The constructed
map makes no distinction between doors and openings of the
same size. Multi-floor maps can be created using a set of
topological graphs, each representing the walls of a stairway
or a specific floor.

C. Pattern Extraction

This subsection describes how to extract search patterns
from a map. To begin with, a two-dimensional orthogonal grid
of square cells with a pre-defined grid spacing is distributed
over the map area. A sequence of nodes representing a
directional search may then be constructed in the following
way: The node that is closest to the entry of the building is
chosen as the first node. The second node is chosen so that
it is adjacent to the first node (i.e., the distance between the
first two nodes is equal to the grid spacing), and so that it

Today, many fire departments have access to floor plans from a large
number of commercial and public buildings. The availability of floor plans is
expected to increase in the future.

is the next node that is reached by following a right-hand
search along the grid. Similarly, the nth node is chosen as the
node that is reached by continuing a right-hand search from
the (n — 1)-th node. This continues until the sequence returns
to the first node. The process results in a position sequence
{pn}N_,, consisting of N nodes. Here, p, denotes a two-
dimensional position. The node p is assumed to be adjacent
to p1. An example of a generated node sequence is given by
the blue circles in Fig. 3.

The search patterns used for the pattern comparison are
constructed as overlapping subsets (of fixed length) of the node
sequence. Two overlapping search patterns are illustrated with
black lines drawn around the nodes in the bottom right of Fig.
3, and separately in Fig. 4. If there are inner walls that are not
connected to the outer walls (see the top right of Fig. 3), one
may have to create additional node sequences where the first
node is chosen among nodes close to these inner walls. A node
sequence resulting from such a process is illustrated using
grey circles in Fig. 3. All in all, the pattern extraction results
in M node sequences {{py™ }\ }M_ _ Here, p{ denotes
the nth two-dimensional position in sequence m, and N,, is
the number of nodes in the mth sequence. For floors that are
not based on rectangular shapes other methods for extracting
search patterns would have to be considered. One approach
could for example be to construct search patterns from lines
drawn along, but just inside, the walls. As an example, a wall
in the shape of an arc would then result in a search pattern
also in the shape of an arc but with a different radius.

D. Pattern Comparison

In what follows, we describe how the iterative closest
point (ICP) algorithm? is used to compare position trajectories
constructed from the odometry (see Section IV-A) with the

2ICP is a commonly used algorithm for finding the optimal (in terms
of least squares) rotational and translational transformation between two
multidimensional sets of points [12].
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Fig. 4. Two search patterns extracted from the bottom right of Fig. 3.

search patterns generated from the map (see Section IV-C).
Specifically, consider a trajectory {X@}fzzl generated from
the odometry. Here, x; denotes a two-dimensional position in
the horizontal plane, k is the sampling instance of the latest
inertial measurements, and ¢, is chosen so that the trajectory
is of length d. Now, the task at hand is to assess how well the
search patterns, generated from the digital map, matches the
considered trajectory. This is done in two steps.

1) Rotation of odometry trajectory: First, note that most
buildings, rooms, and corridors are constructed with a rect-
angular layout. As a result, most pedestrian walking can be
expected to be in one of four principal headings. This is espe-
cially true for firefighters who walk along walls. Therefore, the
trajectory {xe}fz ¢, 1s first rotated so that it aligns with the four
principal headings of the building. Specifically, the trajectory
is rotated so as to minimize the average distance between the
displacement vector angle and the closest horizontal or vertical
direction. In mathematical terms, we apply a rotation of angle

$ = arg min C(9) (1)
@

to the trajectory in the horizontal plane. Here, we have defined

C(6) 2 4= min(|0, + 6 — 10 + 6 — /2. |+ o). |0 +
o+ 7/2|) where 0, is the direction (angle) in the horizontal
plane of the displacement vector Xy — Xy.

Although ICP does consider rotational transformations to
align the two trajectories, the final result will be dependent
on the relative orientation of the trajectories fed to the ICP
algorithm. Thus, each comparison between the odometry tra-
jectory and a search pattern is investigated with four different
initializations. These four initializations correspond to rotating

the odometry to the four principal directions®, i.e., applying
an additional rotation with an angle of 0, 7/2, 7, or 37 /2.

2) The iterative closest point algorithm: The ICP algorithm
is now used to compare the rotated trajectories with the
search patterns generated from the digital map. The compar-
ison between the odometry trajectory and the search patterns
constructed from the mth position sequence {p%m)}nN;”'l is
summarized using a matrix E,, of ICP root-mean-square
errors (RMSEs) with dimension N,, x 2. Here, the first
dimension signifies different possible starting nodes 7 in
the search pattern {p4" }"+AN (AN is chosen so that the
length of {p(m)}”iﬁN is as close as possible to the length
of the odometry trajectory). The second dimension of E,,
corresponds to the alternatives of using either the first position

(7 "™ (corresponding to a left-hand search) or the last position
pg +an (corresponding to a right-hand search) in the search
pattern as a position measurement. This decision is made based
on whether the last position in the odometry trajectory, rotated
and translated using the output from the ICP algorithm, is
closest to p%m) or p;ﬁ)A ~- Since we consider four possible
rotations of the odometry trajectory, E,,, stores the minimum
RMSE obtained from the corresponding four ICP algorithms.
The matrix E,,, is moreover associated with the two tensors
Pos,, and Hea,, of sizes N,, x 2 x 2 and N,, X 2,
respectively. The former specifies position observations and
the latter specifies heading observations.

In summary, the trajectory {xe}’gzel, estimated using foot-
mounted inertial measurements, is compared to search patterns
emulating a directional search based on a digital map. For
every position sequence {p%m)}g’z"l extracted from the map,
the pattern comparison produces

o« E,, — A matrix of RMSEs from the ICP algorithm.
¢ Pos,, — A tensor of position observations.
o Hea,, — A matrix of heading observations.

The pattern comparison is summarized in Algorithm 1.

E. Information Fusion

This subsections describes how the position and heading
observations from the pattern comparison (see Section IV-D)
are fused together with the odometry (see Section IV-A) and
the map information (see Section IV-B). For this we use a
particle filter where each particle is associated with a two-
dimensional position estimate and a heading estimate. The
filter includes time updates as well as measurement updates
based on the pattern comparison and the map information. The
time update consists of two steps. In the first step, the particle
estimates are updated based on the odometry since the last
update. In the second step, random noise is added individually
to all particles estimates.

Map information is incorporated by eliminating any particle
whose position estimate crosses a wall. For the pseudo obser-

3In scenarios where magnetic disturbances are negligible, magnetometers
may be used to get estimates of the firefighter’s walking direction. In this case,
the relative orientation of the odometry trajectory and the map will be known
and the ICP algorithm does not need to be run with multiple initializations.



Algorithm 1 : Pattern comparison.
1: Rotate the search pattern from the odometry with the angle

é from (1).
for m =1,..., M (for every node sequence)
forn=1,..., N,, (for every start node)

for ¢+ = 1 : 4 (for the four principal directions)

Rotate odometry search pattern: Rotate the
odometry search pattern in the horizontal plane with the
angle ), where 1) = 0, 62 = 7/2, 4(
6@ = 37 /2.

6: Iterative closest point: Apply the ICP algorithm
to find 1) the ICP RMSE ¢; 2) the optimal ICP rotation R
and translation t that transform positions in the odometry

3) = 7, and

search pattern to positions in the map search pattern.

7: Rotate and translate odometry trajectory based
on ICP: Transform the last position in the odometry search
pattern to the map search pattern using R and translation
t. The result is denoted x(ransf,

8: if [|xctranst —
9: (Z, 1) = f s

10: else

11 e(i,1) =

12: end

13: end

>|| < Hx‘”““ Pl

e(i,2) =

00, e(1,2) = ¢

14: Store ICP errors, position observations, and head-
ing observations:

E..(7n, mm e(i, 1)
Ep (1,2

POSm( 7, 7

1n e(i,2)
(M)

Pos,, (1,2, PU+AN

arctan2(— [Ap(m)]z —[Ap(m)] )

1) =
)=
)
)
Hea,,(n,1) =
2) =

= arctan2([Apn+AN 12, [Apn-t,-)AN 1)

pgi)l pEZ”) and A(n,n’) denotes the

(n,n’)th element of matrix A.
15: end
16: end

Hea,, (1,
(m)

>

where Apy,

vations from the pattern comparison, we use the exponential
likelihood function

p](ii)elihood = exp(—E" /o?) 2

where o is a design parameter and E() is the RMSE of the
observation whose associated navigation state most closely
resembles that of particle i. Specifically, for each particle 7, one
first finds the two identical positions in Pos,, that are closest
to the position of particle 7. One then chooses the position

whose associated heading estimate* is closest to the heading
estimate of particle ¢. The associated RMSE in E,, is used in
(2). Finally, the weight w,(f) of particle ¢ at sampling instance
k is updated according to

(2) (4)

(1) _ _ Plikelihood ~ Wk
Wil T SN, 6 ) ®)
2221 Plikelinood * W

where N,, denotes the number of particles. All particles that
cross a wall or have a weight below some design parameter
€ are replaced at random by identical copies of the remaining
particles.

One of the main challenges of conventional map-aided
inertial odometry is the initialization of the navigation estimate
[13]. We mitigate this problem by sampling new particles
from the generated pseudo observations. Hence, after each
measurement update based on the pattern comparison the
q percent particles with the lowest weight are replaced by
particles whose navigation states are taken at random (in pro-
portion to the likelihood function pl(i?elihood) from the navigation
states in Pos,, and Hea,,. To increase the particle diversity,
noise was added to the navigation states of all particles that
were resampled in this way. In the experimental section, we
investigate the performance of the navigation system both with
and without this type of resampling.

V. EXPERIMENTS

A performance evaluation was conducted using data col-
lected with both a professional firefighter and a civilian. This
section describes in turn the studied data sets, the parameter
selection, the performance of the navigation system that was
characterized in Sections III and IV, and how the navigation
system may be used for the detection of map errors.

A. Data

Data was recorded in two buildings. The first data set
consists of 73 minutes of data representing 16 separate
searches (nine of which were left-hand searches) conducted
by a firefighter performing directional searches and attempting
to replicate normal firefighter movements during emergency
searches. The second data set consists of 20 minutes of data
from two left-hand searches performed by a civilian imitating
firefighter movements. All data was recorded at 100 [Hz] from
a foot-mounted Xsens MTi-3-8A7G6-DK IMU. The IMU was
placed on the foot closest to the wall, i.e., the foot that was
not used for sweeping. In the first data set, the firefighter
moved in an area of size 70 [m?] where a VICON system
with 17 infrared cameras recorded ground truth position data at
100 [Hz]. To make the positioning problem more challenging,
the navigation system was run in a larger area of size 125 [m?].

4Note that the heading observations in Hea,, represent the walking
direction of the firefighter whereas the yaw estimates produced by the
odometry is the yaw estimate of the inertial measurement unit. Hence, at each
measurement update the relative orientation between the inertial measurement
unit and the walking direction is estimated [2]. The yaw estimates are then
transformed to walking direction estimates before being compared with the
observations in Hea,,, .
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Fig. 5. Area where the first data set was collected. The search pattern
generated from the map is illustrated with blue crosses (in the area where
the VICON system was installed and the firefighter performed searches) and
red squares (in the remaining area).

The second data set was recorded in a separate building in an
area of size 253 [m?]. Since there was no positioning system
available for recording ground truth in this environment,
artificial ground truth data was created manually based on
the recorded odometries, the available map, and knowledge
of the true trajectory. This resulted in ground truth position
data at ten uniformly spaced points in time (for each of the
two data recordings). The two considered navigation areas
are illustrated in Figs. 5 and 6. Due to limitations in the
spatial coverage of the VICON system and in the accessibility
of certain rooms, the participants in the experiments were
instructed to treat some doors or openings as walls. To make
the scenario as realistic as possible, these doors and openings
were treated as walls also in the map used for navigation.

B. Parameter Selection

Since the walking speed was rather low, the odometry was
downsampled to 2[Hz] before it was used in the pattern
comparison and in the particle filter. Further, the grid spacing
was set to 1[m] (this is sufficiently small obtain nodes in
fairly narrow hallways, etc.), the pattern comparison used
search patterns of length d = 20[m], and a new pattern
comparison was performed when the firefighter had walked
2 [m] since the last one. In the time update of the particle filter,
Gaussian noise with a standard deviation of 0.12[m] (along
each spatial direction) and 2 [°] per traversed meter was added
to the position and yaw estimates, respectively. These two
parameters were set by a quick visual inspection of how the
particle distribution spread out over time in the navigation area.
Similarly, we used ¢ = 0.1 [y/m] in the likelihood function
(2). Further, the particle weight floor and the percentage of
resampled particles from the pseudo observations were set
to e = 0.01-1/N, and ¢ = 10[%], respectively. Gaussian
noise with a standard deviation of 0.5 [m] (along each spatial
direction) and 25 [°] was added to the reinitialized position and
yaw estimates, respectively. The filter was run with N, = 500
particles and the RMSEs were computed from the minimum
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Fig. 6. Area where the second data set was collected. The positions of the
evaluation points are marked with blue crosses.

mean square error estimate (the weighted mean of the particle
distribution) as averaged over 10 runs.

C. Performance of Navigation System — Data Set 1

Fig. 8 illustrates the RMSE for the horizontal position
estimates on the first data set. The figure shows the results
for the navigation system with and without pseudo observa-
tions, as well as with and without prior information on the
initial navigation state (in the latter case, the particles were
initialized at random over the navigation area). Further, the
figure displays the performance with and without the resam-
pling step described in the last paragraph of Section IV-E.
As seen from Fig. 8 (a), the pseudo observations from the
pattern comparison does not improve the performance of the
localization system when the initial navigation state is known.
Both with and without pseudo observations, the navigation
system maintains a RMSE around or below one meter for
five minutes; no obvious overall difference in performance
can be seen. However, a different picture is painted by Fig.
8 (b), which considers the more realistic case where there is
no information on the initial navigation state. In this case,
the conventional particle filter will in many runs not be able
to find the true navigation solution, and the average RMSE
is around four meters. On the other hand, when using the
proposed pseudo observations together with the resampling
step the filter stabilizes at a RMSE of about one meter after
about two and a half minutes (note that the pattern comparison
cannot be performed without a decent amount of odometry).
Since it often takes a firefighter half an hour or more to search
a building, a “settling time” in this order of magnitude means
that the navigation system will provide the firefighter with a
reliable localization solution most of the time that they spend
inside the building.

D. Performance of Navigation System — Data Set 2

Fig. 7 displays the performance averaged over the two
searches in the second data set. The resampling step can be
seen to have a a significant negative impact on the localization
accuracy both without and without knowledge of the initial
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Fig. 7. Performance of the proposed navigation system on the first data set.
The two figures (a) and (b) display the horizontal position error with and
without prior information on the initial navigation state.

navigation state. However, Fig. 7 (b) shows that without
knowledge of the initial navigation state, the best localization
accuracy is achieved by using the pseudo observations to
update the particle weights, but not to resample new particles.
In conclusion, Sections V-C and V-D demonstrate that the
proposed navigation system have the potential to yield a
significant increase in localization accuracy in emergency
scenarios. However, the inclusion of a resampling step where
new particles are generated based on the created pseudo obser-
vations can have both a positive and a negative impact on the
navigation accuracy. One possible explanation to the observed
discrepancies in this matter lies in the size of the navigation
area. Since the navigation area in Fig. 6 is approximately twice
as large the navigation area in Fig. 5, there will be much
more search patterns generated from the map of the former
area. Hence, the risk of poor pattern matching is also larger
in this case, and the resampling step may therefore cause the
navigation system to be thrown off course.

E. Detection and Characterization of Map Errors

In many situations, the available floor plan will either
contain errors or ambiguous features, or not be sufficiently
updated. If the floor plan is for example missing a door,
this may cause the particle filter to degenerate. Next, we
will demonstrate how the proposed navigation system can
be used to both detect map errors, and rapidly find the
correct navigation state if map errors cause the particles to
disintegrate. For this purpose, we considered one of the search
patterns from the first data set, and simulated a map error by
changing the position of a door in the map. Fig. 9 (a) shows
the variance (summed over both horizontal directions) of the
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Fig. 8. Performance of the proposed navigation system on the second data
set. The two figures (a) and (b) display the horizontal position error with and
without prior information on the initial navigation state.

position estimates as estimated from the particle filter versus
the corresponding squared position error. The search has been
divided into four periods based on whether the estimated
variance exceeds or falls below 3[m?]. The first period is
before the filter has converged; in the second period, the filter
converges and reaches a position error around or below 1 [m];
in the third period, the uncertainty increases due to the map
error; and in the fourth period, the filter converges again. Fig.
9 displays the position estimates produced by the proposed
navigation system in periods 2 and 4. In addition, the figure
shows the position smoothing estimates obtained by using only
the odometry from the inertial sensors during period 3, and
the starting and ending points obtained from the navigation
states at the end of period 2 and at the start of period 4,
respectively. During period 3, the odometry estimates cross
the wall at a position that is much closer to the true door (see
Fig. 5) than the door displayed in Fig. 9 (b). In summary,
the results shown in Fig. 9 demonstrate the following: sudden
increases in the estimated position variance can be used to
indicate that the filter may have been disturbed by map errors.
Incident commanders and firefighters can then put larger trust
in the position estimates that are produced when the estimated
position variance is small. Moreover, they can, based on
the position estimates, the map, and possibly also inertial
odometry in the periods where the position variance estimated
using the particle filter is large, obtain some clues on the extent
and character of possible map errors.

VI. CONCLUDING REMARKS

As part of their job, firefighters are expected to perform
life-saving missions in dangerous environments with poor
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Fig. 9. Illustration of how the proposed navigation system could be used
to detect and mitigate map errors. Figure (a) shows the variance (summed
over both horizontal directions) of the position estimates as computed from
the particle filter versus the corresponding squared position error for a
given search. Figure (b) displays the navigation solution computed using
the proposed navigation system during periods 2 and 4 and the odometry
computed using the inertial sensors over period 3.

visibility. If accurate firefighter localization was available as
a seamless and robust on-demand service, this would greatly
facilitate the planning and coordination of the deployed units,
and thereby increase the chance of a successful operation.
Although there exists a considerable amount of research on
indoor positioning motivated by firefighting scenarios, most
studies have ignored the fact that firefighters do not move at
random inside a building. On the contrary, firefighters will
often follow well-rehearsed search procedures that in detail
dictate how the they will move. Since the search procedures do
not simply specify a location or a direction that the firefighter
is expected to follow, standard map-matching techniques do
not suffice, and there is a need for more sophisticated meth-
ods that can handle intricate search patterns generated from
existing map information.

This paper has presented a navigation system that utilizes
prior information on the motion characteristics of firefighter
searches to improve the navigation performance. Search pat-
terns representing directional searches were first generated
from a map of the building. The search patterns were then
compared to position trajectories generated from foot-mounted
inertial sensors using the iterative closest point algorithm.
The comparison was used to generate pseudo observations
of position and orientation which were fused together with

inertial odometry and map information to produce the final
navigation solution.

Without knowledge of the initial navigation state, the navi-
gation system with pseudo observations reached a steady-state
RMSE of about one meter on data collected with firefight-
ers. The proposed navigation system thereby outperformed
the corresponding conventional navigation system by a great
margin. Further, the performance evaluation indicated that the
information provided by the pattern comparison is of most
use before the navigation filter has converged to the true
navigation state. As demonstrated in a separate example, this
also implies that the filter is particularly useful when the
estimation uncertainty has increased due to for example map
errors. Additional experiments conducted with civilians in a
larger navigation area indicated that the optimal implementa-
tion differs depending on the considered navigation area. This
motivates further studies into how information from directional
searches can be utilized in large navigation areas and in the
presence of heavy furniture, map errors, and deviations from
standardized search procedures.
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